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Abstract—The bullwhip effect is an amplification of the vari-
ability of the orders placed by companies in a supply chain. This
variability reduces the efficiency of supply chains, since it incurs
costs due to higher inventory levels and supply chain agility re-
duction. Eliminating the bullwhip effect is surely simple; every
company just has to order following the market demand, i.e., each
company should use a lot-for-lot type of ordering policy. However,
many reasons, such as inventory management, lot-sizing, and mar-
ket, supply, or operation uncertainties, motivate companies not to
use this strategy. Therefore, the bullwhip effect cannot be totally
eliminated. However, it can be reduced by information sharing,
which is the form of collaboration considered in this paper. More
precisely, we study how to separate demand into original demand
and adjustments. We describe two principles explaining how to use
the shared information to reduce the amplification of order vari-
ability induced by lead times, which we propose as a cause of the
effect. Simulations confirm the value of these two principles with
regard to costs and customer service levels.

Index Terms—Agents, bullwhip effect, coordination mecha-
nisms, multiagent systems, supply chain management.

I. INTRODUCTION

SUPPLY chain management can be defined as a set of tech-
niques utilized to efficiently integrate suppliers, manufac-

turers, warehouses, and stores, so that merchandize is produced
and distributed in the right quantities, to the right locations, and
at the right time, in order to minimize system wide costs while
satisfying the service-level requirements [1].

As we can see, supply chains are distributed systems, and
thus, issues of stream fluctuations may appear therein. In fact,
in the case of supply chains, this issue of fluctuations is known
as the bullwhip effect (or Forrester’s effect [2]). This effect
is a problem of coordination consisting of an amplification of
demand variability in the supply chain, so that raw material pro-
ducers receive orders that are more variable and unpredictable
than that of the retailers. Basically, this problem leads to unnec-
essary inventory and decreased customer service levels due to
backorders, i.e., to inventory shortages/lost sales. We present the
bullwhip effect and review the relevant literature in Section II.
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We next study how the supply chain should behave to re-
duce the bullwhip effect. Our ultimate goal is to improve supply
chain efficiency by reducing this effect of amplification of de-
mand variability, while keeping a low inventory and adequate
customer-service levels. Since we see each company as a reac-
tive agent that applies a given ordering rule, our goal is to stabi-
lize flows in this multiagent system, i.e., to have a stable supply
chain. In this study, we consider a split supply chain where
companies have only one supplier and deal with one product.
With this model, we show why lead times induce the bullwhip
effect, although previously lead times have only been seen as an
aggravating factor of another cause of this effect. The solution
that we propose to this specific cause is based on demand infor-
mation sharing, which is often suggested to reduce the bullwhip
effect [1], [3]–[5]. Lot-for-lot ordering (that is, each company
orders what is demanded by its clients) is known to eliminate the
bullwhip effect, and propagates the market consumption in the
supply chain. Unfortunately, this often results in backorders due
to inventory variations. This is why we propose to distinguish
between real market demand from demand variation required to
stabilize inventory levels, i.e., between the original demand and
the required adjustments. To achieve that, every company places
vectors of orders [O,Θ], where O’s are the market consumption
transmitted from company to company and Θ’s represent the
difference with O’s with the needs of the companies. The idea
is that all companies would order O’s if there were no bullwhip
effect, but they do not order O for many reasons, in particular,
inventory variation. The information about market consumption
O is used by companies in the supply chain as the reference
point from which their orders must deviate as little as possible:
thus, Θ’s “encapsulate” the bullwhip effect. Section III explains
why and how to separate the original demand from adjustments
so that the bullwhip effect is reduced, in particular, through the
proposition of two principles ruling O and Θ.

This solution is compared experimentally to some other
ordering schemes by using the Québec wood supply game
(QWSG). This game is derived from the Wood Supply
Game [6], [7] to Québec (a Canadian province) wood industry
specificities. These games are adaptations of the beer game [8]
for the wood industry, and were designed to make players
aware of supply chain dynamics, in particular, the bullwhip
effect. We implemented the QWSG as a software multiagent
system [9] and simulated it with 19 market consumption
patterns and under seven different ordering schemes. Three of
these schemes use 2-D [O,Θ] orders, while the four others use
classic reorder schemes with one dimension X(= O + Θ). The
QWSG, its multiagent implementation, experimental results,
and a discussion are provided in Section IV. An important point
of the discussion is that the proposed ordering scheme inverses
company interest. In fact, conversely to the classic bullwhip
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Fig. 1. Bullwhip effect [4], [5].

TABLE 1
PROPOSED CAUSES AND SOLUTIONS OF THE BULLWHIP EFFECT

effect, which amplifies along the supply chain (most upstream
suppliers are more disturbed by this effect than retailers),
ordering schemes following our two principles induce inventory
variations that last longer at retail sites than at upstream sites.

II. BACKGROUND AND LITERATURE REVIEW

ON THE BULLWHIP EFFECT

We now present the bullwhip effect. Fig. 1 shows how this
effect propagates in a simple supply chain with only three com-
panies: a retailer, a wholesaler, and a paper mill. In this figure,
the retailer exclusively sells to the customer and buys from the
wholesaler, the wholesaler sells to the retailer and buys from the
paper mill, and the paper mill sells to the retailer and buys from
an unknown supplier. The ordering patterns of the three compa-
nies are similar in the way that the variabilities of an upstream
site are always greater than those of the downstream site [5].
As a variability, the bullwhip effect is measured by the standard
deviation σ of orders. Note that the means µ of orders are all
equal in our example given in Fig. 1.

A. Causes Sustaining the Bullwhip Effect

There are several consequences of the bullwhip effect. In a
few words, this effect incurs costs due to: 1) higher inventory
levels; 2) supply chain agility reduction; 3) decrease of customer
service levels; 4) ineffective transportation; 5) missed produc-
tion schedules [10]; and 6) stockpiling due to a high degree of
demand uncertainties and variabilities [4]. Table I summarizes
the causes and solutions of the bullwhip effect proposed in the
literature, which are now detailed. Lee et al. [4], [5] proposed
the first four causes and solutions.

