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ABSTRACT
We present a new polynomial-space algorithm, calledAdopt, for distributed
constraint optimization (DCOP). DCOP is able to model a large class of col-
laboration problems in multi-agent systems where a solution within given
quality parameters must be found. Existing methods for DCOP are not able
to provide theoretical guarantees on global solution quality while operating
both efficiently and asynchronously. Adopt is guaranteed to find an optimal
solution, or a solution within a user-specified distance from the optimal,
while allowing agents to execute asynchronously and in parallel. Adopt ob-
tains these properties via a distributed search algorithm with several novel
characteristics including the ability for each agent to make local decisions
based on currently available information and without necessarily having
global certainty. Theoretical analysis shows that Adopt provides provable
quality guarantees, while experimental results show that Adopt is signifi-
cantly more efficient than synchronous methods. The speedups are shown
to be partly due to the novel search strategy employed and partly due to the
asynchrony of the algorithm.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence ]: Distributed Artificial Intelligence—
Multiagent Systems

General Terms
Algorithms

Keywords
Constraint Satisfaction/Optimization, Multi-agent Coordination

1. INTRODUCTION
A large class of multi-agent coordination and distributed resource

allocation problems can be modelled via distributed constraint op-
timization (DCOP)[5], [2]. In DCOP, a set of collaborative agents
mustoptimizeover a distributed set of constraints, i.e., find solu-
tions that meet some quality requirements. Multi-agent teamwork
[10][12], distributed scheduling [5] and distributed sensor networks
[8] are some examples of these types of applications. For instance,
in distributed sensor networks, a set of agents must optimally allo-
cate a set of resources (e.g., sensors) to a set of tasks (e.g., targets),

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 2001 ACM X-XXXXX-XX-X/XX/XX ... $5.00.

where each resource is controlled by a different agent. Or, in au-
tonomous space exploration, a constellation of satellites orbiting a
planet must construct a joint plan that maximizes the amount of
scientific information collected.

DCOP includes a set of variables, each variable is assigned to an
agent who has control of its value, and agents must coordinate their
choice of values so that a global objective function is optimized.
The global objective function is modelled as a set of constraints,
and each agent knows about the constraints in which it is involved.
In this paper, we model the global objective function as a set of
valuedconstraints, that is, constraints that are described as func-
tions that return a range of values, rather than predicates that return
only true or false. DCOP significantly generalizes the Distributed
Constraint Satisfaction Problem (DisCSP) framework [13] [11][7],
which has relied on a satisfaction based representation. In DisCSP,
problem solutions are characterized with a designation of “satisfac-
tory or unsatisfactory” and so do not model problems where solu-
tions have degrees of quality or cost.

DCOP demands techniques that go beyond existing methods for
finding distributed satisfactory solutions and their simple exten-
sions for optimization. A DCOP method for the types of real-
world applications previously mentioned must meet three key re-
quirements. First, since the problem is inherently distributed, we
require a method where agents can optimize a global function in a
distributed fashion using only local communication (communica-
tion with neighboring agents). Second, we require a method that is
able to find solutions quickly by allowing agents to operate asyn-
chronously. A method where an agent sits idle while waiting for
a particular message from a particular agent is unacceptable be-
cause it is wasting time when it could potentially be doing useful
work. Figure 1 shows groups of loosely connected agent subcom-
munities which could potentially execute search in parallel rather
than sitting idle. Thus, in order to be efficient, the method must al-
low parallel execution and asynchronous communication between
agents. Finally, provable quality guarantees on system performance
are needed. For example, mission failure by a satellite constellation
performing space exploration can result in extraordinary monetary
and scientific losses. Thus, we require a method that efficiently
finds provably optimal solutions whenever possible and also allows
solution-quality/computation-time tradeoffs when time is limited.

A solution strategy that is able to provide quality guarantees,
while at the same time meeting the requirements of distributed-
ness and asynchrony, is currently missing from the multi-agent lit-
erature. A well-known method for solving DisCSP is the Asyn-
chronous Backtracking (ABT) algorithm of Yokoo, Durfee, Isida,
and Kuwabara [13]. Simple extensions of ABT for optimization
have relied on converting an optimization problem into a sequence
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of satisfaction problems in order to allow the use of a DisCSP al-
gorithm [3]. This approach has applied only to limited types of
optimization problems (e.g. Hierarchical DisCSPs, Maximal DisC-
SPs), but has failed to apply to general DCOP problems, even rather
natural ones such as minimizing the total number of constraint vi-
olations (MaxCSP). Other existing algorithms that provide qual-
ity guarantees for optimization problems such as the Synchronous
Branch and Bound (SynchBB) algorithm [2] discussed later, are
prohibitively slow since they require synchronous, sequential com-
munication. Other fast, asynchronous solutions such as variants of
local search [2] [14] cannot provide guarantees on the quality of the
solutions they find.

As we can see from the above, one of the main obstacles for
solving DCOP is combining quality guarantees with asynchrony.
Previous approaches have failed to provide quality guarantees in
DCOP using a distributed, asynchronous model because it is diffi-
cult to ensure a systematic backtrack search when agents are asyn-
chronously changing their variable values. The main reason behind
these failures is that previous approaches insist on backtracking
only when they conclude, with certainty, that the current solution
will not lead to the optimal solution. For example, the ABT algo-
rithm concludes with certainty that the current partial solution will
not lead to a global solution when a single agent locally detects an
unsatisfiable constraint. While agents are able to asynchronously
change variable values in ABT, that is only because of the limited
representation of DisCSP, where only one constraint needs to be
broken for a candidate solution to be globally inconsistent. Exten-
sions of ABT for optimization problems [3] have continued to rely
on a satisfaction-based representation and have failed to apply to
general DCOP also for this reason. On the other hand, SynchBB
concludes with certainty that the current partial solution will not
lead to a global solution whenever the cost exceeds a synchronously
computed global upper bound. This approach to backtrack search
fails to be asynchronous and parallel because computing a global
upper bound requires that all costs in the constraint network be ac-
cumulated within a single agent before decisions can be made.

