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Abstract

This paper describes a simple heuristic approach to solving large�scale constraint satisfaction and
scheduling problems� In this approach one starts with an inconsistent assignment for a set of variables
and searches through the space of possible repairs� The search can be guided by a value�ordering heuristic�
the min�con�icts heuristic� that attempts to minimize the number of constraint violations after each step�
The heuristic can be used with a variety of di�erent search strategies�

We demonstrate empirically that on the n�queens problem� a technique based on this approach per�
forms orders of magnitude better than traditional backtracking techniques� We also describe a scheduling
application where the approach has been used successfully� A theoretical analysis is presented both to
explain why this method works well on certain types of problems and to predict when it is likely to be
most e�ective�



� Introduction

One of the most promising general approaches for solving combinatorial search problems is to generate an
initial� suboptimal solution and then to apply local repair heuristics��	� 
�� �
� ��� 

� ��� ���� Techniques
based on this approach have met with empirical success on many combinatorial problems� including the
traveling salesman and graph partitioning problems�
��� Such techniques also have a long tradition in AI�
most notably in problem�solving systems that operate by debugging initial solutions ���� 
��� In this paper�
we describe how this idea can be extended to constraint satisfaction problems �CSPs� in a natural manner�

Most of the previous work on CSP algorithms has assumed a �constructive� backtracking approach in
which a partial assignment to the variables is incrementally extended� In contrast� our method creates a
complete� but inconsistent assignment and then repairs constraint violations until a consistent assignment is
achieved� The method is guided by a simple ordering heuristic for repairing constraint violations� identify
a variable that is currently in con�ict and select a new value that minimizes the number of outstanding
constraint violations�

We present empirical evidence showing that on some standard problems our approach is considerably
more e�cient than traditional constructive backtracking methods� For example� on the n�queens problem�
our method quickly �nds solutions to the one million queens problem����� We argue that the reason that
repair�based methods can outperform constructive methods is because a complete assignment can be more
informative in guiding search than a partial assignment� However� the utility of the extra information is
domain dependent� To help clarify the nature of this potential advantage� we present a theoretical analysis
that describes how various problem characteristics may a�ect the performance of the method� This anal�
ysis shows� for example� how the �distance� between the current assignment and solution �in terms of the
minimum number of repairs that are required� a�ects the expected utility of the heuristic�

The work described in this paper was inspired by a surprisingly e�ective neural network developed
by Adorf and Johnston �
� 

� for scheduling astronomical observations on the Hubble Space Telescope�
Our heuristic CSP method was distilled from an analysis of the network� In the process of carrying out
the analysis� we discovered that the e�ectiveness of the network has little to do with its connectionist
implementation� Furthermore� the ideas employed in the network can be implemented very e�ciently within
a symbolic CSP framework� The symbolic implementation is extremely simple� It also has the advantage
that several di�erent search strategies can be employed� although we have found that hill�climbing methods
are particularly well�suited for the applications that we have investigated�

We begin the paper with a brief review of Adorf and Johnston�s neural network� and then describe
our symbolic method for heuristic repair� Following this� we describe empirical results with the n�queens
problem� graph�colorability problems and the Hubble Space Telescope scheduling application� Finally� we
consider a theoretical model identifying general problem characteristics that in�uence the performance of
the method�

� Previous Work� The GDS Network

By almost any measure� the Hubble Space Telescope scheduling problem is a complex task �
�� �
� 
��� Be�
tween ten thousand and thirty thousand astronomical observations per year must be scheduled� subject to a
great variety of constraints including power restrictions� observation priorities� time�dependent orbital char�
acteristics� movement of astronomical bodies� stray light sources� etc� Because the telescope is an extremely
valuable resource with a limited lifetime� e�cient scheduling is a critical concern� An initial scheduling
system� developed using traditional programming methods� highlighted the di�culty of the problem� it was
estimated that it would take over three weeks for the system to schedule one week of observations� As de�
scribed in section 
�
� this problem was remedied by the development of a successful constraint�based system
to augment the initial system� At the heart of the constraint�based system is a neural network developed by
Adorf and Johnston� the Guarded Discrete Stochastic �GDS� network� which searches for a schedule�
� 

��

From a computational point of view the network is interesting because Adorf and Johnston found that it
performs well on a variety of tasks� in addition to the space telescope scheduling problem� For example� the
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network performs signi�cantly better on the n�queens problem than methods that were previously developed�
The n�queens problem requires placing n queens on an n� n chessboard so that no two queens share a row�
column or diagonal� The network has been used to solve problems of up to ��

 queens� whereas most
heuristic backtracking methods encounter di�culties with problems one�tenth that size�����

The GDS network is a modi�ed Hop�eld network����� In a standard Hop�eld network� all connections
between neurons are symmetric� In the GDS network� the main network is coupled asymmetrically to an
auxiliary network of guard neurons which restricts the con�gurations that the network can assume� This
modi�cation enables the network to rapidly �nd a solution for many problems� even when the network is
simulated on a serial machine� Unfortunately� convergence to a stable con�guration is no longer guaranteed�
Thus the network can fall into a local minimum involving a group of unstable states among which it will
oscillate� In practice� however� if the network fails to converge after some number of neuron state transitions�
it can simply be stopped and started over�

To illustrate the network architecture and updating scheme� let us consider how the network is used to
solve binary constraint satisfaction problems� A problem consists of n variables� X� � � �Xn� with domains
D� � � �Dn� and a set of binary constraints� Each constraint C��Xj � Xk� is a subset of Dj � Dk specifying
incompatible values for a pair of variables� The goal is to �nd an assignment for each of the variables which
satis�es the constraints� �In this paper we only consider the task of �nding a single solution� rather than
that of �nding all solutions�� To solve a CSP using the network� each variable is represented by a separate
set of neurons� one neuron for each of the variable�s possible values� Each neuron is either �on� or �o���
and in a solution state� every variable will have exactly one of its corresponding neurons �on�� representing
the value of that variable� Constraints are represented by inhibitory �i�e�� negatively weighted� connections
between the neurons� To insure that every variable is assigned a value� there is a guard neuron for each set
of neurons representing a variable� if no neuron in the set is on� the guard neuron will provide an excitatory
input that is large enough to turn one on� �Because of the way the connection weights are set up� it is
unlikely that the guard neuron will turn on more than one neuron�� The network is updated on each cycle
by randomly picking a set of neurons that represents a variable� and �ipping the state of the neuron in that
set whose input is most inconsistent with its current output �if any�� When all neurons� states are consistent
with their input� a solution is achieved�

To solve the n�queens problem� for example� each of the n�n board positions is represented by a neuron
whose output is either one or zero depending on whether a queen is currently placed in that position or not�
�Note that this is a local representation rather than a distributed representation of the board�� If two board
positions are inconsistent� then an inhibiting connection exists between the corresponding two neurons� For
example� all the neurons in a column will inhibit each other� representing the constraint that two queens
cannot be in the same column� For each row� there is a guard neuron connected to each of the neurons in
that row which gives the neurons in the row a large excitatory input� enough so that at least one neuron in
the row will turn on� The guard neurons thus enforce the constraint that one queen in each row must be on�
As described above� the network is updated on each cycle by randomly picking a row and �ipping the state
of the neuron in that row whose input is most inconsistent with its current output� A solution is realized
when the output of every neuron is consistent with its input�

� Why does the GDS Network Perform So Well�

Our analysis of the GDS network was motivated by the following question� �Why does the network perform
so much better than traditional backtracking methods on certain tasks�� In particular� we were intrigued
by the results on the n�queens problem� since this problem has received considerable attention from previous
researchers� For n�queens� Adorf and Johnston found empirically that the network requires a linear number
of transitions to converge� Since each transition requires linear time� the expected �empirical� time for the
network to �nd a solution is O�n��� To check this behavior� Johnston and Adorf ran experiments with n as
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Figure �� Solutions Clustered vs� Solutions Evenly Distributed

high as ��

� at which point memory limitations became a problem� �

��� Nonsystematic Search Hypothesis

Initially� we hypothesized that the network�s advantage came from the nonsystematic nature of its search�
as compared to the systematic organization inherent in depth��rst backtracking� There are two potential
problems associated with systematic depth��rst search� First� the search space may be organized in such
a way that poorer choices are explored �rst at each branch point� For instance� in the n�queens problem�
depth��rst search tends to �nd a solution more quickly when the �rst queen is placed in the center of the
�rst row rather than in the corner� apparently this occurs because there are more solutions with the queen
in the center than with the queen in the corner ����� Nevertheless� most naive algorithms tend to start in
the corner simply because humans �nd it more natural to program that way� However� this fact by itself
does not explain why nonsystematic search would work so well for n�queens� A backtracking program that
randomly orders rows �and columns within rows� performs much better than the naive method� but still
performs poorly relative to the GDS network�

The second potential problem with depth��rst search is more signi�cant and more subtle� As illustrated
by �gure �� a depth��rst search can be a disadvantage when solutions are not evenly distributed throughout
the search space� In the tree at the left of the �gure� the solutions are clustered together� In the tree on the
right� the solutions are more evenly distributed� Thus� the average distance between solutions is greater in
the left tree� In a depth��rst search� the average time to �nd the �rst solution increases with the average
distance between solutions� Consequently depth��rst search performs relatively poorly in a tree where the
solutions are clustered� such as that on the left ���� 
��� In comparison� a search strategy which examines
the leaves of the tree in random order is una�ected by solution clustering�

We investigated whether this phenomenon explained the relatively poor performance of depth��rst search
on n�queens by experimenting with a randomized search algorithm� called a Las Vegas algorithm ���� The
algorithm begins by selecting a path from the root to a leaf� To select a path� the algorithm starts at the
root node and chooses one of its children with equal probability� This process continues recursively until
a leaf is encountered� If the leaf is a solution the algorithm terminates� if not� it starts over again at the
root and selects a path� The same path may be examined more than once� since no memory is maintained
between successive trials�

The Las Vegas algorithm does� in fact� perform better than simple depth��rst search on n�queens� In

�The network� which is programmed in Lisp� requires approximately �� minutes to solve the ���� queens problem on a TI
Explorer II� For larger problems� memory becomes a limiting factor because the network requires approximately O�n�� space�
�Although the number of connections is actually O�n��� some connections are computed dynamically rather than stored��
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fact� this result was already known ���� However� the performance of the Las Vegas algorithm is still not
nearly as good as that of the GDS network� and so we concluded that the systematicity hypothesis alone
cannot explain the network�s behavior�

