
ECONOMIC AND COMPUTATIONALLY EFFICIENT ALGORITHMS FOR BIDDING IN A

DISTRIBUTED COMBINATORIAL AUCTION

By

Benito Mendoza Garcia

Master of Artificial Intelligence
University of Veracruz, 2001

Submitted in Partial Fulfillment of the Requirements

for the Degree of Doctor of Philosophy in

Computer Science and Engineering

College of Engineering and Computing

University of South Carolina

2009

Accepted by:

José M. Vidal, Major Professor

Michael N. Huhns, Chairman, Examining Committee

Marco Valtorta, Committee Member

Jason O’Kane, Committee Member

Anand Nair, External Examiner

James Buggy, Interim Dean of the Graduate School



ACKNOWLEDGMENTS

Thanks to my advisor, Professor Vidal, for his patience and willingness to listen, for

his always correct advisement, encourage, and support. Thanks to Professor Huhns for his

faithful advisement, and support. Thanks to Professor Valtorta for his support. Thanks to

Professors Nair and Professors O’Kane for being part of my dissertation committee. Ac-

knowledgment is made to the University of South Carolina’s High Performance Computing

Group for the computing time used in this research. Thanks to Dr. Buell for encourage me

to use the HPCG resources and to Paul Sagona for his help when using those resources.

Thanks to all the professors, friends, classmates, and the staff of the computer science de-

partment for making my stay in there a stimulating and rewarding time of my life—special

acknowledgments for Bervely, Barb, and Jewel for the kindness and friendship the always

showed to me and my family. Finally, thanks to the two most important persons in my live:

Laura, my wife, for her love, support, help, and for being the source of inspiration that

makes me keep going; and Diana, my daughter, who has brought very special things to my

live.

ii



ABSTRACT

Combinatorial auctions (CAs)—auctions that allow bids for bundles of items—have

generated significant interest as automated mechanisms for buying and selling bundles of

scarce resources, since they provide a great way of allocating multiple distinguishable items

amongst bidders whose perceived valuations for combinations of those items differ. How-

ever, CAs require the establishment of a central auctioneer who receives the bids and carries

out all the computation to find the optimal allocation of items to bidders–an NP-complete

problem.

The motivation for this dissertation was the vision of distributed combinatorial auc-

tions as incentive compatible peer-to-peer mechanisms to solve the allocation problem,

where the bidders are the ones who carry out the needed computation to solve the problem;

consequently, there is no need for a central auctioneer. The core contributions of this disser-

tation consist on a set of bidding algorithms for distributed combinatorial auctions. I have

developed two type of bidding algorithms: myopic-optimal, which optimally find the set

of bids that maximize the bidders utility at a certain time with no consideration about the

future; and heuristic-approximate, which are not guaranteed to find the utility-maximizing

set of bids but require only a small fraction of the others’ computational time. These algo-

rithms have shown that it is feasible to implement distributed combinatorial auctions.

Experimental results indicate that the approximate algorithms are a realistic tool for the

development of large-scale distributed combinatorial auctions. Furthermore, the outcome

of a game theoretical analysis indicates that they are dominant strategies over the myopic-

optimal ones, since in addition to be faster, they provide higher bidder’s utility (although

the seller’s revenue is not optimal). Empirical analyzes over different problem domains

iii



show that these algorithms find highly (allocative) efficient solutions. This makes them

suitable to solve, effectively and distributively, complex coordination problems such as

multirobot task allocation, automated negotiation in B2B electronic commerce, automated

supply chains, and routing mechanisms.

iv



CONTENTS

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

Part 1. Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

CHAPTER 1. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1. Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2. Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3. Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

Part 2. Background and Related Work . . . . . . . . . . . . . . . . . . . . . . . 11

CHAPTER 2. AGENTS AND MULTIAGENT SYSTEMS . . . . . . . . . . . . . . . . 13

2.1. Multiagent Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

CHAPTER 3. MECHANISM DESIGN . . . . . . . . . . . . . . . . . . . . . . . . . 16

CHAPTER 4. AUCTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4.1. Single Good Auctions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.2. Combinatorial Auctions . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

CHAPTER 5. THE WINNER DETERMINATION PROBLEM . . . . . . . . . . . . . . 23

5.1. Restricting the Winner Determination Problem . . . . . . . . . . . . . . . 24

5.2. Optimal Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

5.3. Approximate Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

CHAPTER 6. THE COMBINATORIAL AUCTION TEST SUITE (CATS) . . . . . . . 32

CHAPTER 7. THE PAUSE AUCTION . . . . . . . . . . . . . . . . . . . . . . . . 34

v



7.1. The Job of the Auctioneer in the PAUSE Auction . . . . . . . . . . . . . . 35

CHAPTER 8. RELATED WORK . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

Part 3. Research Contributions of this Dissertation . . . . . . . . . . . . . . . . 39

