
Bumping Strategies for the Multiagent Agreement Problem

Pragnesh Jay Modi and Manuela Veloso
Computer Science Department

Carnegie Mellon University
Pittsburgh, PA 15213

{pmodi,veloso}@cs.cmu.edu

ABSTRACT
We introduce the Multiagent Agreement Problem (MAP) to rep-
resent a class of multiagent scheduling problems. MAP is based
on the Distributed Constraint Reasoning (DCR) paradigm andre-
quires agents to choose values for variables to satisfy not only their
own constraints, but also equality constraints with other agents.
The goal is to represent problems in which agents must agree on
scheduling decisions, for example, to agree on the start time of a
meeting. We investigate a challenging class of MAP – private, in-
cremental MAP (piMAP) in which agents do incremental schedul-
ing of activities and there exist privacy restrictions on information
exchange. We investigate a range of strategies for piMAP, called
“bumping” strategies. We empirically evaluate these strategies in
the domain of calendar management where a personal assistant
agent must schedule meetings on behalf of its human user. Our
results show that bumping decisions based on scheduling difficulty
models of other agents can significantly improve performance over
simpler bumping strategies.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial Intelligence—
Multiagent Systems

General Terms
Algorithms

Keywords
Distributed Constraint Optimization

1. INTRODUCTION
Distributed Constraint Reasoning (DCR) [2, 11, 12, 18, 20] has

been proposed as a theoretical foundation for problems in multi-
agent systems, for example, distributed scheduling problems. In
DCR, a set of variables are distributed among a set of agents and
constraints among variables require agents to coordinate their value
choices. This paper considers the DCR approach for problems

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
AAMAS’05, July 25-29, 2005, Utrecht, Netherlands.
Copyright 2005 ACM 1-59593-094-9/05/0007 ...$5.00.

where an agent must schedule activities under the followingthree
conditions:

• Schedules are inter-dependent with other agents. A schedule
is valid if it satisfies both local constraints and external con-
straints with other agents. For example in meeting schedul-
ing, a person has local constraints such as “attend one meet-
ing at a time” and also has external constraints like “other
attendees must agree on the time of a meeting”.

• Schedules are built incrementally. That is, new activities
must be incorporated into an existing valid schedule to pro-
duce a new valid schedule. A key feature of incremental
scheduling is that existing activities often need to be moved,
or ”bumped” and rescheduled, in order to successfully ac-
commodate the new activities.

• Schedules contain private information and each agent retains
ownership of its schedule. We assume this as an explicit
property of the application domain. This property eliminates
a solution approach in which all information is communi-
cated to a central scheduler that constructs a global schedule
for all agents. Instead, each agent makes its own scheduling
decisions and communicates with others to ensure a valid
schedule. Importantly, the assumption of private information
places limits on the information that is exchanged.

We argue that the above are key essential features of many real-
world distributed scheduling problems. Incremental scheduling is
clearly an important class of problem. Inter-dependenciesas de-
fined by equality constraints arise whenever multiple agents must
schedule a joint activity that must be executed at the same time,
e.g., scheduling a coordinated invasion in military mission plan-
ning. Finally, privacy restrictions are ubiquitous when agents are
used to represent the interests of humans.

There is currently a mismatch between existing approaches to
DCR and what is needed to solve scheduling problems with the
above features. First, existing DCR representations such as DisCSP
[20] and DCOP [12], which make few assumptions about con-
straints, are overly general for some domains. Algorithms designed
for these representations fail to exploit additional assumptions that
may be available. For example, if only equality constraintsare
needed to encode the underlying problem, it makes sense to limit
the representation and design a more specialized (and potentially
more efficient) algorithm. Currently, such specialized representa-
tions are lacking.

Second, existing work in DCR has not explicitly considered in-
cremental problem solving and rescheduling (bumping) as a key
algorithmic decision point. Instead, most existing approaches, with

390

the exception of the Open CSP approach of Faltings and Gonza-
lez[7], have focused on batch problem solving. A batch approach
is potentially inefficient in an incremental setting because it fails to
take advantage of the existing solution.