��� Informedness Hypothesis

Our second hypothesis was that the network�s search process uses information about the current assignment
that is not available to a constructive backtracking program� We now believe this hypothesis is correct�
in that it explains why the network works so well� In particular� the key to the network�s performance
appears to be that state transitions are made so as to reduce the number of outstanding inconsistencies in
the network� speci�cally� each state transition involves �ipping the neuron whose output is most inconsistent
with its current input� From a constraint satisfaction perspective� it is as if the network reassigns a value for
a variable by choosing the value that violates the fewest constraints� This idea is captured by the following
heuristic�

Min�Con�icts heuristic�

Given� A set of variables� a set of binary constraints� and an assignment specifying a value for each
variable� Two variables con�ict if their values violate a constraint�
Procedure� Select a variable that is in con�ict� and assign it a value that minimizes the number of
con�icts�� �Break ties randomly��

We have found that the network�s behavior can be approximated by a symbolic system that uses the
min�con�icts heuristic for hill climbing� The hill�climbing system starts with an initial assignment generated
in a preprocessing phase� At each choice point� the heuristic chooses a variable that is currently in con�ict
and reassigns its value� until a solution is found� The system thus searches the space of possible assignments�
favoring assignments with fewer total con�icts� Of course� the hill�climbing system can become �stuck� in
a local maximum� in the same way that the network may become �stuck� in a local minimum� In the next
section we present empirical evidence to support our claim that the min�con�icts approach can account for
the network�s e�ectiveness�

There are two aspects of the min�con�icts hill�climbing method that distinguish it from standard CSP
algorithms� First� instead of incrementally constructing a consistent partial assignment� the min�con�icts
method repairs a complete but inconsistent assignment by reducing inconsistencies� Thus� it uses information
about the current assignment to guide its search that is not available to a standard backtracking algorithm�
Second� the use of a hill�climbing strategy rather than a backtracking strategy produces a di�erent style of
search�

Extracting the method from the network enables us to tease apart and experiment with its di�erent
components� In particular� the idea of repairing an inconsistent assignment can be used with a variety of
di�erent search strategies in addition to hill climbing� For example� we can backtrack through the space of
possible repairs� rather than using a hill�climbing strategy� as follows� Given an initial assignment generated
in a preprocessing phase� we can employ the min�con�icts heuristic to order the choice of variables and values
to consider� as described in �gure 
� Initially� the variables are all on a list of vars�left� and as they are
repaired� they are pushed onto a list of vars�done� The algorithm attempts to �nd a sequence of repairs�
such that no variable is repaired more than once� If there is no way to repair a variable in vars�left without
violating a previously repaired variable �a variable in vars�done�� the algorithm backtracks�

Notice that this algorithm is simply a standard backtracking algorithm augmented with the min�con�icts
heuristic to order its choice of which variable and value to attend to� This illustrates an important point�
The backtracking repair algorithm incrementally extends a consistent partial assignment �i�e�� vars�done��
as does a constructive backtracking program� but in addition� uses information from the initial assignment

�In general� the heuristic attempts to minimize the number of other variables that will need to be repaired� For binary CSPs�
this corresponds to minimizing the number of con�icting variables� For general CSPs� where a single constraint may involve
several variables� the exact method of counting the number of variables that will need to be repaired depends on the particular
constraint� The space telescope scheduling problem is a general CSP� whereas the other tasks described in this paper are binary
CSPs�






Procedure INFORMED�BACKTRACK �VARS�LEFT VARS�DONE�

If all variables are consistent� then solution found� STOP�

Let VAR � a variable in VARS�LEFT that is in conflict�

Remove VAR from VARS�LEFT�

Push VAR onto VARS�DONE�

Let VALUES � list of possible values for VAR ordered in ascending order according to number of

conflicts with variables in VARS�LEFT�

For each VALUE in VALUES� until solution found�

If VALUE does not conflict with any variable that is in VARS�DONE�

then Assign VALUE to VAR�

Call INFORMED�BACKTRACK�VARS�LEFT VARS�DONE�

end if

end for

end procedure

Begin program

Let VARS�LEFT � list of all variables� each assigned an initial value�

Let VARS�DONE � nil

Call INFORMED�BACKTRACK�VARS�LEFT VARS�DONE�

End program

Figure 
� Informed Backtracking Using the Min�Con�icts Heuristic

�i�e�� vars�left� to bias its search� Thus� it is a type of informed backtracking� We still characterize it as
repair�based method since its search is guided by a complete� inconsistent assignment�

� Experimental Results

In this section we evaluate the performance of the min�con�icts heuristic on some standard tasks� These
experiments identify problems on which min�con�icts performs well� as well as problems on which it performs
poorly� The experiments also show the extent to which the min�con�icts approach approximates the behavior
of the GDS network�

Our experiments focus on the two search strategies described in the previous section� the hill�climbing
repair strategy and the backtracking repair strategy� These strategies provide a starting point for our
analysis� although many more sophisticated search strategies exist� In general� these two strategies have the
following advantages and disadvantages�

�� Hill climbing� This strategy most closely replicates the behavior of the GDS network� The disadvantage
is that a hill�climbing program can get caught in local maxima� in which case it will not terminate�


� Informed backtracking� As described earlier� this strategy is a standard backtracking strategy aug�
mented with the min�con�icts heuristic for ordering the assignment of variables and values� this can
be viewed as backtracking in the space of possible repairs� The advantage of this strategy is that it is
complete � if there is a solution� it will eventually be found� if not� failure will be reported� Unfortu�
nately� this is of limited signi�cance for large�scale problems because terminating in a failure can take
a very long time�

��� The N�Queens Problem

The n�queens problem� originally posed in the ��th century� has become a standard benchmark for testing
CSP algorithms� In a sense� the problem of �nding a single solution has been solved� since there are a
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number of analytic methods which yield a solution in linear time ���� For example� there are certain well�
known patterns that can be instantiated to produce a solution� Nevertheless� the problem has been perceived
as relatively �hard� for heuristic search methods� Several studies of the n�queens problem ���� ��� 
�� have
compared heuristic backtracking methods such as search rearrangement backtracking �e�g�� most�constrained
�rst�� forward checking� dependency�directed backtracking� etc� To the best of our knowledge� the GDS
network was the �rst search method which could consistently solve problems involving hundreds of queens
in several minutes�

On the n�queens problem� Adorf and Johnston �
� reported that the probability of the GDS network
converging increases with the size of the problem� For large problems� e�g�� n � ��� �where n is the number
of queens�� they observed that the network almost always converges� Moreover� the median number of
transitions required for convergence is only about ���	n� Since it takes O�n� time to execute a transition
�i�e�� picking a neuron and updating its connections�� the expected time to solve a problem is �empirically�
O�n���

n con�icts after
initialization

n � ��� ����
n � ��� ����
n � ��� ����
n � ��� ����	
n � ��� �
��

n � ��� �
���

Table �� Number of Con�icts After Initialization

To compare the network with our min�con�icts approach� we constructed a hill�climbing program that
operates as follows� A preprocessing phase creates an initial assignment using a greedy algorithm that
iterates through the rows� placing each queen on the column where it con�icts with the fewest previously
placed queens �breaking ties randomly�� In the subsequent repair phase the program keeps repairing the
assignment until a solution is found� To make a repair� the program selects a queen that is in con�ict and
moves it to the column �within the same row� where it con�icts with the fewest other queens �breaking ties
randomly�� A repair can be accomplished in O�n� time by maintaining a list of the queens currently in
con�ict and an array of counters indicating the number of con�icts in each column and diagonal�

Constructive Repair�based

N Standard Most Constrained MinCon�icts MinCon�icts
Backtrack Backtrack Hill Climbing Backtrack

n � ��� ���� ���
 ���� 
	��
n � ��� 

�� ����� 	�� ��	�� ���	 
���
n � ��� ��	�� ����� 

��� ����� 
��� ����
n � ���   
��� 
���
n � ���   �
�� 
���
n � ���   
��� 
	�


� � exceeded computational resources

Table 
� Number of Backtracks!Repairs for N �Queens Algorithms

	



Interestingly� in our initial experiments we found that the hill�climbing program performs signi�cantly
better than the network� For n � ��� the program has never failed to �nd a solution� Moreover� the required
number of repairs appears to remain constant as n increases� For comparison� recall that the required number
of repairs for the network increases linearly with n� After further analysis� we found that this discrepancy
can be accounted for by the network�s and the hill�climbing program�s di�erent initialization processes� In
particular� whereas the network starts with no queens assigned in the initial state� the hill�climbing program�s
preprocessing phase invariably produces an initial assignment that is �close� to a solution� As shown in Table
�� the number of con�icting queens in the initial assignment grows extremely slowly� from a mean of ��� for
n � �� to a mean of �
�� for n � ���� We found that if we start the network in an initial state produced
by our preprocessing algorithm� the network and the hill�climbing program perform comparably� �We note�
however� that the network requires O�n�� space� as compared to the O�n� space required by the hill�climbing
program� which prevented us from running very large problems on the network�� On the other hand� if we
start the the hill�climbing program with a random initial assignment� the required number of repairs tends
to grow linearly� This is not surprising� since the number of con�icts in a random initialization also tends to
grow linearly�

Table 
 compares the e�ciency of our hill�climbing program and several backtracking programs� Each
program was run one hundred times for n increasing from ten to one million� Each entry in the table shows
the mean number of queens moved� where each move is either a backtrack or a repair� depending on the
program� A bound of n� ��� queen movements was employed so that the experiments could be conducted
in a reasonable amount of time� if the program did not �nd a solution after moving n � ��� queens� it was
terminated and credited with n���� queen movements� For the cases when this occurred� the corresponding
table entry indicates in parentheses the percentage of times the program completed successfully� The �rst
column shows the results for a standard constructive backtracking program� For n � ����� the program was
ine�ective� The second column in the table shows the results for informed backtracking using the �most�
constrained �rst� heuristic� This program is a constructive backtracking program that selects the row that
is most constrained when choosing the next row on which to place a queen� In an empirical study of the n�
queens problem� Stone and Stone ���� found that this was by far the most powerful heuristic for the n�queens
problem out of several described earlier by Bitner and Reingold�
�� The program exhibited highly variable
behavior� At n � ����� the program found a solution on only ��� of the runs� but three�quarters of these
successful runs required fewer than ��� backtracks� Unfortunately� for n � ����� one hundred runs of the
program required considerably more than �
 hours on a SPARCstation�� both because the mean number of
backtracks grows rapidly and because the �most�constrained �rst� heuristic takes O�n� time to select the next
row after each backtrack� Thus we were prevented from generating su�cient data for n � ����� The next
column in the table shows the results for hill climbing using the min�con�icts heuristic� As discussed above�
this algorithm performed extremely well� requiring only about �� repairs irrespective of problem size� The
�nal column shows the results for an informed backtracking program that uses the min�con�icts heuristic�
backtracking within the space of possible repairs as described in the previous section� We augmented this
program with a pruning heuristic that would initiate backtracking when the number of constraint violations
along a path began to increase signi�cantly� However� for n � ���� this program never backtracked �i�e��
no queen had to be repaired more than once�� This last program performs better than the hill�climbing
program �although there is little room for improvement� primarily because the hill�climbing program may
move the same queen repeatedly� which degrades its performance�

A disadvantage of the min�con�icts heuristic is that the time to accomplish a repair grows with the size
of the problem� For n�queens� as noted above� each repair requires O�n� time in the worst case� Of course�
most heuristic methods require time to determine the best alternative at a choice point� For example� the
�most�constrained� heuristic also requires O�n� time at each choice point� However� with min�con�icts the
tradeo� is clearly cost e�ective� at least for n�queens� Since the number of repairs remains approximately
constant as n grows� the program�s runtime is approximately linear� This is illustrated by �gure �� which
shows the average runtime for the hill�climbing program� In terms of realtime performance� this program
solves the million queens problem in less than four minutes on a SPARCstation��

The cost of making a repair can be optimized for large problems� in which case the average solution
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time for the million�queens problem is reduced to less than a minute and a half� The program maintains
a list of queens that are in con�ict� as well as three arrays of counters indicating the number of queens in
each column� row and diagonal� Rather than scanning a row for the position with the fewest con�icts� the
optimized program maintains a list of empty columns �which tends to be quite small�� it �rst checks for a
zero�con�ict position by looking for an empty column with no con�icts along the diagonals� If there is no
zero�con�ict position� the program repeatedly looks for a position with one con�ict by randomly selecting a
position and checking the number of con�icts in that position� Since there tend to be many positions with
one con�ict� this technique tends to succeed after just a few tries� so the total number of positions examined
is generally very low�

Figure �� Mean Solution Time for Hill�Climbing Program on N �Queens Problem

One obvious conclusion from these results is that n�queens is actually a very easy problem given the right
method� Interesting� two other heuristic methods that can quickly solve n�queens problems have also recently
been invented� �By coincidence� these two other methods and our method were all developed and published
independently�� While both methods are speci�c to n�queens� one method is a repair�based method that is
similar to ours in spirit����� whereas the other employs a constructive backtracking approach�
��� This latter
method uses a combination of variable and value�ordering heuristics which take advantage of the particular
structure inherent in n�queens� This shows that one can solve n�queens problems quickly with a traditional�
constructive backtracking method� Nevertheless� given the comparative simplicity of our method� it would
seem that n�queens is more naturally solved using a repair�based approach�

��� Scheduling Applications

Whereas the n�queens problem is only of theoretical interest� scheduling algorithms have many practical
applications� A scheduling problem involves placing a set of tasks on a time line� subject to temporal
constraints� resource constraints� preferences� etc� The Hubble Space Telescope scheduling problem can be
considered a constrained optimization problem��
� ��� where we must maximize both the number and the
importance of the constraints that are satis�ed� As noted earlier� the initial scheduling system developed for
this application had di�culty producing schedules e�ciently� The constraint�based system� SPIKE� that was
developed to augment �and partially replace� the initial system has performed quite well using a relatively
simple approach�

�



In part� the HST scheduling problem was made more tractable by dividing it into two parts� a long�term
scheduling problem and a short�term scheduling problem� Currently SPIKE handles only the long�term
problem� The long�term problem involves assigning approximately one year�s worth of exposures to a set of
�bins� or time segments of several days length� �The short�term problem involves deriving a detailed series
of commands for the telescope and is addressed using di�erent techniques ��
��� The input to SPIKE is a set
of detailed speci�cations for exposures that are to be scheduled on the telescope� The constraints relevant to
the long term problem are primarily temporal constraints� As outlined in �
��� some exposures are designed
as calibrations or target acquisitions for others� and so must proceed them� Some must be executed at
speci�c times� or at speci�c phases in the case of periodic phenomena� Some observations must be made at
regular intervals� or grouped within a speci�ed time span� The constraints vary in their importance� they
range from �hard� constraints that cannot be violated under any circumstances� to �soft� constraints that
represent good operating practices and scheduling goals�

SPIKE operates by taking the exposure speci�cations prepared by astronomers and compiling them into
a set of tasks to be scheduled and a set of constraints on those tasks� Among other things� the compilation
process takes the transitive closure of temporal constraints and explicitly represents each inferred constraint�
For example� if TaskA must be before TaskB� and TaskB must be before TaskC� then the system will
explicitly represent the fact that TaskA must be before TaskC as well� This explicit representation enables
the scheduler to obtain a more accurate assessment of the number of con�icts in a given schedule�

In searching for a schedule� the GDS network follows the constraint satisfaction approach outlined in
section 
� In e�ect� if a task is currently in con�ict then it is removed from the schedule� and if a task is
currently unscheduled then the network schedules it for the time segment that has the fewest constraint
violations� However� the network uses only the hard constraints in determining the time segment with the
fewest violations� Soft constraints are consulted when there are two or more �least con�icted� places to move
a task�

The min�con�icts hill�climbingmethod has been shown to be as e�ective as the GDS network on represen�
tative data sets used for testing SPIKE� and it has been incorporated into the SPIKE system� One advantage
in using the min�con�icts method� as compared to the GDS network� is that much of the overhead of using the
network can be eliminated �particularly the space overhead�� Moreover� because the min�con�icts heuristic
is so simple� the min�con�icts scheduler was quickly coded in C and is extremely e�cient� �The min�con�icts
scheduler runs about an order of magnitude faster than the network� although some of the improvement
is due to factors such as programming language di�erences� making a precise comparison di�cult�� While
this may be regarded as just an implementation issue� we believe that the clear and simple formulation of
the method was a signi�cant enabling factor� In addition� the simplicity of the method makes is easy to
experiment with various modi�cations to the heuristic and the search strategy� This has signi�cant practical
import� since SPIKE is currently being used on other types of telescope scheduling problems where a certain
amount of modi�cation and tuning is required�

In general� scheduling appears to be an excellent application area for repair�based methods� Supporting
evidence comes from previous work on other real�world scheduling applications by Zweben et al��

�� Biefeld
and Cooper��� and Kurtzmann�
��� Each of these projects use iterative improvement methods which can
be characterized as repair�based� There are several reasons why repair�based methods are well�suited to
scheduling applications� First� as Zweben and Gargan�
�� have pointed out� unexpected events may require
schedule revision� in which case dynamic rescheduling is an important issue� Repair�based methods can be
used for rescheduling in a natural manner� Second� most scheduling applications involve optimization� at
least to some degree� and repair�based methods are also naturally extended to deal with such issues� For
example� in scheduling the Hubble Space Telescope� the goal is to maximize the amount of observing time
and the priority of the chosen observations� The telescope is expected to remain highly over�subscribed�
in that many more proposals will be submitted than can be accommodated by any schedule� On such
problems� repair�based methods o�er an alternative to traditional branch�and�bound techniques� Finally�
as Biefeld and Cooper��� have pointed out� there are real�world scheduling problems where humans �nd
repair�based methods very natural� For example� human schedulers at JPL employ repair�based methods
when constructing mission schedules for robotic spacecraft� For such problems� it may be relatively easy for
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people using a repair�based system to understand the system�s solution and how it was arrived at�

��� Graph Coloring

In addition to n�queens problem and HST scheduling� Adorf and Johnston also tested the GDS network
on graph ��colorability problems� A graph ��colorability problem consists of an undirected graph with n
vertices� Each vertex must be assigned one of three colors subject to the constraint that no neighboring
vertex is assigned the same color� Graph ��colorability is a well�studied NP�complete problem that is used
to model certain types of scheduling and resource allocation problems� such as examination scheduling and
register allocation�

Adorf and Johnston found that the performance of the network depended greatly on the connectivity
of the graph� On densely�connected graphs the network converged rapidly to a solution� while on sparsely�
connected graphs the network performed much more poorly� We have repeated Adorf and Johnston�s ex�
periments using the min�con�icts approach� and found similar results� We have also found that there is a
simple� well�known backtracking algorithm for coloring graphs that performs much better than either the
network or any of our min�con�icts algorithms on sparsely�connected graphs� This provides a useful case for
comparative analysis�

We used the same procedure for generating test problems as Adorf and Johnston� Solvable problems
with n nodes and m arcs are generated as follows�

�� Create three groups of nodes� each with n�� nodes�


� Randomly create m arcs between nodes in di�erent groups�

�� Accept the graph if it has no unconnected components�

Johnston and Adorf experimented with two classes of problem instances� one set with m � 
n �i�e�� average
vertex degree of 
� and another with m � n�n� ���
� We will refer to the former as the sparsely�connected
graphs� and the latter as the densely�connected graphs�

Figure 
 compares the results published by Adorf and Johnston with our results� In Adorf and Johnston�s
experiments� graphs were tested in the range from n � �� to n � ���� For each of the two types of graphs�
three di�erent instances of each size were generated� and the network was run ���� times per graph� Our
experiments with the min�con�icts hill�climbing algorithm employed the same experimental design�

Because the network is started with all nodes �uncolored�� we employed a similar approach with the
hill�climbing program so that the comparison would be fair� Thus� in the initialization phase� each vertex
is labeled as �uncolored�� An uncolored node is de�ned to con�ict with each of its neighbors� regardless of
their color�

The results demonstrate that the hill�climbing algorithm behaves similarly to the GDS network on both
types of problems� This supports our hypothesis that the hill�climbing algorithm captures the essential
characteristics of the network� As shown in �gure 
a� the densely�connected graphs are easy to solve�
Both methods tend to converge rather quickly on average� In particular� the median number of transitions
required for convergence grows linearly with n� The sparsely�connected graphs are much harder� In these
experiments� the network was given a bound of �n transitions� after which the run was terminated� �The
bound was chosen arbitrarily� but means in principle that each of the �n neurons in the main network
can transition three times�� The hill�climbing algorithm was therefore given a bound of �n repairs� As
illustrated in �gure 
b� for both methods� the probability of success appears to decline exponentially with
n� � Adorf and Johnston observed that as the number of nodes increases� it is highly likely that the network

�The use of an identical bound for both programs may give the hill�climbing algorithm a slight advantage� The GDS
network requires separate transitions to deassign a variable and to assign a new value� In the hill�climbing program a single
repair� in e
ect� simulates two transitions by the network �unless an initial �uncolored� value is being repaired�� Additional
experimentation has revealed that this advantage is relatively small� however� In fact� �gure �b shows that on the sparse graphs�
the hill�climbing program performed a bit worse than the network for small n� although the signi�cance of this is unclear due
to the relatively large statistical variation in the di�culty of the smaller problems� Unfortunately� the original problems are
unavailable and the network is no longer running� so additional experiments cannot be run�
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Figure 
� Comparing the GDS network to Min�Con�icts Hill Climbing on Dense and Sparse Graph�Coloring
Problems

will become caught in a local minimum in which a small number of neurons transition repeatedly� That is�
the network becomes trapped� vacillating between several states� The hill�climbing algorithm behaves in a
similar manner�

To determine whether the min�con�icts approach would be practical for graph�coloring applications� we
compared our two min�con�icts algorithms to a simple constructive backtracking algorithm that is known
to perform well on graph�coloring problems� The algorithm� originally proposed by Brelaz�	� 
��� can be
described as the repeated application of the following rule for choosing a node to color� colorings with
maximum degree in the uncolored subgraph� Break ties randomly�

Find the uncolored node that has the fewest consistent colorings with its neighbors� If there is
more than one� then choose one that has the maximum degree in the uncolored subgraph� Break
ties randomly�

Essentially� this is a variable ordering rule consisting of two criteria� The �rst criterion is a preference
for the �most�constrained� variable� The tie�breaking criterion is a preference for the �most�constraining�
variable� Thus� this rule is composed of two generic variable�ordering heuristics� No value�ordering heuristic
is required�

The rule can be incorporated in a standard backtracking algorithm in the obvious manner� Turner
�
�� has shown that this algorithm will optimally color �almost all� random k�colorable graphs without
backtracking� This result actually says more about the distribution of random k�colorable graphs than
about the e�ectiveness of the algorithm� but nonetheless� the Brelaz algorithm outperforms other algorithms
we have tried�

For a fair comparison between the Brelaz algorithm and our two min�con�icts algorithms� a good initial�
ization method for the min�con�icts algorithms is presumably required� We can use the Brelaz rule itself
to arrive at an initialization for our min�con�icts algorithms� Speci�cally� the initialization process makes
one pass through the vertices of the graph� using the Brelaz variable ordering rule to pick the next vertex
to color� If no color consistent with the node�s neighbors is available� a color is chosen that minimizes the
number of con�icts� This process results in initial colorings with many fewer con�icts than random colorings�
Table � shows the percentage of times that the initialization routine� by itself� �nds a solution� for graphs of
size n� Each entry in the table is based on ��� runs of the initialization routine for eight problems of size n�
to the sparsely�connected and densely�connected graphs described computed problems�

Since the initialization process consistently �nds solutions for the easy densely�connected graphs �elim�
inating the need for a repair phase�� we restricted our experiments to the hard sparsely�connected graphs�
Figure � compares the performance of the Brelaz algorithm with min�con�icts hill climbing� For complete�
ness� the �gure also shows a third algorithm� an informed backtracking problem that uses min�con�icts to
search through the space of repairs� For each method� we tested eight randomly generated problems of size n�
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Table �� Probability that Initialization Alone will Solve the Problem

Figure �� Comparing Brelaz Backtracking with Two Min�Con�icts Methods

for ��� runs per problem� The graph shows the probability of �nding a solution within �n repairs!backtracks�
�The results do not include trials where no repairs were required� or where Brelaz found the solution without
backtracking� This is fair since the two repair�based methods use the Brelaz rule for initialization��

The conclusion from this experiment is that the Brelaz backtracking algorithm obviously outperforms
both of the min�con�icts methods� Of the two latter methods� informed backtracking performs slightly better�
In addition� comparing the performance of hill climbing with and without the Brelaz initialization method
��gure � and �gure 
� shows that the initialization method improves performance� but not dramatically��

The experiments also demonstrate clearly that sparse graphs are much harder to color than dense graphs�
for both the Brelaz method as well as for the min�con�icts methods� Intuitively� the reason that dense graphs
are easy to color is that they are so overconstrained that a mistake is both unlikely and easily corrected�
For min�con�icts� a mistake is easily corrected because the choice of color at a vertex is greatly in�uenced
by the colors of all of its neighbors� For the Brelaz backtracking method� a mistake is easily corrected since
the subsequent choices will be pruned quickly due to the overconstrained nature of the problem� In a study
motivated in part by these experiments� Cheeseman et al� ��� have shown that as the average connectivity of
a �connected� graph increases� a �phase transition� occurs� and it is at this point that most of the hard graph
colorability problems are found� In other words� since a constraint satisfaction problem is easy if it is either
underconstrained or overconstrained� hard problems can be expected to lie within the boundary between
overconstrained and underconstrained problems� Our sparsely�connected graphs lie within this boundary
area�

Figure 	 illustrates how the di�culty of sparsely�connected connected graphs manifests itself for min�
con�icts� The group of nodes on the left of the graph represents one consistent coloring� and the group on
the right represents a di�erent consistent coloring� But the two colorings are inconsistent with each other�

�Interestingly� the Brelaz initialization method actually degrades performance on the smallest graphs �where n � ���� This
is an anomaly which we cannot as yet explain�
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Figure 	� An Unlucky Initialization

This situation can frequently arises as a result of the initialization process� On the surface� the assignment
would appear to be a good one� since there are at most three pairs of nodes in con�ict� However� to achieve
a solution� the boundary between the consistent colorings must be �pushed� completely to the left or right
during the repair phase� Unfortunately� in this situation� there is not enough information locally available
to direct min�con�icts� We have observed� in animations of the hill�climbing program� that the boundary
tends to vacillate back and forth with little overall progress being made�

The excellent performance of the Brelaz algorithm led us to experiment with backtracking repair algo�
rithms that are a hybrid of Brelaz and min�con�icts� The best hybrid algorithm we found �rst employs the
Brelaz initialization routine described above� Then a modi�ed version of the Brelaz variable selection rule
is used�

Of the nodes that have not yet been repaired� �nd the node that has the fewest consistent
colorings with its already�repaired neighbors� If there is more than one� then choose one that is
in con�ict with a previously repaired node� If there is still more than one candidate� choose the
one with the maximum degree in the unrepaired subgraph�

The hybrid algorithm uses this rule for variable ordering and the min�con�icts heuristic for value ordering�
Interestingly� once the initial assignment is made� this algorithm has a higher probability of �nding a solution
without backtracking than Brelaz� On the other hand� when the algorithm does backtrack� it tends to require
more backtracking on average than Brelaz� probably because it does not make as e�ective use of the �most
constraining� criteria for variable selection� Unfortunately� the total time required by the hybrid algorithm
tends to increase faster than the total time required by Brelaz� and thus the hybrid method appears to be
primarily of academic interest�

��� Summary of Experimental Results

For each of the three tasks we have examined in detail� n�queens� HST scheduling and graph ��colorability�
we have found that the GDS network�s behavior can be approximated by the min�con�icts hill�climbing
algorithm� To this extent� we have a theory that explains the network�s behavior� Obviously� there are
certain practical advantages to having �extracted� this method from the network� First� the method is very
simple� and so can be programmed extremely e�ciently� especially if done in a task�speci�c manner� Second�
the heuristic we have identi�ed� that is� choosing the repair which minimizes the number of con�icts� is
very general� It can be used in combination with di�erent search strategies and task�speci�c heuristics� an
important factor for most practical applications�

For example� the min�con�icts heuristic can be used in combination with a variety of variable ordering
heuristics� In the previous section� for instance� we described a hybrid program in which the Brelaz variable
ordering heuristic is adapted for use with min�con�icts value�ordering heuristic� We have also experimented
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with a hill�climbing program that uses �max�con�icts� as a variable ordering heuristic in conjunction with
the min�con�icts value ordering heuristic� On graph�coloring problems� the resulting program tends to
outperform min�con�icts alone� although performance is still not as good as the Brelaz algorithm�

Insofar as the power of our approach is concerned� our experimental results are encouraging� We have
identi�ed two tasks� n�queens and HST scheduling� which appear more amenable to our repair�based approach
than the traditional constructive approach that incrementally extends a consistent partial assignment� This
is not to say that a repair�based approach will do better than any constructive approach on these tasks�
but merely that our simple� repair�based approach has done relatively well in comparison to the obvious
constructive strategies we tried� We also note that repair�based methods have a special advantage for
scheduling tasks� since they can be used for overconstrained problems and for rescheduling problems in a
natural manner� Thus it seems likely that there are other applications for which our approach will prove
useful�

� Analysis

The previous section showed that� compared to constructive approaches� our repair�based approach is ex�
tremely e�ective on some tasks� such as placing queens on a chessboard� and less e�ective on other tasks�
such as coloring sparsely�connected graphs� We claimed that the min�con�icts heuristic takes advantage of
information in the complete assignment to guide its search� this information is not available to a construc�
tive backtracking algorithm that incrementally extends a partial assignment� Thus the advantage of the
min�con�icts heuristic over constructive approaches depends on how �useful� this information is� In this
section we formalize this intuition� Speci�cally� we investigate how the use of a complete assignment informs
the choice of which value to pick� The analysis reveals how the e�ectiveness of the min�con�icts heuristic is
in�uenced by various characteristics of a task domain� The analysis is independent of any particular search
strategy� such as hill climbing or backtracking�

��� Modeling the Min�Con�icts Heuristic

Consider a constraint satisfaction problem with n variables� where each variable has k possible values� We
restrict our consideration to a simpli�ed model where every variable is subject to exactly c binary constraints�
and we assume that there is only a single solution to the problem� that is� exactly one satisfying assignment�
We address the following question� What is the probability that the min�con�icts heuristic will make a
mistake when it assigns a value to a variable that is in con�ict� We de�ne a mistake as choosing an incorrect
value that will have to be changed before the solution is found� We note that for our informed backtracking
program a mistake of this sort may prove quite costly� since an entire subtree must be explored before another
value can be assigned�

For any assignment of values to the variables� there is a set of d variables whose values must be changed
to convert the assignment into the solution� We can regard d as a measure of distance to the solution� The
key to our analysis is the following observation� Given a variable V to be repaired� only one of its k possible
values will be correct� and the other k � � values will be incorrect �i�e�� mistakes�� Whereas the correct
value may con�ict with at most d other variables in the assignment� an incorrect value may con�ict with
as many as c other variables� Thus� as d shrinks� the min�con�icts heuristic should be less likely to make a
mistake when it repairs V � In fact� if each of the k � � incorrect values has more than d con�icts� then the
min�con�icts heuristic cannot make a mistake � it will select the correct value when it repairs this variable�
since the correct value will have fewer con�icts than any incorrect value�

We can use this idea to bound the probability that the min�con�icts heuristic will make a mistake when
repairing variable V � Let V � be a variable related to V by a constraint� We assume that an incorrect