CHAPTER 9. BIDDING IN THE PAUSE AUCTION: PROBLEM FORMULATION . . 40

9.1. Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

CHAPTER 10. MYOPICALLY-OPTIMAL BIDDING ALGORITHMS FOR A DISTRIBUTED

COMBINATORIAL AUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

10.1. The PAUSEBID Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 44

10.2. The CACHEDPAUSEBID Algorithm . . . . . . . . . . . . . . . . . . . . . 48

10.3. Test and Comparison: Myopic-Optimal Algorithms . . . . . . . . . . . . 52

10.4. Conclusions: Myopic-Optimal Algorithms . . . . . . . . . . . . . . . . . 57

CHAPTER 11. APPROXIMATE BIDDING ALGORITHMS FOR A DISTRIBUTED COMBINATORIAL

AUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

11.1. The GREEDYPAUSEBID Algorithm . . . . . . . . . . . . . . . . . . . . . 59

11.2. The GREEDYPAUSEBID+HILL Algorithm . . . . . . . . . . . . . . . . . 61

11.3. Test and Comparison: Myopic-optimal and Approximate Algorithms . . . 62

11.4. Conclusions: Myopic-optimal and Approximate Algorithms . . . . . . . 65

CHAPTER 12. A GAME THEORETICAL ANALYSIS OF BIDDING STRATEGIES FOR

A DISTRIBUTED COMBINATORIAL AUCTION . . . . . . . . . . . . . . . . . . . 67

12.1. Experimental Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

12.2. Conclusions: Game-Theoretical Analysis . . . . . . . . . . . . . . . . . 70

CHAPTER 13. THE ECONOMIC AND COMPUTATIONAL EFFICIENCY OF PAUSE

AND OUR ALGORITHMS UNDER DIFFERENT BID DISTRIBUTIONS . . . . . . . 71

13.1. CATS Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

13.2. Experimental settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

13.3. Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

13.4. Revenue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

vi



13.5. Allocative Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

13.6. Bidders’ Expected Utility . . . . . . . . . . . . . . . . . . . . . . . . . . 83

13.7. Results Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

Part 4. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

CHAPTER 14. CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

vii



LIST OF FIGURES

Figure 1.1 Example of a Combinatorial Auction . . . . . . . . . . . . . . . . . 5

Figure 1.2 The Centralized Model of a Combinatorial Auction . . . . . . . . . 6

Figure 1.3 The Job of the Auctioneer in the PAUSE Auction . . . . . . . . . . 7

Figure 1.4 Eliminating the PAUSE auctioneer . . . . . . . . . . . . . . . . . . 8

Figure 5.1 An Algorithm to Build a Branch on Items Search Tree . . . . . . . . 27

Figure 5.2 A Centralized Branch on Bids Search Algorithm . . . . . . . . . . . 28

Figure 5.3 A Centralized Branch on Items Search Algorithm . . . . . . . . . . 30

Figure 10.1 The PAUSEBID Algorithm . . . . . . . . . . . . . . . . . . . . . . . 45

Figure 10.2 The DISTRIBUTEPAYMENTS Function . . . . . . . . . . . . . . . . 45

Figure 10.3 The PBSEARCH Algorithm . . . . . . . . . . . . . . . . . . . . . . 47

Figure 10.4 The CACHEDPAUSEBID Algorithm . . . . . . . . . . . . . . . . . . 49

Figure 10.5 The CPBSEARCH Algorithm . . . . . . . . . . . . . . . . . . . . . . 51

Figure 10.6 Algorithm to Create Bidders Value Functions . . . . . . . . . . . . 53

Figure 10.7 Efficiency of the Myopic-Optimal Algorithms . . . . . . . . . . . . 53

Figure 10.8 Revenue and Utility of the Myopic-Optimal Algorithms . . . . . . . 55

Figure 10.9 Computational Efficiency and Scalability of the Myopic-Optimal

Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

Figure 11.1 The GREEDYPAUSEBID Algorithm . . . . . . . . . . . . . . . . . . 60

Figure 11.2 The HILLCLIMBING Procedure . . . . . . . . . . . . . . . . . . . . 61

viii



Figure 11.3 Computational Efficiency of the Myopic-Optimal and Approximate

Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

Figure 11.4 Allocative Efficiency of the Myopic-Optimal and Approximate Algorithms

63

Figure 11.5 Revenue and Utility of the Myopic-Optimal and Approximate Algorithms

65

Figure 12.1 Payoff Matrix for the Game-Theoretical Analysis . . . . . . . . . . 69

Figure 13.1 An Example of the Content of a CATS File and How We Use it. . . . 72

Figure 13.2 Average Time as a Function of the Number of Bidders in the Auction. 74

Figure 13.3 Average Time as a Function of the Number of Bids in the Auction. . 75

Figure 13.4 Average Time as a Function of the Number of Goods in the Auction. 76

Figure 13.5 Average Revenue Ratio as a Function of the Number of Bidders in the

Auction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

Figure 13.6 Average Revenue Ratio as a Function of the Number of Bids in the

Auction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

Figure 13.7 Average Revenue Ratio as a Function of the Number of Goods in the

Auction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

Figure 13.8 Percentage of Optimal Auctions as a Function of the Number of

Bidders in the Auction. . . . . . . . . . . . . . . . . . . . . . . . . 79

Figure 13.9 Average Efficiency Ratio as a Function of the Number of Bidders in

the Auction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

Figure 13.10 Percentage of Optimal Auctionsas a Function of the Number of Bids

in the Auction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

Figure 13.11 Average Efficiency Ratio as a Function of the Number of Bids in the

Auction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

ix



Figure 13.12 Percentage of Optimal Auctions as a Function of the Number of Goods

in the Auction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

Figure 13.13 Average Efficiency Ratio as a Function of the Number of Goods in the