To solve this challenging problem, we propose a new distributed
constraint optimization algorithm, calledAdopt(Asynchronous Dis-
tributed Optimization). Adopt, to the best of our knowledge, is the
first algorithm for distributed constraint optimization that can find
either an optimal solution or a solution within a user-specified dis-
tance from the optimal, using only localized asynchronous com-
munication and polynomial space at each agent. Communication
is local in the sense that an agent does not send messages to every
other agent, but only to neighboring agents. The main idea behind
Adopt is to get asynchrony by allowing each agent to change vari-
able value whenever it detects there is apossibilitythat some other
solution may be better than the one currently under investigation.
This search strategy allows partial solutions to be abandoned be-
fore suboptimality is proved. This increases asynchrony because an
agent does not need global information to make its local decisions.
The second key idea in Adopt is to efficiently reconstruct previ-
ously considered partial solutions (using only polynomial space)
through the use ofbacktrack threshold– an allowance on solution
cost that prevents backtracking. These two key ideas together yield
efficient asynchronous search for optimal solutions. Finally, the
third key idea in Adopt is to provide a termination detection mech-
anism built into the algorithm – agents terminate whenever they
find a complete solution whose cost is under their current backtrack
threshold. Previous asynchronous search algorithms have typically
required a termination detection algorithm to be invoked separately,
which can be problematic since it requires additional message pass-
ing.

Figure 1: Loosely connected subcommunities of problem
solvers

Adopt’s ability to provide quality guarantees naturally leads to a
practical technique for bounded-error approximation. A bounded-
error approximation algorithm is guaranteed to deliver a solution
whose quality is within a user-specified distance from the opti-
mal, and usually in much less time than is required to deliver the
optimal solution. Finding the optimal solution to a DCOP can
be very costly for some problems where sufficient resources (e.g.
time) may not be available. Therefore, bounded-error approxima-
tion is a crucial capability needed for making effective solution-
quality/computation-time tradeoffs in the real world. Approaches
that use incomplete search to find solutions quickly have lacked the
capability of providing a theoretical guarantee on solution quality.

Our evaluation results show that Adopt obtains several orders of
magnitude speed-up over SynchBB, the only existing complete al-
gorithm for DCOP. The speedups are shown to be partly due to the
novel search strategy and partly due to the asynchrony and paral-
lelism allowed by the search strategy. Also, although distributed
constraint optimization is intractable in the worst case, our exper-
iments demonstrate that some classes of problems exhibit special
properties in which optimal algorithms can perform very well. In
particular, Adopt is able to guarantee optimality at low cost for
large problems when the constraint network is sparse – a typical
feature of distributed sensor networks [8]. We also present empir-
ical results demonstrating an important feature of the algorithm,
namely, the ability to perform bounded-error approximation.

2. PROBLEM DEFINITION
A Distributed Constraint Optimization Problem (DCOP) con-

sists ofn variablesV = fx1;x2; :::xng, each assigned to an agent,
where the values of the variables are taken from finite, discrete do-
mainsD1; D2;:::; Dn, respectively. Only the agent who is assigned
a variable has control of its value and knowledge of its domain.
The goal is to choose values for variables such that a given objec-
tive function is minimized or maximized. The objective function
is described as an aggregation over a set of cost functions, or val-
ued constraints. For clarity, we will deal mainly with addition as an
aggregation operator. However, the techniques described in this pa-
per can be applied to any associative, commutative, monotonic ag-
gregation operator defined over a totally ordered set of valuations,
with minimum and maximum element. This class of optimization
functions is described formally by Schiex, Fargier and Verfaillie as
Valued CSPs [9].

The cost functions in DCOP are the analogue of constraints from
DisCSP (for convenience, we refer to cost functions as constraints).
They take values of variables as input and, instead of returning “sat-
isfied or unsatisfied”, they return a valuation. Thus, for each pair of
variablesxi, xj , we may be given acost functionfij : Di�Dj !
N [ 1. Figure 2.a shows an example constraint graph with four
agents. In the example, all constraints are identical only for sim-
plicity. Two agentsxi; xj areneighborsif they have a constraint
between them. In Figure 2.a,x1 andx3 are neighbors because a
constraint exists between them, butx1 andx4 are not neighbors
because they have no constraint. The objective is to find an assign-
mentA� of values to variables such that the total cost, denotedF ,
is minimized and every variable has a value. Stated formally, we
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Figure 2: (a) Constraint graph. (b) Communication graph.

wish to findA (= A�) such thatF (A) is minimized, where the
objective functionF is defined as

F (A) =
P

xi;xj2V

fij(di; dj) ; where xi  di;

xj  dj in A

For example, in Figure 2.a,F (f(x1; 0),(x2; 0), (x3; 0), (x4; 0)g) =
4 andF (f(x1; 1),(x2; 1), (x3; 1), (x4; 1)g) = 0. In this example,
A� = f(x1; 1),(x2; 1), (x3; 1), (x4; 1)g.

