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Modeling and
Simulating Terrorist
Networks in Social 
and Geospatial
Dimensions
Il-Chul Moon and Kathleen M. Carley, Carnegie Mellon University

Where we are influences who we know, and vice versa. As we move to new

cities or countries, our contacts change. For instance, when a company relo-

cates its employees, they develop new working relations with others while they per-

form assigned tasks. In theory, these relocations should improve company performance.1

However, performance also depends on individuals
knowing who to ask about what—that is, on trans-
active memory.2 Moving disrupts transactive mem-
ory and the social relations by which information
flows. So, the question arises whether performance
can improve when social and geospatial distribu-
tions change simultaneously.

Social and spatial relations evolve over time. Esti-
mating their evolutions is important for management,
command and control structures, and intelligence
analysis research. By knowing future agent social
and spatial distributions, an analyst can identify
emergent leaders, hot spots, and organizational vul-
nerabilities. Historically, such estimations have
depended heavily on qualitative data analyses by
subject-matter experts.3 A few researchers ap-
proached the issue using multiagent models and sim-
ulation. The models addressed the complex nature
of the organization and task assignments, resource
distributions, or agent locations. The simulations
addressed the near-term organizational changes. This
research came from two perspectives: the effects of
change in the social network4,5 and the effects of
geospatial change.6,7 Both perspectives can project
aspects of emerging organizational structure and
future performance, but they can’t examine the inter-
action between physical and social movements.

We’ve developed a simple theoretical multiagent

simulation model to show how changes in the coevo-
lution of social and geospatial dimensions affect
group behavior. Our model overcomes the limitations
of isolated social and spatial models (see the “Related
Work in Social and Geospatial Modeling” sidebar).
To illustrate the model’s potential for reasoning, we
examine its implications here for a real-world terror-
ist network, using data extracted from open source
texts. Although a full validation would require addi-
tional field data, the model’s output reveals impor-
tant aspects of complex organizational evolution that
apply beyond the counterterrorism domain.

Input data set
The model’s input is a network representation of

an organizational structure in the social and geospa-
tial dimensions. It includes knowledge and task
information: who knows what and who is using that
knowledge. For the terrorist network, we extracted
relevant data from unclassified documents, using the
AutoMap text analysis tool.8 The documents in-
cluded newspaper articles and unclassified intelli-
gence reports from subject-matter experts. We hand-
coded the corresponding latitudes and longitudes for
the relevant data.

Figure 1a is an overall visualization of the result-
ing network consisting of four node types: agents,
knowledge, tasks, and locations; figure 1b is a
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visualization of the data set’s agent-to-agent (AA) links. Table 1
shows the input network’s adjacency matrix, or metamatrix, across
these nodes. This multimode, multilink network data represents the
organization’s current structural characteristics in our model.

We model the social dimension by using an algorithm that specifies
the interaction probability between two agents. We model the geospa-
tial dimension by using an agent-relocation mechanism that interprets
agent movement in a geospatial location network’s data set. For
instance, if two agents have interactions or formal relations, we assume

that an AA link exists between them. Similarly, if an agent possesses
a knowledge bit, we assume an agent-to-knowledge (AK) link between
the nodes. If two locations appear in the same context, we regard the
two locations as related (LL). This topological location network con-
stitutes the agent-relocation dimension. The other subnetworks, such
as an agent-to-task network, knowledge-to-location network, and task-
to-location network, have their own intuitive meanings based on the
connected node types and the data coder’s perspective.

Figure 2a shows the agent-to-location (AL) network; figure 2b

(b)(a)

Figure 1. (a) The overall visualization of the example terrorist network represents agents, knowledge bits, tasks, and locations as
red, yellow, blue, and orange nodes, respectively. (b) The agent-to-agent network of the data set consists of three disconnected
subnetworks.