1) Demand Forecast Updating: Companies base their or-
ders on forecasts, which are themselves based on their incom-
ing orders, although such forecasts are not perfectly accurate.
Therefore, companies order more or less than what they re-
ally require to fulfill their demand. In other words, forecast-
ing errors amplify the variability of orders. A solution pro-
posed to this cause is information sharing: each client provides
more complete information to its supplier in order to allow
the supplier to improve its forecasting. Information sharing
is already part of industry practices, such as vendor-managed
inventory (VMI), continuous replenishment program (CRP),
etc.

2) Order Batching—Lot Sizing in A More General Way:
Companies discretize orders for profiting from economies of
scales, and therefore, place orders for more or less products
than what they actually need.

The proposed solution to this cause is electronic transactions
(e-commerce, EDI, etc.) to reduce transaction costs and thus
make companies’ orders more frequent and for smaller quanti-
ties. Similarly, the size of production batches may be reduced
with single minute exchange of die (SMED), which may next
reduce the quantities ordered.

3) Price Fluctuation: Every client (company or end-
customer) profits from promotions by buying more products
than what it really requires, and next, buying nothing when the
promotion stops because it has enough products in inventory.
The proposed solution is the every day low pricing (EDLP) pol-
icy, where price is set at the promotion level. However, EDLP
also has some drawbacks, e.g., always looking for the lowest
price may put a stress on the supply chain that may eventually
reduce profits [17].

4) Rationing and Shortage Gaming: Since every client has
opportunist behavior, it overorders when its supplier cannot
fulfill its entire demand, e.g., in the case where the supplier
has a machine breakdown. Through such behavior, this client
does not hope to receive the quantity that it has ordered, but a
lower quantity that matches its actual need. Since this behavior
occurs when the supplier allocates shipping in proportion to the
ordered amount, it is preferable to allocate the few available
products in proportion with the history of past orders.

Other authors have extended Lee and his colleagues’ causes
to the bullwhip effect.

5) Misperception of Feedback: Sterman [8] has noted that
players in the beer game place orders in a nonoptimal way
because they do not understand the whole dynamics in their
supply chain. For example, they do not correctly interpret their
incoming orders, and in consequence, smooth their orders when
they should order more, because they do not understand that
market consumption has increased.

6) Local Optimization Without Global Vision: Several au-
thors [15], [16] have noted that companies maximize their own
profit without taking into account the effect of their decisions
on the rest of the supply chain. In particular, some companies
use an ordering scheme such as the (s, S) policy (in which the
company orders for S-I products when inventory level I falls
below s) that is the operationalization of this local optimization.
It has been formally proven that some of these policies induce
the bullwhip effect [1], [3].
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7) Company Processes: Taylor et al. [11] propose two
causes of the bullwhip effect: variability in machine reliability
and output, and variability in process capability and subsequent
product quality. In these two causes, which are summarized as
“company processes” in Table I, production problems at each
workstation are amplified from one workstation to another. This
cause recalls that intracompany problems and uncertainties may
affect each company’s behavior, which in turn may make them
change the way they place orders.

B. Literature Review on the Bullwhip Effect

This presentation of the bullwhip effect and its proposed
causes is a synthesis of many works. Basically, Scholl [18] noted
that many of these works belong to system dynamics modeling
and agent-based modeling, which are two prominent nonlinear
modeling schools. In a broader way, we extend this classifica-
tion of the literature about the bullwhip effect into three broad
classes.

1) Formal Studies Relative to the Bullwhip Effect: Mathe-
matical tools from different fields have been used. First, For-
rester [2], [14] introduced the bullwhip effect in the field of
system dynamics in 1958,1 and other studies of this effect were
next carried out in this field [19], [20].

Second, inventory management is the main field concerned
with this effect, since it is strongly related with order placement.
In particular, Lee et al. [4] proposed a formal description of the
four first causes stated above. In the same way, Simchi-Levi
et al. [1], [3] studied the first of those four causes (demand
forecast updating) further by focusing on the impact of lead
times and moving average forecasting and on how the bullwhip
effect is reduced with information centralization.2 In the same
vein, Kelle and Milne [21] wrote a work similar to [1] and [3]
with the (s, S) ordering policy. Third, economists [15], [16]
have also studied how local optimizations done by companies
without taking into account the rest of the supply chain cause
the bullwhip effect. The difference with the previous approach
is the fact that optimization is explicitly taken into account
in economics models, while it disappears in classic inventory
management models of the bullwhip effect: the latter approach
bases its ordering policies on local optimization too, but it uses
these policies without reconsidering the optimization process
on which these policies are based. Fourth, traffic flow theory was
translated into supply chain management vocabulary by Da-
ganzo [12] in order to study how ordering policies can stabilize
flows in the supply chain. More precisely, Daganzo represents
the history of flow at each company with curves of cumulative
count, i.e., the greater a flow is, the greater the gradient of the
curve representing this flow is. With this representation of flows,
he gave properties that the ordering policies ruling the order
streams should have in order to avoid the bullwhip effect, and
shows that all currently used policies lead to the bullwhip effect.

1However, Scholl [18] says that Sterman points out that this phenomenon was
described at least as early as the 1920s and 1930s in economics and management
science literatures.

2Information centralization is a special form of information sharing in which
retailers multicast their sales to the rest of the supply chain instantaneously and
in realtime.

Finally, in an approach similar to traffic flow theory, Dejon-
ckheere et al. [13] have also focused on stabilizing streams in
the supply chain, except that they used another formalism called
control theory to verify the impact of exponential smoothing al-
gorithms for forecasting in a way similar to that of Simchi-Levi
et al. [1], [3] and Kelle and Milne’s [21].