Auction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

Figure 13.14 Average Expected Utility Ratio as a Function of the Number of Bidders

in the Auction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

Figure 13.15 Average Expected Utility Ratio as a Function of the Number of Bids

in the Auction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

Figure 13.16 Average Expected Utility Ratio as a Function of the Number of Goods

in the Auction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

Figure 13.17 Median and Upper and Lower Quartiles of the Different Metrics used

in our Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . 87

x



Part 1

Overview



CHAPTER 1

INTRODUCTION

The Internet is used for many of the activities of our daily life and it has become the

preferred medium to deliver resources like information and services. The Internet and the

increasing development of computer networks have led to an explosive interconnection

of devices/machines, systems, and people. This raises many research issues with regards

to the ways in which all these distributed components can interact effectively with each

others [15]. Because the entities (individuals, organizations, programs) that operate those

networked components are autonomous, they will generally act to maximize their own self-

interest. The interaction of these intelligent and autonomous entities leads to conflicts that

have to be solved to achieve their goals. For example, conflicts over the usage of joint

resources or task assignments, conflicts concerning document allocation in multi-server

environments, and conflicts between a buyer and a seller in electronic commerce.

In all the examples mentioned above, the information needed to make good decisions

and the control necessary to implement those decisions is distributed among various het-

erogeneous components. While many current solutions for these problems assume that

all the necessary information can be aggregated at some central location, where effective

global decisions are made, such approaches soon will no longer be appropriate for cre-

ating complex computer systems. The next generation of computer systems will have to

address the existing heterogeneity, autonomy, and dynamism amongst their components

and subsystems. Multiagent systems focuses on the study of systems in which many in-

telligent agents—autonomous entities, such as software programs or robots—interact with

each other. According to their interactions these agents can be cooperative, sharing a com-

mon goal (e.g. an ant colony); or they can be selfish, pursuing their own interests (as in the

2



free market economy) [42]. In multiagent systems, the agents have to negotiate with each

other in order to solve the conflicts that appear when they try to achieve their individual

goals.

Negotiation is a method of competitive (or partially cooperative) allocation of goods,

resources, or tasks between agents. It has been a subject of central interest in multiagent

systems, as it has been for decades a central subject of study in disciplines such as eco-

nomics, political science, game theory, and management science. Although the word has

been used in a variety of ways, in general it refers to the communication processes that

leads to coordination and cooperation amongst agents[20]. When discussing negotiation, it

is important to distinguish between negotiation protocol and negotiation strategy [6]. The

protocol determines the flow of messages between the negotiating agents, dictating who

can say what and when; it provides the rules that the negotiating parties must follow if they

are to interact. The protocol is necessarily public and open. The strategy, on the other

hand, is the way in which a given agent acts within those rules in an effort to get the best

outcome of the negotiation. For example, when and what to concede, and when to hold

firm. The strategy of each participant is therefore necessarily private.

Through the negotiation literature, we find two main types of allocation mechanisms:

bargaining and auctions. Bargaining mechanisms—which are known or referred to by

most people as negotiation mechanisms—allow the use of more decentralized, flexible pro-

tocols. In bargaining mechanisms agents can use incomplete information about their op-

ponent (and their own) preferences. They allow customized and complex agreements and

their focus is on designing agent strategies, not the mechanism itself. On the other hand,

auctions, in general, consist of a fixed protocol and rules, mainly centralized. Via auctions

it is possible to design optimal mechanisms that guarantee certain desirable properties, es-

pecially in one-shot settings. These mechanisms often target direct revelation—bidders

reveal the prices or valuations for preferred combinations—and require the presence of a

trusted auctioneer. Auctions have been widely used for real applications, particularly com-

binatorial auctions.

3



In recent years, combinatorial auctions (CAs)—auctions that allow bids for bundles of

items—have generated significant interest as automated mechanisms for buying and sell-

ing bundles of scarce resources. Combinatorial auctions provide a great way of allocating

multiple distinguishable items amongst bidders whose perceived valuations for combina-

tions of those items differ. The bundle bidding enabled by these mechanisms allows bid-

ders to benefit from combining the complementarities of the items being auctioned and to

better express the value of any synergies. Companies and governments around the world

have left behind administered allocation systems, single item auctions, and other ad hoc

mechanisms; traditionally used to sell valuable commodities, solve sourcing problems, or

allocate scarce public resources; to take advantage of the power of combinatorial auctions

based market mechanisms, maximizing revenue and minimizing cost of sales [39]. Dif-

ferent from consumer auctions platforms like eBay, combinatorial auctions platforms are

used in a high stakes B2B environments [39]. For example, recently the Federal Commu-

nications Commission (FCC) has risen close to $20 billion in its 700-MHz auction using

these mechanisms. Thus, combinatorial auctions have been fundamentally changing the

way of selling valuable resources, allowing the creation of electronic markets to supple-

ment traditional sales channels like bilateral negotiated contracts, and also, creating totally

new markets for scenarios where there was no one before.