Finally, previous research in classical scheduling has shown that
using heuristics can significantly aid in problem solving [1], but
most existing methods in DCR, e.g., DBO[20], AWC[20], Adopt[12],
use uninformed search. Effective search heuristics for DCRhave
the potential to improve performance. For example, generalhigh-
level information about other agents, such as the number of vari-
ables they own, could be incorporated as a heuristic. The most
progress to date on this idea is the texture measures approach of
Sycara et. al. [19], discussed further in Section 5.

This paper presents a DCR approach to the multiagent schedul-
ing problem and the issues described above. First, to address the
issue of lack of specialized representations and lack of focus on
incremental problem solving, we introduce the private, incremen-
tal Multiagent Agreement Problem (piMAP) as a special classof
DCR in which constraints between agents are limited to equality
constraints. Agents assign values to variables in an incremental
manner with restrictions on to whom certain information maybe
communicated. Specifically, piMAP defines a set of participants
for each variable and explicitly prohibits the communication of in-
formation about variables between agents who are not participants
in the variable.

Second, in order to address the issue of lack of use of heuris-
tics in DCR, we investigate a range of heuristic strategies for the
“bumping” problem in piMAP. The bumping problem is decid-
ing how to rearrange the existing schedule in order to schedule a
new activity. We introduce a heuristic in which the main ideais to
represent and exploit general knowledge about other agents(while
adhering to privacy constraints) and their “scheduling difficulty”.
Our notion of scheduling difficulty is sufficiently general to model
a wide range of contributing factors. The specific scheduling dif-
ficulty model we investigate in this paper assumes an agent has
or can obtain knowledge of the average schedule density of other
agents.

Finally, we use piMAP to model the multiagent meeting schedul-
ing problem and investigate the performance of our bumping strate-
gies in this domain. Multiagent meeting scheduling has beenin-
vestigated before [9, 17, 8] but our work is distinctive in its fo-
cus on bumping techniques for rescheduling in an incremental set-
ting. Existing work has not investigated this aspect of the multi-
agent meeting scheduling problem. We evaluate our approachin
an experimental testbed for multiagent meeting schedulingwhere
personal assistant agents schedule meetings on behalf of their hu-
man users. We simulate a human organization where higher ranked
people have very busy calendars and lower ranked people have
lower calendar density. Our results show a significant reduction in
scheduling failure rate with a bumping strategy that uses a model
of scheduling difficulty against other strategies that do not.

2. PROBLEM DEFINITION: PIMAP
A Distributed Constraint Reasoning (DCR) problem is defined

by a set of agents, variables, values and constraints, whereeach
variable is assigned to an agent who has control of its value.Con-
straints which are local, i.e., among variables assigned tothe same
agent, are calledintra-agentconstraints, while constraints which
are external, i.e., among variables assigned to different agents, are
calledinter-agentconstraints. DCR can be viewed as a distributed
form of the well-known and very successful CSP representation
from AI [4].

We use the general DCR framework to define themultiagent

agreement problem(MAP). MAP is a special class of DisCSP as
proposed by Yokoo and others [20]. The key differences are dis-
cussed after the following formal definition.

2.1 Formal Definitions
In MAP, a set of agents must map elements from one set, which

are modeled as the variables, to elements of a second set, which are
modeled as the values. Importantly, inter-agent constraints require
multiple agents to agree on the assignment of a value to a shared
variable.

We define themultiagent agreement problem(MAP) as follows:

• A = {A1, A2, ..., An} is a set ofagents.

• V = {V1, V2, ..., Vm} is a set ofvariables.

• D = {d1, d2, ..., dk} is a set ofvalues. Each value can be
assigned to any variable.

• participants(Vi) ⊆ A is the set of agents assigned the vari-
ableVi. A variable assigned to an agent means it has (possi-
bly shared) responsibility for choosing its value.

• vars(Ai) ⊆ V is the set of variables assigned to agentAi.

• For each agentAi, Ci is anintra-agentconstraint that evalu-
ates to true or false. It must be definedonlyover the variables
in vars(Ai).

• For each variableVi, an inter-agent“agreement” constraint
is satisfied if and only if the same value fromD is assigned
to Vi by all the agents inparticipants(Vi).

We say an assignment of values to variables isvalid (sound)if it
satisfies both inter-agent and intra-agent constraints. Wesay an as-
signment iscompleteif every variable inV is assigned some value.
The goal is to find a valid and complete assignment.