In this paper, we are interested in managing interdependencies
between different agents’ choices. Therefore, we will assume each
agent is assigned a single variable and use the terms “agent” and
“variable” interchangeably. Since agents sometimes have complex
local problems, this is an assumption to be relaxed in future work.
Yokoo et al. [13] describe some methods for dealing with multiple
variables per agent in DisCSP and such methods may also apply to
DCOP. We will also assume that constraints are binary. Note that
generalization to n-ary constraints has been achieved in the DisCSP
case without significant revisions to algorithms that were originally
developed for binary constraints. We assume that message transfer
may have random but finite delay and messages are received in the
order in which they are sent between any pair of agents. Messages
sent from different agents to a single agent may be received in any
order.

3. ASYNCHRONOUS SEARCH FOR DCOP
3.1 Basic Ideas
3.1.1 Opportunistic search

Adopt brings forth three new ideas not seen in previous dis-
tributed constraint reasoning algorithms. First, Adopt performs dis-
tributed backtrack search using an ”opportunistic” best-first search
strategy, i.e., each agent keeps on choosing the best value based on
the current available information. Stated differently, each agent al-
ways chooses the variable value with smallest lower bound. This
search strategy is in contrast to previous distributed “branch and
bound” type search algorithms for DCOP (e.g. SynchBB [2]) that
require agents to change value only when cost exceeds a global
upper bound (which proves that the current solution must be sub-
optimal). Lower bounds are more suitable for asynchronous search
because a lower bound can be computed without necessarily hav-
ing accumulated global cost information. In Adopt, an initial lower
bound is immediately computed based only on local cost. The
lower bound is then iteratively refined as new cost information is
asynchronously received from other agents. Because this search
strategy allows agents to abandon partial solutions before they have

proved the solution is definitely suboptimal, they may be forced to
reexplore previously considered solutions. The next idea in Adopt
addresses this issue.

3.1.2 Efficiently Reconstructing Abandoned Solutions
To allow agents to efficiently reconstruct a previously explored

solution, which is a frequent action due to Adopt’s search strategy,
Adopt uses the second idea of using a stored lower bound as aback-
track threshold. This technique increases efficiency, but requires
only polynomial space in the worst case, which is much better than
the exponential space that would be required to simply memorize
partial solutions in case they need to be revisited. The basic idea is
that if a parent agent knows from previous search experience that
LB is a lower bound on the cost for its (possibly multiple) children
subcommunities, it should inform them not to bother searching for
a solution whose cost is less thanLB. In this way, a parent agent
calculates backtrack threshold usingLB and sends the threshold to
its children. The backtrack threshold is used as an allowance on
solution cost – a child agent will not change its variable value so
long as its lower bound is less than the backtrack threshold. The
backtrack threshold is calculated using a previously known lower
bound and is ensured to be less than or equal to the cost of the opti-
mal solution – so we know the optimal solution will not be missed.

To make the backtrack threshold approach work when multi-
ple subcommunities search in parallel, a parent agent must dis-
tribute its backtrack threshold, denotedthreshold, correctly to
its multiple children. This is a challenging task because the par-
ent does not remember howthreshold was accumulated from its
children in the past. In Adopt, if a parent agent chooses variable
valued which has a local cost ofÆ(d), it subdivides the remain-
ing cost,threshold � Æ(d), arbitrarily among its children. After
some search, a child agentxi may discover that its portion,t(d; xi),
is too low because the lower bound on the cost in its subcommu-
nity, lb(d; xi), exceedst(d; xi). When this happens,xi unilaterally
raises its own backtrack threshold and reports to its parent. The
parent agent then redistributesthreshold among its children by
increasingt(d; xi) and decreasing the portions given to the other
children. Informally, the parent maintains anAllocationInvari-
ant (described later) which states that its local cost plus the sum
of t(d; xi) over all childrenxi must equal its backtrack threshold
threshold and aChildThresholdInvariant , which states that no
child should be givent(d; xi) less than its lower boundlb(d; xi)
. Using these invariants (and feedback from its children), the par-
ent continually re-balances the subdivision of backtrack threshold
among its children until the correct threshold is given to each child.
3.1.3 Built-in Termination Detection

Finally, the third key idea is the use of bound intervals for track-
ing the progress towards the optimal solution and, thereby, provid-
ing a built-in termination detection mechanism. A bound interval
consists of both a lower bound and an upper bound on the optimal
solution cost. While previous distributed search algorithms have
required a separate termination detection algorithm, bound inter-
vals in Adopt provide a natural termination detection criterion in-
tegrated within the algorithm. When the size of the bound interval
shrinks to zero, i.e., the lower bound equals the upper bound, the
cost of the optimal solution has been determined and agents can
safely terminate when a solution of this cost is obtained. Bound
intervals can also be used to perform bounded-error approxima-
tion. As soon as the bound interval shrinks to a user-specified size,
agents can terminate early while guaranteeing they have found a
solution whose cost is within the given distance of the optimal so-
lution. Agents can find an approximate solution faster than the opti-
mal one but still provide a theoretical guarantee on solution quality.
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3.2 Details of Algorithm
Agents are prioritized in a Depth-First Search (DFS) tree in which

each agent has a singleparentand multiplechildren. Thus, unlike
previous algorithms such as SynchBB, Adopt doesnotrequire a lin-
ear priority ordering on all the agents. Figure 2.b shows a DFS tree
formed from the constraint graph in Figure 2.a –x1 is the root,x1 is
the parent ofx2 andx2 is the parent of bothx3 andx4. Constraints
are allowed between an agent and any of its ancestors or descen-
dents (there is a constraint betweenx1 andx3), but there can be
no constraints between nodes in different subtrees of the DFS tree.
We assume parent and children are neighbors. The requirement of
a DFS ordering places no restrictions on the constraint network it-
self – every connected constraint network can be ordered into some
DFS tree[6]. Distributed algorithms for forming DFS trees are also
presented in[1] [6]. We will assume the DFS ordering is done in a
preprocessing step so every agent knows its parent and children.