(b)(a)

Agent
Location

Figure 2. (a) Agent-to-location network. The red nodes represent agents; the orange nodes represent agent locations, which
include latitude and longitude coordinates. (b) The AL network overlaid on a world map. To suggest how many agents are
clustered at a specific location, the different-sized squares correspond to the number of agents in different regions. The blue 
edges display the agent-to-agent network links.



overlays it on a geographic map. Details on
the coding process are available elsewhere.9

Model summary
The model simulates each agent and its

interaction with others to estimate changes
over time in organizational performance and
structure. As agents interact and learn, their
behavior eventually changes the perfor-
mance and structure. The following algo-
rithm outlines the interaction and relocation
mechanisms for agent A’s behavior:

1. A searches for locations within its vi-
sion range (VR), looking for unknown
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Researchers who study people’s movements concurrently
through social relations and space mainly use two techniques:
data mining and simulation. Data mining can uncover patterns
such as an organization’s network structure, entity properties,
and entity clusters. For instance, in a summary of data mining’s
impact on the counterterrorism community, Jeff Jonas and Jim
Harper claim that the 9/11 attack plan was available before the
attack.1 Uncovering the plan would have required extensive
data mining on available databases, but the US government
might have disrupted the plan by pursuing available leads. Al-
though the authors make a counterterrorism case for data
mining, they also note that high false positives, or incorrect
predictions, could waste valuable resources.

Link analysis and discovery is another data mining technique
applied to counterterrorism. Raymond Mooney and his col-
leagues use it with an inductive-logic-programming method to
discover implied rules in multirelational data.2 They describe a
powerful tool for approximating a complete organizational
network from an incomplete one.

Vandana P. Janeja, Vijayalakshmi Atluri, and Nabil R. Adam
focus a modeling and simulation approach to detecting anom-
alous geospatial trajectories on the basis of spatiosemantic as-
sociations.3 They create basic spatial analysis units, or spatial
units, and cluster them into a microneighborhood that shares
similar characteristics across subspatial units. Their analysis of
spatial and social characteristics at the same time is similar to
our correlation between spatial and social dimensions.

Hsinchun Chen, Fei-Yue Wang, and David Zeng describe the
development of an intelligence and informatics security model
that depends heavily on network and link analysis.4 They ex-
amine three interesting uses of the model: cross-jurisdiction
information sharing, terrorism information collection, and
smart-border and bioterrorism applications. One of their appli-
cations, the West Nile Virus-Botulism Portal, includes hot-spot
analysis and a prediction function.

Organizational-behavior research has benefited from agent-
based modeling techniques. For instance, Kathleen Carley has
made the efforts to model sociotechnical systems as networked
multiagent structures.5 She introduces exemplary multiagent
models such as OrgaHead6 and Construct.7 These models take
networked organizational structures as an input and generate

the estimated performance of task accuracy and information
diffusion over time as well as the evolved structures after simu-
lation. This approach might be difficult to validate, but it rep-
resents an effort to create more complex, realistic models that
can automatically generate hypotheses forecasting organiza-
tional behavior.8 Researchers could then use these hypotheses
to estimate domain features or trends of interest and sub-
sequently use other statistical analysis tools, such as data min-
ing, to validate the hypotheses.
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Related Work in Social and Geospatial Modeling

Table 1. A metamatrix of the input data set 
for a terrorist network organizational structure.*

Nodes Agent Knowledge Task Location

Agent (916) Social network Knowledge network Assignment network Deploy network
(AA, 0.0024) (AK, 0.0093) (AT, 0.0070) (AL, 0.0026)

Knowledge — Not used Needs network Regional
(614 bits) (KT, 0.0961) knowledge network

(KL, 0.0692)

Task (258) — — Not used Regional task 
network 
(TL, 0.1042)

Location — — — Proximity network
(387) (LL, 0.0799)

*The number of nodes and network densities are in parentheses.



but necessary knowledge bits.
2. A moves to a found location.
3. A learns the unknown knowledge at its location.
4. A selects an agent from those that qualify as communication

candidates.
5. A exchanges the unknown knowledge with the selected agent.

Basically, agents can interact and relocate at each simulation time
step. They select a location to move to and an agent to interact with
according to probabilistic values for each interaction and relocation
opportunity. Exactly which agents interact with which, when they
interact, what choices they make, and what they communicate and
learn are defined probabilistically. Consequently, the model is sto-

chastic and, as such, requires multiple replications to generate stable
results and to define the space of outcomes.

