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Abstract: The paper presents a methodology for building

sequential decision support systems based on decision theory using

value of information (for short, DT-VOI based SDSSs). DT-VOI

based SDSSs support decision-makers in difficult problems of

sequential decision-making. In particular we consider the problem

of buildingDT-VOI based SDSSs which are capable of supporting

decisions in critical situations where (1) making a decision entails

knowing the states of some critical hypotheses, and such knowl-

edge is acquired by performing suitable tests; (2) test outcomes

are uncertain; (3) performing a test entails, in general, some

drawbacks, so that a trade-off exists between such drawbacks and

the value of the information provided by the test; (4) performing a

test has the side-effect that it changes the expected benefit from

performing other tests; (5) exceptional situations alter prob-

ability and utility default values.
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1. Introduction

The last decade has seen a growing importance of

sequential decision support systems based on decision

theory using value of information (DT-VOI based SDSSs).

A major stimulus in developing them has come from

decision analysis (von Winterfeldt & Edwards, 1986) and

Bayesian networks (Pearl, 1988; Jensen, 1996, 2001).

Bayesian networks help decision-makers avoid stereotypi-

cal deviations (biases) from the axioms of probability

(Kahneman et al., 1982) and have been demonstrated to be

a powerful modelling tool in many real cases (Kalagnanam

& Henrion, 1990; Heckerman et al., 1992), A DT-VOI

based SDSS is basically an expert system which, by

applying decision theory with value of information to the

problem at hand, supports the decision-maker in difficult

sequential decision-making problems under conditions of

pervasive uncertainty.1

The proposal addresses a complex sequential decision

scenario such as the following. The decision-maker has to

sequentially choose, among a set of alternative target

actions (which in the following will be called measures2),

the best one to perform next. Each measure entails both

desired consequences (called target effects), which repre-

sent the purpose of the measure, and some undesired side-

effects. The current utilities of target effects depend on the

current states of some hypotheses (called target hypoth-

eses). In order to establish the current states of the target

hypotheses, the decision-maker has at his=her disposal a set
of alternative tests.3 Each test on one hand provides a piece

of information having a certain value, and on the other

entails some undesired side-effects. Finally, let us add the

fact that the scenario is pervaded by uncertainty: both test

outcomes and knowledge about the world are uncertain.

Given all this, what to do next?Which test to perform next?

The proposed methodology shows how to build in practice

an SDSS able to answer these questions. In particular, it

facilitates the construction of both the knowledge base and

the inference engine of a DT-VOI based SDSS, and

addresses designers of SDSSs applied to the field of

diagnosis (in medicine, electromechanical devices, indus-

trial plants, ecological systems, financial systems etc.).

Thework presented in this paper is a continuation of and

a complement to the work presented inMussi (2002) where

background concepts of sequential decision theoretic

models are presented. In fact, the present paper shows

how to put those concepts into practice, in this way

providing the reader with a view of the sequential decision-

making problem that integrates the abstract level of general

concepts with the concrete level concerning the construc-

tion of SDSSs. This will contribute to a deeper under-

Article______________________________________

1ADT-VOI based sequential decision-making model is a particular type of
the more general sequential decision-making model presented in Puterman
(1994).
2We use the term ‘measure’ in the same way as in the sentence ‘Measures
will be taken to combat crime’.
3Note that both measures and tests are actions.
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standing of the impact that sequential decisionmodels have

on designing expert systems.4

The paper is organized in three parts. Section 2 shows

how to build an SDSS knowledge base step by step; Section

3 shows how to build an SDSS inference engine; in Section

4 the proposal is discussed in the context of related work.

2. Building the knowledge base

In the following six sections we illustrate how to build an

SDSS knowledge base in six steps. Each step will be

described at an abstract level; however, for clarity and

concreteness, we will build step by step the knowledge base

of an illustrative example in the field of diagnosis.5 For

simplicity, the number of variables that have been

considered in the example is small6 with respect to the

number of variables that would be necessary to represent

the whole problem reality; however, the example is

sufficiently rich to illustrate how the methodology works.

The example will be referred to in the following as ‘the

example problem’.7

The representation of a real-world sequential decision-

making problem involves various kinds of knowledge. Let

us represent and integrate all these kinds of knowledge in a

unique Bayesian networkmade up of a set of sub-networks,

a sub-network for each type of knowledge. To be more

precise, let us identify the following types of knowledge:

(1) knowledge concerning causal relations between target

hypotheses and test outcomes and other evidential

manifestations. This knowledge is represented in a sub-

network that will be called DN (diagnostic network).

(2) knowledge concerning the set, say B¼ {b1, b2, . . . ,

nb}, of possible tests (where nb is the dummy test

which stands for ‘no test’, i.e. ‘do nothing’) and, for

each test b2B, the set Jb of its possible outcomes and

the set of its side-effects. Let us represent the set B by

creating a special nodeBwhose states are {b1, b2, . . . ,

nb}. Let us represent the test side-effects in a sub-

network that will be called SB (side-effect network for

the set of tests B).

(3) knowledge concerning the set, say A¼ {a1, a2, . . . ,

na}, of possible measures (where na is the dummy

measure which stands for ‘no measure’, i.e. ‘do

nothing’) and, for each measure a2A, the set of its

target effects and the set of its side-effects. Let us

represent the setA by creating a special node A whose

states are {a1, a2, . . . , na}. Let us represent measure

target effects and side-effects in two sub-networks that

will be called TN (target-effect network for the set of

measuresA) and SA (side-effect network for the set of

measures A) respectively.

(4) knowledge concerning prior and conditional prob-

abilities, represented according to the Bayesian net-

work standard.

(5) knowledge concerning the utilities of the conse-

quences of both measures and tests. To represent this

knowledge we create a set of special nodes that will be

called utility nodes. To each node representing a

consequence of an action (be it a test or ameasure), we

attach, as a child node, a utility node.Utility nodes are

binary and their values are defined according to utility

theory (as will be explained in the following).