2) Empirical Studies of the Bullwhip Effect: Instead of fo-
cusing on mathematical representations of the bullwhip effect,
many researchers have studied the bullwhip effect in an empiri-
cal way. For example, Lee et al. [5] gave a nonformal description
of their paper [4], in which the first four above causes of the bull-
whip effect are described. Similarly, Wilding [22] explained in
general terms that uncertainty in the supply chain is generated
by three interacting sources: the bullwhip effect, determinis-
tic chaos (chaos appears when the system is deterministic, i.e.,
chaos appears in the system when there is a definite rule with no
random terms governing the dynamics of the system), and par-
allel interactions (interactions between companies in the same
echelon may appear: a retailer has an influence not only on its
suppliers, but also on other retailers).

In a more practical way, Fransoo and Wouters [23] proposed a
method for the measurement of the bullwhip effect. In the same
way, the LEAn Processing (LEAP) project [11], [24] has fo-
cused on the bullwhip effect in three echelons of the automotive
component supply chain in the U.K.

3) Simulation-Based Studies of the Bullwhip Effect: Be-
sides formal models and empirical approaches, simulation is
increasingly seen as an efficient tool in supply chain manage-
ment [25], [26]. In the context of the bullwhip effect, Yung and
Yang [27] represented each company as an agent (i.e., as an
autonomous, reactive, and proactive software that can interact
with other agents [9]) that minimizes its costs subject to some
constraints. Since these agents work in parallel, the optimization
of the supply chain is done concurrently. In a similar approach
based on agents, Carlsson and Fullér [10] used fuzzy logic to
estimate demand for the upcoming period. Like Chen et al. [3]
(mentioned above as a work in inventory management) but with
the agent paradigm, Yan [28] has studied the impact of lead-time
distribution on the bullwhip effect.

As previously stated, the bullwhip effect has also been studied
using the beer game, which can be defined as a simulation of a
supply chain used to teach the bullwhip effect. In this simula-
tion, some researchers [8], [29] have looked for the managers’
cognitive limitations that cause this effect of demand variability.
In fact, although there are mathematical tools to manage inven-
tories, some people still use their intuition when placing orders
in real supply chains. The problem lies in the fact that people
have some difficulties understanding the dynamics of a supply
chain, because there are complex feedback loops, time delays,
and past orders to consider together. Besides that, Kimbrough
et al. [30] have gathered software agents and the beer game
by replacing human players by agents in order to find the best
ordering scheme with a genetic algorithm. Next, some modifica-
tions have been proposed to the beer game: Chen and Samroen-
graja [31] changed some parameters, Fjeld and Haartveit [6], [7]
adapted it to the North European forest industry to study how
the structure of the game can result in a mismatch between
supply and demand, and FOR@C’s researchers at Université
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Laval (Québec, Canada),3 adapted this latter game in order to
take Québec forest industry specificities into account. This last
game is called the Québec wood supply game (QWSG).

FOR@C’s researchers used the multiagent paradigm to sim-
ulate this game [32], and made it more realistic in [33]. In
particular, information sharing is studied as a decentralized co-
ordination technique in [34]; technique that we will develop in
this paper.

Our problem is to find a way to place orders that is the most
efficient for the whole supply chain. As a solution, we have
looked for an ordering scheme that stabilizes placed orders,
while minimizing inventory levels and avoiding stockouts. Our
approach can be compared to that of Kimbrough et al. [30] in
that we use multiagent systems to find a good ordering scheme.
The main difference is that Kimbrough looked for an order-
ing rule that minimizes inventory and backorders for a certain
period of time with a genetic algorithm (therefore, the best or-
dering pattern may change depending on the duration of the
simulations), while we focus a good ordering rule for any dura-
tion of simulation. Another slight difference is that Kimbrough
et al.’s work uses the Sterman’s beer game [8], while we use
an adaptation of this game to the Québec forest industry: the
QWSG.

We now present the solution we propose to reduce the bull-
whip effect while minimizing inventory levels and avoiding
stockouts.

III. INFORMATION SHARING TO REDUCE

THE BULLWHIP EFFECT

To introduce our two ordering schemes, we first comment on
the cause of the bullwhip effect that it specifically addresses. In
fact, we propose regarding ordering and shipping lead times as
a cause of the bullwhip effect, while lead times are only seen as
an aggravating factor of the cause “demand forecast updating”
listed in Table I. As a consequence, ordering and shipping lead
times could be added to Table I, but we will see that it is only
a particular case of “misperception of feedbacks.” Then, we
propose two principles that an ordering scheme should have to
reduce the impact of this cause. Finally, we present the behavior
of the supply chain under our two principles.

A. Why Delays Cause the Bullwhip Effect in the QWSG?

Several causes of the bullwhip effect have been proposed in
the literature for real supply chains, but few of these causes oc-
cur in the QWSG. From our viewpoint, only two of the causes in
Table I can be found in the QWSG, namely the “demand signal
processing” [4], [5] and the “misperception of feedback” [8].
Since the former of these two possible causes is related to de-
mand forecasting, it can explain the bullwhip effect in the broad
version of the QWSG, because human players intuitively fore-
cast their future incoming demand, but not in our simulation
in which orders are only based on the last demand. In fact, we
assume there is no forecast because our two proposed ordering
schemes base the current order on the last demand, but we can
also see this method as a forecast based only on the last de-

3http://www.forac.ulaval.ca

Fig. 2. Lot-for-lot ordering policy with [O,Θ] orders. (a) Lot-for-lot ordering
policy. (b) [O,Θ] orders.

mand. The above second cause could explain why we still had a
bullwhip effect when software agents replaced human players.
In fact, players’ understanding of the supply chain dynamics
was not used directly in our experiments, but the ordering poli-
cies that they apply could be designed so that these dynamics
are taken into account. When we looked for efficient ordering
policies, we found that the cause “misperception of feedback”
can be detailed as “ordering and shipping lead times,” as now
presented in three points with Fig. 2(a).

1) The lot-for-lot ordering policy eliminates the bullwhip ef-
fect, because each company has the same ordering pattern
as its client and thus, as the market consumption. There-
fore, the two curves Incoming orders and Placed orders
are identical in Fig. 2(a). Since the bullwhip effect is mea-
sured as the standard deviation of placed orders, we can
see that the standard deviation of each company’s orders
is exactly the same as the standard deviation of its client’s
orders, and therefore, as the standard deviation of the mar-
ket consumption. This explains why a lot-for-lot ordering
policy eliminates the bullwhip effect.