Table 2 lists several factors that drive an agent’s behavior and so the
network’s evolution and organization’s structure. For example, agent
behavior depends on the given input data set, which sets the initial envi-
ronment. The input determines the initial probability of interaction
among agents according to what they know and where they are located.
The model’s parameters include the relocation (move) radius in the
geospatial dimension, the interaction (sphere of influence) radius in
the social dimension, and the probability of learning after a knowledge
exchange with an agent or a knowledge gathering at a certain location.
Finally, the internal variables reflect behaviors calculated from the
defined inputs and parameters, according to various model formulas.

Table 2. Model input, output, parameters, and internal variables.*

Type Name Implication

Input A networked organizational structure A network including agents, knowledge bits, tasks, and locations. The 
network represents the target domain’s complex organizational structure.

Output An evolved network organization A network organization with a recreated agent-to-agent (AA) network and 
an agent-to-location (AL) network, both of which reflect interactions and 
relocations.

Knowledge diffusion A performance metric showing how fast information can diffuse across the 
network.

Energy task accuracy A performance metric showing how accurately information is distributed 
to agents who require it to complete their tasks.

Gini coefficient for AA and AL Coefficients indicating the extent of unequal distribution of AA and AL 
network criticalities.

Parameters Simulation runtime step (default = 30 steps) The total simulation runtime.

Number of replications (default = 3) The number of model runs (required because the model is stochastic, not 
deterministic).

Move radius (MR) The radius on the spatial-route network specifying the maximum distance 
an agent can move in one time step.

Vision range (VR) (default = 1) The range on the spatial-route network specifying an agent’s ability to gather
a knowledge bit or interact with another agent.

Sphere of influence (SI) (default = 2) The number of social links that an agent can cross for an interaction.

Relative-similarity (RS) weight, w1; relative- The weights to calculate four interaction probabilities.
expertise (RE) weight, w2; social-distance (SD) 
weight, w3 (default = 0.5); and spatial-proximity
(SP) weight, w4 (default = 0.5)

Learning rate from an agent (default = 0.05) The possibility that an agent can learn a knowledge bit from an interaction 
with another agent.

Learning rate from a location (default = 0.025) The possibility that an agent can gather a knowledge bit by observing a 
knowledge node within vision range.

Internal Relative similarity (RSij) The likelihood of interactions caused by homophily between i and j (passive 
variables information seeking).

Relative expertise (REij) The likelihood of interactions caused by expertise between i and j (active 
information seeking).

Social distance (SDij) The likelihood of interactions over multiple social links.

Spatial proximity (SPij) The likelihood of interactions from spatial distance.

Interaction candidate set (ICSi) The agent set with which agent i can interact.

Probability of interaction ( ) The likelihood of agent i’s interaction with agent j, calculated as the weighted
linear sum of RS, RE, SD, and SP.

Probability of relocation ( ) The likelihood of agent i’s moving to location l, determined by the number of 
available knowledge bits required to perform the agent’s assigned tasks.

* We use model default values here except for the move radius (MR), relative-similarity weight (w1), and relative-expertise weight (w2).

Pil
Relocation

Pij
Interaction
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We tested this model by varying important parameters in the agent
interactions and relocations. First, we changed the agent move radius
(MR) by 0, 1, and 2. If an agent’s MR is 0, it’s stationary to its initial
location. If its MR is 2, the agent can search locations linked by two
LL links from its initial location. Next, we varied the weight of rela-
tive similarity (RS) and relative expertise (RE) contributing to the
probability interaction. If the RS weight is high, the agents interact
mainly with agents sharing similar backgrounds, beliefs, and knowl-
edge. This imitates agents as passive information receivers. In con-
trast, a higher RE weight makes the agents active information seek-
ers. Finally, we tested the input data’s sensitivity by randomly dropping
or adding links in the AA or LL networks.

Agent-interaction mechanism
Agents have the opportunity to interact during each time period.

They select an agent to interact with according to a probability of
interaction, P, that’s a weighted sum of four different factors: RS, RE,
social distance (SD), and spatial proximity
(SP). The theory for these factors comes from
sociology, communication theory, and coun-
terterrorism analysis.