Let us now face the problem of how to build in practice

each individual sub-network.

Step 1: Building the DN

The DN includes a set of H nodes representing target

hypotheses, a set of Sy nodes representing directing obser-

vable evidentialmanifestations and a set of Jnodes for repre-

senting test outcomes: each Ji node relates to a test bi in that

the set of possible states of Ji represents the set of possible

outcomes of bi. The structure of the sub-network is defined

by a set of causal paths from root nodes (H nodes) to leaf

nodes (Sy and J nodes), each path possibly including inter-

mediate nodes. In cases involving large Bayesian networks,

the construction of the DN can be carried out with the aid

of the similarity network technique (Heckerman, 1991).

Let us start with the example problem. There is a patient

for whom the presence of the heart malfunction called high

risk ventricular pre-excitation (for short, VP) is suspected

because the patient suffers from tachycardia (for short,

TA). In order to verify if VP is present or not, the physician

has at his=her disposal two alternative tests: the Holter test

(HT) and the electrophysiological test (ET). In this case the

DN is built as illustrated in Figure 1.

Step 2: Building TN for the set of measures A

Let us consider measures affecting target hypotheses,8 i.e.

measures whose target effects consist in varying the

probability distributions of some target hypotheses. For

example, let us consider the disease ‘tonsillitis’ and the

therapy ‘antibiotic treatment’. If, before performing the

therapy, the probability of ‘tonsillitis is present’ is p> 0,

after the therapy is performed the probability of ‘tonsillitis

is present’ is p0 < p. For each target hypothesis H:

4Actually, there are not many papers in the literature presenting both
practical methodologies for Bayesian model developments and practical
applications of value of information theory.
5Wewill re-visit the case example that inMussi (1993) was represented in
a heuristic rule-based approach. In this paper we will represent it in the
normative approach, experimenting in this way the enormous advantages
stemming from using decision theory (Kalagnanam & Henrion, 1990).
6Only a single target hypothesis is considered; monetary costs etc. are not
considered.
7The example has been implemented with HUGIN, an environment for
building Bayesian networks and influence diagrams.

8Although in some kinds of problems (see the wildcatter problem)
measures do not affect target hypotheses, for simplicity let us refer to the
more common case in which measures affect target hypotheses (as in
diagnosis).
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(1) let us create an Haf node (where Haf stands for ‘H

after the measure has been performed’);9

(2) let us create the linksH ! Haf,A ! Haf;Haf ! UHaf

(where UHaf stands for the utility node of Haf ).

Let us turn to the example problem. If VP is present the

physician has at his = her disposal two alternative therapies

(measures): the pharmacological therapy (for short, Pharm)

and the surgical therapy (for short, Surg). We therefore

create a node A with possible states Surg, Pharm and na,

and build the TN sub-network as illustrated in Figure 2.

Step 3: Building SA for the set of measures A

An action (be it a test or a measure) is, in general, more or

less costly, more or less risky etc. If we say that an action is

risky we intend to say that there is a certain probability that

some undesirable anomalous situations (his) occur as a

consequence of performing the action. So, instead of

considering the action attribute ‘risk’, let us explicitly

represent in the network the nodes hi of the anomalies that

might occur (because of performing the action).10

Turning tomeasures, for each anomaly hi that a measure

a2A can cause we create

(1) a node hi and the related node hiaf (hiaf means ‘hi after

the measure has been performed’);

(2) the links hi ! hiaf; A ! hiaf; hiaf ! Uhi.

As for the monetary cost, let us represent it by creating a

node MC whose states represent intervals of possible

monetary costs.11 Let us note that even h nodes are

hypothesis nodes. An h node (like an H node) can have

children nodes of type Sy. However, for simplicity, for an h

node we do not consider children nodes of type J.12 The

sub-networks SA and DN do not have haf nodes in

common.13

Turning to the example problem, let us represent the fact

that Surg, being an operation, entails typical operation

side-effects (OS) (e.g. anaesthesia side-effects, post-opera-

tion pains, stay in hospital etc.).14 As for Pharm, its

disadvantage consists in the side-effect represented by the

possible occurrence of some gastric disturbances (GD).

The SA sub-network is therefore built as illustrated in

Figure 3.

Step 4: Building SB for the set of tests B

For each Ji node acquired during the construction of the

sub-network DN, a test bi is added to the set of states B.

Then, as was done above for building the SA sub-network,

we build the SB sub-network by creating, for each anomaly

hi that a test b2B can cause,

(1) an hi node and the related hiaf node;

(2) the links hi ! hiaf; B ! hiaf; hiaf ! Uhi.

VP

HT

ETTA

Figure 1: The DN sub-network represents the causal

relations between the disease VP (H node) and

the symptom TA (Sy node) and the outcomes of

the tests HT and ET (J nodes). Both HT and ET

have two states: pat (i.e. pathologic) and ok.

Both VP and TA have two states: y (yes, i.e.

presence) and n (no, i.e. absence). The strengths

of links VP ! HT and VP ! ET respectively

represent the diagnostic powers of the two tests.

VP

VPaf

A

Uvp

Figure 2: The TN sub-network represents the effects of the

therapies (i.e. the states of A: Surg, Pharm, na)

upon the disease VP. The conditional probability

table of VPaf defines the therapeutic effectiveness of

each therapy.Uvp is the utility node related toVPaf.

A

OSaf

OS

GDaf

GD

Uos Ugd

Figure 3: The SA sub-network represents the side-effects of

the therapies (i.e. of a2A). Both OS and GD are

h nodes. They and the related af nodes have two

states, y and n.

9The set of states of Haf is obviously equal to that of H.
10Let us note that in some application domains we might have to do with
future anomalies too. For example, in medicine, cancer therapy might
produce negative side-effects that appear a certain period of time after the
therapeutic treatment. In such a case we might, for example, define hi as
‘liver problems after 6 months’.
11Let us discretize the range of possible costs on a qualitative scale. In
general the cost is deterministic, so given an action a a single state of MC
will have probability 1, and the others will have probability 0.