�Although a variable is in con�ict� its assigned value may actually be the correct value� This can happen when the variable
with which it con�icts has an incorrect value� In this paper we have de�ned the min�con�icts heuristic so that it can choose
any possible value for the variable� including the variable�s current value�
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value for V con�icts with an arbitrary value for V � with probability p� independent of the variables V and
V �� Consider an arbitrary incorrect value for V � Let Nb be the total the number of con�icts between this
incorrect value and the assigned values for the other variables� Given the above assumptions� the expected
value of Nb is pc� because there are exactly c variables that share a constraint with V � and the probability
of a con�ict is p� As mentioned above� the min�con�icts heuristic will not make a mistake if the number of
con�icts Nb for each incorrect value is greater than d� We can� therefore� bound the probability of making
a mistake by bounding the probability that Nb is less than or equal to d�

To bound Nb� we use Hoe�ding�s inequality� which states that the sum N of n independent� identically
distributed random variables is less than the expected value "N by more than sn only with probability at
most e��s�n� for any s � �� In our model� Nb is the sum of c potential con�icts� each of which is either � or
�� depending on whether there is a con�ict� The expected value of Nb is pc� Thus�

Pr�Nb � pc � sc� � e��s�c

Since we are interested in the behavior of the min�con�icts heuristic as d shrinks� let us suppose that d
is less than pc� Then� with s � �pc� d��c� we obtain�

Pr�Nb � d� � e���pc�d���c

To account for the fact that a mistake can occur if any of the k � � incorrect values has d or fewer
con�icts� we bound the probability of making a mistake on any of them by multiplying by k � ��

Pr�mistake� � �k � ��e���pc�d���c

Note that as c �the number of constraints per variable� becomes large� the probability of a mistake
approaches zero if all other parameters remain �xed� This analysis thus o�ers an explanation as to why
��coloring densely�connected graphs is relatively easy� We also see that as d becomes small� a mistake is also
less likely� explaining our empirical observation that having a �good� initial assignment can be important�
�Of course� an assignment with few con�icts does not necessarily imply small d� as was illustrated by the
��colorability problem in �gure 	�� In a recent paper� Musick and Russell ���� present an analysis which
supports this result� They model heuristic repair algorithms as Markov processes� and show that under this
model the choice of initial state has a signi�cant impact on the expected solution time�

Finally� we note that the probability of a mistake also depends on p� the probability that an incorrect
value con�icts with another variable�s value� and k� the number of values per variable� The probability of a
mistake shrinks as p increases or k decreases�

��� A Statistical Model for CSP Repair

The simple model presented in the previous section shows� in a qualitative way� how various problem charac�
teristics in�uence the e�ectiveness of the min�con�icts heuristic� While the analysis is helpful for understand�
ing how the min�con�icts heuristic works� it is not quantitatively useful� since only very gross characteristics
of the problem are considered� In this section we augment the model with statistical assumptions about
the task domain� assumptions that enable us to analyze the heuristic�s behavior quantititively on particular
problems� Speci�cally� we discard the assumption that there is a uniform probability of a con�ict between an
erroneous value for a variable and an arbitrary value for any related variable and instead assume that con�icts
between variables can be characterized by independent probability distribution functions determined by the
problem� We retain the assumption that there is a unique solution� While these assumptions are seldom met
in practice on any particular CSP� the augmented model turns out to be a surprisingly accurate predictor of
the performance of several heuristics� including min�con�icts� on some interesting classes of problems�

Augmenting the model with statistical assumptions about the task domain provides the basis for a
quantitative analysis� The augmented model assumes that con�icts between variables can be characterized
by independent probability distribution functions� Also� as in the original model� a single solution is assumed�
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While these assumptions may not be precisely met in practice on any particular CSP� the augmented model
turns out to be a surprisingly accurate predictor of the performance of several heuristics� including min�
con�icts� on some interesting classes of problems�

We continue to assume a binary CSP with n variables and k possible values per variable� for a given
assignment� the distance d is the number of variables that must be corrected to obtain a solution� As a
measure of heuristic performance� we use the probability that� after a particular repair step� the distance d is

decreased� This only occurs when the heuristic selects a variable that is assigned an incorrect �non�solution�
value and changes it to the unique correct �solution� value� This probability is given by

Pd�d�� � P	sPcj	s�

where P	s is the probability that the variable selection heuristic chooses a variable currently assigned an
incorrect �non�solution� value� and Pcj	s is the probability that the value selection heuristic chooses the
correct value given that the selected variable has an incorrect value currently assigned� �Subscripts s and "s
indicate variables assigned solution and non�solution values� respectively� For a given variable� the subscripts
c and "c refer to correct and incorrect values� respectively��

Similarly� the probability of increasing the distance from the solution is

Pd�d
� � Ps��� Pcjs��

where Ps � � � P	s is the probability that the variable selection heuristic will choose a variable currently
assigned a correct value� and Pcjs is the probability that the value selection heuristic will choose the correct
value given that the chosen variable already has the correct value assigned� The third possibility� that d will
remain unchanged� has probability

Pd�d � �� Pd�d�� � Pd�d
��

The ratio Pd�d���Pd�d
� is of particular interest� since as long as it is greater than � a heuristic is more
likely to move towards the solution than away from it�

��� Con�ict Probability Distributions

An expression for the performance measures Pd�d�d�� can be derived for variable and value selection heuris�
tics given the probability distributions for con�icts� Four such distributions are required�

For variables currently assigned the correct value�

�cs�v� �

�
Probability that the correct value has v con�icts�
� � v � d

�

�	cs�v� �

�
Probability that an incorrect value has v con�icts�
� � v � n� �

�

For variables currently assigned an incorrect value�

�c	s�v� �

�
Probability that the correct value has v con�icts�
� � v � d� �

�

�	c	s�v� �

�
Probability that an incorrect value has v con�icts�
� � v � n� �

�

For the cumulative distributions we use the following notation�

�	c	s�� v� �
X
w�v

�	c	s�w��

In the remainder of this section we discuss the derivation of these con�ict probability distributions � for two
classes of CSPs� those with random independent constraints� and those with more structured constraints�
For the readers convenience� Table 
 summarizes the notation we employ�
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n Number of variables

k Values per variable

c Binary constraints per variable

d Distance to solution �number of variables with incorrect values�

Pd�d�� Probability that after a repair step d decreases�

Pd�d
� Probability that after a repair step d increases�

Pd�d Probability that after a repair step d is unchanged�

In general� subscripts s and "s indicate variables assigned solution and non�solution values� respectively� For
a given variable� the subscripts c and "c refer to correct and incorrect values� respectively� For example�

P	s Probability that the variable choosen is currently assigned a non�solution �i�e�� incorrect� value�

Pcj	s Probability of choosing a correct value� given that a non�solution value is currently assigned�

�	cs�v� For a variable currently assigned a solution value� probability that an incorrect value has v con�icts�

pc�	c Probability that a correct value for variable V con�icts with an incorrect value for variable V �

Table 
� Summary of Notation

����� Random CSPs

Random CSPs can be characterized by two probabilities as follows�

� pc�	c � p	c�c is the probability that a correct value for variable V con�icts with an incorrect value for
variable V �� and

� p	c�	c is the probability that an incorrect value for variable V con�icts with an incorrect value for
variable V ��

Note that� by de�nition� pc�c � � �there can be no con�icts between correct values��
Consider a state in which there are d variables assigned incorrect values� If a variable is assigned the

correct value� then it can con�ict with at most the d variables assigned incorrect values� Assuming that the
probability of each con�ict is independent� the total number of con�icts follows a binomial distribution�

B�x� p�N � �
�
N
x

�
px�� � p�N�x

where x is the number of �successes�� p is the probability of success in a single �trial�� and N is the number
of trials� Thus

�cs�v� � B�v� p	c�c� d��

Incorrect values can con�ict with the d incorrectly assigned variables� each with probability p	c�	c� and with
the other n� d� � correctly assigned variables� each with probability pc�	c� The distribution is�

�	cs�v� �
vX

k��

B�k� p	c�	c� d�B�v � k� pc�	c� n� d� ���

This is the distribution for the sum of two binomially�distributed variables with di�erent values for N and
p� In the case where p	c�	c � pc�	c � pc� this reduces to �	cs�v� � B�v� pc� n� ���

For variables currently assigned incorrect values� the correct value can con�ict with at most the d � �
other variables assigned incorrect values� each with probability pc�	c�

�c	s�v� � B�v� pc�	c� d� ���
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n��
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Table �� Probabilities of con�icts between solution and non�solution values pc�	c� and between non�solution
and non�solution values p	c�	c� for some CSPs that can be treated as �random�� For graph ��colorability
problems the mean vertex degree �VD� of the problem graph is indicated� The Dechter�Pearl problem�
shown for comparison� has probability p� of a constraint between variables� and p� that a constraint permits
any speci�c pair of values� c is the mean number of variables constrained by any variable� k� is the mean
number of values prohibited by a constraint between two variables and k is the domain size�

Incorrect values can con�ict with the other d� � incorrect variables� each with probability p	c�	c� and by the
n� d correct variables� each with probability pc�	c� The distribution function is�

�	c	s�v� �
vX

k��

B�k� p	c�	c� d� ��B�v � k� pc�	c� n� d��

In the case where p	c�	c � pc�	c � pc� this reduces to �	c	s�v� � B�v� pc� n� �� � �	cs�v��
To calculate p	c�	c and pc�	c suppose that each variable constrains on average c other variables� and� if

there is a constraint between any two variables V and V �� then each value for V con�icts with an average k�

values for V �� Then the probability that V constrains V � is c��n � ��� and the probability that the correct
value for V con�icts with an incorrect value for V � is k���k � ��� where k is the domain size� Thus we have

pc�	c �
c

n � �

k�

k � �
�

A similar argument for incorrect values yields

p	c�	c �
c

n � �

k�

k � �

k � 


k � �
�

k � 


k � �
pc�	c�

Values for pc�	c and p	c�	c are given in Table � for some illustrative problem types� including sparse and
dense graph ��colorability problems� For comparison� the table also shows the corresponding values for the
random problem described by Dechter and Pearl ����

����� Highly�Structured CSPs

The con�ict distribution functions for random CSPs derived above predict signi�cant variance in con�ict
counts in the solution state� For example� when d � � the distribution �	cs�v� reduces to B�v� pc�	c� n� ��
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which has mean �n���pc�	c and variance �n���pc�	c���pc�	c�� For some CSPs� the variance in the solution
state is demonstrably much less than this� and can be essentially zero for problems with su�ciently strong
regularities� For example� treating n�queens as random would predict that many incorrect values would have
zero con�icts for large n� but in fact� in the solution state� each incorrect value has at least one con�ict�
This structure can be incorporated into the calculation of �� as illustrated in Appendix A for a simpli�ed
n�queens model which assumes that exactly three other queens con�ict with each incorrect value�

��� Value Selection Heuristics

In this section we derive expressions for the probability of choosing a correct value �Pcjs and Pcj	s� based
on the con�ict probability distributions de�ned in Section ���� It is important to note that the derived
probabilities depend only on the existence of the � distributions� and not on their speci�c form�

����� Min�Con	icts Value Selection

The min�con�icts value selection heuristic can be stated as�

Choose a value which has the minimum number of con�icts with the assigned values for the other
variables� If there is more than one such value� select one at random�

Note that with this rule there need be no change in the assignment�

Pcjs 
 variable with correct value assigned

Con�icts on the correct value must be due to one or more of the d variables which have incorrect
assignments� Suppose there are v � � con�icts on the correct value �if there are v � � con�icts� the variable
would not have been selected for repair�� We seek the probability of leaving the assigned value unchanged�
which is the right decision in this case� If any of the k � � incorrect values has less than v con�icts� then
the min�con�icts heuristic will choose one of these values� The correct value will be chosen only if all k � �
incorrect values have at least v con�icts� Of the k � � incorrect values� let m be the number which have
exactly v con�icts� while the remaining k���m have � v con�icts� The probability of such a con�guration
is�

�	cs�v�
m
�	cs�� v�k���m

while the total number of such con�gurations is
�
k��
m

�
� Since� in this con�guration� there are m values other

than the correct value with an equal number v of con�icts� the probability of choosing the correct value is
���m# ��� Thus the total probability of choosing the correct value� given that it has v con�icts� is�

P sol�v� �
k��X
m��

�
k��
m

�
�	cs�v�

m�	cs�� v�k���m �

m # �
�

The probability of v con�icts on the correct value� given that it has � � con�icts� is �cs�v�� ��� �cs�����
Combining these yields the total probability that the heuristic will leave the assignment unchanged�

Pcjs �
dX

v��

�cs�v�

�� �cs���
P sol�v��

Pcj	s 
 variable with incorrect value assigned

Suppose the number of con�icts on the correct value is v� and that there are w con�icts on the current
�incorrect� assigned value� Let P sol�v� w� denote the probability of choosing the correct value in this situation�
There are three cases�
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��� v � w� The correct value will not be chosen since the current value has fewer con�icts� so P sol�v� w�
��
v�w

�
��

�
� v � w� In this case we have to consider the other k�
 incorrect values� Summing over con�gurations
where m have exactly v con�icts� and the remaining k � 
�m have � v con�icts� yields�

P sol�v� w�
��
v�w

� Rv�w�v� �
k��X
m��

�
k��
m

�
�	c	s�v�

m
�	c	s�� v�k���m �

m # 


��� v � w� Similar to case �
� except that in this case the heuristic will certainly not leave the assignment
unchanged� so the probability of choosing the correct value increases from ���m# 
� to ���m# ���

P sol�v� w�
��
v�w

� Rv�w�v� �
k��X
m��

�
k��
m

�
�	c	s�v�

m
�	c	s�� v�

k���m �

m # �

The total probability of choosing the correct value is

Pcj	s �
n��X
w��

d��X
v��

�c	s�v�
�	c	s�w�

�� �	c	s���
P sol�v� w��

using the fact that the probability of v con�icts on an incorrect value� given that the value has � � con�icts�
is �	c	s�v�� ��� �	c	s�����

����� Random�Con	icts Value Selection

The min�con�icts heuristic examines the number of con�icts on each value to determine which to assign� A
less�informed heuristic could simply check whether or not there are any con�icts on values� This approach
is captured by the �random�con�icts� rule�

If one or more values has no con�icts� select one of these values �at random�� If all values have
con�icts� select one at random�

The assignment is not required to change �although it must change if at least one value has zero con�icts��
The derivation of Pcjs and Pcj	s follows the same argument as above� with the results�

Pcjs � �cs�� ��k�� �

k
�

and
Pcj	s � �c	s��� P sol�v� w�

��
v��

# ��� �c	s���� P sol�v� w�
��
v��

�

where

P sol�v� w�
��
v��

�
k��X
m��

�
k��
m

�
�	c	s���

m
�	c	s�� ��k���m �

m # �
�

P sol�v� w�
��
v��

� �	c	s�� ��k�� �

k
�

P sol�v� w� is the probability of choosing the correct value for a variable with v con�icts on the correct value
and w � � con�icts on an incorrect value�

����� Random Value Selection

This is the �least�possible�informed� value selection rule�

Select a value at random� regardless of con�icts�

With this rule� the probability of choosing the correct value is independent of the variable�s currently assigned
value�

Pcjs � Pcj	s � ��k
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��� Variable Selection

In this section we develop expressions for the probability of selecting a variable to be repaired �Ps or P	s�
based on the following simple rule�

Select for repair a variable at random from the set of all variables that are currently in con�ict�

Consider �rst a variable that is assigned an incorrect value� The probability that there are one or more
con�icts on its assigned value is �� �	c	s���� Since there are a total of d such variables� the expected number
with con�icts is

N	s�conf � d ��� �	c	s���� �

Now consider a variable that is assigned a correct value� The probability that there are one or more
con�icts on its assigned value is � � �cs���� Since there are a total of n � d such variables� the expected
number with con�icts is

Ns�conf � �n� d� ��� �cs���� �

Thus� for a variable with con�icts that is picked at random� the probability that it is currently assigned
a correct value is�

Ps �
Ns�conf

N	s�conf #Ns�conf
�

while the probability that it is currently assigned an incorrect value is�

P	s � �� Ps �
N	s�conf

N	s�conf #Ns�conf
�

��	 Evaluation of the Statistical Model

We have numerically evaluated the expressions above for Pd�d�d��� Pcj	s� Pcjs� etc� on two random CSP
problem types� and on the simpli�ed n�queens model� in order to compare the predicted performance of
the three value selection heuristics discussed above� For the random CSPs we have also generated sample
problems and computed the probabilities empirically for comparison with the model� These results are
described in this section�

����� Random CSPs

We have taken two graph ��colorability problems for comparison of the heuristics�

� H�C
 �Hard� ��colorability� random sparsely�connected graph� mean vertex degree � 
� In the solution
state the expected number of con�icts on incorrect values is 
� approximately independent of problem
size n�

� E�C
 �Easy� ��colorability� random densely�connected graph� mean vertex degree � 
n��� In the
solution state the expected number of con�icts on incorrect values is n��� i�e� increasing linearly with
problem size

The relevant con�ict probabilities for these two problems are given in Table �� Probabilities were calculated
for both problem types for n � ��� Value selection heuristics are labelled as follows in the �gures� MC

min�con�icts �Section ��
���� RC random�con�icts �Section ��
�
�� and R random �Section ��
����

Variable selection

Fig� � shows P	s vs� d�n� the probability that a variable currently assigned an incorrect value will be chosen
for repair� The probability is lower for the densely�connected E�C problem� since even a small number of
incorrectly assigned variables can introduce a large number of con�icts�
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Figure �� Probability of selecting a variable that is assigned an incorrect value for H�C and E�C random
problems�

Figure �� Probability of choosing correct values for variables currently assigned correct or incorrect values�







Value selection

Fig� � compares value selection for the two problems� Here it is desirable that both Pcjs �Fig� �a�b�
and Pcj	s �Fig� �c�d� be as large as possible� Random value selection �labelled R in the �gures� has uniform
probability ��� of making the correct choice in both problems� For H�C variables with correct values assigned
�Fig� �a�� RC does worse than random� and MC does better only for small d�n� In contrast� for variables
that have incorrect values �Fig� �c�� the probability is fairly high for both MC and RC that the correct value
will be selected� with MC showing slightly better performance� For E�C �Fig� �b�d�� MC has probability
near unity of choosing the correct value� whether or not the current value is correct� RC does no better than
random except for variables currently assigned incorrect values and d�n � ��
 �Fig� �d��

Combined Variable and Value selection

Fig� � shows the probabilities of moving towards �Pd�d��� Fig� �a�b� or away from �Pd�d
�� Fig� �c�d�
the solution for the variable selection method combined with each of the three value selection methods� For
H�C �Fig� �a�c�� all three value selection methods have higher probability of worsening the state than of
improving it� MC shows the best performance� with the largest values for Pd�d�� and the smallest for
Pd�d
� in the range d�n � 
��� For E�C �Fig� �b�d�� both RC and R tend to worsen the state� while MC
has a much higher probability of improving it�

The ratio Pd�d���Pd�d
� provides a useful comparison of combined variable and value selection per�
formance� it is greater than unity when a heuristic is more likely to improve the state than to worsen it�
Fig� �� plots this ratio on a logarithmic scale vs� d�n for each of the three value selection methods� For
H�C �Fig� ��a�� MC is best �for d � n�� followed by RC and R� but in all cases the ratio is � �� For E�C
�Fig� ��b� the results are very di�erent� MC shows a much higher chance of improving the state� while both
RC and R worsen it� RC is signi�cantly better than R only for very small d�n�

Comparison with Empirical Results

To see how well the model captures features of the heuristics when applied to actual problems� we have
generated random problem instances with known solutions�� then assigned incorrect values to some of the
variables and calculated empirically the same probabilities that are predicted by the statistical model� Fig� ��
shows the comparison for MC value selection� the empirical data points� indicated by the # and � symbols�
show the results of averaging 
�� states for each value of d� The agreement with the model probability
calculations is excellent�

����� N �Queens

We have evaluated the simpli�ed n�queens model of Section ����
 and Appendix A for min�con�icts value
selection� Fig� �
 shows the quantities Pd�d��� Pd�d
�� and the ratio Pd�d���Pd�d
� for small d for
n�	
� �	� �
�� and 
�	� As n increases� the relative probability of moving towards the solution increases
as well� While this is in accord with the experimental results� the model does not permit more quantitative
comparison due to the simplifying assumption that the mean con�icts on incorrect values is � �instead of
the actual 	 
���� The situation for n�queens is further complicated by the fact that solutions appear to be
relatively numerous� violating the model assumption that there is a unique solution�

��
 Limiting Behavior for Random CSPs

There are two interesting limiting cases of the model for random CSPs� corresponding to limiting forms of
the con�ict probability distribution functions � �see Section ������� These limits are discussed in this section�

�The random problem instances were not guaranteed to have unique solutions� simple relabelling of colors will yield several�
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Figure �� Probability of moving towards � Pd�d��� or away from �Pd�d
�� the solution�

Figure ��� Pd�d���Pd�d
� for the three value selection heuristics�







Figure ��� Comparison of predicted results with empirical results for min�con�icts value selection�

Figure �
� Performance probabilities for the n�queens model�

Figure ��� Scaling behavior with n for variable selection method�
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����� Poisson Limit