2) The considered company tries to fulfill its entire demand,
and thus, the two curves incoming orders and outgo-
ing transport are the same, i.e., as many products are
shipped as are ordered. This is true as long as there are
enough items in inventory, i.e., as long as no backorder
occurs.

3) The curve incoming transport has the same pattern as the
other three curves, except that it is delayed by the temporal
shift δ that corresponds to the ordering and shipping lead
times. The problem is that the inventory is not managed,
because the temporal shift δ makes inventory decrease
(respectively increase, when we inverse the pattern of
incoming orders), due to the fact that the company ships
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Fig. 3. Information streams cut into two parts.

more (respectively less) products than it receives during δ.
Finally, notice that incoming transport has the same
pattern as the other three curves only when the supplier
has no stockouts, because the supplier is assumed to want
to fulfill its entire demand, like the considered company.

Since every company wants to avoid stockouts (respectively
huge inventory), rather than eliminate the bullwhip effect, it
does not use the lot-for-lot ordering policy. Instead, it overorders
(respectively underorders) in comparison with the lot-for-lot
policy to stabilize its inventory, which amplifies the demand
variabilities because the company overorders (respectively un-
derorders) when the demand increases (respectively decreases).

As a result, lead times in the supply chain make it so that the
bullwhip effect always appears each time the market consump-
tion has an infinitesimal change, if companies want to keep a
steady inventory. We can note here that some of the other causes
of the bullwhip effect presented in Table I induce the bullwhip
effect even with a steady demand, while lead times only amplify
the fluctuations of orders, but do not induce fluctuations when
the demand is steady.

As we can see, our problem is not only to reduce the bull-
whip effect, because company agents in the QWSG have only
to apply the lot-for-lot ordering policy to eliminate this effect,
but we also have to manage inventories. In our solution, we
propose to use the information-sharing solution presented in
Fig. 2(b), in which each company uses a vector [O,Θ] of two
orders (O like Orders and Θ like Tokens, as these two pieces
of information were called in our previous papers, and O and
Θ also have the advantage of looking similar, while they have a
very similar meaning: both are Orders). Remember that O’s fol-
lows the lot-for-lot policy to avoid the bullwhip effect, and Θ’s
are used to order more or less products than O to stabilize the
inventory level. As a consequence, O transmits the market con-
sumption information to the whole supply chain, as illustrated
by Fig. 3. We now present the two principles ruling the use of
O and Θ.

B. Why and How Does a Company Use [O,Θ] Orders?

Since the bullwhip effect may appear in Θ, i.e., nonzero Θ’s
may be emitted anytime, we now present two principles ruling
O and Θ. Indeed, [O,Θ] ordering schemes should be based on
the following two principles, and not only on one of them.

1) First Principle—The Lot-For-Lot Ordering Policy Elimi-
nates the Bullwhip Effect, But Does Not Manage Inventories:
This first principle indicates the manner in which O in [O,Θ]
is chosen. As previously stated in Fig. 2(a), the bullwhip effect
is eliminated with the lot-for-lot policy, but the problem is that
inventory levels are not managed. Therefore, we keep lot-for-lot

orders for ruling O, but we add another piece of information Θ
to adjust inventory levels.

2) Second Principle—Companies Should React Only Once
to Each Market Consumption Change: This second principle
indicates the way of choosing Θ in [O,Θ]. Θ’s are equal to zero
all the time, except when the market consumption changes, in
which case companies react to this change by sending nonzero
Θ’s in order to stabilize their inventory to the initial level. The
purpose of Θ’s is to trigger a product wave from the most
upstream company (e.g., the forest) when this company re-
ceives these Θ’s. This product wave will increase (or decrease
when Θ < 0) each company’s inventory as it travels the sup-
ply chain down to the retailers. The size of this wave is given
by Θ’s, which are the sum of positive and negative company
needs, added successively by every company when it places or-
ders. Each company transmits to its supplier the Θ’s incoming
from its clients and adds to them its relative requirements in
comparison with the market consumption O. We now present
this global behavior of the supply chain incurred by our two
principles.

C. Supply Chain Behavior Under Our Two Principles

To present the global behavior that the supply chain exhibits
with our two principles, we assume that there is a unique increase
in market consumption, similar to Figs. 2 and 3. The goal that
[O,Θ] orders must reach is to bring the supply chain back to
a new stable state after the change in the market consumption.
Concretely, this mechanism divides the supply chain into five
successive states, each of which occurs at different times along
the supply chain, i.e., the initial state occurs first with the retailer,
next with the wholesaler etc., and the last state occurs first
with the wholesaler and finally with the retailer. We assume no
capacity limit in the following description.

1) Initial state: Suppose we start the process and assume that
there has been no market consumption variations for a long
time. Therefore, the product stream in the supply chain is
stable and equal to the market requirement. In fact, if we
assume processes are reliable in order to avoid the only
cause of the bullwhip effect in Table I that may apply in
this scenario, companies place the same order each week
as in the previous week, and this order corresponds to the
market consumption: placed O’s are equal to incoming
O’s (principle 1) and Θ = 0 (principle 2). The supply
chain is thus in a stable state, i.e., each time period is the
same as the previous one.

2) Perturbation and reaction of the supply chain: After the
single change in the market consumption, companies have
to order more than what they were ordering before the
change; this is done with O’s that follow market consump-
tion. Since there are ordering and shipping lead times,
companies will receive for a short period the quantity of
products they were receiving before the abrupt change in
market consumption (as if there were an inertia in prod-
uct flow), and inventory level will thus decrease. This is
the reason why companies ask for more products than
O to reconstitute their inventory: this state lasts a single
placement of order in which nonzero Θ’s are sent.
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Fig. 4. Model of forest supply chain in the Québec wood supply game.