12In other words, we do not consider service tests, i.e. tests devoted to
establish if an h node is true or false. So, even if a piece of information is
obtained by performing a service test, we consider it as a directly
observable manifestation.
13For simplicity, we do not consider the case in which an intermediate node
of DN is also an h node in SA.
14For simplicity, we do not consider the risk due to the possible occurrence
of complications typical of that kind of operation.
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Let us note that the sub-networks SA and SB can have

some haf nodes in common (i.e. both a measure and a test

can cause the same anomaly). The sub-networks SB and

DN do not have haf nodes in common.15

Turning to the example problem, the construction of the

sub-network DN has identified the tests HT and ET. We

therefore create a node B with possible states ET, HT, nb.

ET is invasive and is not free of risk. In fact it can cause an

anomaly called ventricular tachycardia (VT). As for

HT, the only (small) disadvantage it entails is a sort of

uneasiness (for short, UN) due to the fact that for 24 hours

the patient has to wear a special device that monitors blood

pressure, cardiac rhythm etc.On the basis of this knowledge

let us build the SB sub-network as illustrated in Figure 4.

Step 5: Defining probability distributions and eliciting

exceptional situations

A great deal of literature has been produced about the

problem of acquiring probability values. The most

common sources of probabilistic information are statistical

data, literature and human experts. If a comprehensive

data collection is available, probability values can be

automatically learned; otherwise the knowledge engineer is

prompted to use the third type of source: the human expert.

Various techniques have been proposed for supporting the

knowledge engineer in the task of probability elicitation,

including similarity networks (Heckerman, 1991), sensitiv-

ity analysis (Laskey, 1995; Castillo et al., 1997) and other

approaches (for more information see Jensen (2001),

Morgan and Henrion (1990) and in IEEE Transactions on

Knowledge and Data Engineering (2000) see the special

section ‘Building probabilistic networks: where do the

numbers come from?’). What is important to note here is

that during probability elicitation it can happen that the

expert does not feel completely confident in assessing the

probability of an event X. Usually this fact is a flag that

additional information gathering might be valuable (Heck-

erman & Jimison, 1988). In these cases, the expert is asked

to identify other (conditioning) events (i.e. exceptional

situations (for short, Excs)) that have outcomes that

influence the probability of X. Both prior and conditional

probabilities can be affected by possible exceptional

situations. An exceptional situation Exc, conditioning the

probability distribution of a node X, is represented by

creating both the Exc node and the link Exc ! X.

Let us turn to the example problem and let us focus on

possible exceptional situations. Let us consider Figure 1.

When eliciting the prior probability distribution of VP, the

physician states that VP is more likely if in the family

history of the patient there are cases of cardiac arrhythmia

(for short, CAinFH).16 As a consequence, let us enrich the

sub-network of Figure 1 by adding the node CAinFH (with

two states: y, n) and the link CAinFH ! VP. Similarly (let

us consider Figure 3), when eliciting the prior probability

distribution of GD, the physician states that if a patient is a

smoker (for short, SM), he = she has a higher probability of
suffering from GD. So, let us enrich the sub-network of

Figure 3 by adding the node SM (with two states: y, n) and

the link SM ! GD. Finally (let us consider Figure 4),

when eliciting the conditional probability distribution of

VTaf (recall that VT stands for ventricular tachycardia),

the physician states that the risk associated with perform-

ingET increases if the age of the patient is over 25. So, let us

enrich the sub-network of Figure 4 by adding the node Age

(with two states: r25, > 25) and the link Age ! VTaf.

Two examples of conditional probability tables (CPTs) are

shown in Tables 1 and 2.

Step 6: Defining utilities and eliciting exceptional situations

Let us consider af nodes representing consequences of

actions (be they measures or tests), i.e. haf and Haf nodes.

Let us assign proper utility values to the states of each af

node. In some kinds of applications it is possible to

quantify the utility value by means of a unique measure-

unit (as, for example, money). When this is not possible,

utilities are elicited from the expert. There are several

utility-elicitation methods (von Winterfeldt & Edwards,

1986). A commonly used method is the so-called variable

probability method (von Winterfeldt & Edwards, 1986;

Pearl, 1988).

Let us now consider the concept of overall utility and let

us instantiate the general formulae of utility theory

(Keeney & Raiffa, 1976; von Winterfeldt & Edwards,

1986) in our context. The expected utility from performing

an action is the overall expected utility coming from the

B
VT

VTaf

UN

UNaf

Uvt Uun

Figure 4: The SB sub-network represents the side-effects

of the tests (i.e. of b2B).B has three states: ET,

HT, nb. Both VT and UN are h nodes. They and

the related af nodes have two states, y and n.

Table 1: The CPT of the node VPaf

VP y n
A na Surg Pharm na Surg Pharm
VPaf¼ y 1 0 0.3 0 0 0

Note: The CPT shows that Surg is 100% effective, whereas Pharm is

70% effective.

15Otherwise a test would perturb the world whose status should be revealed
by the test itself. 16In other words, CAinFH plays the role of anamnesis for VP.

Expert Systems, May 2004, Vol. 21, No. 2 ______________________________________________________________________ 95



status of the network consequent to the action. The overall

expected utility coming from a certain status of the network

is calculated as the weighted sum of the expected utilities

coming from the single af nodes.