There are two key differences between MAP and DisCSP. First,
MAP allows a variable to be shared among a set of agents (par-
ticipants) while DisCSP assigns each variable to a unique agent.
However, MAP can be viewed as a DisCSP by giving a copy of
each shared MAP variable to each participant and adding inter-
agent equality constraints between the copies. Any DisCSP can-
not be converted to a MAP because DisCSP admits general inter-
agent constraints, but MAP inter-agent constraints are limited to
the equality constraints on shared variables.

A motivation for introducing the MAP representation with shared
variables is to conveniently and explicitly capture problems where
multiple agents are involved in a joint decision. This is a feature of
many distributed domains where each agent brings its own private
constraints to bear on the decision, but yet agents must cometo an
agreement. Another important motivation is to develop morespe-
cialized DCR algorithms and approaches that are tailored tothis
particular problem rather than exclusive focus on using themost
general DCR representation and algorithms.

The second key difference from general DisCSP is that MAP
assumes a single set of valuesD, i.e, all variables have the same
domain. But this is not a restriction. Given a set of variables with
different domains, we can define a new universal domain as the
union of the individual domains and add unary constraints toeach
variable to eliminate infeasible values.

Private, Incremental MAP(piMAP) is an extension to MAP in
which agents must solve MAP in an incremental fashion while lim-
iting the information they can exchange:

391

• Incremental: In incremental MAP, new variables and as-
sociated constraints are added to the problem over time and
must be integrated into an existing assignment. In meeting
scheduling for example, new meetings arise over time and
must be scheduled in the context of an existing schedule.
Given a MAP with agentsA and variablesV, an incremental
MAP also includes:

– Sinit = {(V1, d1), (V2, d2), ..., (Vm, dm)} is an initial
assignment of values to variables inV.

– V ′ = V ∪ {Vm+1} is a set of variables to be assigned a
value.

– participants(Vm+1) is a set of agents who are assigned
the variableVm+1.

– A′ = A∪ participants(Vm+1) is a set of agents.

The goal is find a valid and complete assignment for the vari-
ables inV ′. This incremental aspect of the problem raises
the need for the bumping strategies described in this paper.
Given a final solutionSfinal, we say a variableVi ∈ V
with initial value(Vi, di) ∈ Sinit wasbumpedif (Vi, di) 6∈
Sfinal. That is,Vi is assigned a final value different from its
initial value or in the case of an incomplete solution, unas-
signed a final value. The total number of bumped variables
measures the amount of schedule disruption that is needed
to schedule the new variable. All other things equal, an al-
gorithm that is able to obtain a solution with fewer bumps is
more desirable than one that requires greater bumps.

• Privacy: The information that may be exchanged among
agents is limited due to a desire to maintain distribution and
privacy. In particular, we assume the following condition.

– Ai ∈ participants(Vj) does not communicate informa-
tion aboutVj to any agent who is not inparticipants(Vj)

For example, a variable’s current value or the participantsof
a variable are not communicated to any agent who is not a
participant in the variable.

Finding a solution to MAP under this condition is challeng-
ing in part because the indirect constraints that arise through
chains of constraints often cross privacy boundries and so
cannot be made easily visible to any single agent.

2.2 Meeting Scheduling as piMAP
Multiagent meeting scheduling requires a set of agentsA =

{A1, A2, ..., An} to pair a set of meetingsM = {M1, M2, ..., Mm}
with a set of timeslotsT = {T1, T2, ..., Tp} according to a set of
constraints. For simplicity, we assume each meeting has thesame
durationd, andT is a set of discrete non-overlapping timeslots of
lengthd. A valid solution must satisfy three constraints: a) each
meeting is assigned to exactly one timeslot, b) no attendee is re-
quired to attend more than one meeting at the same time, and c)all
the attendees of a given meeting agree on its assigned timeslot. We
represent this problem using piMAP as follows.

We define a piMAP variableVi for each meetingMi, and an
piMAP valuedj for each timeslotTj . Theparticipantsof variable
Vi correspond to the attendees of meetingMi. The piMAP inter-
agent agreement constraint ensures that meeting attendeesagree on
the start time of the meeting. The piMAP intra-agent constraint
Ci is satisfied if and only if no value fromT is assigned to more
than one variable invars(Ai), i.e., no timeslot is double-booked in
an agents schedule. Although beyond the scope of this paper,Ci

1M

2M

!=

2M

!=
3M

1M

3M

3M

A1 A2

A3 A4

A5
=

=

=

=
=

Figure 1: Meeting Scheduling as the Multiagent Agreement
Problem.

could also be used to represent time-of-day preferences (e.g., “no
meetings before 11am”) or more complex local constraints such as
travel time between meetings or back-to-back preferences [15].