In a combinatorial auction, once the bidders place their bids, it is necessary to find the

allocation of items to bidders that maximizes revenue. For example, if we have a set of 5

figurines, one each of a different X-Mens and we received 6 different combinatorial bids, as

shown in Figure 1.1. The question we then face is how to determine which are the winning

bids so as to maximize the amount of revenue we receive—this problem is known as the

winner determination problem (WDP). Note that we can sell each item only once since

we only have one of each. In the figure, the correct solution would be to accept both the $9

bid and the $7 bid.

The winner determination problem, is a combinatorial optimization problem and is

NP-Hard [34]. Nevertheless, several algorithms that have a satisfactory performance for

4



Price Bid items

$2 Wolverine
$4 Magneto
$6 Rogue, Beast
$7 Gambit, Magneto
$8 Gambit, Wolverine
$9 Rogue, Wolverine

FIGURE 1.1. An example of a combinatorial auction. X-Mens figurines:
(from left to right) Wolverine, Gambit, Magneto, Rogue, Beast. The set
of combinatorial bids received for them in on the table at the right. The
revenue-maximizing solution would be to accept both the $9 bid and the $7
bid.

problem sizes and structures occurring in practice have been developed. However, most

of the existing winner determination algorithms for combinatorial auctions are centralized,

meaning that they require all agents to send their bids to a centralized auctioneer who then

determines the winners (see Figure 1.2 for an illustration).

One problem with the centralized winner determination algorithms, aside from the bot-

tleneck formed in the auctioneer side, is that they require the use of a trusted auctioneer who

will perform the needed computations. We believe that distributed solutions to the winner

determination problem should be studied as they offer a better fit for some applications

as when, for example agents do not want to reveal their valuations to the auctioneer, the

auctioneer does not want to perform all the computation or when it is difficult to establish

a trusted auctioneer.

1.1. MOTIVATION

The motivation for this dissertation is the vision of distributed combinatorial auc-

tions as incentive compatible peer-to-peer mechanisms to solve the allocation problem,

5



FIGURE 1.2. The centralized model of a combinatorial auction. Once the
bidders place their bids, the auctioneer runs a winner determination algo-
rithm to decide the allocation. This model has three major drawbacks: i) the
auctioneer has to do all the computation, ii) the bidders have to reveal their
valuations to the auctioneer, and ii) some times it is difficult to establish a
trusted auctioneer.

where the bidders are the ones who carry out the needed computation, and consequently,

there is no need for a central auctioneer. For example, imagine a distributed combinatorial

eBay—a Web 2.0 variation on this idea is known as zBay [43]—a distributed electronic

market place where sellers can advertise their goods and buyers can place combinatorial

bids and distributively find near optimal clearings. A more detailed example is a distributed

combinatorial reverse auction—an auction used for buying instead of selling—in a B2B

scenario. Computer manufacturers (buyers) publish their requirement for computers’ com-

ponents such as memory chips, hard drives, processors, and mother boards. Component

manufacturers (sellers) develop agents which try to sell their particular goods by placing

combinatorial bids. The initial bids are disclosed to all the sellers. Then, using her own and

other sellers bids, each seller agent search for a set of bids (allocations or deals) for which

they can get some utility and satisfy all the buyer’s requirements. Notice that, if the deal

accepted by the buyer does not include a bid from a given agent, this agent gets zero utility.

Thus, seller agents negotiate (indirectly) by proposing new bids or adjusting the price of

6



FIGURE 1.3. In the PAUSE auction the task of the auctioneer is reduced to
make sure that the bidders follow the rules. The auctioneer is not any more
the one running the WDP algorithm.

their current ones to create deals where they maximize their own utility and at the same

time reduce the price the buyer has to pay.

A system using the above described mechanism can also effectively and distributively

calculate the solution to complex coordination problems. Consider multirobot environ-

ments where robots are responsible for accomplishing tasks such as transporting equip-

ments within a manufacturing plant, delivering packages in an office, rescuing victims in

situations inaccessible by humans, or tracking enemy targets in battlefields. For such a

system to exist, we will need a protocol that distributes the computational task of solving

the allocation problem amongst the bidders and strategies for bidding behavior [28].

The PAUSE (Progressive Adaptive User Selection Environment) mechanism [18, 21]

(addressed in more detail in Chapter 7) is an increasing price combinatorial auction that

naturally distributes the problem of winner determination amongst the bidders in such a

way that they have an incentive to perform the calculation. Thus, the task of the auction-

eer is reduced to only make sure that the bidders follow the rules established by PAUSE

(Figure 1.3). We can even envision completely eliminating the auctioneer and, instead,

7



FIGURE 1.4. It is possible to eliminate the PAUSE auctioneer by having
every agent to perform the auctioneers task.

have every agent perform the task of the auctioneer (Figure 1.4). A system implementing a

PAUSE auction, would allow to achieve much more efficient allocation than would be pos-

sible with sequential or simultaneous single item auctions—some of the approaches used

to solve combinatorial auctions in a distributed way [13]—with no need to rely in a central

auctioneer, with no need for the bidders to reveal their true valuations, and eliminating the

exposure problem—the problem of exposing the bidders to the possibility that they will

win some, but not all the items they desire [7].