More formally, let Xaf1, Xaf2, . . . , Xafm be the set of af

nodes, and for each Xafi let {xafi1, xafi2, . . . } be the set of

the states of Xafi (for short, xafij2Xafi). For each single

Xafi let us define (e.g. using the variable probability

method) the single utility function ui(xafij). If xafij* and

xaf �ij are respectively the worst and the best states, we have

that ui(xafij*)¼ 0, and uiðxaf�ijÞ¼ 1. Then (using, for

example, the variable probability method) let us define

the ‘weights’ ki such that
Pm

i¼ 1 ki ¼ 1. In conclusion, the

overall expected utility from an action is given by

EUðactionÞ¼
Xm
i¼ 1

ki
X

xaf ij2Xaf i

uiðxaf ijÞPðxaf ijjactionÞ

2
4

3
5
ð1Þ

Even utilities can be affected by exceptional situations. If

an exceptional situation Exc affects a utility function ui we

create a link from Exc to the utility node that is child of

Xafi, and replace (1) with the following:

EUðactionÞ¼
Xm
i¼ 1

ki

( X
xaf ij2Xaf i

uiðxaf ijÞjExc
� �

Pðxaf ijjactionÞ
)

ð2Þ

Conversely, if Exc affects the weight distribution, we

create a link from Exc to each utility node and replace (1)

with the following:

EUðactionÞ¼
Xm
i¼ 1

ðkijExcÞ
X

xaf ij2Xaf i

uiðxaf ijÞPðxaf ijjactionÞ

2
4

3
5
ð3Þ

How can we represent utilities in practice? Let us

suppose we want to represent in the utility node Uxi the

utility coming from Xafi. Let us instantiate the trick

described in Jensen (1996, p. 141) in our context. Let us

assign the node Uxi two states, say Util and dummy, and

let us define the CPT ofUxi asPðUxi ¼UtiljXaf i ¼ xaf ijÞ¼
kiuiðxaf ijÞ. So, the expected weighted utility coming from

Xafi is just P(Uxi¼Util). As for the state ‘dummy’, its role

is only that of assuring the complement to 1, but it has no

relevance in the reasoning process (hence its name).

Let us turn to the example problem. The distribution of

the relative importance weights is represented by the set

{kVP, kVT, kUN, kOS, kGD}. However, in the example

problem the distribution is not unique. In fact the physician

says that if the patient practises agonistic activity (for short,

Agon), then he (the physician) wants to be fully confident

that VP is absent. As a consequence agonistic activity plays

the role of exceptional situation for the relative importance

weight assigned to the utility of the absence of VP. So we

elicit from the expert two relative importance weight distri-

butions:17 {kVP, kVT, . . . }|Agon¼ n¼ {0.7, 0.15, . . . };

{kVP, kVT, . . . }|Agon¼ y¼ {0.8, 0.09999, . . . }. Note

that since the variables VPaf, VTaf, . . . , GDaf have two

states, namely y (with utility 0) and n (with utility 1), for

each of them the weighted utility is equal to the related

weight, and the expected utility is simply obtained by

multiplying it by the probability of the related state n. For

example, Table 3 shows the CPT of the utility node UVP,

and the product P(UVP¼Util|Agon¼ n)*P(VPaf¼ n)

represents the expected utility coming from VPaf¼ n given

Agon¼ n. Let us represent in the network the exceptional

situation ‘agonistic activity’ by creating the Agon node

and linking it to each utility node, i.e. Agon ! UVP,

Agon ! UVT, ... . Finally, let us put all the sub-networks

together (Figure 5).

3. Building the inference engine

In the following sections we will describe how to effectively

use the knowledge base in order to support the user in

sequential decision-making. Even in this part we will give

concreteness to the abstract general description by using

the example problem.

Table 2: The CPT of the node VTaf

Age p25 > 25
VT y n y n
B nb HT ET nb HT ET nb HT ET nb HT ET
VTaf¼ y 1 1 1 0 0 0.2 1 1 1 0 0 0.6

Notes: The CPT shows that ET is the only test raising the probability of the presence of VT. Note that, if the patient is over 25, the risk due to ET increases

from 0.2 to 0.6.

Table 3: The CPT of the utility node UVP

Agon n y
VPaf n y n y
P(UVP¼Util) 0.7 0 0.8 0

Notes: Considering, for example, the condition Agon¼ n, we have

u(VPaf¼ y|Agon¼ n)¼ 0, u(VPaf¼ n|Agon¼ n)¼ 1, and as a conse-

quence we have P(UVP¼Util | Agon¼ n)¼ kVP¼ 0.7.

17Note that, given the distribution with Agon¼n and given the difference
between kVPaf|Agon¼ y and kVPaf|Agon¼n, the remaining elements of
the distribution with Agon¼ y can be calculated automatically.
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3.1. Rolling-up the network

A sequential decision-making process is made up of a

sequence of decision steps. At each decision step the

calculation of the expected utility from performing an action

should depend on all the pieces of information collected up

to that time (even in case of retesting) and should take into

account the fact that side-effects of actions can be

cumulative in time. To this end let us ‘roll up’ the network

just before each decision step (after the first one). The roll-up

procedure encompasses two kinds of operations: topology

modification and probability modification. It involves both

h nodes (see steps 3 and 4) and H nodes (see step 1).

The operation of topology modification consists in

making h nodes and H nodes root nodes if they are not

root nodes. In other words, if one of these nodes has parent

nodes, they (the parents) have to be eliminated.

The operation of probability modification basically

consists in assigning a proper prior distribution probability

to theH and h nodes. In particular, for anH node, this op-

eration consists in assigning it a prior probability distribu-

tion equal to the probability distribution it has in the curr-

ent status of the network.18 For an h node, the operation

consists in assigning it a prior probability distribution

(i) equal to the probability distribution the related haf

node has in the current status of the network, or

(ii) equal to the probability distribution it has in the

current status of the network, or

(iii) calculated on the basis of both the probability

distribution the related haf node has in the current

status of the network and the time interval between

the last decision step and the next one.

Which alternative among these should be adopted? It

depends on which specific side-effect the h node represents.

The first alternative is adopted if the side-effect keeps

constant in time, and the second alternative if the side-

effect immediately vanishes. If we want to represent the

case of a side-effect varying (e.g. gradually vanishing) in

time we choose the third alternative.