Figure 1 illustrates the multiagent agreement problem withfive
agentsA1, A2, A3,A4,A5 and three meetingsM1,M2,M3. Partici-
pants are defined asparticipants(M1) = {A1, A3}, participants(M2)
= {A1, A2}, participants(M3) = {A2 , A4, A5}. Variables within
an agent must have different values corresponding to different start
times, while the variables corresponding to the same meeting must
be assigned the same value to satisfy the inter-agent agreement con-
straint.

3. SOLUTIONS FOR PIMAP
We describe a protocol for piMAP that guarantees a valid as-

signment. The protocol does not guarantee a complete assignment
because additional complexity would be necessary. Insteadof fo-
cusing on complexity of the protocol, our main purpose is to use
this protocol to support investigation of bumping strategies.

3.1 Iterative Agreement Protocol
The Iterative Agreement Protocol (IAP) described in this section

is used to obtain valid solutions to a piMAP problem. It is similar
to the protocol outlined by Sen and Durfee [17]. Each variable Vi

has a unique participant who is the designatedinitiator of Vi. The
initiator proposes a single value and collects responses from the
other participants in a sequence ofrounds. In each round, the ini-
tiator sends a single proposal(Vi, di) and each participant decides
whether to accept or reject the proposal. Each participant follows
these steps:

• If the proposed assignment does not violate the participant’s
intra-agent constraintCi, it accepts the proposal immedi-
ately.

• Else, the agent uses a bumping strategy to determine whether
to accept or reject the proposal. (We will discuss bumping
strategies in the remainder of this paper.)

• If the participant accepts the proposal, it tentatively reserves
di for Vi and will reject any future proposals that conflict
with this tentative assignment.

The initiator collects the responses from all participantsin each
round and follows these steps:

• The initiator checks if all participants have accepted the cur-
rent round’s proposal.

• If yes, the assignment is confirmed with all participants in
one additional round of messages and everyone releases all
other tentatively reserved values forVi if any.

392

• If no, the protocol continues in rounds until the initiator has
no more values to propose, in which case the initiator de-
clares failure and all agents release their reserved values.

3.2 Bumping Strategies
In the Iterative Agreement Protocol, when agentAi receives a

value assignment proposal(Vi, di), it must choose whether to ac-
cept or reject the valuedi. A bumping strategy is a rule employed
by an agent to make this decision. The is a key algorithmic decision
point that can have a large effect on amout of schedule disruption
and scheduling failure rate.

Possible strategies differ in the amount of knowledge that is as-
sumed. We introduce a set of strategies that range from completely
uninformed to increasing amounts of knowledge. In the informed
strategies, the idea is to use knowledge about agents to predict
which variables will be difficult to reschedule and then avoid bump-
ing them.

3.2.1 Uninformed
These simple fixed strategies require no knowledge.

- Always Strategy: Always accept a proposal, and reschedule
bumped variables to resolve conflicts.

- Never Strategy:Never accept a proposal if the proposed assign-
ment results in a conflict.

3.2.2 Simple Informed
This strategy requires knowledge of the number of participants

of variables, but requires no further knowledge of the otheragents.

- NumParticipants Strategy: If a proposal(Vi, di) conflicts with
current assignment(Vj , dj), accept the proposal only if the size
of participants(Vj) is less than the size ofparticipants(Vi).

The intuition is that variables with fewer participants areeasier
to reschedule and so should be bumped in favor of variables with
greater participants.