1.2. CONTRIBUTIONS

PAUSE, as an auction mechanism, establishes the rules the participants have to adhere

to so that the work is distributed amongst them. However, it is not concerned with how

the bidders determine what they should bid (strategy). The core of the contributions of this

dissertation consists on a set of bidding algorithms for the PAUSE auction. I have developed

two type of bidding algorithms: myopic-optimal, which optimally find the set of bids that

maximize the bidders utility at a certain time with no consideration about the future; and

heuristic-approximate, which are not guaranteed to find the utility-maximizing set of bids

but require only a small fraction of the other’s computational time. I have implemented

them and carried out an experimental study with different types of problems.

8



These bidding algorithms have shown that it is feasible to implement distributed com-

binatorial auctions without having to resort to a central auctioneer. Furthermore, the alloca-

tions obtained with the PAUSE auction, when using the mentioned algorithms, are very ef-

ficient. Thus, a rational bidder agent that aims to maximize her utility would prefer joining

to a PAUSE auction over joining to a centralized auction; her incentive is the opportunity of

obtaining the items at a lower price, although she has to perform some computational work.

I have carried out an experimental game theoretical analysis that shows that the approxi-

mate algorithms represent a non-strict Nash equilibrium strategy for the bidders. Thus,

a population of bidders will want to use our approximate bidding algorithms rather than

performing a complete search to find the optimal bid. I have also analyzed the scalability

of our algorithms with respect to the number of goods, bids and bidders; and compare the

revenue, allocative efficiency, and bidders’ expected utility of the solution found by PAUSE

with those of the revenue-maximizing solution. Thus, I have shown that the PAUSE auction

along with our heuristic bidding algorithms is a viable method for solving combinatorial

allocation problems without the use a centralized auctioneer.

1.3. OUTLINE

This dissertation is divided into four major parts—Overview, Background and Related

Work, Research Contributions, and Conclusions. The first part is formed by this chapter

(Chapter 1), which introduced the audience to the problem addressed in this dissertation,

provided an overview of the applications for which solutions to this problem could be

adequate, and summarized the contributions of this dissertation.

The second part introduces the literature on the topics related to the problem addressed

in this dissertation, namely multiagent systems (Chapter 2), mechanism design (Chapter 3),

auctions and combinatorial auctions (Chapter 4), the winner determination problem and the

centralized approaches to solve it (Chapter 5), the combinatorial auction test suite CATS

(Chapter 6), the details about the PAUSE auction (Chapter 7), and a review related work on

distributing the winner determination problem (chapters 8).

9



The third part includes the results and contributions of this dissertation. Chapter 9

formalizes the problem of bidding in the PAUSE auction. Chapters 10 shows the details of

the myopic bidding algorithms including some testing and the empirical results. Similarly,

Chapter 11 shows the details of the heuristic-approximate bidding algorithms. Chapter 12

presents a game theoretical analysis that shows that the approximate bidding algorithms

represent a dominant strategy for the bidders. The last chapter of this section (Chapter 13)

presents an experimental study of the allocations obtained by PAUSE auction, when using

the aforementioned bidding algorithms, under different economically motivated problems.

The last part is formed by Chapter 14. This chapter concludes and describes some ideas

for future work and extensions.

10



Part 2

Background and Related Work



Today’s computing platforms and information environments are distributed, large, open,

and heterogeneous. Computers are no longer stand-alone systems, but have become closely

connected both with each other and their users. As mentioned in the introduction chapter,

the interaction of these devices leads to several conflicts when trying to access, allocate,

or gain some resources and/or perform some tasks. Our research focuses on the study of

decentralized incentive compatible mechanisms that can solve these problems (or part of

them) based in distributed combinatorial auctions. In this chapter we introduce the concepts

and fields needed to understand and formulate the problem and its conceptual solutions.

First, we present the concept of agent and, more importantly, the concept of mutiagent

systems (MAS) which is, in many cases, the ideal model for understanding, implement-

ing and operating complex socio-technical systems as represented by e-business systems.

Second, we introduce the field of mechanism design that deals with the design and charac-

terization of negotiation mechanisms. Then, we introduce the theory behind combinatorial

auctions and the winner determination problem, core topics of our research. We also pro-

vide a description of the PAUSE mechanism. And finally we describe the related work on

distributing combinatorial auctions.



CHAPTER 2

AGENTS AND MULTIAGENT SYSTEMS

The term “agent” is a concept that describes a software abstraction. An agent is an

entity that can perceive its environment through sensors and act upon that environment

through actuators [35]. An agent is defined by its behavior. There are a lot of opinions

about what an agent must do, however, there is a common core of concepts that synthesizes

these opinions:

“Agents are active, persistent (software) components that perceive, rea-

son, act, and communicate” [16]

Still, the model that has thus far gained most attention, probably due to its flexibility and

its well established roots in game theory and artificial intelligence, is that of modeling

agents as utility maximizers who inhabit some kind of Markov decision process (MDP).