Because the model is stochastic, an agent
will usually interact with agents that it has a
higher probability of choosing but will occa-
sionally end up with a less likely choice. Like
humans, these simulated agents can’t always
talk to their first choice. The model thus cap-
tures interactions that reflect less-than-optimal
connections between intention and action as
well as the rare unexpected interaction.

After an agent chooses another agent to
interact with, the two agents will exchange
knowledge bits. For each exchanged knowl-
edge bit, the model draws a number from a
uniform distribution ranging from 0 to 1. If the number is within the
receiving agent’s learning rate, that agent will have a new link to the
communicated knowledge piece in the AK network.

Relative similarity and relative expertise. RS is a ratio reflecting
similarity in the choosing and chosen agents’ knowledge. It’s based
on the sociological principle of homophily,10 which describes the
increased likelihood of a person interacting with another person who
shares similar education, beliefs, or race. RS represents the proba-
bility of a terrorist interacting with other terrorists that share the same
religion or nationality. RE is a ratio reflecting the amount of knowl-
edge the chosen agent has that the chooser doesn’t have, and it’s based
on transactive memory.2 RE captures why a Middle Eastern terrorist
interacts with a South American drug cartel to exchange weapons
expertise or information about funding sources. At first glimpse, the two
factors might seem contradictory, but they’re just two metrics captur-
ing different aspects of terrorist knowledge-acquisition attitudes:

(1)

where K is the number of knowledge bits. 

Social distance. SD is another factor affecting agents’probability of
interaction—if two agents must cross many social links, then the
probability should be low, and vice versa.11 We compute it by find-
ing the shortest path between two agents and then dividing one by
the number of links in that path.

(2)

If SD is larger than the maximum number of links in the sphere of
influence, SI, then SD is set to one plus the maximum for social-
interaction perimeter modeling. An agent can recognize and distin-
guish the closeness of other agents within the SI perimeter, but it

can’t differentiate the closeness when the
interacting agent is outside the perimeter. In
this case, an agent regards the interacting
agents as just SI + 1 links away, though the
real SD might differ.

Spatial proximity. Intuitively, two persons at
the same location are more likely to talk than
are two at different locations.12–14 Some might
argue that SP isn’t significantly correlated
with interaction frequency in the Internet age.
However, in the terrorism domain, attending
the same training camp or the same mosque
is a critical interaction indicator.14 The SP
model is similar to SD but indicates the prob-
ability of being at the same location, rather
than having a social link:

As with SD, if SP is greater than VR, which is a maximum communi-
cation range across the geospatial dimension, and chosen by the user,
the model sets SP to one plus the maximum for computing conve-
nience. The rationale for using VR in the geospatial-domain calcula-
tion is the same as the rationale for using SI in the social dimension.

Probability of interaction. Using the four different factors we’ve
described, we can express the probability that agents will select
another agent to interact with as a weighted sum:

(4)

Although the model can calculate the probability for any pair of
agents, we limit the number of possible interaction candidate agents
according to two distances, SD and SP. This restriction assumes that
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a person will interact with others in his or her neighborhood—either
social or geographic. Formally, the model defines the interaction can-
didate set as

(5)

An agent can communicate only with its candidate agents, so the
probability of interaction is calculated between each agent and its
candidate agents.

Agent-relocation mechanism
Our model lets agents relocate themselves to adjacent locations.

The MR parameter defines the sphere of relocation, but the proba-
bility of choosing a certain location is more complicated:

(6)

In essence, the agents choose a location that, on average, guarantees the
shortest path to their required knowledge bits. In other words, the agents
try to put themselves at the optimal location to collect the knowledge
they want. However, like the AA interaction model, this is a stochas-
tic model that determines location choices probabilistically. So, it’s
possible to choose a nonpreferred location with lower probability.

After selecting a location, the model changes the AL network by
removing the edge from the agent to the old location and adding an edge
to the new location. Additionally, the agent will gather knowledge bits
linked to locations in its VR. This knowledge gathering is similar to the
knowledge exchange between agents, except it uses a different learn-
ing rate. Some might argue that this regional knowledge acquisition
isn’t necessarily true, especially in the real world where terrorists can
learn new knowledge from Web sites. However, many terrorists go to
training sites and organization headquarters to receive specific, detailed
training. These relocations are an important issue in the counterterror-
ism field,14 and we’re specifically examining them in this example.