More formally, let K denote an H node or an h node. A

roll-up consists in executing the following steps.

(1) If K is an H node then save P(H) in M.19

If K is an h node then (according to the specific side-

effect h represents)

(a) save P(haf) in M, or

(b) save P(h) in M, or

(c) determine the prior probability distribution to

assign to h and then save it in M.

(2) If K is not a root node then eliminate its parents.

(3) For each K child which is set in a certain state,20

retract the setting.

(4) Let M be the prior probability distribution of K

(i.e. assign M to P(K)).

VP

HT
ET

TA

VPaf

A

OSaf

OS

B

VT

VTaf

Age

Agon

CAinFH

GDaf

GD

SM

UN

UNaf

Uvp

Uos

Ugd

Uun

Uvt

Figure 5: The whole network of the example problem. The network integrates the four previous sub-networks and includes the

Exc nodes: CAinFH, SM, Agon, Age. Let us recognize J nodes (HT, ET), Sy nodes (TA), H nodes (VP), h nodes

(OS, GD,UN,VT), af nodes (VPaf,OSaf, GDaf,UNaf, VTaf), the special nodesA,B and the utility nodesUvp,Uos,

Ugd, Uun, Uvt. Note that after the first roll-up the nodes CAinFH and SM are no longer present.

18We implicitly assume that the distribution probability of anH node does
not vary during the time interval between two adjacent decision steps.

19Let M be a variable used to temporarily save data.
20This corresponds to the fact that evidence (related to that node) has been
entered by the user.
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Let us turn back to the example problem and let us

consider the network of Figure 5. The set of H nodes is

represented by {VP}, and the set of h nodes by {UN, VT,

GD, OS}. VP and GD have parents. They will be

eliminated in the first roll-up. VP has three children: HT,

ET and TA. For each of them, which are set to a certain

state, let us retract the setting.

Finally, recalling the above classification (i), (ii), (iii), let

us note that UN is a case (ii) (i.e. we assume that uneasiness

disappears just after the test), whereas GD, OS and VT are

case (iii).

Let us consider, for example, the case of VT (a possible

side-effect of ET). The side-effect of ET consists in a sort of

‘trauma’ (produced by its invasiveness). As a consequence

the physician is prompted to retain that, immediately after

performing ET, the probability that VT is present rises over

its default value (i.e. P(VTaf¼ y)>P(VT¼ y)). However,

this sort of trauma is gradually adsorbed in time21 (see

Figure 6).

Let us suppose, for example, that ET is performed and

that its outcome is entered after Dt¼ 3 days. Then, the

statement ‘determine the prior probability distribution to

assign to h and save it in M’ (see the above point 1(c))

becomes

(a) generate the current VT curve (starting from the value

of P(VTaf¼ y) in the current network);

(b) determine the value of P(VT¼ y)(3 days) and save it

in M.

Figure 7 illustrates an example of how the network changes

after the first roll-up.22

3.2. Supporting sequential decision-making

In this section we present an algorithm for supporting

sequential decision-making. The basic fact that performing

an action has the side-effect that it changes the expected

benefit of performing other actions affects the structure of

the algorithm. The algorithm supports decisions concern-

ing both tests (which test to perform next) and measures

(which measure to perform next). The general strategy

consists in first gathering information until every test is not

worth being performed, and then performing a measure.

The algorithm stops when each action is no longer worth

being performed. Basically the algorithm is characterized

by the following cycle.

(1) Calculate and show the user the expected profits23 of

the tests.

(2) If there are some tests that are worth being performed,

then ask the user to perform the test with the maxi-

mum expected profit. After the test has been per-

formed update the network and go back to point (1).

(3) If no test is worth being performed then calculate and

show the user the expected utilities of the measures.

(4) If there are some measures that are worth being

performed, then ask the user to perform the measure

with the maximum expected utility. After the measure

has been performed update the network and go back

to point (1).

(5) If no measure is worth being performed, then stop.

The algorithm is shown in Figure 8. Referring to the figure

let us comment on some lines of the algorithm. Let us start

with the case in which there are tests with positive expected

profit. We assume that the test is performed at the same

time at which the list of tests (LST) is printed. At line 3 real

time elapsing is considered. Such time elapse refers to the

temporal interval Dtb between the time at which the test b is

performed and the time at which its outcome j is entered.

Line 4 shows that the two facts B¼ b (occurring at the

time at which b is performed) and Jb¼ j (occurring at the

time at which j is available, i.e. Dtb later) are entered

together, and then a unique propagation is performed. This

is possible because of the separation between the sub-

networks SB and DN.24

P(VT=y) in the next network,
after rolling-up the current
network.

∆t

In the current
network:
P(VTaf=y) =
0.24

P(VT=y)*=
0.05

6 days

Age = ≤ 25

Figure 6: The basic curve of P(VT¼ y)(Dt) related to the

trauma caused by performing ET (linearity is an

approximation) on a patient who is under 25.

P(VT¼ y)n stands for the default value of

P(VT¼ y). The figure shows that, if ET is

performed, P(VTaf¼ y) rises up to 0.24 and the

trauma caused by ET is gradually absorbed in 6

days. Given the slope of this basic curve, a current

curve depending on the value of P(VTaf¼ y) in the

current network can be generated dynamically.

21Another typical case of side-effects vanishing in time occurs in the case of
radiographies. If a patient undergoes a certain number of radiographies in
a short period of time, the risk associated with the last one is greater than
the risk associated with the first. However, radiation is gradually absorbed
as time goes on.
22The Exec nodes Agon and Age are not involved in the roll-up.
23The concept of profit will be defined in the next section.

24If the two sub-networks were not separated, the propagation of the
outcome and the side-effect together would produce an incorrect situation.
In fact at the time at which the outcome is available it is not guaranteed that
the side-effect of the test is still as strong as it was when the test was
performed.
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The roll-up statement of line 5 prepares the network for

supporting the next decision step (i.e. for the next execution

of ORDER-TESTS).