The communication in Adopt is shown in Figure 2.b. The algo-
rithm begins by all agents choosing their variable values concur-
rently. Variable values are sent down constraint edges via VALUE
messages – an agentxi sends VALUE messages only to neigh-
bors lower in the DFS tree and receives VALUE messages only
from neighbors higher in the DFS tree. A second type of mes-
sage, a THRESHOLD message, is sent only from parent to child.
A THRESHOLD message contains a single number representing a
backtrack threshold, initially zero. Upon receipt of any type of mes-
sage, an agent i) calculates cost and possibly changes variable value
and/or modifies its backtrack threshold, ii) sends VALUE messages
to its lower neighbors and THRESHOLD messages to its children
and iii) sends a third type of message, a COST message, to its par-
ent. A COST message is sent only from child to parent. A COST
message sent fromxi to its parent contains the cost calculated at
xi plus any costs reported toxi from its children. (xi is informed
of costs at agents in the subtree rooted atxi by COST messages
it receives from its own children.) To summarize the communica-
tion, variable value assignments (VALUE messages) are sent down
the DFS tree while cost feedback (COST messages) for the higher
agents’ value choices percolate back up the DFS tree. It may be
useful to view COST messages as a generalization of NOGOOD
message from DisCSP algorithms. THRESHOLD messages are
sent down the tree to reduce redundant search.

Procedures from Adopt are shown in Figure 3 and 4. We first
focus on Figure 3.xi represents the agent’s local variable anddi
represents its current value.CurrentContext is acontextwhich
holdsxi’s view of the assignments of higher neighbors:

� Definition: A contextis a partial solution of the formf(xi,di),
(xj , dj)...g. A variable can appear in a context no more than
once. Two contexts arecompatibleif they do not disagree on
any variable assignment.

A COST message contains three fields:context, lb andub. The
context field of a COST message sent fromxl to its parentxi
containsxl’s CurrentContext. This field is necessary because
calculated costs are dependent on the values of higher variables,
so an agent must attach the context under which costs were calcu-
lated to every COST message. This is similar to thecontext attach-
mentmechanism in ABT [13]. Whenxi receives a COST mes-
sage from childxl, andd is the value ofxi in the context field,
thenxi storeslb indexed byd andxl as lb(d; xl) (line iii). Sim-
ilarly, the ub field is stored asub(d; xl) and thecontext field is
stored ascontext(d; xl). Before any COST messages are received
or whenever contexts become incompatible,i.e.,CurrentContext

becomes incompatible withcontext(d; xl), thenlb(d; xl) is (re)initialized

to zero andub(d; xl) is (re)initialized to a maximum valueInf
(line ii-a, ii-b, ii-c).
xi calculates cost as local cost plus any cost feedback received

from its children. Procedures for calculation of cost are not shown
in Figure 3 but are implicitly given by procedure calls, such asLB
andUB, defined next. Thelocal costat xi, for a particular value
choicedi 2 Di, is the sum of costs from constraints betweenxi
and higher neighbors:

� Definition: Æ(di) =
P

(xj ;dj)2CurrentContext
fij(di; dj)

is thelocal costatxi, whenxi choosesdi.

For example, in Figure 2.a, supposex3 received messages that
x1 andx2 currently have assigned the value 0. Thenx3’sCurrentContext
would bef(x1; 0); (x2; 0)g. If x3 chooses 0 for itself, it would in-
cur a cost of 1 fromf1;3(0; 0) (its constraint withx1) and a cost
of 1 from f2;3(0; 0) (its constraint withx2). Sox3’s local cost,
pÆ(0) = 1 + 1 = 2.

Whenxi receives a COST message, it addslb(d; xl) to its local
costÆ(d) to calculate alower bound for valued, denotedLB(d).

� Definition: 8d 2 Di; LB(d) = Æ(d)+
P

xl2Children
lb(d; xl)

is alower boundfor the subtree rooted atxi, whenxi chooses
d.

Similarly,xi addsub(d; xl) to its local costÆ(d) to calculate an
upper bound for valued, denotedUB(d).

� Definition: 8d 2 Di; UB(d) = Æ(d)+
P

xl2Children
ub(d; xl)

is aupper boundfor the subtree rooted atxi, whenxi chooses
d.

The lower bound for variablexi, denotedLB, is the minimum
lower bound over all value choices forxi.

� Definition: LB = mind2Di
LB(d) is alower boundfor the

subtree rooted atxi.

Similarly theupper bound for variablexi, denotedUB, is the
minimum upper bound over all value choices forxi.