An agent that always tries to optimize an appropriate performance measure is called a

rational agent. Such a definition of a rational agent is fairly general and can include

human agents (having eyes as sensors, hands as actuators), robotic agents (having cameras

as sensors, wheels as actuators), or software agents (having a graphical user interface as

sensor and as actuator) [45]. The modern approach to artificial intelligence (AI) is centered

on this concept. Autonomous agents are software systems that can independently act

on open, unpredictable environments. This concept provides a convenient and powerful

way to describe a complex software entity that is capable of acting with a certain degree

of autonomy in order to accomplish tasks (involving artificial intelligence techniques and

distributed computing), and it is considered by the agents research community as a new

paradigm for developing software applications [48].

13



2.1. MULTIAGENT SYSTEMS

In the context of concurrent and distributed systems, it becomes obvious that a single

agent is insufficient. Many applications, if not most of them, require multiple agents, called

also multiagent systems (MAS). The goal of multiagent systems research is to find meth-

ods that allow us to build complex systems composed of autonomous agents who, while

operating on local knowledge and possessing only limited abilities, are nonetheless capable

of enacting the desired global behaviors. The main idea is to take a description of what a

system of agents should do and break it down into individual agent behaviors.

A common simplifying assumption is that an agent’s preferences are captured by a

utility function. This function provides a map from the states of the world or outcome of

game to a real number (we assume that the agents inhabit some kind of MDP). The bigger

the number the more the agent likes that particular state. Specifically, given that S is the

set of states in the world the agent can perceive then agent i’s utility function is of the form

ui : S → <. (1)

Notice also that the states are defined as those states of the world that the agent can

perceive. In practice, agents have sophisticated inputs and it is impractical to define a

different output for each input. Thus, most agents also end up mapping their raw inputs

to a smaller set of world states. Creating this mapping function can be challenging as it

requires a deep understanding of the problem setting. However, given an agent’s utility

function we can define the agent’s preference ordering over the states of the world. By

comparing the utility values of two states we can determine which one is preferred by the

agent. This ordering has the following properties.

• reflexive: ui(s) ≥ ui(s)

• transitive: If ui(a) ≥ ui(b) and ui(b) ≥ ui(c) then ui(a) ≥ ui(c).

• comparable: either ui(a) ≥ ui(b) or ui(b) ≥ ui(a).

14



We can use utility functions to describe the behavior of almost every rational agent. Utility

functions are also useful for capturing the various tradeoffs that an agent must make, along

with the value or expected value of its actions. Once we have defined a utility function for

all the agents then all they have to do is take actions which maximize their utility. We use

the term selfish agent to refer to a rational agent that wants to maximize its utility. Utility

functions are a succinct way of representing an agent’s preferences [47].

Multiagent technology is a significant area of interest for such applications as telecom-

munications, Internet search engines, information retrieval and filtering, computer games,

user interface design, information management, electronic commerce, industrial process

control, planning, and logistics.

15



CHAPTER 3

MECHANISM DESIGN

We have talked about self-interested agents in multiagent systems, but how do agents

come to an agreement while coordinating their activities? How can agents combine their

individual preferences into a common preference? How do we measure the result of the

agents’ coordination activities?

Negotiation scenarios are governed by a particular mechanism or protocol. The pro-

tocol defines the “rules of encounter” between agents [33]. When designing a multiagent

system, besides the concerns of a traditional communication protocol (free of deadlocks,

live lock, etc.), we also need to consider the negotiation protocol’s desired properties. Al-

gorithmic mechanism design (AMD) is a well-developed subarea of game theory that

deals with the design of games with players who have unknown and private utilities. The

goal of algorithmic mechanism design research is to design protocols so that any particular

negotiation history has certain desirable properties. In [41], the following properties are

mention as primordial for this kind of protocols:

• Guaranteed success – A protocol guarantees success if it ensures that, eventually

agreement is certain to be reached.

• Social welfare – The sum of all agent’s payoffs or utilities in a given solution.

Maximum social welfare can be bad for some agents.

• Pareto efficiency – A solution is Pareto Efficient (or Pareto optimal) if one can-

not increase an agent’s utility without decreasing another agent’s utility. That is,

solution x is Pareto efficient if there’s no other solution x′ such that at least one

agent is better off in x′ than in x, and no agent is worst off in x′ than in x.

16



• Individual rationality – Can participating in the negotiation make things worse?

Participation in the negotiations is better than no participation.

• Stability – A mechanism should be designed such that the agents’ choice of strat-

egy should be stable and non-manipulable (motivate each agent to behave in the

desired manner). The best-known kind of stability is Nash equilibrium, which is

a solution concept of a game involving two or more players, in which no player

has anything to gain by changing only his or her own strategy unilaterally. If each

player has chosen a strategy and no player can benefit by changing his or her strat-

egy while the other players keep theirs unchanged, then the current set of strategy

choices and the corresponding payoffs constitute a Nash equilibrium.

• Computational efficiency or simplicity – A mechanisms should be designed so

that when agents use them, as little computation is needed as possible.