3) Wait for the effect of the reaction: Since O’s have increased
since the second state, the flow of products received by
every company will increase soon. As long as this flow
increase has not reached a company, this company’s in-
ventory decreases. Notice that no Θ’s are emitted.

4) Stabilization of the supply chain: This state begins at a
company when this company receives products corre-
sponding to the new Os, which stabilizes its inventory.
But such a stabilization is too low; it will be so until prod-
ucts corresponding to Θ’s and sent by the most upstream
company arrive, i.e., until the next state.

5) Adjustment of the stable state: The supply chain remains in
the fourth state only for some weeks, because Θ’s sent in
the second state have triggered a larger batch of products
to arrive in the company, which puts inventory at a desired
level. In fact, when the Θ’s sent in the second state have
arrived at the most upstream company, a big batch of
products was sent down the supply chain to increase all
inventories. In other words, this last state is the same as
the fourth one, except that inventories are increased to the
desired level.

From these five states, we can see that inventory variations
last a longer time for retailers than for the most upstream sup-
plier(s), because retailers enter state 2 first and the state 5 last.
In fact, inventory stabilization comes from upstream suppliers
and travels down to retailers in this model. As a consequence,
if managers only consider the duration of backorders, retailers
are more disturbed than suppliers. Since this is one of the main
contributions of this paper, we will come back to this point later.

IV. EXPERIMENTAL VALIDATION

The experimental validation of our two principles is made
on the model of the QWSG, which is first described. We
also introduce seven ordering schemes IS0-1, IS0-2, IS0-3, IS1,
IS1 + P, IS2, and IS2 + P, where only IS1 + P, and IS2 + P follow
our two principles. Then, the experimental results are described
for one particular market consumption pattern, and finally for
18 other patterns.

A. QWSG

The QWSG is a classroom exercise that simulates the material
and information flows in a production-distribution system, as
illustrated by Fig. 4, and was designed to make players aware
of the bullwhip effect. Compared to the classic beer game that
has been used to study supply chain dynamics, the QWSG has
a divergent product flow to increase its relevance to the Québec

TABLE II
EXPERIMENTED ORDERING SCHEMES

forest sector. Note that the main difference between the original
“wood supply game” (the “father” of the QWSG from Fjeld
[6], [7], and the “son” of the beer game from Sterman [8])
and our QWSG is in the length of the lumber and paper chain
which is either the same (Fjeld’s games) or different (our game);
this change is due to differences between North European and
Québec wood industries.

Fig. 4 shows how six players (human or software agents) play
the QWSG. The game is played by turns: each turn represents a
week in reality and is played over five days; these five days are
played in parallel by each player. On the first day, the players
receive their inventory (these products were sent two weeks
earlier by their supplier, because there is a two-week shipping
lead time), and advance shipping between suppliers and their
customers. On the second day, the players look at their incoming
orders and try to fill them. If they have backorders, they try to
fill those as well. If they do not have enough inventory, they ship
as much as they can and add the rest to their backorders. On
the third day, the players record their inventory or backorders.
On the fourth day, the players advance the order slips. On the
last day, the players place an order with their supplier(s) and
record this order. To decide what to order, the players compare
their incoming orders with their inventory/backorder level. This
decision is made in our simulation by applying one of the seven
ordering schemes ISx and ISx + P in Table II, where ISx means
information sharing at level x and +P that our two principles
are satisfied. To describe these schemes, we call [Opw,Θpw]
the order [O,Θ] placed in week w, [Oiw,Θiw] the incoming
[O,Θ] in the same week, [Obw,Θbw] any [O,Θ] backordered
before w, Dw the market consumption (which correspond to
Oiw for a retailer), Iw the inventory level, and λ a parameter
ruling the emission of Θ. With these notations, the schemes in
Table II are as follows.

� Scheme IS0-1 (no information sharing 1): IS0-1 is a clas-
sic (s, S) ordering policy, i.e., when inventory I is lower
than s, the company orders for S-I products so that the
inventory increases up to S. With the above notations, we
have [Opw,Θpw] = [S − Iw, 0] when Iw < s and = [0, 0]
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TABLE III
MARKET CONSUMPTIONS PATTERNS

else, with (S, s) = (Oiw, 0), (cf. [?] for explanations of
this choice).

� Scheme IS0-2 (no information sharing 2): Companies that
use Scheme IS0-2 do not know the market consumption
because neither [O,Θ] nor information centralization are
used. Each order is a unique number calculated by sub-
tracting the inventory variation to the client’s order; when
this value is negative, nothing is ordered. More formally,
the orders placed with IS0-2 are [Opw,Θpw] = [Oiw +
(Iw−1 − Iw) + (Obw − Obw−1), 0] when Oiw + (Iw−1 −
Iw) + (Obw − Obw−1) ≥ 0, and = [0, 0] otherwise.

� Scheme IS0-3 (no information sharing 3): Scheme IS0-3
resembles IS0-2, except that each order is calculated by
subtracting λ times the order variation of the client’s order.
In our experiments, this calculation always gives a positive
result. The main difference between IS0-2 and IS0-3 is
that IS0-2 is based on order and product flows, while IS0-3
is only based on order flow. Now, [Opw,Θpw] = [Oiw −
λ(Oiw−1 − Oiw), 0] if Oiw − λ(Oiw−1 − Oiw) ≥ 0, and
= [0, 0] otherwise.

� Scheme IS1 (information shared with direct suppliers):
Similarly to IS1 + P, IS1 uses [O,Θ] orders, but Θ’s
now depend on inventory level. There is the same re-
lation between IS1 and IS1 + P, as between IS0-2 and
IS0-3. Here, [Opw,Θpw] = [Oiw,Θiw + (Iw−1 − Iw) +
(Obw − Obw−1)] when Θiw + (Iw−1 − Iw) + (Obw −
Obw−1) ≥ 0, and = [Oiw, 0] otherwise.