Output measures
We use two performance metrics to evaluate an evolving orga-

nization over time: knowledge diffusion and energy task accuracy.
KD gauges the dispersion of the knowledge bits across the agents

as follows:

(7)

But KD considers only who knows what. ETA calculates the extent
to which the agents have the knowledge they need to do their assigned
tasks. This calculation introduces the agent-to-task (AT) and knowl-
edge-to-task (KT) networks:

(8)

Furthermore, we define two criticality metrics for the agents and
locations. For agents, we count the number of agents that an agent
interacts with during the simulation. This represents the number of
agents that the agent knows and influences. For locations, we count
the number of agents in a location at the end time. If the location har-
bors more agents, it might have higher terrorist activities.

Results
We used the model to analyze the terrorist network in the meta-

matrix format (see table 1) and to generate estimates on agent relo-
cation, geospatial clustering, agent interaction, and social-network
evolution. We performed a sensitivity analysis first, then visualized
and analyzed the model output in two dimensions.

We replicated the simulation three times for 30 simulation time
steps. The sensitivity analysis showed significant p-values for some
independent factors. Specifically, MR is a significant predicting fac-
tor for ETA, KD and the Gini coefficient are significant for location-
criticality distribution, and RS is important for explaining the Gini
coefficient of the agent-criticality distribution. (The Gini coefficient
comes from economics and describes a property’s distribution across
a population.) These p-values indicate that three replications are suf-
ficient for identifying the critical factors for each performance met-
ric. The stabilized distribution of the results requires further exami-
nation, but that work is outside this article’s scope.

Sensitivity analysis
We analyzed the model’s sensitivity by varying the input parame-

ters in table 3. After running the model with varied parameters, we
performed a regression analysis. The independent variables are the
varied parameters of a virtual-experiment cell—for example, a com-
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Table 3. Virtual-experiment design: Sensitivity analysis and parameter-space exploration.

Input parameters Value Implication

Move radius (MR) 0, 1, or 2 (3 cases) Parameter-space exploration, examining the results’ sensitivity according to the
agent-movement perimeter (MR parameter)

Weights for RS (w1)/RE (w2) 0/1, 0.25/0.75, 0.6/0.4, Parameter-space exploration, examining the agent-interaction attitudes and their affect
0.75/0.25, 1/0 (5 cases) on the results, from passive information gathering to active information gathering

Density of the organizational- 75%, 100%, 125% (3 cases) Sensitivity analysis, examining the sensitivity of results according to the density 
structure network (AA and changes of the AA and LL networks corresponding to the social and geospatial 
LL densities) dimensions, respectively

Total virtual experiment cells 45 cells (3 � 5 � 3 cases) —
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bination of 0 MR, 0/1 RS/RE ratio, and 75 per-
cent density rate. The dependent variables are
the two performance metrics and the Gini coef-
ficients of the agent- and location-criticality
distributions.

Table 4 is the regression-analysis result.
First, as MR increases, the network’s per-
formance improves. The terrorists in the
model tend to relocate to regions where they
can collect more information, rather than stay
in their current location. Furthermore, these
relocations increase task performance by
increasing the information feed. Next, higher
MR and higher possible density decreases
the Gini coefficient of location criticalities.
This indicates that terrorists will disperse
more if they can relocate more easily and the
input network is denser. Finally, lower RS
will induce a more centralized terrorist net-
work. Particularly, the input network density
has a great impact on the agent-criticality dis-
tribution compared with its impact on the
location-criticality distribution.

Location-criticality analysis
Agent movement creates segregation pat-

terns over time (see figure 3). Figure 4 shows
an accumulated agent distribution across the
locations. The distribution implies that
agents will disperse more if we increase MR:
the fewer places harboring terrorists, the
greater the MR, which should help the ter-
rorists find the places to cluster. However,
our model indicates the opposite scenario:
the terrorists in our model can’t find the
places to cluster densely. Rather than gath-
ering in a few regions, the terrorists will dis-
perse around the world.