• Distribution and communication efficiency – The mechanism should be de-

signed to ensure that there is no single-point failure (such as a single arbitrator)

and minimize the communication overhead.

The use of game-theoretic techniques is very successful in distributed rational deci-

sion making or automated negotiations [19]. Distributed algorithmic mechanism design

(DAMD) is field that combines theoretical computer science’s traditional focus on compu-

tational tractability with its more recent interest in incentive compatibility and distributed

computing [10].

17



CHAPTER 4

AUCTIONS

Our research focuses in combinatorial auctions (CAs), those auctions in which bid-

ders can place bids on combinations of items, called “packages” rather than just individual

items. The study of combinatorial auctions is an important interdisciplinary field combin-

ing issues from economics, game theory, optimization, and computer science. Combina-

torial auctions are in the first place auctions, a topic extensively studied by economists.

Package bidding brings in operations research, especially techniques from combinatorial

optimization and mathematical programming. Finally, computer science is concerned with

the expressiveness of various bidding languages, and the algorithmic aspects of the combi-

natorial problem.

To understand the role of combinatorial auctions, it is useful to step back and think

about auctions in general. In an auction, agents can express how much they want a par-

ticular item via their bid and a central auctioneer can make the allocation based on these

bids. Of course, this generally requires the use of a centralized auctioneer but there are

techniques for reducing this bottleneck. Still, even centralized auctions can be very com-

plex and produce unexpected results if one does not understand all the details. Abstractly,

an auction takes place between an agent known as the auctioneer and a collection of agents

known as the bidders. The goal of the auction is for the auctioneer to allocate the good to

one of the bidders. Auctions usually end with a deal between two agents (auctioneer and a

bidder).

In most settings the auctioneer desires to maximize the price at which the good is al-

located or sold—normally, through the design of an appropriate mechanism—while the

18



bidders attempt to minimize that price—by using a strategy that follows the rules of en-

counter but also delivers optimal result. There are several factors that can affect both the

protocol and the strategy that the agents use. The most important of these is the nature of

the bidder’s valuation.

We have used (in Chapter 2) the notation ui(s) to refer to the utility that agent i derives

from state s. Similarly, if s is instead an item, or set of items, for sale we can say that

vi(s) ∈ < is the valuation that i assigns to s. We furthermore assume that this valuation is

expressed in a common currency for all the agents in the auction, thus vi(s) then becomes

the maximum amount of money that agent i is willing to pay for s. When studying auctions

we generally assume that all agents have a valuation function over all the items being sold.

There exist three types of settings in which the value of an item can be defined:

• Private value – In this case the valuation function reflects the agent’s utility of

owning the given items.

• Common value – This is the case when there are items which you cannot consume

and gain no direct utility from but which might still have a resale value. For

example, in the stock market, when you buy a share in some company you cannot

do anything with that share, except sell it. As such, your valuation on that share

depends completely on the value that others attribute, and will attribute, to that

share.

• Correlated value – Most cases, however, lie somewhere in the middle. When you

buy a house you take into consideration the value that you will derive from living

in that house as well as its appreciation prospects: the price you think others will

pay when you finally sell it. Correlated value functions are very common in the

real world with durable high priced items.

The type of valuation function that the agents use changes their optimal behavior in

an auction. Most multiagent implementations use agents with private value functions as

most systems do not want to waste the time required to implement secondary markets for

19



the items being sold. Still, in open multiagent systems it might be impossible to prevent

secondary markets from appearing.

4.1. SINGLE GOOD AUCTIONS

In general, the most well known of auctions are the single good auctions, where only

one item is being offered for sale. We describe features of the most common auctions of

this type.

• English auction – Is a first-price, ascending, open-cry auction which dominant

strategy is always bid a small amount more than current highest bid, until the

bidder’s private value is reached or the bidder gets the good paying the price of

her bid.

• Vickrey auction – Second-price sealed-bid auction, the bidder that bids the high-

est wins, paying the price of the second highest bid. A bidder dominant strategy

in a Vickrey auction is to bid his true valuation. An agent is best off bidding truth-

fully, no matter what the other bidders are like. The agents reveal their preferences

truthfully, this allows globally efficient decisions to be made. No need to waste

efforts on gathering information about other agents’ preferences.

• First-price sealed-bid auction – Each bidder submits one bid, without knowing

the other’s bids. In in this auction format, it is advantageous for a bidder to gather

information about the competing bids before deciding on his own bid; therefore,

the “privacy” issue is essential. Bidders bid as a function of their private value

and their prior estimates of others’ valuations. There is no dominant strategy in

general, but is clear that bidders would bid less than the their true valuation.

• Dutch auction – Seller continuously lowers the price until one of the bidders takes

the item at its current price. Strategically equivalent to the first-price sealed-bid

auction. Unlike in the second-price and English auctions, it is not a dominant

20



strategy in a first-price auction to bid your value. However, the theoretically op-

timal bidding strategy in both first-price and Dutch auctions is the same for any

given bidder.

4.2. COMBINATORIAL AUCTIONS

In a combinatorial auction there is a set M of indivisible items that are concurrently

auctioned amongst a set of bidders N . The combinatorial aspect of the auction comes from

the fact that bidders have preferences regarding subsets of items [3].