Finally, let us comment on line 6. It can happen that

during the time interval Dtb the real world provides new

knowledge. For example, an exceptional situation or a

manifestation that was present at the beginning of Dtb is no
longer present at the end of it, or vice versa. In such a case

the related node must be set to the proper state. In

particular, let us note that if the exceptional situation

concerns an Exc node that has been eliminated by some

previous roll-up, then the Exc node is first re-created and

then set to the proper state.

In the case in which no test has positive expected profit,

the expected utilities of measures are calculated and then

shown to the user. The following statements are similar to

the ones we have commented on.25

3.3. Supporting single decision-making

The calculus of the expected profits of tests is based on

decision theory using value of information (Jensen, 1996).

The outcome j of a test b2B (i.e. j2 Jb) is information

Figure 7: The effects of the first roll-up of the network of Figure 5, starting from a current network status like the one represented,

in a fragment, on the left. For each node, only one value of the binary distribution is represented. The network fragment

on the left shows that (1) we have to do with the case of a patient who suffers from tachycardia, does not smoke, is under

25 and has no case of cardiac arrhythmia in his = her family history; (2) ET has been performed, producing the outcome

‘ok’ and the increase of P(VTaf¼ y) from 0.05 to 0.24. The fragment on the right shows that (1) the nodes CAinFH

and SM have been eliminated leaving VP and GD with the probability distributions they had in the network on the left;

(2) the node VT has been given a probability distribution derived fromP(VTaf¼ y) in the network on the left, the curve

of Figure 6, and Dt¼ 3 days; (3) the settings of the nodes TA and ET have been retracted.

0) Set the states of Sy and Exc nodes 
While true do 

BEGIN 
1) ORDER-TESTS
2) Print LST 

If there are tests with positive expected profit
then BEGIN 

Print: "perform a test b∈B and enter its outcome j" 
3) Pause (wait for the test outcome, tb ≥

≥

∆

∆

 0)

4)  Set the states: B = b , A = na , Jb = j  

5) Propagate and then Roll-up the network
6)  Possibly set the states of some Sy and Exc nodes

END 
 If the expected profit of each test is ≤ 0 

then BEGIN 
 Print "no test has a positive expected profit" 
 ORDER-MEASURES
 Print LST 
 If the expected utility of each measure is ≤ 0 

then EXIT
else  BEGIN 

 Print: "perform a measure a∈A" 
Pause (wait for the measure outcome, ta   0)

 Set the state: A=a 
Propagate and then Roll-up the network
 Set the states of Sy and Exc nodes 
 END 

 END 
 ENDof while

Figure 8: The algorithm for supporting sequential decision-
making. The expected profits of tests and ex-
pected utilities of measures are calculated by
the procedures ORDER-TESTS and ORDER-
MEASURES respectively. The ORDER- proce-
dures return LST, the list of the tests=measures
ordered (in decreasing sense) according to their
expected profits=utilities.

25In diagnosis, after ameasure has been performed, it is important to set (if
possible) Sy nodes that are children ofH nodes, even if they have to be set
to the same states they had before the measure was performed. For
example, after antibiotic therapy, it is important to know if fever is still
present.
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whose valueV( j) is given by (the symbol x stands for ‘all the
remaining pieces of information so far acquired’)

Vð jÞ¼ max
a2A

EUðajb; j; xÞ ð4Þ

where EU(a) is calculated by (1) (step 6) and A stands for

the set of measures. As a consequence, the expected value

from performing b is

EVðbÞ¼
X
j2Jb

Vð jÞPð jjb; xÞ ð5Þ

Considering the dummy test nb we have

EVðnbÞ¼ max
a2A

EUðajnb; xÞ ð6Þ

So the expected benefit of a test b is given by

EBðbÞ¼EVðbÞ � EVðnbÞ ð7Þ

Similarly, the expected cost of b is given by

ECðbÞ¼EUðbÞ � EUðnbÞ ð8Þ

where EU is calculated by (1) (step 6). Finally, taking into

account both the value of each possible outcome ( j2 Jb)

and the expected cost from performing b, we have that the

expected profit of b is given by

EPðbÞ¼EBðbÞ þ ECðbÞ ð9Þ

The procedures ORDER-TESTS and ORDER-MEA-

SURES that respectively calculate the expected profits of

tests26 and measures are illustrated in Figures 9 and 10.

Let us turn to the example problem and let us experiment

with the application of the algorithm of Figure 8 to the

network of Figure 5. Let us suppose that the patient we are

dealing with suffers from tachycardia; in his=her family

history there are no cases of cardiac arrhythmia; he=she
does not smoke. Let us represent these facts in the network

of Figure 5 by setting the states TA¼ y, CAinFH¼ n,

SM¼ n. It is now interesting to know how much the

expected profits of the two tests HT and ET are affected by

the age of the patient and by the fact that he=she practises
agonistic activity or not. Let us therefore execute four times

(each time with a different combination of the states of Age

and Agon) the statements of lines 0, 1, 2 (see Figure 11).

Given the prior probability distributions and the CPTs

(elicited by the physician) documented in the Appendix, the

result of the executions is shown in Table 4. Let us note that

the maximum expected profit for ET is reached if the

patient is under 25 and practises agonistic activity, whereas

the maximum expected profit for HT is reached if the

patient is over 25 and does not practise agonistic activity.

These results are in accordance with medical common

sense. In fact, although ET is more risky than HT, it is

worth performing if the patient is young (the risk is more

acceptable) and practises athletics (the utility of VP¼ n

is higher).