� Scheme IS1 + P (information shared with direct suppliers
+ our two principles): IS1 + P is the first ordering scheme
based on our two principles. Companies use the lot-for-lot
ordering pattern in O’s and use Θ’s to manage their in-
ventory: client’s Θ’s are transmitted to the supplier, and
λ times the order variation represents the inventory vari-
ation that must be balanced by Θs. In these conditions,
[Opw,Θpw] = [Oiw,Θiw − λ(Oiw−1 − Oiw].

� Scheme IS2 (information centralization): Scheme IS2
is similar to IS0-2, except that information centraliza-
tion is now used. Companies base their orders on the
actual market consumption instead of on client’s or-
ders, in order to react quicker to changes of end-
customer demand: [Opw,Θpw] = [Dw + (Iw−1 − Iw) +
(Obw − Obw−1), 0].

� Scheme IS2 + P (information centralization + our two
principles): IS2 + P is an improvement on IS1 + P, be-
cause information centralization speeds up the multicast of

market consumption information, while both schemes sat-
isfy our two principles. Companies base their orders on the
actual market consumption instead of on client’s orders:
[Opw,Θpw] = [Dw,Θiw − λ(Dw−1 − Dw)].

The application of one of these seven schemes to place an
order is done on the last day of each week. Thereafter, the game
continues with a new day 1, and so on. Each position is played
in the same way, except the Sawmill: this position receives two
orders (one from the LumberWholesaler, the other from the
PaperMill) that have to be aggregated when placing an order
to the forest. The Sawmill can evaluate its order by basing it on
the lumber demand or on the paper demand. In the following
experiments, the Sawmill places an order equal to the mean
of these two possible orders (in particular, we will see that this
may cause backorders in Figs. 6(d) and 7(d), because inventory
levels do not stabilize on their initial level, which forces us to
use nonempty initial inventory for the Sawmill in these two
figures). Moreover, the Sawmill receives one type of product,
and each unit of this product generates two units: a lumber unit
and a paper unit. That is, each incoming unit is split in two:
one piece goes to the Sawmill’s lumber inventory, and the other
goes to its paper inventory.

When we add information sharing [O,Θ] to this game,
players have to manage the new piece of information Θ.
When players receive Θ’s with incoming orders O’s in the
second day of a week, they process them as actual orders.
Since the incoming O’s change (they always change when
Θ �= 0), players add a positive quantity to Θ’s before trans-
mitting them upstream. In IS1 + P and IS2 + P, this addition
depends on the parameter λ, whose setting will be presented in
Section IV-B.

We now present the behavior of the QWSG under these seven
schemes. We first detail the simulation outputs of the Step
demand, in order to verify whether the flows in the supply chain
stabilize when the market consumption is steady after a single
change. The Step demand is presented in Table III in which we
can see that both (lumber and paper) markets buy 11 products
during the first four weeks, followed by 17 products until the
end of the simulation. Table III presents the demand over 50
weeks, which is the duration (i.e., one year) of our simulations.
Note that Uniform demands 10A to 10J are ten instances of
an integer random distribution on [eleven], [seventeen] that are
generated once for all simulations. In contrast to the first nine
patterns, the demand in the 10 Uniform patterns may be differ-
ent in the two markets (e.g., 12 lumber units and 17 paper units
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Fig. 5. Results with the three ordering schemes without information sharing. (a) Orders with IS0-1. (b) Inventories with IS-1. (c) Orders with IS0-2.
(d) Inventories with IS0-2. (e) Orders with IS0-3. (f) Inventories with IS0-3.

are bought during the same week), which we have not detailed
in this paper. Then, we will aggregate the simulation outputs of
the 18 other demand patterns of Table III with four metrics in
Section IV-C.

B. Experimental Results With the Step Demand Pattern

We now detail the behavior of the QWSG when the mar-
ket consumption is a Step pattern. Figs. 5(a), 5(c), 5(e),
6(a), 6(c), 7(a), and 7(c) present the demands in the supply
chain. In these figures, the first two curves from the bottom

(they are one over the other) represent the consumption of
both markets under the Step demand. Next, the two second
curves show LumberRetailer’s and PaperRetailer’s placed or-
ders. The two third curves indicate that of LumberWholesaler
and PaperWholesaler. Finally, the next-to-last curve represents
PaperMill’s orders, and the last curve represents Sawmill’s
orders. Similarly, Figs. 5(b), 5(d), 5(f), 6(b), 6(d), 7(b), and
7(d) present inventory levels (and backorders when inven-
tory level is negative) in the supply chain. In these figures,
the first two curves from the bottom show LumberRetailer’s
and PaperRetailer’s inventory level. The second two curves
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Fig. 6. Results with the two ordering schemes in which information is shared with direct suppliers. (a) Orders with IS1. (b) Inventories with IS1. (c) Orders with
IS1 + P. (d) Inventories with IS1 + P.

indicate LumberWholesaler’s and PaperWholesaler’s inven-
tory. Finally, the next-to-last curve represents PaperMill’s,
and the last two curves are Sawmill’s lumber and paper
inventories.

Note that the ranges in Figs. 5–7 are adapted to the simulation
outcomes. For this reason, small fluctuations may appear large,
because of the scale. Orders and inventories are measured in
simulated units, as in QWSG, and not in real units. Moreover,
when [O,Θ] orders are used, Figs. 6(a), 6(c), and 7(c) represent
the sum of the two types of orders (O + Θ), and Figs. 6(b),
6(d), and 7(d) represent the sum of inventory and backordered
O’s and Θ’s. Finally, note that these 14 (7 for orders + 7 for
inventories) figures are obtained with empty initial inventories,
except for the Sawmill with schemes IS1 + P and IS2 + P (∀i ∈
{1, 2, 3, 4, 5, 6-lumber}, Ii

1 = 0 with all schemes, I6−paper
1 = 0

with IS0-1, IS0-2, IS0-3, IS1 and IS2, and I6−paper
1 = 6 with

IS1 + P and IS2 + P), as placing a single order covering the
lumber and paper requirements of the Sawmill leads to less
“pretty” curves due to backorders. However, in the next section,
Tables IV–VII will be obtained with empty initial inventories
for all companies (∀i, Ii