� Definition: UB = mind2Di
UB(d) is anupper boundfor

the subtree rooted atxi.

xi sendsLB andUB to its parent as thelb andub fields of a
COST message (line vi). (Realize thatLB need not correspond to
xi’s current value, i.e.,LB need not equalLB(di)). Intuitively,
LB = k indicates that it is not possible for the sum of the local
costs at each agent in the subtree rooted atxi to be less thank, given
that all higher agents have chosen the values inCurrentContext.
Similarly, UB = k indicates that the optimal cost in the subtree
rooted atxi will be no greater thank, given that all higher agents
have chosen the values inCurrentContext. Note that ifxi is a
leaf agent, it does not receive COST messages soÆ(d) = LB(d) =
UB(d) for all value choicesd 2 Di andLB is always equal toUB
in every COST message. Ifxi is not a leaf but has not yet received
any COST messages from its children,UB is equal to maximum
valueInf andLB is just the minimum local cost over all value
choices.
xi’s backtrack threshold is stored in thethreshold variable, ini-

tialized to zero (line i). WheneverLB(di) exceedsthreshold, xi
changes its variable value to one with smaller lower bound if pos-
sible (line iv). Sincethreshold may be less than the cost of the
optimal solution,xi cannot prove that its current value is definitely
suboptimal, but it changes value to one with smaller cost anyway –
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thereby realizing the opportunistic search strategy described in Sec-
tion 3.1. If no value can be chosen so that lower bound is less than
threshold, i.e., LB > threshold, xi will unilaterally increase
the threshold toLB (seemaintainThresholdInvariant , Figure 4).
Similarly, if xi determines definitively that itsthreshold is too
high, i.e.,threshold > UB, it decreasesthreshold toUB. This
is summarized by the following invariant.

� ThresholdInvariant: LB � threshold � UB. The thresh-
old on cost for the subtree rooted atxi cannot be less than its
lower bound or greater than its upper bound.

The agent consumes some of the threshold through its local cost
for its choice of variable. It then allocates the remaining thresh-
old among its children and sends them THRESHOLD messages
(seemaintainAllocationInvariant , Figure 4). Lett(d; xl) denote
the threshold on cost allocated by parentxi to child xl, givenxi
chooses valued. The values oft(d; xl) are subject to the following
two invariants.

� AllocationInvariant: For current valuedi 2 Di, threshold =
Æ(di) +

P
xl2Children

t(di; xl). The threshold on cost for
xi must equal the local cost of choosingd plus the sum of
the thresholds allocated toxi’s children.

� ChildThresholdInvariant: 8d 2 Di; 8xl 2 Children,
lb(d; xl) � t(d; xl) � ub(d; xl). The threshold allocated
to childxl by parentxi cannot be less than the lower bound
or greater than the upper bound reported byxl to xi.

3.3 Example
Figure 5 shows a portion of a DFS tree. The constraints are not

shown.xp has parentxq and two childrenxi andxj . For simplic-
ity, assumexp has only one value in its domain (Dp = fdg). xp
receivedthreshold = 11 from its parentxq via a THRESHOLD
message.xp must choose valued for its variable and suppose this
value has a local cost of 1 (Æ(d) = 1). In Figure 5.a,xp subdi-
vides the remaining threshold of 10 among its two children so that
t(d; xi) = 5 and t(d; xj) = 5. This is an arbitrary subdivision
that satisfies the AllocationInvariant – there are many other values
of t(d; xi) andt(d; xj) that could be used. Subsequently, in Figure
5.b,xp receives a COST message from its right childxj indicating
that the lower bound in that subtree is 6.xp will set lb(d; xj) = 6
(line iii) and will detect that the ChildThresholdInvariant is violated
sincelb(d; xj) = 6 6� t(d; xj) = 5. In order to correct this,xp
increasest(d; xj) to 6. This causes the AllocationInvariant to be
violated sincethreshold = 11 6= Æ(d) + t(d; xi) + t(d; xj) =
1 + 5 + 6 = 12. Soxp must lowert(d; xi) to 4 to satisfy the
invariant. In Figure 5.c,xp sends the new threshold values to its
children.

3.4 Algorithm Correctness and Complexity
Let OPT (xi; context) denote the cost of the optimal solution

in the subtree rooted atxi, given that higher priority variables have
values incontext. For example, ifxi is a leaf, thenOPT (xi; context)
= mind2Di

Æ(d), i.e., the optimal solution for a leaf is the variable
value that minimizes its local cost.

Theorem 1 proves that given a fixedCurrentContext, the cost
of the optimal solution within the subtree rooted atxi is always
guaranteed to be within the bound interval [LB;UB].

Theorem 1: 8xi 2 V , LB � OPT (xi; CurrentContext)
� UB.

The proof proceeds by induction. The base case follows from the
factLB = OPT (xi; CurrentContext) = UB is always true at

initialize
(i) threshold 0; CurrentContext fg

forall d 2 Di; xl 2 Children do
(ii-a) lb(d; xl) 0; t(d; xl) 0

ub(d; xl) Inf ; context(d; xl) fg; enddo
di  d that minimizesLB(d)
backTrack

when received(THRESHOLD , t, context)
if context compatible withCurrentContext:
threshold t

maintainThresholdInvariant
backTrack; endif

when received(TERMINATE , context)
record TERMINATE received from parent
CurrentContext context

backTrack

when received(VALUE , (xj ,dj))
if TERMINATE not received from parent:

add (xj ,dj) toCurrentContext
forall d 2 Di; xl 2 Children do

if context(d; xl) incompatible withCurrentContext:
(ii-b) lb(d; xl) 0; t(d; xl) 0

ub(d; xl) Inf ; context(d; xl) fg; endif; enddo
maintainThresholdInvariant
backTrack; endif

when received(COST, xk, context, lb, ub)
d value ofxi in context

remove (xi,d) from context

if TERMINATE not received from parent:
forall (xj ,dj) 2 context andxj is not my neighbordo

add (xj ,dj) toCurrentContext;enddo
forall d0 2 Di; xl 2 Children do

if context(d0; xl) incompatible withCurrentContext:
(ii-c) lb(d0; xl) 0; t(d0; xl) 0

ub(d0; xl) Inf ; context(d0; xl) fg;endif;enddo;endif
if context compatible withCurrentContext:

(iii) lb(d; xk) lb

ub(d; xk) ub

context(d; xk) context

maintainChildThresholdInvariant
maintainThresholdInvariant ; endif

backTrack

procedure backTrack
if threshold == UB:
di  d that minimizesUB(d)

(iv) else if LB(di) > threshold:
di  d that minimizesLB(d);endif

SEND (VALUE , (xi, di))
to each lower priority neighbor

maintainAllocationInvariant
(v-a) if threshold == UB:

if TERMINATE received from parent orxi is root:
(v-b) SEND (TERMINATE ,CurrentContext [ f(xi; di)g)

to each child
Terminate execution;endif;endif

(vi) SEND (COST, xi, CurrentContext, LB , UB) to parent

Figure 3: Procedures for receiving messages (Adopt algorithm)



procedure maintainThresholdInvariant
if threshold < LB
threshold = LB ; endif

if threshold > UB
threshold = UB; endif

%note: procedure assumes ThresholdInvariant is satisfied
procedure maintainAllocationInvariant

while threshold > Æ(di) +
P

xl2Children
t(di; xl) do

choosexl 2 Children whereub(di; xl) > t(di; xl)
incrementt(di; xl); enddo

while threshold < Æ(di) +
P

xl2Children
t(di; xl) do

choosexl 2 Children wheret(di; xl) > lb(di; xl)
decrementt(di; xl); enddo

SEND (THRESHOLD , t(di; xl), CurrentContext )
to each childxl

procedure maintainChildThresholdInvariant
forall d 2 Di; xl 2 Children do

while lb(d; xl) > t(d; xl) do
incrementt(d; xl); enddo;endo

forall d 2 Di; xl 2 Children do
while t(d; xl) > ub(d; xl) do

decrementt(d; xl); enddo;enddo
Figure 4: Procedures for updating backtrack thresholds

a leaf agent. The inductive hypothesis assumes thatLB (UB) sent
byxi to its parent is never greater (less) than the cost of the optimal
solution in the subtree rooted atxi. The proof also relies on the
fact that costs are reported to only one parent so there is no double
counting of costs.

Theorem 2 shows that Adopt will eventually terminate because
its termination condition,threshold = UB (line v-a), will even-
tually occur.

Theorem 2: 8xi 2 V , if CurrentContext is fixed, thenthreshold
= UB will eventually occur.

The proof follows from the fact that agents continually receive
cost reportsLB andUB from their children and pass costs up to
their parent. Theorem 1 showed thatLB has an upper bound and
UB has a lower bound, soLB must eventually stop increasing
andUB must eventually stop decreasing. The ThresholdInvari-
ant forcesthreshold to stay betweenLB andUB until ultimately
threshold = UB occurs. Note that the algorithm behaves differ-
ently depending on whetherxi’s threshold is set below or above
the cost of the optimal solution. Ifthreshold is less than the cost
of the optimal solution, then whenLB increases abovethreshold,
xi will raise threshold until ultimately,LB = threshold = UB

occurs. On the other hand, ifthreshold is greater than the cost of
the optimal solution, then whenUB decreases belowthreshold,
xi will lower threshold sothreshold = UB occurs. In this case,
LB may remain less thanUB at termination since some variable
values may not be re-explored.

From Theorem 1, if the conditionthreshold = UB occurs at
xi, then there exists at least one solution within the subtree rooted
at xi whose cost is less than or equalthreshold. From Theorem
2, the conditionthreshold = UB necessarily occurs. Next, The-
orem 3 shows that the solution is optimal.

Theorem 3: 8xi 2 V , xi’s final threshold value is equal to
OPT (xi; CurrentContext).

Base Case:xi is the root. The root terminates when its (final)
threshold value is equalUB. LB = threshold is always true at
the root becausethreshold is initialized to zero and is increased as

Parent/Child

LB=LB(d) = 6
UB=UB(d) = Inf
THRESHOLD = 11

LB= LB(d) = 0
UB= UB(d) = Inf
THRESHOLD = 11

xp

(b)

xj

xp

(c)

t(d,xl) = 4 t(d,xr) = 6t(d,xl) = 5 t(d,xr) = 5 lb= 6,
     ub=inf

xi xj

xp

(a)

xq xq xq

xi xixj

Figure 5: Example of algorithm execution

LB increases. The root does not receive THRESHOLD messages
so this is the only waythreshold changes. We concludeLB =
threshold = UB is true when the root terminates. This means the
root’s finalthreshold value is the cost of a global optimal solution.

Inductive Hypothesis: Let xp denotexi’s parent. xp’s final
threshold value is equal toOPT (xp; CurrentContext).