Let us now make a second experiment. Keeping the

above background setting (TA¼ y, CAinFH¼ n, SM¼ n),

let us consider a specific case, e.g. the case of a patient who is

under 25 and practises agonistic activity. The first execution

of ORDER-TESTS provides the user with the list shown in

the third column in Table 4. Let us now suppose the patient

Procedure ORDER-TESTS  

let LST be the empty list.
Set the states: B=nb, A=na 
Propagate
Calculate EU(nb)
For each a∈A do: 

BEGIN 
 Set the state: A=a 
Propagate 
 Calculate EU(a|nb,ξ)  
END 

Calculate EV(nb)
For each b∈B, b ≠  nb do: 

BEGIN 
 Set the states: B=b, A=na
Propagate 
 Calculate EU(b), EC(b) 
For each j∈Jb do:

  BEGIN
  Set the state: Jb = j 

  For each a∈ A do: 
BEGIN 

 Set the state: A=a 
Propagate 
 Calculate EU(a|b,j,ξ)  
END 

 Calculate V(j) 
 END 

Calculate EV(b), EB(b), EP(b) 
 Put in LST the couple (b , EP(b)) 

  in decreasing order 
END 

Figure 9: The procedure ORDER-TESTS, providing the

user with the list of tests (LST) ordered accord-

ing to their expected profits, supports his = her
next decision-making.

Procedure ORDER-MEASURES

Let LST be the empty list.
Set the state: B=nb 
For each a A do:

BEGIN 
 Set the state: A=a
Propagate 
 Calculate EU(a|nb,ξ)  
END 

Put in LST the couple (a , EU(a))
in decreasing order

Figure 10: The procedure ORDER-MEASURES, provid-

ing the user with the list of measures (LST)

ordered according to their expected profits,

supports his= her next decision-making.

26It is worth noting that the expected profit of a test causing a side-effect
gradually vanishing in time might be negative immediately after the test
has been performed and positive after a certain time.
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undergoes ET and then, after Dt¼ 1 hour, the ET outcome,

say ‘ok’, is entered. The network is then updated according

to the statements of line 5 in Figure 8. Suppose we do not

enter any state change for Sy and Exc nodes (line 6). The

procedure ORDER-TESTS is then executed for the second

time and provides the user with the list

HT ð�0:0006Þ ETð�0:0151Þ

The list shows that it is not worth performing any further

test.Moreover let us also note that even the order of the list

is different from the one produced by the first execution of

ORDER-TESTS (third column in Table 4). In fact, given

that Dt¼ 1 hour is practically a null time interval if related

to the curve of Figure 6, we have that P(VT) in the network

after the roll-up is equal to P(VTaf ) in the network before

the roll-up. So, in the second execution of ORDER-TESTS

the value of EUc(ET) turns out to be less than it was in the

first execution. This fact says that a repetition of ET after a

short time interval from the previous ET is discouraged.

Even this is in accordance with medical common sense:

since ET is diagnostically very significant, there is no point

in performing ET again, in addition to the fact that ET is

risky and has just been performed.

4. Discussion and conclusion

4.1. Discussion and related work

Bayesian networks, and the related extensions called

influence diagrams, represent a major knowledge source

for sequential decision models (Mookerjee & Mannino,

1997). The scientific literature shows a continuous thread of

work in this field, from the seminal work by Tatman and

Shacter (1990) to the recent work byNilsson and Lauritzen

(2000). A classical case of sequential decision-making is

represented by sequential diagnosis (Gorry & Barnett,

1985) and troubleshooting (Heckerman et al., 1994). In

Breese and Heckerman (1996) and Skaanning et al. (2000)

Bayesian networks are used for defining a sequential

decision model for troubleshooting.

Our methodology is based on the use of Bayesian

networks that encompass, according to a well-known trick

(Cooper, 1988; Jensen, 1996), special nodes for represent-

ing actions and utilities. The first part of the methodology

shows how to build in six steps a whole integrated network;

however, it does not enter the specific field of the various

techniques and tools for eliciting probabilities and causal

networks. For large diagnostic Bayesian networks, elicita-

tion can be supported by the technique of similarity

networks (Heckerman, 1991). A domain-specific knowl-

edge acquisition tool for Bayesian networks is presented in

Skaanning (2000). The interested reader can find further

information about probability elicitation techniques in

Morgan and Henrion (1990).

Let us now discuss some representation issues, showing

similarities and differences between the proposal and

related work. In Heckerman et al. (1992) and Heckerman

and Nathwani (1992), a single target hypothesis node is

considered: each state of the node represents a disease.

Similarly, a single target hypothesis node is considered in

Breese and Heckerman (1996): each state of the node

represents a fault. Moreover, the costs of observation and

P(VP=y|CAinFH) = 0.2|y,  0.1| n;   P(TA=y|VP) = 0.6|y,  0.2|n;   
P(HT=pat|VP) = 0.7|y,  0.2|n;  P(CAinFH=y) = 0.1; 
P(ET=pat|VP) = 0.99|y,  0.01|n ;   P(GD=y|SM) = 0.3|y,  0.1|n;
P(SM=y) = 0.4;     P(OS=y) =  0;  P(VT=y) = 0.05;   P(UN=y) = 0;  
P(VPaf=y|VP=y,A) =  1|na,  0|surg,  0.3|pharm;   P(VPaf=y|VP=n,A) =  0|na,  0|surg,  0|pharm;
P(OSaf=y|OS=y,A) = 1|na,  1|surg,  1|pharm;   P(OSaf=y|OS=n,A) = 0|na,  1|surg,  0|pharm; 
P(GDaf=y|GD=y,A) = 1|na,  1|surg,  1|pharm;  P(GDaf=y|GD=n,A) = 0|na,  0|surg,  0.3|pharm;
P(UNaf=y|UN=y,A) = 1|nb,  1|HT,  1|ET;    P(UNaf=y|UN=n,A) = 0|nb,  1|HT,  0|ET;
P(VTaf=y|Age≤25,VT=y,A) = 1|nb,  1|HT,  1|ET;     P(VTaf=y| Age≤25,VT=n,A) = 0|nb, 0|HT,  0.2|ET; 
P(VTaf=y|Age>25,VT=y,A) = 1|nb,  1|HT,  1|ET;     P(VTaf=y| Age>25,VT=n,A) = 0|nb,  0|HT,  0.6|ET;
{kVP , kVT , kUN , kOS , kGD}|Agon=n    =  0.7, 0.15, 0.001, 0.1, 0.049; 

{kVP , kVT , kUN , kOS , kGD}|Agon=y    =  0.8, 0.09999, 0.0006666, 0.6666, 0.0326634; 

Probability distributions of A, B, Agon, Age are even. As for the utility nodes,  as explained in step 6,
the probability of the state Util  is  0 if the state of the related af node is y, is equal to the related k if the 
state of the related af node is n. For example:
P(Uvp=Util|Agon=n,VPaf) = 0|y, 0.7|n;    P(Uvp=Util|Agon=y,VPaf) = 0|y,  0.8|n.