What is the maximum number of bumps possible when agents
use this strategy to schedule a variableVi with n participants? In
the worst case, the initiator proposes to the othern− 1 participants
a value that conflicts with a unique variable in each’s local schedule
and each such variable hasn−1 participants. Sincen−1 < n, each
of then−1 participants ofVi will bump, resulting inn−1 bumps.
In turn, the rescheduling of then−1 bumped variables could result
in bumps ofn − 2 variables each, for a total of(n − 1)(n − 2)
bumps. Assumingk is the minimum number of participants for
any variable, the following formula gives the maximum number of
bumps possible when scheduling a variable withn participants and
all agents use theNumParticipantsbumping strategy:

Bumps(n) =

n−1−k
∑

i=0

i
∏

j=0

(n − 1) − j (1)

For example, ifn = 4 and every variable has at least 2 partic-
ipants (k = 2), then the maximum number of bumps possible is
3 + 3 × 2 = 9. An attractive feature of this strategy is that it
provides an upper bound on the amount of schedule disruptionthat
may occur.

3.2.3 Scheduling Difficulty (SD)
This strategy assumes that each agent is given or has built a

model from experience of other agents’ ability or willingness to
accept proposals. For example in the CMRadar domain discussed

 0

 0.25

 0.5

 0.75

 1

Alwys Nvr NumPart SD

P
ct

 o
f F

ai
le

d
R

un
s

Bumping Strategy

Failure rate over 500 runs

Figure 2: Comparison of bumping strategies in a four level or-
ganization hierarchy of 32 agents.

later, each agent is operating on behalf of a human so the model
could take into account the stubbornness of the other agent or its
promptness of reply. To be computationally convenient, we repre-
sent this model as a single number called a “scheduling difficulty”
factor. In this paper, we will use average schedule density as the
scheduling difficulty factor.

Let Difficulty(Vi) be a number denoting thescheduling difficulty
of a variableVi, i.e., if Difficulty(Vi) > Difficulty(Vj), then find-
ing a consistent value forVi is expected to be more “difficult” than
Vj . Concretely, we calculate scheduling difficulty by correlating it
with the probability that a proposed value is unassigned in all par-
ticipants current schedules. LetDeni = | V ars(Ai) | ÷ | D | be
theschedule densityof an agentAi. If A1,A2,...,Ak are the partici-
pants in variableVi, andDen1,Den2,...,Denk are the participants
respective schedule densities, we calculate the scheduling difficulty
of Vi as:

Difficulty(Vi) = (1 − Den1) × (1 − Den2) × ... × (1 − Denk)

For example, ifA1 andA2 are participants in variableVi, with
schedule densities of .9 and .4 respectively, then the probablity that
a given value is unassigned by both participants is calculated as
Difficulty(Vi) = (1 − 0.9) × (1 − 0.4) = 0.06. This is an ap-
proximation because it assumes thatA1 andA2 have independent
schedules, which may not be strictly true.

Finally, the bumping strategy is defined as follows.

- SD Strategy: If a proposal(Vi, di) conflicts with current assign-
ment(Vj , dj), accept the proposal if and only ifDifficulty(Vi) >

Difficulty(Vj).

The intuition is that variables with less constrained participants
are easier to reschedule and so should be bumped in favor of vari-
ables with highly constrained participants.

4. EXPERIMENTAL RESULTS
An important component for development of DCR techniques is

evaluation in realistic testbeds or on realistic benchmarks. Most
existing work has focused on the use of abstract problems such as
distributed graph coloring. We evaluate our techniques in the con-
text of theCMRadar Project[13] whose goal is to develop person-
alized assistant agents that are able to make people more efficient
by automating many routine tasks such as meeting scheduling.

In this section, we first describe a simulator for generatingmul-
tiagent meeting scheduling problems. Then, we use the distributed
CMRadar agents to execute the Iterative Agreement Protocolwith
different bumping strategies and present our experimentalresults in
this domain.

393

4.1 Experimental Testbed
We evaluate each strategy over a number ofruns. Each run con-

sists of two phases, a) a centralized problem generation phase and
b) a distributed problem solving phase. We describe each phase in
turn.

Problem Generation The problem generation phase has three steps.
In step one, we generate a set of CMRadar agents with empty
calendars but each with a desired schedule density as spec-
ified by an input parameter. Each agent’s calendar has 50
timeslots to simulate a 5 day, 10-hr/day work week. In step
two, we repeatedly generate a meeting between a random
subset of the agents, choose a random mutually free timeslot,
and insert the meeting into the calendars. We continue until
all calendars are filled to their desired density. The number
of attendees for each meeting is chosen according to a distri-
bution in which meetings of more people are less likely than
meetings with fewer people, and every meeting has at least
two attendees. In step three, we generate one additional new
meetingMm+1 that must be scheduled in Phase 2. The at-
tendees of meetingMm+1 are chosen to be a random subset
of the agents, with the size of the meeting as an input param-
eter. One of them is randomly chosen to be the initiator.