1 = 0 in Section IV-C).
In general, orders and inventories fluctuate more, i.e., the bull-

whip effect is greater and inventories more poorly managed, with
Schemes IS0-1, IS0-2, and IS0-3 in Fig. 5, than with Schemes
IS1 and IS1 + P in Fig. 6, while the latter are worse than Schemes
IS2 and IS2 + P in Fig. 7. If we look more in detail, we can no-

tice the two following insights. First, orders never stabilize with
IS1, while they do with IS1 + P. This shows an important point:
order stabilization, i.e., the reduction of the bullwhip effect, is
not only due to information sharing with [O,Θ] orders, but also
to the two proposed principles, which should necessarily be sat-
isfied together. The second insight deals with the factor λ ruling
Θ. We can check that IS1 + P and IS2 + P make the supply chain
behave as described in Section III-C, except that the “reaction”
(emission of Θ’s) is achieved in two different ways: either one
emission of Θ’s with IS2 + P as soon as the market consumption
changes, or several late emissions with IS1 + P. These emissions
of Θ’s correspond to the peaks of orders in Figs. 6(c) and 7(c).
These two different behaviors make two types of position ap-
pear. The first type of position in the supply chain concerns the
retailers with either ordering scheme IS1 + P or IS2 + P, as well
as the other companies with IS1 + P. In fact, when the market
consumption changes, such companies: 1) ship more product to
fulfill their demand; 2) order in O the new value of the market
consumption; and 3) order in Θ additional products to adjust
their inventory to its initial level. The second type of position
deals with any company using IS2 + P (except retailers, whose
case belongs to the first case), because it only has to carry out
2) and 3) immediately, since 1) will only come later. As a result,
the first type of position has λ = 4 and the second type λ = 2.
Since Θ’s encapsulate the bullwhip effect and are ruled by λ, a
greater bullwhip effect occurs in the first type of position.



MOYAUX et al.: INFORMATION SHARING AS A COORDINATION MECHANISM 405

TABLE IV
STANDARD DEVIATION OF PAPER MILL’S ORDERS

Fig. 7. Results with the two ordering schemes with information centralization. (a) Orders with IS2. (b) Inventories with IS2. (c) Orders with IS2 + P.
(d) Inventories with IS2 + P.

C. Experimental Results Under the 19 Demand Patterns
We have executed our seven ordering schemes with the 19

market consumption patterns illustrated in Table III. We do not
provide graphs as in Section IV-B in order to save space, but
we instead consider four metrics of the efficiency of the seven
schemes.

1) Standard Deviation of Orders: This is the direct quantifi-
cation of the bullwhip effect. Table IV summarizes this data for
the PaperMill, e.g., the standard deviation of the orders placed
with IS0-1 is 547.7 under the Step demand. This number has to
be compared with the market consumption, which has a standard
deviation of only 1.6 with this demand.
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TABLE V
SUPPLY CHAIN COSTS

TABLE VI
SUM OF PAPER MILL’S BACKORDERS

2) Overall Supply Chain Cost: This is an indirect measure
of the bullwhip effect, which is presented in Table V. Of course,
this metric is more important for companies than the previous
one, because the companies’ objective is to maximize their profit
rather than reduce the bullwhip effect. Like in QWSG, each unit
in inventory costs $1 per week, and each unit in backorder costs
$2 per week for the Sawmill. For the other companies, we mul-
tiply each company’s cost by (1 + 0.37/50)k to represent the
increase of the product value due to logistics operations (37% of
product value), according to Nahmias [36], where k = 0 for the
Sawmill, k = 1 for the LumberWholesaler and the PaperMill,
k = 2 for the LumberRetailer and the PaperWholesaler, and
k = 3 for the PaperRetailer.

3) Sum of Backorders: As presented in Table VI, this is a
metric for the customer service level. This measure is included
in costs, but it is also interesting to consider it separately. The
sum of backorders has to be minimized, because when it is
zero, clients have the products they want, or else they have to
wait for their availability. Indeed, backorders can be avoided by
overstocking, which increases inventory holding costs.

4) Standard Deviation of Inventory Levels: This is used to
choose the target inventory level, which has to increase in or-

der to avoid stockouts as the standard deviation of inventory
increases. In other words, safety inventory has to be increased
when inventory level fluctuates more. Quite the opposite, when
an inventory is more stable, its level can be decreased by chang-
ing the target inventory level, which reduces companies’ costs
(i.e., the second metric) without increasing their sum of backo-
rders (i.e., the third metric). Data in Table VII present the fluc-
tuation of PaperMill’s inventory; the higher these values are,
the more PaperMill’s inventory fluctuates, and the best possible
value is zero, i.e., always steady inventory and never backorders,
but this is attainable only when the whole demand is perfectly
known in the future, which is not possible in practice and in our
model because there are always forecasting errors.

Note that the greater the numbers in Tables IV–VII are, the
worse it is. We now draw general conclusions from these four
tables. First, in general, IS0-1, IS0-2, and IS0-3 give worse re-
sults than IS1 and IS1 + P, which show that information sharing
improves the overall efficiency of a supply chain. Similarly, in
general, IS1 and IS1 + P give worse results than IS2 and IS2 + P,
which also show that information centralization is better than
simple point-to-point information sharing. Second, IS1 + P is
almost always more efficient than IS1, which leads us to believe
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TABLE VII
STANDARD DEVIATION OF PAPER MILL’S INVENTORIES WHEN BACKORDERS ARE MEASURED AS NEGATIVE INVENTORY LEVELS

that our two principles are correct. Unfortunately, it is difficult
to generalize this conclusion to the simulations with informa-
tion centralization. In this case, this conclusion also holds with
nonrandomized demands, because IS2 + P is, in general, more
efficient than IS2, but results are less obvious with randomized
demands (patterns 10A to 10J) in which IS2 is more efficient
than IS2 + P in Table IV, as efficient in Table V, and less efficient
in Table VI and VII.