We proceed by contradiction. Supposexi’s final threshold is
an overestimate. By the inductive hypothesis,xp’s final thresh-
old is not an overestimate. It follows from the AllocationInvari-
ant that if the final threshold given toxi (by xp) is too high,xp
must have given some other child (a sibling ofxi), sayxj , a final
threshold that is too low (See Figure 5). Letd denotexp’s cur-
rent value. Sincexj ’s threshold is too low, it will be unable to
find a solution under the given threshold and will thus increase its
own threshold. It will reportlb to xp, wherelb > t(d; xj). Using
Adopt’s invariants, we can conclude thatthreshold = UB can-
not be true atxp, soxp cannot have already terminated. By the
ChildThresholdInvariant,xp will increasexj ’s threshold so that
lb(d; xj) � t(d; xj). Eventually, lb(d; xj) will reach an upper
bound andlb(d; xj) = t(d; xj) = ub(d; xj) will hold. This contra-
dicts the statement thatxj ’s final threshold is too low. By contra-
diction,xj ’s final threshold value cannot be too low andxi’s final
threshold cannot be too high.2

Adopt is guaranteed to terminate because the root has an fixed
(empty)CurrentContext, so the root can safely terminate when
threshold = UB. Before the root terminates, its sends a TER-
MINATE message to its children informing them of its final value
(line v-b). Upon receipt of this message, the root’s children know
that theirCurrentContext is fixed and they can safely terminate
whenthreshold = UB – and so on down the DFS tree.

The worst-case time complexity of Adopt is exponential in the
number of variables,n, since constraint optimization is known to
be NP-complete. To determine the worst-case space complexity at
each agent, note that an agentxi needs to maintain aCurrentContext
which is at most sizen, and anlb(d; xl) andub(d; xl) for each do-
main value and child, which is at mostj Di j �n. Thecontext(d; xl)
field can requiren2 space in the worst case. Thus, we can say the
worst-case space complexity of Adopt is polynomial in the num-
ber of variablesn. However, it can be reduced to linear at the
potential cost of efficiency. Sincecontext(d; xl) is always com-
patible withCurrentContext, CurrentContext can be used in
the place of eachcontext(d; xl), thereby giving a space complex-
ity of j Di j �n. This can be inefficient since an agent must reset
all lb(d; xl) andub(d; xl) wheneverCurrentContext changes,
instead of only whencontext(d; xl) changes.

3.5 Bounded-Error Approximation
We consider the situation where the user provides Adopt with an

error boundb, which is interpreted to mean that any solution whose
cost is withinb of the optimal is acceptable. For example in over-
constrained graph coloring, if the optimal solution has 3 violated
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Figure 7: Average number of messages per cycle required to
find the optimal solution.

constraints,b = 5 indicates that 8 violated constraints is an accept-
able solution. This allows a user to specify an error bound without
a priori knowledge of the cost of the optimal solution. Adopt can
be guaranteed to find a global solution within boundb of the opti-
mal by allowing the root’s backtrack threshold to overestimate byb.
The root agent usesb to modify its ThresholdInvariant as follows:

� ThresholdInvariant For Root (Bounded Error): min(LB+
b; UB) = threshold. The root agent always setsthreshold
to b over the currently best known lower boundLB, unless
the upper boundUB is known to be less thanLB + b.

Theorems 1 and 2 still hold with this modification. Also, agents
still terminate whenthreshold value is equalUB. This means the
root’s final threshold value is the cost of a global solution within
the given error bound. Using this error bound, Adopt is able to find
a solution faster than if searching for the optimal solution, thereby
providing a method to trade-off computation time for solution qual-
ity. This trade-off is principled because a theoretical quality guar-
antee on the obtained solution is still available.

4. EVALUATION
As in previous experimental set-ups[3], we experiment on dis-

tributed graph coloring with 3 colors. One node is assigned to
one agent who is responsible for choosing its color. Cost of so-
lution is measured by the total number of violated constraints. We
will experiment with graphs of varyinglink density– a graph with
link density d hasdn links, wheren is the number of nodes in
the graph. For statistical signficance, each datapoint representing
number of cycles is the average over 25 random problem instances.
The randomly generated instances were not explicitly made to be
overconstrained, but note that link density 3 is beyond phase tran-
sition, so randomly generated graphs with this link density are al-
most always overconstrained. Also as in [3], time to solution is
measured in terms of synchronous cycles. Onecycle is defined as
all agents receiving all their incoming messages and sending out all
their outgoing messages. The tree-structured DFS priority ordering
for Adopt was formed in a preprocessing step. To compare Adopt’s
performance with algorithms that require a chain (linear) priority
ordering, a depth-first traversal of Adopt’s DFS tree was used.

4.1 Efficiency
We present the empirical results from experiments using three

different algorithms for DCOP – Synchronous Branch and Bound
(SynchBB), Synchronous Iterative Deepening (SynchID) and Adopt.
We illustrate that Adopt outperforms SynchBB[2], a distributed
version of branch and bound search and the only known algorithm
for DCOP that provides optimality guarantees. In addition, by com-
paring with SynchID we show that the speed-up comes from two

sources: a) Adopt’s novel search strategy, which uses lower bounds
instead of upper bounds to do backtracking, and b) the asynchrony
of the algorithm, which enables concurrency.