Problem Solving The problem solving phase is completely dis-
tributed. The CMRadar agents live in a simulated distributed
environment and are able to pass simulated email messages
between them. Their goal is to find a timeslot for the new
meeting{Mm+1} while successfully rescheduling any bumped
meetings. That is, the goal is to find a valid and complete
assignment of timeslots to meetings. We measure the num-
ber of failed runsdefined as a run in which this goal is not
achieved after a given amount of time. Failures occur either
because the initiator gives up on scheduling the meeting or a
max time elapses.

4.2 Experiments in a Hierarchical Agent Or-
ganization

Human organizations typically have hierarchies in which higher
ranked people have denser calendars than lower ranked ones.We
experiment with an organization with four levels with 8 agents in
each level, for a total of 32 agents. The four levels have initial
schedule densities of 90,70,50,30 percent respectively. All agents
use the same strategy. The size of the new meeting was fixed to
four agents. The empirical results over 500 runs for each strategy
are shown in Figure 2.

The Always strategy fails to schedule all the meetings in most
cases. Closer inspection reveals that every failure is due to the expi-
ration of the max time limit. We see the Always strategy is undesir-
able (at least when all agents employ it simultaneously) anda more
discretionary strategy is needed. The Never strategy does slightly
better, but still fails in roughly half the cases. The slightly more in-
formed strategyNumParticipantsdoes still better with a failure rate
of 0.28. Finally, the failure rate is reduced to 0.02 using the SD

strategy. We conclude that theSD strategy significantly reduces
the number of scheduling failures in our experiments. Thesere-
sults demonstrate how agents are able to use additional knowledge
of other agents (their schedule densities) to make more effective
local scheduling decisions.

Next, we examine the disruption caused by each bumping strat-
egy. Figure 3 shows histograms depicting the number ofbumpsfor
each strategy. Each histogram has on its y-axis the number ofruns
out of 500 which had the given number of bumps shown on the x-
axis. Figure 3 (a) shows that the Always strategy results in asignif-

 0

 100

 200

 300

 400

 500

 0 2 4 6 8 10 12 14 16

N
um

be
r

of
 R

un
s

Number of Bumps

Bump Strategy = Always

>
 0

 100

 200

 300

 400

 500

 0 2 4 6 8 10 12 14 16

N
um

be
r

of
 R

un
s

Number of Bumps

Bump Strategy = Never

>

 0

 100

 200

 300

 400

 500

 0 2 4 6 8 10 12 14 16

N
um

be
r

of
 R

un
s

Number of Bumps

Bump Strategy = NumPart

>
 0

 100

 200

 300

 400

 500

 0 2 4 6 8 10 12 14 16

N
um

be
r

of
 R

un
s

Number of Bumps

Bump Strategy = SD

>

Figure 3: Measuring schedule disruption for four bumping
strategies.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60 70

P
er

ce
nt

 o
f F

ai
le

d
R

un
s

Number of agents in organization

Failure rate with varying organization size

Never
Always
NumAtt
SD

Figure 4: Comparison of bumping strategies with varying or-
ganization size.

icant number of bumps; over 350 runs had greater than 16 bumps.
Figure 3 (b) shows that the Never strategy has zero bumps for all
500 runs, as should be expected for this strategy. Figure 3 (c) and
(d) show the schedule disruption for theNumParticipantsstrategy
andSD strategy, respectively. Both strategies perform compara-
bly, although theSD strategy has a slightly higher average. We
notice that theNumParticipants strategy is often significantly
less than 9 as computed by Equation 1 in this case where the new
meeting has 4 participants.

Finally, Table 1 shows for each strategy the average number of
rounds, messages and number of timeouts out of the 500 runs. As
shown in the third column, the Always strategy results in uncon-
trolled bumping until a max time limit is reached. Note also that
the NumParticipantsandSD strategy require similar amounts of
rounds and messages. This is significant because it shows that the
reduction in failure rate shown in Figure 2 is obtained without a
decrease in efficiency.