V. DISCUSSION

Our experimental results conform to our predictions described
in Section III. With IS1 + P and IS2 + P, each company orders
exactly its suppliers’ order, and over- or underorders only once
as a reaction to each market consumption change. Since this re-
action has to be correctly interpreted by its supplier, information
sharing based on [O,Θ] orders permits this supplier to distin-
guish between the market change (visible in O) and adjustments
triggered by this change (visible in Θ). This stabilizes orders in
the whole supply chain at the same level, i.e., at the actual mar-
ket consumption. If we aggregate O and Θ under the form of
X = O + Θ, the level O at which companies have to stabilize
their orders is lost for upstream companies, because they do not
know which part is required by the market and which part re-
flects adjustments due to lead times. Sharing information about
market consumption is a way to align companies behavior on
the same goal: to deliver products to clients. From a more gen-
eral point of view, companies may use Θ in different ways, for
example, either to balance production rejects, or to reduce their
inventory by sending negative Θ’s which will not be interpreted
by suppliers as market consumption changes, etc.

Ordering with [O,Θ] orders and information centralization
are very similar, because both allow each company to know
the actual market consumption. In fact, when [O,Θ] orders are
used, O’s are equal to market consumption, which is the piece
of information multicasted in information centralization. The
first difference between these two systems lays in the propa-
gation speed of market consumption information: Θ’s without
information centralization are as slow as the orders, while with
information centralization, each company knows in real time

and instantaneously the market consumption (retailers multi-
cast the market consumption to the whole supply chain). The
second difference between [O,Θ] orders and information cen-
tralization is the fact that information centralization requires a
stable supply chain structure to allow retailers to know to whom
the market consumption has to be multicast, while [O,Θ] orders
use a more decentralized approach.

Instead of sharing information, we could try to smooth orders
by placing orders based on forecasts. In our experiments, this
would make the stabilization period longer. For example, with
the Step market consumption, companies would overorder less
than with IS0-2, but this overordering would be longer, and dur-
ing this period suppliers would not know what the actual market
consumption is. However, we think each company should only
react once to each change in market consumption (second prin-
ciple), even if this reaction may be prolonged by forecasts. In
other words, smoothing orders with a forecast technique is not
incompatible with our two principles: we can use both at the
same time.

For industrial practitioners, the lesson of this discussion is
that they should apply our two principles. However, additional
work is required to define what we mean by a “market con-
sumption change” in our second principle, and how to quantify
the emission of Θ’s when such a change occurs. We propose in
Schemes IS1 + P and IS2 + P to base the quantity of Θ’s on the
demand variation, but this is not enough in practice to take into
account breakage, spoilage and theft, for example.

Finally, one crucial result is the inversion of situation between
the current bullwhip effect and the supply chain behavior in-
duced by our two principles. In fact, the bullwhip effect disturbs
upstream suppliers (the Forest in QWSG) more than retailers,
because orders are more stable near the market and order resta-
bilization comes from the market. On the contrary, with our
two principles, there are fewer order fluctuations, and what now
disturbs the companies are inventory fluctuations. In short, the
most disturbed companies with the bullwhip effect are the ones
least disturbed by our two principles. In fact, we stated at the
end of Section III-C that upstream suppliers are less disturbed
by inventory variations than retailers, because these variations
last longer in retailers than in upstream suppliers and inventory
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restabilization comes from the most upstream company. This is
also true when information centralization is used in addition to
our two principles.

VI. CONCLUSION

In this paper, we have dealt with the fluctuations of the order-
ing streams in supply chains, which is known as the bullwhip
effect. More precisely, we have presented why lead times are a
cause of the bullwhip effect, and proposed two principles to de-
sign coordination mechanisms reducing the impact of this cause.
These two principles explain why and how companies should
share information in order to reduce such fluctuations when they
place orders. Precisely, orders are 2-D vectors [O,Θ], instead of
X(= O + Θ) where O’s and Θ’s are hidden. Our first principle
rules O by stating that “the lot-for-lot ordering policy elim-
inates the bullwhip effect, but does not manage inventories,”
while our second principle rules Θ and states that “companies
should react only once to each market consumption change.”
When these two principles are satisfied, O’s represent the mar-
ket consumption transmitted from clients and Θ’s are used by
companies to adjust their inventory by ordering more or less
than O’s. We instantiated these two principles in two schemes,
where the first scheme applies only our two principles, while the
second scheme uses information centralization in addition, i.e.,
the multicasting in real time and instantaneously of the market
consumption by retailers to the whole supply chain.

We compared these two ordering schemes with five others.
These comparisons were carried out by using QWSG, which is
an adaptation of the wood supply games (i.e., two games derived
from the beer game) to the Québec forest industry in order to
teach the bullwhip effect. These experiments demonstrated that
it is possible to reduce the bullwhip effect when companies
over- or underorder to stabilize their inventory, if companies
explain to their supplier(s) with [O,Θ] orders why they over-
or underorder. The main idea is that all companies should know
retailers’ sales in order to understand if an order change is either
due to the market consumption or to the bullwhip effect (i.e.,
adjustments due to lead times, promotions, lot sizing, etc.). This
allows a unique wave of products to travel in the supply chain
from the most upstream supplier down to the retailers for each
change in the market consumption, instead of a persistence of
fluctuations caused by this change.

The two most important contributions of this paper are the
presentation of why lead times induce the bullwhip effect, and
that, our two principles may disturb retailers more than upstream
suppliers, which is in contrast to the bullwhip effect in which
retailers are less disturbed by order variation than upstream
suppliers. This second contribution depends on how backorders
are measured: in duration or in amplitude.

As future work, we plan to address the following questions:
How to aggregate market consumption information O when a
company has several clients, i.e., what would happen with dif-
ferent supply chain structures? How to relax some assumptions
in our model, in particular by adding inventory, production and
shipping capacities? What happens when companies do not use
the same ordering scheme? In particular, which scheme should
be used by each company in order to minimize its individual
cost?
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