In the case n 
 �� p	c�	c 
 pc�	c � pc� and npc 
 constant� the con�ict distribution functions approach
the Poisson distribution� �cs�v� � �c	s�v� � Ppoisson�v� dpc�� and �	cs�v� � �	c	s�v� � Ppoisson�v� npc�� where
Ppoisson�v� �� � e���v�v$� If we let d � fn� i�e� f is the fraction of variables assigned incorrect values� we
can write the distributions for �cs�v� and �c	s�v� as�

�cs�v� � �c	s�v� �
�e���f �f��v

v$
�

where � � npc� The result is independent of n� and thus we have the important conclusion that the

performance of value selection heuristics depends only on d�n in the Poisson limit pc 
 ��n for small npc�
This is also true of the variable selection method used in the model �which depends only on �	c	s��� and �cs�����
Fig� ��a illustrates this dependence on d�n for the H�C problem for n���� 	�� and ��� the di�erences are
already nearly indistinguishable�

����� Gaussian Limit

At the other extreme� consider the case when the mean number of con�icts increases with n� e�g� when pc�	c

is approximately constant� and npc�	c� the expected number of con�icts for an incorrect value for a variable
when in the solution state� increases linearly with n� In this case� for su�ciently large n� the distributions
can be approximated by Gaussian distributions with mean npc�	c and variance 	� � npc�	c�� � pc�	c�� We
can derive the dominant behavior of min�con�icts value selection in the limit n� d� � by approximating
the sums in the expressions for Pcj	s and Pcjs by integrals over the Gaussian distribution� Only values near
the peak of the Gaussian make signi�cant contributions� and in the limit Pcj	s � Pcjs � �� The probability of
choosing a variable with an incorrect value becomes P	s � d�n since N	s�conf � d and Ns�conf � n � d� From
this it follows that Pd�d�� � d�n and Pd�d
� � �� This linear dependence of Pd�d�� on d for large n is
evident in Fig� ��b� which shows Pd�d�� and Pd�d
� for n���� 	�� and �� for MC value selection�

����� Global Performance of Min�con	icts Hill�climbing Repair

The simple limiting forms above permit some general statements to be made about the behavior of hill�
climbing repair methods based on min�con�icts value selection� Hill�climbing repair can be modelled as
a random �Markovian� walk described by the probabilities Pd�d�d�� of moving towards or away from an
�absorbing barrier� at d � ��

In the Gaussian limit where Pd�d
� � �� Pd�d�� � d�n �cf� Fig� �b�� the expected number of hill�
climbing steps to transition from d to d � � is ��Pd�d�� � n�d� From an initial distance d�� the expected
number of steps t to reach d � � is thus

td��� �

d�X
i��

n

i
� n

�

 # lnd� #O�

�

d��
�

�

where 
 � ����� � � � is Euler�s constant� Thus the expected number of steps to reach the solution is linear in

the problem size n and depends only logarithmically on how far away the initial guess is from the solution�

In the Poisson limit where Pd�d
� � Pd�d�� but both are nearly constant �cf� Fig� �a�� the distance from
the solution after t steps can be written as d�t� � d�#

Pt
i�� �i where �i is a random variable representing the

change in d with each step� The probability distribution for � has mean � � Pd�d
� �Pd�d�� and variance
	� � Pd�d
� # Pd�d�� � �Pd�d
� � Pd�d���

�� After a su�ciently large number of steps� the distribution
for d�t� is approximately Gaussian with mean �d � d� # t� and variance 	�d � t	�� The mean �d represents
a drift of the expected value of d�t� away from the solution d � �� The probability of reaching the solution
after t steps is approximately given by the tail of the Gaussian distribution for d � �� which approaches

	

�
p

�t

exp

�
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for large t� The important point is the predicted exponential decline in the probability of reaching the solution

as the number of hill�climbing steps increases� This result provides an explanation for the observed behavior
of the GDS network and of min�con�icts hill climbing on sparse ��colorable graphs as described above in
Section 
��� when the the number of steps is limited to t 
 n� there is an exponential decline with problem
size n of the probability of �nding the solution�

��� Summary and Caveats

The statistical model of CSP repair described here is a surprisingly good predictor of �con�ict�informed�
value selection performance for random CSPs� The model has both theoretical and practical bene�ts� It
permits average�case comparisons of di�erent variable and value selection heuristics� from which can be
drawn general conclusions about their relative e�ectiveness� For particular problem types� limiting behavior
for large n can be derived� including general statements as to whether heuristics will show better or worse
performance as problem size increases� For random CSPs discussed in detail above� these conclusions include�

� min�con�icts is the most e�ective value selection method among those considered�

� min�con�icts performs relatively better as n increases� particularly when pc�	c increases with n or
remains constant�

� if the Gaussian limit applies� then hill climbingwith min�con�icts is an e�ective repair strategy� showing
only weak dependence on the initial guess and O�n� dependence on problem size n�

� if the Poisson limit applies� then the probability of reaching the solution declines exponentially with
the number of hill�climbing steps�

Application of the model to other problem types is the subject of future research�
There are� however� several factors that limit the applicability of the model� The most important are

that con�icts are assumed to be independent� and that a single solution state is assumed� The presence of
multiple solutions may not be a serious limitation so long as the model is applied in the vicinity of a solution�
and that solutions are not so dense as to render this meaningless� Con�ict independence is more signi�cant�
since highly structured problems which occur in practice may violate this assumption� Nevertheless� to the
extent that the statistical properties of classes of problems can be established� it may still be possible to use
the model to perform average�case analysis of heuristics�

Two other limitations are worth noting� since we have analyzed the min�con�icts heuristic independent of
the initialization process and search strategy� First� the model permits no conclusions about the assignment
being repaired� yet the construction of a good initial guess �i�e� an assignment such that d is small� is
a key problem for repair methods� Second� since the model ignores all �ne structure in the problem� the
possibility of pathological con�gurations is not considered� This can manifest itself in hill�climbing techniques
as �cycles�� where the same variables are repaired again and again� but no progress is made towards the
solution� To model the performance of the min�con�icts heuristic in conjunction with a particular search
strategy� such as hill�climbing� a more detailed analysis is required� For example� in a recent paper� Morris ����
examines the structure of the n�queens problem� and shows analytically that� for min�con�icts hill�climbing�
almost all local minima are solutions�

� Discussion

The heuristic hill�climbing method described in this paper can be characterized as a local search method�
���
in that each repair minimizes the number of con�icts for an individual variable� Local search methods have
been applied to a variety of important problems� often with impressive results� For example� the Kernighan�
Lin method� perhaps the most successful algorithm for solving graph�partitioning problems� repeatedly
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improves a partitioning by swapping the two vertices that yield the greatest cost di�erential� The much�
publicized simulated annealing method can also be characterized as a form of local search����� However� it
is well�known that the e�ectiveness of local search methods depends greatly on the particular task�

In fact� it is easy to imagine problems on which the min�con�icts heuristic will fail� The heuristic is poorly
suited to problems with a few highly critical constraints and a large number of less important constraints�
For example� consider the problem of constructing a four�year course schedule for a university student� We
may have an initial schedule which satis�es almost all of the constraints� except that a course scheduled
for the �rst year is not actually o�ered that year� If this course is a prerequisite for subsequent courses�
then many signi�cant changes to the schedule may be required before it is �xed� In general� if repairing a
constraint violation requires completely revising the current assignment� then the min�con�icts heuristic will
o�er little guidance� This intuition is partially captured by the analysis presented in the previous section�
which shows that the e�ectiveness of the heuristic is inversely related to the distance to a solution�

The problems investigated in this paper� especially the HST and n�queens problem� tend to be relatively
uniform in that critical constraints rarely occur� In part� this is due to the way the problems are represented�
For example� in the HST problem� as described earlier� the transitive closure of temporal constraints is
explicitly represented� A single �after� relation� for example� can thus be transformed into a set of �after�
relations� This improves performance because the min�con�icts heuristic is less likely to violate a set of
constraints than a single constraint� In some cases� we expect that more sophisticated techniques will be
necessary to identify critical constraints����� To this end� we are currently evaluating explanation�based
learning techniques ��� as a method for identifying critical constraints�

The algorithms described in this paper also have an important relation to previous work in AI� In
particular� there is a long history of AI programs that use repair or debugging strategies to solve problems�
primarily in the areas of planning and design���� 
��� This approach has recently had a renaissance with the
emergence of case�based��
� 
	� and analogical ���� 

� 

� problem solving� To solve a problem� a case�based
system will retreive the solution from a previous� similar problem and repair the old solution so that it solves
the new problem�

The fact that the min�con�icts approach performs well on n�queens� a well�studied� �standard� constraint�
satisfaction problem� suggests that AI repair�based approaches may be more generally useful than previously
thought� Additional evidence also comes from a very recent study by Selman� Levesque and Mitchell ��	�� in
which they showed that a repair�based algorithm �very similar to the hill�climbing algorithms investigated
here� performs well on hard satis�ability problems� However� as we have pointed out� in some cases it can
be more time�consuming to repair a solution than to construct a new one from scratch� It may be that
our analysis of min�con�icts for CSP problems can be extended to repair methods for other tasks� such
as case�based planning methods� We conjecture that for each of the factors a�ecting the performance of
min�con�icts� such as the expected �distance� from the initial assignment to the solution and the degree
that each variable is constrained� there are analogous factors for other tasks�

There are many possible extensions to the work reported here� but three are particularly worth men�
tioning� First� we expect that there are other applications for which the min�con�icts approach will prove
useful� Conjunctive matching� for example� is an area where preliminary results appear promising� This is
particularly true for matching problems that require only that a good partial�match be computed� Second�
we expect that there are interesting ways in which the min�con�icts heuristic could be combined with other
heuristics� For example� as mentioned earlier� when a �most�con�icted� variable ordering strategy is used
together with min�con�icts� the resulting program outperforms min�con�icts alone on graph ��colorability
problems� Finally� there is the possibility of employing the min�con�icts heuristics with other search tech�
niques� In this paper� we only considered two very basic methods� hill climbing and backtracking� However�
more sophisticated techniques such as best��rst search are obvious candidates for investigation� since the
number of con�icts in an assignment can serve as a heuristic evaluation function� Another possibility is
Tabu search��	�� a hill�climbing technique that maintains a list of forbidden moves in order to avoid cycles�
Morris���� �
� has also proposed a hill�climbing method which can break out of local maxima by systemat�
ically altering the cost function� The work by Morris and much of the work on Tabu search bears a close
relation to our approach�
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	 Conclusions

In this paper we have analyzed a very successful neural network algorithm and shown that a simple heuristic
search method behaves similarly� Speci�cally� we carried out extensive experiments in three task domains in
which the min�con�icts hill�climbing algorithm and the GDS network exhibited similar performance� Based
on our experience with both programs� we conclude that the min�con�icts heuristic captures the critical
aspects of the GDS network� In this sense� we have explained why the network is so e�ective�

We have also demonstrated that the min�con�icts heuristic can be employed in conjunction with other
types of symbolic search methods besides hill�climbing� In particular� we showed that it can be used as a
value�ordering heuristic by an informed backtracking algorithm� This is an important consideration� since
we expect that in many applications the choice of search strategy may be critical to producing satisfactory
solutions�

By isolating the min�con�icts heuristic from the search strategy� we distinguished the idea of a repair�
based CSP method from the particular strategy employed to search within the space of repairs� This enabled
us to carry out a strategy�independent analysis of the heuristic� The analysis identi�ed several factors that
e�ected the utility of the min�con�icts heuristic� such as the expected distance between the initial assignment
and the solution� We believe that this analysis may be relevant to repair�based problem solving methods in
general�

There are also several practical implications of this work� First� the scheduling system for the Hubble
Space Telescope� SPIKE� now employs our symbolic method� rather than the network� reducing the overhead
necessary to arrive at a schedule� Perhaps even more importantly� it is easy to experiment with variations of
the symbolic method� which should facilitate transferring SPIKE to other scheduling applications� Finally�
by demonstrating that repair�based methods are applicable to standard constraint satisfaction problems�
such as N �queens� we have provided a new tool for solving CSP problems�


 Acknowledgements

The authors wish to thank Hans�Martin Adorf� Don Rosenthal� Richard Franier� Peter Cheeseman and
Monte Zweben for their assistance and advice� We also thank Ron Musick and our anonymous reviewers
for their comments� The Space Telescope Science Institute is operated by the Association of Universities for
Research in Astronomy for NASA�

References

��� B� Abramson and M� Yung� Divide and conquer under global constraints� A solution to the n�queens
problem� Journal of Parallel and Distributed Computing� 	��	
��		
� �����

�
� H�M� Adorf and M�D� Johnston� A discrete stochastic neural network algorithm for constraint satisfac�
tion problems� In Proceedings of the International Joint Conference on Neural Networks� San Diego�
CA� �����

��� E� Biefeld and L� Cooper� Bottleneck identi�cation using process chronologies� In Proceedings IJCAI����
Sydney� Australia� �����

�
� J� Bitner and E�M� Reingold� Backtrack programming techniques� Communications of the ACM�
���	���	��� �����

��� G� Brassard and P� Bratley� Algorithmics � Theory and Practice� Prentice Hall� Englewood Cli�s� NJ�
�����

�	� D� Brelaz� New methods to color the vertices of a graph� Communications of the ACM� 

�
���
�	�
�����


�



��� P� Cheeseman� B� Kanefsky� and W�M� Taylor� Where the really hard problems are� In Proceedings

IJCAI���� Sydney� Australia� �����

��� R� Dechter and J� Pearl� Network�based heuristics for constraint satisfaction problems� Arti�cial Intel�
ligence� �
������ �����

��� M� Eskey and M� Zweben� Learning search control for constraint�based scheduling� In Proceedings

AAAI���� Boston� Mass� �����

���� M�S� Fox� Constraint�Directed Search	 A Case Study of Job�Shop Scheduling� Morgan Kaufmann
Publishers� Inc�� �����

���� M�S� Fox� N� Sadeh� and C� Baykan� Constrained heuristic search� In Proceedings IJCAI�
�� Detroit�
MI� �����

��
� E�C� Freuder� Partial constraint satisfaction� In Proceedings IJCAI�
�� Detroit� MI� �����

���� M�L� Ginsberg and W�D� Harvey� Iterative broadening� In AAAI Proceedings� �����

��
� K�J� Hammond� Case�based Planning	 An Integrated Theory of Planning� Learning and Memory� PhD
thesis� Yale University� Department of Computer Science� ���	�

���� R�M� Haralick and G�L� Elliot� Increasing tree search e�ciency for constraint satisfaction problems�
Arti�cial Intelligence� �
�
	������ �����

��	� A� Hertz and D� de Werra� Using tabu search techniques for graph coloring� Computing� ����
������
�����

���� A�K� Hickman and M�C� Lovett� Partial match and search control via internal analogy� In Proceedings

of the Thirteenth Annual Conference of the Cognitive Science Society� Chicago� Ill�� �����

���� J�J� Hop�eld� Neural networks and physical systems with emergent collective computational abilities�
In Proceedings of the National Academy of Sciences� volume ��� ���
�

���� D�S� Johnson� C�R� Aragon� L�A� McGeoch� and C� Schevon� Optimization by simulated annealing� An
experimental evaluation� Part II� Journal of Operations Research� �����

�
�� D�S� Johnson� C�H� Papadimitrou� and M� Yannakakis� How easy is local search� Journal of Computer

and System Sciences� ���������� �����

�
�� M�D� Johnston� Automated telescope scheduling� In Proceedings of the Symposium on Coordination of

Observational Projects� Cambridge University Press� �����

�

� M�D� Johnston and H�M� Adorf� Learning in stochastic neural networks for constraint satisfaction
problems� In Proceedings of NASA Conference on Space Telerobotics� Pasadena� CA� January �����

�
�� L�V� Kale� An almost perfect heuristic for the n nonattacking queens problem� Information Processing

Letters� �
��������� �����

�

� S� Kambhampati� Supporting �exible plan reuse� In Minton S�� editor� Machine Learning Methods for

Planning and Scheduling� Morgan Kaufmann� ���
�

�
�� N� Keng and D�Y�Y� Yun� A planning!scheduling methodology for the constrained resource problem�
In Proceedings IJCAI�
�� Detroit� MI� �����

�
	� J�L� Kolodner� R�L�Jr� Simpson� and K� Sycara�Cyranski� A process model of case�based reasoning in
problem solving� In Proceedings IJCAI�
�� Los Angeles� CA� �����

��



�
�� C�R� Kurtzman� Time and Resource Constrained Scheduling� with Applications to Space Station Plan�

ning� PhD thesis� Dept� of Aeronautics and Astronautics� MIT� Cambridge� MA� �����

�
�� C�R� Kurtzman and D�L� Aiken� The M�ve space station crew activity scheduler and stowage logistics
clerk� In Proceedings the AIAA Computers in Aerospace VII Conference� Monterey� CA� �����

�
�� P� Langley� Systematic and nonsystematic search strategies� In Proceedings AAAI��
� San Jose� CA�
���
�

���� S� Minton� M� Johnston� A�B� Philips� and P� Laird� Solving large scale constraint satisfaction and
scheduling problems using a heuristic repair method� In Proceedings AAAI���� �����

���� P� Morris� Solutions without exhaustive search� An iterative descent method for binary constraint
satisfaction problems� In Proceedings the AAAI��� Workshop on Constraint�Directed Reasoning� Boston�
MA� �����

��
� P� Morris� An iterative improvement algorithm with guaranteed convergence� Technical Report TR�M�
����� Intellicorp Technical Note� �����

���� P� Morris� On the density of solutions in equilibrium points for the queens problem� In Proceedings

AAAI��
� San Jose� CA� ���
�

��
� N� Muscettola� S�F� Smith� G� Amiri� and D� Pathak� Generating space telescope observation schedules�
Technical Report CMU�RI�TR����
�� Carnegie Mellon University� Robotics Institute� �����

���� R� Musick and S� Russell� How long will it take� In Proceedings AAAI��
� San Jose� CA� ���
�

��	� B� Selman� H� Levesque� and D� Mitchell� A new method for solving hard satis�ability problems� In
Proceedings AAAI��
� San Jose� CA� ���
�

���� R�G� Simmons� A theory of debugging plans and interpretations� In Proceedings AAAI�

� Minneapolis�
MN� �����

���� R� Sosic and J� Gu� A polynomial time algorithm for the n�queens problem� SIGART� ����� �����

���� H�S� Stone and J�M� Stone� E�cient search techniques � an empirical study of the n�queens problem�
IBM Journal of Research and Development� ���
	
�
�
� �����

�
�� G� J� Sussman� A Computer Model of Skill Acquisition� American Elsevier� New York� �����

�
�� J�S� Turner� Almost all k�colorable graphs are easy to color� Journal of Algorithms� ��	���
� �����

�

� M�M� Veloso and J�G� Carbonell� Towards scaling up machine learning� A case study with derivation
analogy in prodigy� In Minton S�� editor� Machine Learning Methods for Planning and Scheduling�
Morgan Kaufmann� ���
�

�
�� M� Waldrop� Will the Hubble space telescope compute� Science� 

���
����
��� �����

�

� M� Zweben� A framework for iterative improvement search algorithms suited for constraint satisfaction
problems� Technical Report RIA������������ NASA Ames Research Center� AI Research Branch� �����

�
�� M� Zweben� M� Deale� and R� Gargan� Anytime rescheduling� In Proceeedings of the Workshop on

Innovative Approaches to Planning� Scheduling and Control� Morgan Kaufmann Publishers� �����

��



A N �Queens con�ict probability distributions

In this appendix we derive con�ict distribution functions for the simpli�ed n�queens model discussed in
Section ����
� which assumes that in the solution state exactly three other queens con�ict with non�solution
queen placements�

Consider �rst a non�solution value Qnon�sol
R for a queen in row R� In the solution state there are three

other queens which constrain Qnon�sol
R � denote this set by q� Let the number of queens other than R which

have non�solution assignments be i� If R has a solution assignment� then i � d� and if R has a non�solution
assignment� then i � d� �� The probability of a con�ict on Qnon�sol

R due to a queen in q is�
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� �
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Now the probability that a queen in q has a non�solution value is i��n � ��� and the probability that a
non�solution value for a queen in q con�icts with Qnon�sol

R is 
��n � �� �i�e� two other placements would

be either on the same row or diagonal as Qnon�sol
R �� The probability that a solution value for a queen in q

con�icts with Qnon�sol
R is one by de�nition� Thus�

p
q
� �

i

n� �




n � �
#

�
�� i

n� �

�
� �� i�n� ��
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�

A similar argument leads to the probability of con�ict with the n� 
 queens not in q�

p
	q
� �

�i

�n� ���
�

The probability of v con�icts on Qnon�sol
R is the sum of two binomially�distributed variables

P �v con�icts on Qnon�sol
R � �

vX
x��

B�x� p
q
� � ��B�v � x� p

	q
� � n� 
��

assuming that the con�icts are independent� When there are no erroneous assignments� this distribution has
a mean value of � and variance of zero� capturing the assumption that� in the solution state� each non�solution
value has exactly three con�icts�

For a solution value Qsol
R for a queen in row R� con�icts can arise only from non�solution assignments of

the n � � other queens� Assuming independence� the distribution of con�icts is�

P �v con�icts on Qsol
R � � B�v� p�� n� ���

where p� � �i��n� ����
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