Figure 11: The set of probabilities and utilities related to the network of Figure 5.

Table 4: The preference order of ET, HT (quantified in terms of expected utility) according to the states of Agon and Age

Agon n y
Age p25 > 25 p25 > 25

ET (0.0099) HT (0.0075) ET (0.0286) HT (0.0203)
HT (0.0075) ET (�0.0470) HT (0.0203) ET (�0.0093)

Note: Age does not affect HT, while Agon, affecting the utility weight distribution, affects both ET and HT.
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repair do not depend on previous repair or observation

actions. The single fault assumption has been adopted even

in Skaanning et al. (2000) and Jensen et al. (2001).27 Actions

are represented as children of the target hypothesis (i.e. the

cause variable), and their costs are represented as linear

combinations of cost factors (money, risk etc.). The ‘risk of

breaking something else’ is specified on a scale of 0–4.

In our methodology, actions are represented as states of

two distinct nodes (node A for measures and node B for

tests). Action costs are explicitly represented in terms of side-

effect nodeswith related utility nodes. This explicit approach

leads us to build two Bayesian sub-networks SA and SB, for

the side-effects of measures and tests respectively, so that we

can explicitly represent how and by how much each single

exceptional situation and piece of evidence affects the

overall cost of an action. Moreover, the roll-up procedure

described in Section 3.1 allows us to easily model the fact

that the current cost of an action depends on previous

actions. In fact, on one hand dealing with side-effect sub-

networks we can easily represent the possibility that some

actions have side-effects in common, and on the other hand

by rolling-up the network (as described in Section 3.1) we

model the cumulative aspect of side-effects and explicitly act

on the single specific components of the overall action cost,

considering both the different types of side-effects and the

elapsed time since the last action performance. In particular,

given that the sub-networks SA and SBmay have h nodes in

common, we can easily represent how and by how much

(even taking time into account) tests affect measure costs

and vice versa. Finally, the proposal also defines an explicit

representation for measure effectiveness, by defining a

target-effect sub-network (TN) where possible exceptional

situations affecting effectiveness of a measure can be simply

represented as network nodes.

Both the work presented in Breese and Heckerman

(1996) and the work presented in Skaanning et al. (2000)

and Jensen et al. (2001) concern troubleshooting: a process

consisting in a sequence of actions which encompasses not

only tests (as in traditional diagnosis) but repairs too. Our

methodology takes into account the fact that even

measures, not only tests, can be sequentially performed.

Moreover, the methodology considers sequential decision

scenarios in which measures may or may not affect target

hypotheses. The case of diagnosis is a typical case in which

measures affect target hypotheses. So in diagnostic

applications the roll-up involves, besides side-effects, target

effects too.

Finally, let us consider the question of myopic=non-
myopic approach. Our methodology uses the myopic value

of information approach, based on the assumption that the

decision-maker will immediately act after seeing the result

of a single test. As is well known, the analysis of all possible

sequences of tests is intractable, because the number of

sequences grows exponentially with the number of tests. In

practice, for simplicity, many real-world applications use

the myopic value-of-information approach, which is any-

how considered a good heuristic (Gorry & Barnett, 1985).

Heckerman et al. (1991) present an approximate non-

myopic analysis. However, this approach is limited to

information acquisition decisions for problems involving

binary action variables and one binary hypothesis variable.

In conclusion, in the light of the above discussion the

methodology proposed in the present paper turns out to be

characterized by the following sources of power:

� modelling power: the capability of reasoning with

multiple hypotheses, the capability of taking into

account past information and cumulative side-effects

varying in time, the capability of representing the

pervasive aspect of exceptional situations applied to

both probabilities and utilities, and the capability of

explicitly representing, through side-effect sub-net-

works, action costs and their mutual effect make the

methodology suitable for modelling complex real-

world systems;

� user-friendliness: the methodology on one hand guides

the designer of a normative knowledge base through

six steps each of which involves a specific focus of

mind, and on the other hand proposes an inference

engine that is easy to implement. As a consequence the

proposed methodology provides builders of SDSSs

with an easy way of applying decision theory with

value of information to difficult sequential decision-

making problems.

4.2. Conclusions

The paper has presented a methodology for building DT-

VOI based SDSSs. The methodology guides the SDSS

designer in building step by step an SDSS knowledge base

and the related inference engine. The methodology is

characterized by being domain independent, user-friendly,

and powerful enough to model sophisticated real-world

cases characterized by multiple hypotheses, exceptional

situations and mutual influences between actions whose

side-effects vary in time. The proposal puts into practice the

general concept of value of information, and so, in this

sense, the work presented in this paper complements the

previous work presented in Mussi (2002), providing the

reader with a practical methodology and a deeper under-

standing of the impact that sequential decisionmodels have

on designing expert systems.

Appendix

For completeness we list in Figure 11 the CPTs and the

weight distributions elicited by the physician and then used

in the experiments described in Section 3.3.

27‘When troubleshooting printing systems, it is more natural to assume a
single fault than to assume independent faults’ (Jensen et al., 2001).
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