4.3 Varying Organization Size and Meeting
Size

Figure 4 contrasts the strategies as we increase the size of the

394

Table 1: Number of rounds, msgs, and timeouts for four bumping strategies.
Strategy Avg Rounds Avg Msgs NumTimeouts/NumRuns
Always 300 2843 384/500
Never 13 80 0/500
NumParticipants 9.57 38 0/500
SD 10.41 49 0/500

 0

 0.2

 0.4

 0.6

 0.8

 1

 2 3 4 5 6 7 8 9 10

P
er

ce
nt

 o
f F

ai
le

d
R

un
s

Size of meeting

Failure rate with varying meeting size

Never
Always
NumAtt
SD

Figure 5: Comparison of bumping strategies with varying size
of new meeting.

organization. Each datapoint represents the average of 100runs.
We see scale up to organization sizes of up to 64 agents. The qual-
itative results from the previous section in which the SD strategy
outperforms, continue to be seen.

Figure 5 contrasts the strategies as we increase the number of
attendees in the new meeting to be scheduled. Each datapointrep-
resents the average over 100 runs. We see that meetings of up to 10
agents are able to be scheduled with a high likelihood of success
(failure rate = 20%).

5. RELATED WORK
There has been significant research on meeting scheduling, but

only a subset of this research has considered the problem as inher-
ently decentralized. Of this subset, very few works have focused
explicitly on its incremental aspect and the consequent bumping
problem. Indeed, effective strategies for deciding when toresched-
ule meetings is lacking in previous distributed meeting scheduling
research.

We classify related research into three categories, multiagent meet-
ing scheduling, distributed scheduling in other domains, and dis-
tributed constraint reasoning.

5.1 Multiagent Meeting Scheduling
Sen and Durfee have done extensive work in multiagent meet-

ing scheduling [16, 17]. They formalize the multiagent meeting
scheduling problem and identify a family of negotiation protocols
aimed at searching for feasible solutions in a distributed manner[17].
They also describe a contract-net approach for multiagent meeting
scheduling [16] in which rescheduling and cancellation of existing
meetings is briefly discussed. However, rescheduling of existing
meetings or modeling of other agents to improve performancehas
not been a major focus.

Freuder, Minca and Wallace [8] have previously investigated meet-
ing scheduling within the Distributed Constraint Reasoning frame-
work. Their work is notable for empirically demonstrating apri-
vacy/efficiency tradeoff in multiagent meeting scheduling. Ephrati
and collegeaues have taken an economic approach to scheduling in
which agents express preferences for meeting times using a mon-
etary “points” system [6]. Their approach assumes existence of a

centralized scheduler with a global view of all calendars, although
user preferences are distributed and may be kept private.

5.2 Distributed Scheduling
Previous research in distributed scheduling has focused ona vari-

ety of domains including job-shop scheduling [19], airportschedul-
ing [3] [14] and medical scheduling [10] [5]. One of the more in-
fluential ideas from previous research in distributed scheduling has
been the communication of high-level information called texture
measures [19]. In this approach, agents coordinate their scheduling
decisions by communicating high-level information about their lo-
cal scheduling problem, such as their demand for a resource,so that
agents can ensure resources are allocated to the most constrained
agents. The scheduling difficulty models introduced in Section 3.2
can be viewed as an instantiation of this heuristic approach.

5.3 Distributed Constraint Reasoning
There exists some work in DCR dealing explicitly with privacy,

most notably the work of Yokoo et al. [21] and Silaghi et al. [18].
These approaches have focused on the use of strong cryptographic
techniques such as using homomorphic encryption functionsto en-
code communicated information. Yokoo et al. present a Secure
DisCSP algorithm that provides privacy guarantees and theoretical
guarantees on algorithm completeness.

6. CONCLUSION
We have modeled an important class of scheduling problems as

a form of DCR in which multiple agents must assign a set of val-
ues to a set of variables according to local intra-agent constraints
and external inter-agent equality constraints. We presented one of
the first informed heuristic approaches to DCR in which agents use
given scheduling difficulty models of other agents in order to de-
cide when to modify existing assignments. We show that this ap-
proach reduces the scheduling failure rate and controls theamount
of schedule disruption. In future work, we are interested indevel-
oping theoretically complete techniques for piMAP and alsofocus-
ing in how useful heuristic information about other agents can be
learned through experience.