SynchID is an algorithm we have constructed in order to isolate
the causes of speed-ups obtained by Adopt. SynchID simulates iter-
ative deepening search[4] in a distributed environment. SynchID’s
search strategy is similar to Adopt since both algorithms iteratively
increase lower bounds and use the lower bounds to do backtrack-
ing. However, the difference is that SynchID maintains a single
global lower bound and agents are required to execute sequentially
and synchronously while in Adopt, each agent maintains its own
lower bound and agents are able to execute concurrently and asyn-
chronously. In SynchID, the agents are ordered into a linear chain.
(A depth-first traversal of Adopt’s DFS tree was used in our exper-
iments.) The highest priority agent chooses a value for its variable
first and initializes a global lower bound to zero. The next agent in
the chain attempts to extend this solution so that the cost remains
under the lower bound. If an agent finds that it cannot extend the
solution so that the cost is less than the lower bound, a backtrack
message is sent back up the chain. Once the highest priority agent
receives a backtrack message, it increases the global lower bound
and the process repeats. In this way, agents synchronously search
for the optimal solution by backtracking whenever the cost exceeds
a global lower bound.

Figure 6 shows how SynchBB, SynchID and Adopt scale up with
increasing number of agents on graph coloring problems. The re-
sults in Figure 6 (left) show that Adopt significantly outperforms
both SynchBB and SynchID on graph coloring problems of link
density 2. The speed-up of Adopt over SynchBB is 100-fold at
14 agents. The speed-up of Adopt over SynchID is 7-fold at 25
agents and 8-fold at 40 agents. The speedups due to search strategy
are significant for this problem class, as exhibited by the differ-
ence in scale-up between SynchBB and SynchID. In addition, the
figure also show the speedup due exclusively to the asynchrony of
the Adopt algorithm. This is exhibited by the difference between
SynchID and Adopt, which employ a similar search strategy, but
differ in amount of asynchrony. In SynchID, only one agent ex-
ecutes at a time so it has no asynchrony, whereas Adopt exploits
asynchrony when possible by allowing agents to choose variable
values in parallel. In summary, we conclude that Adopt is signif-
icantly more effective than SynchBB on sparse constraint graphs
and the speed-up is due to both its search strategy and its exploita-
tion of asynchronous processing. Adopt is able to find optimal so-
lutions very efficiently for large problems of 40 agents.

Figure 6 (middle) shows the same experiment as above, but for
denser graphs, with link density 3. We see that Adopt still outper-
forms SynchBB – around 10-fold at 14 agents and at least 18-fold
at 18 agents (experiments were terminated after 100000 cycles).
The speed-up between Adopt and SynchID, i.e, the speed-up due
to concurrency, is 2.06 at 16 agents, 2.22 at 18 agents and 2.37 at 25
agents. Finally, Figure 6 (right) shows results from a weighted ver-
sion of graph coloring where each constraint is randomly assigned
a weight between 1 and 10. Cost of solution is measured as the sum
of the weights of the violated constraints. We see similiar results
on the more general problem with weighted constraints.

Figure 7 shows the average total number of messages sent by
all the agents per cycle of execution. As the number of agents is
increased, the number of messages sent per cycle increases only
linearly. This is in contrast to a broadcast mechanism where we
would expect an exponential increase. In Adopt, an agent commu-
nicates with only neighboring agents and not with all other agents.

4.2 Approximating Solutions
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Figure 8: Average number of cycles required to find a solution
within bounded error b (left) and the cost of obtained solution
for 18 agents (right)

We evaluate the effect on time to solution (as measured by cy-
cles) as a function of error boundb in Figure 8 (left). Error bound
b = 0 indicates a search for the optimal solution. Increasing the
error bound is shown to significantly decrease the number of cycles
to solution. At 18 agents, Adopt finds a solution that is guaranteed
to be within a distance of 5 from the optimal in under 200 cycles,
a 35-fold decrease from the number of cycles required to find the
optimal solution.

Figure 8 (right) shows the cost of the obtained solution for 18
agents for the same problems in Figure 8 (left). The x-axis shows
the “distance from optimal” (cost of obtained solution minus cost
of optimal solution for a particular problem instance) and the y-
axis shows the percentage of 25 random problem instances where
the cost of the obtained solution was at the given distance from
optimal. For example, the bars labeled “b = 3” shows that Adopt
finds the optimal solution for 90 percent of the examples whenb

is set to 3 and a solution whose cost is at a distance of 1 from the
optimal for the remaining 10 percent of the examples. The graph
shows that in no cases is the cost of the obtained solution beyond
the allowed bound, validating our theoretical results. The graph
also shows that the cost of the obtained solutions are often much
better than the given bound, in some cases even optimal.

The above results support our claim that varyingb is an effective
method for doing principled tradeoffs between time-to-solution and
quality of obtained solution. These results are significant because,
in contrast to incomplete search methods, Adopt provides the abil-
ity to find solutions faster when time is limited but without giving
up theoretical guarantees on solution quality.

5. CONCLUSION
Distributed constraint optimization is an important problem in

domains where problem solutions are characterized by degrees of
quality or cost and agents must find optimal solutions in a dis-
tributed manner. We have presented the Adopt algorithm that is
guaranteed to converge to the optimal solution while using only lo-

calized, asynchronous communication and only polynomial space
at each agent. The three key ideas in Adopt are a) to perform
distributed backtrack search using a novel search strategy where
agents are able to locally explore partial solutions asynchronously,
b) backtrack thresholds for more efficient search and c) built-in ter-
mination detection. These three ideas in Adopt naturally lead to a
bounded-error approximation technique for performing trade-offs
between solution quality and time-to-solution. We showed that a
certain class of optimization problems can be solved efficiently and
optimally by Adopt and that it obtains significant orders of magni-
tude speedups over distributed branch and bound search. In future
work, we will generalize Adopt to non-binary constraints and mul-
tiple variables per agent, and we will develop distributed methods
for discovering efficient DFS variable orderings.
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