Table 5 lists the top 10 locations harboring
terrorists after the simulations. Although the
accumulated distribution and its Gini coeffi-
cient in figure 4 showed terrorist dispersion,
the top 10 locations are fairly consistent
across three different MR levels. This implies
that the hot regions with frequent terrorist

(b)

(a)

Figure 3. The agent geospatial distribution changes over time with a move radius of 1:
(a) the distribution at time 0, (b) the distribution at time 30. The size of the squares 
corresponds to the number of agents in the region, and the lines are the interlocation
agent-to-agent communication links.

Table 4. Regression for sensitivity analysis.

Gini coefficient of location- Gini coefficient of agent-
Dependent variable Energy task accuracy Knowledge diffusion criticality distribution criticality distribution

Standardized coefficients

Move radius 0.748* 0.780* –0.956* –0.088

Relative similarity 0.008 0.004 0.020 0.131†

Possible density 0.010 0.009 –0.114* –0.865*

Adjusted R-square 0.506 0.555 0.925 0.765
*p-value < 0.001
†p-value < 0.01
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activity will remain at the top after the relo-
cations, even though some terrorists in those
regions move to regions with less activity. In
detail, the northwest African regions—that
is, Morocco and Casablanca—become im-
portant locations as well as some European
regions, such as France. The south Asian
regions of Indonesia and Bali and the areas of
frequent activity—US and Israel—will re-
main the same.

Agent-criticality analysis
We analyzed the important agents after the

simulation. According to the sensitivity an-
alysis, RS changes impact the distribution of
the agent criticality. Figure 5 visualizes the
accumulated agents’social link coverage ac-
ross the RS levels. It shows some slight dif-
ferences in terms of Gini coefficients, but the
link-coverage distribution doesn’t change
much. This implies that the terrorist social
network’s evolution is stable regardless of
the parameter change. In spite of the small
changes, the increase in Gini coefficient with
higher RS suggests that fewer terrorists will
control the social links if the terrorists gather
information more passively. For instance,
one terrorist group often has different back-
grounds from another group. In that case,
under a strong RS interaction weight, only
terrorists with backgrounds similar to both
groups will be able to communicate with the
groups’members. A strong homophily trend
means that agents will have fewer possible
agents within their ICS and that fewer agents
will control more social links.

As with location-criticality analysis, we
identified the top 10 terrorists who control
the most links after simulation. Table 6
shows that the top terrorists, such as Bin
Laden and Riduan Isamuddin, have similar
power after simulations in spite of varying
parameters. This is because they’re already
the center of terrorist social networks, so they
appear frequently in ICSs. Additionally, they
have fairly comprehensive backgrounds and knowledge, so most
agents can find high RS and RE with the top-ranking agents. On the
other hand, Mohammad Atta shows higher ranks under the passive-
information-gathering assumption, because his background was com-
mon across the agents.

Our analysis indicates that the agents become more dispersed
around the world but that critical agents themselves don’t

change much. Obviously, the analysis method has its limitations.
First, validating the simulation model is very challenging and involves
open research questions, such as matching the simulated time step

to the real-time flow. Also, incorrect input data sets can misdirect the
model’s output. Complete and correct real-world data sets are rare,
but we expect to resolve some concerns by adding more realistic
agent-behavior mechanisms. As the subjects’behaviors become more
complex, adding more salient features to the model will increase its
usability. A recent book addresses defense modeling, simulation, and
analysis issues further.15

Despite some concerns, this complex multiagent model generates
several estimates that are useful for policy making and theory building.
Furthermore, the formula-based, agent-behavior design can be updated
easily as findings from other disciplines become available. These two
points provide incentives for using the model in the real world and for
updating and developing it on the basis of future findings.
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Figure 4. An accumulated distribution of agents across the locations. The
whereabouts of 570 agents are known, and there are 387 locations.

Table 5. The top 10 critical locations.

Rank MR = 0 (stationary) MR = 1 (adjacent move) MR = 2 (farther move)

1 US US US

2 Israel France France

3 France Morocco Morocco

4 Bali Israel Casablanca

5 Morocco Bali Bali

6 Egypt Casablanca Egypt

7 Afghanistan Egypt Israel

8 Casablanca Iraq Strasbourg

9 Iraq Indonesia Gaza

10 Indonesia Strasbourg Indonesia
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