Acknowledgements
This material is based upon work supported by the Defense Ad-
vanced Research Projects Agency (DARPA) under Contract No.
NBCHD030010. Any opinions, findings and conclusions or rec-
ommendations expressed in this material are those of the author(s)
and do not necessarily reflect the views of the DARPA or the De-
partment of Interior-National Business Center (DOI-NBC).

7. REFERENCES
[1] J.C. Beck, A.J. Davenport, E.M. Sitarski, and M.S. Fox.

Texture-based heuristics for scheduling revisited. In
Proceedings of AAAI-97.

[2] C. Bessire, A. Maestre, and P. Meseguer. Distributed
dynamic backtracking. InIJCAI Workshop on Distributed
Constraint Reasoning.

395

[3] M.H. Chia, D.E. Neiman, and V.R. Lesser. Coordinating
Asynchronous Agent Activities in a Distributed Scheduling
System. InProceedings of International Conference on
Multi-Agent Systems, January 1998.

[4] R. Dechter.Constraint Processing. Morgan Kaufmann, 2003.
[5] K. Decker and J. Li. Coordinated hospital patient scheduling.

In Proceedings of International Conference on Multi-Agent
Systems, 1998.

[6] Eithan Ephrati, Gilad Zlotkin, and Jeffrey S. Rosenschein. A
non–manipulable meeting scheduling system. In
Proceedings of the 13th International Workshop on
Distributed Artificial Intelligence, Seatle, WA, 1994.

[7] B. Faltings and S. Macho-Gonzalez. Open constraint
satisfaction. InPrinciples and Practice of Constraint
Programming - CP 2002, pages 356–370, 2002.

[8] E. C. Freuder, M. Minca, and R. J. Wallace.
Privacy/efficiency tradeoffs in distributed meeting scheduling
by constraint-based agents. InIJCAI-2001 Workshop on
Distributed Constraint Reasoning, 2001.

[9] L. Garrido and K. Sycara. Multi-agent meeting scheduling:
Preliminary experimental results. InProceedings of the First
International Conference on Multi-Agent Systems
(ICMAS’95). The MIT Press: Cambridge, MA, USA.

[10] M. Hannebauer and S. Mller. Distributed constraint
optimization for medical appointment scheduling. In
Proceedings of the Fifth International Conference on
Autonomous Agents, 2001.

[11] R. Mailler and V. Lesser. A mediation based protocol for
distributed constraint satisfaction. InThe Fourth
International Workshop on Distributed Constraint
Reasoning, 2003.

[12] P. J. Modi, W. Shen, M. Tambe, and M. Yokoo. Adopt:
Asynchronous distributed constraint optimization with
quality guarantees.Artificial Intelligence, 2004.

[13] P. J. Modi, M. Veloso, S. Smith, and J. Oh. Cmradar: A
personal assistant agent for calendar management. InAgent
Oriented Information Systems, (AOIS), 2004.

[14] D. Neiman, D. Hildum, V. Lesser, and T. Sandholm.
Exploiting Meta-Level Information in a Distributed
Scheduling System. InAAAI, 1994.

[15] J. Oh and S.F. Smith. Learning user preferences for
distributed calendar scheduling. InProc. 5th International
Conference on Practice and Theory of Automated
Timetabling (PATAT), Pittsburgh, PA, 2004.

[16] Sandip Sen and Edmund Durfee. A Contracting Model for
Flexible Distributed Scheduling.Annals of Operations
Research, 65:195–222, 1996.

[17] Sandip Sen and Edmund H. Durfee. A formal study of
distributed meeting scheduling. InGroup Decision and
Negotiation, volume 7, pages 265–289, 1998.

[18] M.C. Silaghi and D. Mitra. Distributed constraint satisfaction
and optimization with privacy enforcement. In3rd IC on
Intelligence Agent Technology, 2004.

[19] K. Sycara, S. Roth, N. Sadeh, and M. S. Fox. Distributed
constrained heuristic search.IEEE Transactions on Systems,
Man, and Cybernetics, 21:1446–1461, 1991.

[20] M. Yokoo. Distributed Constraint Satisfaction:Foundation of
Cooperation in Multi-agent Systems. Springer, 2001.

[21] M. Yokoo, K. Suzuki, and K. Hirayama. Secure distributed
csp: Reaching agreement without revealing private
information. InConstraint Programming, 2002.

396