Formally, every bidder i has a valuation function vi that describes his preferences.

Thus, bidder i’s value function over a set of items S, the value that i obtains if gets S, is

given by vi(S) ∈ <. A valuation function must have free disposal—for S ⊆ T we have

that v(S) ≤ v(T )—and it should be normalized—v(∅) = 0.

There are two different kinds of valuation functions we can consider [8]:

• sub-additive – A function f is locally sub-additive if for all disjoint sets S1 and

S2 we have that f(S1 ∪ S2) ≤ f(S1) + f(S2). The function expresses substitu-

tion effects between goods. This occurs when the bundle is worth less than the

valuation for the single goods.

• super-additive – A function f is super-additive if for all disjoint sets S1 and S2

we have that f(S1 ∪S2) ≥ f(S1) + f(S2). It expresses complementarity between

goods. This is the case when the bundle is worth more than the sum of the single

goods.

The advantage of combinatorial auctions is that agents can express synergies they have

between various items. Using their value functions, bidders can submit bids over bundles.

Each bid b is composed of three elements: bprice, the value or price of the bid; bitems, the set

of items the bid is over; and bagent, the agent that placed the bid. Thus, if a bidder i wins a

set of items bitems paying a price bprice, i’s utility is ui(b
items) = vi(b

items)− bprice, that is, the

difference between its private valuation and the price paid.

21



An allocation of items amongst bidders is a bidset Y = {b1, . . . , bn}where ∀bj ,bk∈Y b
items
j ∩

bitems
k = ∅. The social welfare obtained by an allocation Y is Σb∈Y vbagent(bitems). The social

welfare maximizing solution simply maximizes this equation.

22



CHAPTER 5

THE WINNER DETERMINATION PROBLEM

The winner determination problem (WDP) is a computational problem of how to effi-

ciently determine the allocation of items to biders once the bids have been submitted to the

auctioneer. It can be stated as follows: given the set B of bids submitted by all the bidders

in a combinatorial auction, find an allocation of items to bidders—including the possibility

that the auctioneer retains some items—that maximizes the auctioneer’s revenue. More

formally, find

X∗ = argmax
X⊆C

∑
b∈X

bprice, (2)

where C is a set of all bidsets in which none of the bids share an item, that is

C = {Y ⊆ B | ∀a,b∈Y a
items ∩ bitems = ∅}. (3)

This problem is difficult for large set of items M . Specifically, it has been proved to

be NP-Hard [34]. The complexity of the problem resides in the worst case, since there

are many possible bundles, specifically if bids exists for all subsets of items. Because of

the wide applicability of combinatorial auctions [8] one cannot hope for a general-purpose

algorithm that can efficiently solve every instance of this problem. Nevertheless, several

algorithms that have a satisfactory performance for problem sizes and structures occurring

in practice have been developed. However, most of the existing winner determination algo-

rithms for combinatorial auctions are centralized. Examples of these algorithms are CASS

[11], Bidtree [38], and CABOB [40]. In the following subsections we describe the existing

approaches used by these algorithms.

Using a brute force search of all possible allocations of items to agents is computation-

ally intractable. In fact, as mentioned before, the problem has been proved to be NP-hard

23



[34]. There are three main different approaches that have been used for solving the winner

determination problem for combinatorial auctions [40]:

• severely restricting the bundles on which bids can be submitted so that the re-

maining problem can be solved optimally and probably fast.

• designing optimal algorithms that guarantee to find a solution but are slow on

some problem instances.

• designing approximate algorithms which are probably fast, but fail to find an

optimal solution.

5.1. RESTRICTING THE WINNER DETERMINATION PROBLEM

Even simplifying it, the winner determination problem is not easy to solve. For exam-

ple, say that instead of trying to find the best allocation we simply want to check if there

exists an allocation with total revenue of at least w. We call this the decision version of

the winner determination problem. Even if it is restricted to instances where every bid has

a value equal to 1, every bidder submits only one bid, and every item is contained in ex-

actly two bids, the decision version of the winner determination problem in combinatorial

auctions has been proved to be NP-complete [22].

Because of the NP-hardness of the winner determination problem, attempts to tackle

it by restricting the problem to classes of subproblems which can be solved optimally by

polynomial time algorithms have been made. The restrictions are put in place by forbidding

certain combinations of bids, which narrows the bidders in expressing their real valuations.

Disallowing bidding on certain combinations of items, causes that bidders might not be able

to bid on all bundles they desire. The research done in this area has focused in reaching

two basic goals:

(1) The restriction of bids must be designed in such a way that allows a polynomial

algorithm to solve it optimally.

24



(2) The restricted problems must still be of practical relevance, in other words, sce-

narios must be found where the bidders are naturally not interested on certain

combinations of goods.

Since the pioneer efforts in this area, it has been showed the relevance of this approach

in real-world applications. Some polynomial algorithms to solve the resulting winner deter-

mination problem optimally are shown in [34], where they also consider different structures

of permitted bids. For example, in cardinality-based structures, bids are only allowed to

contain at most two goods. Allowing three goods makes the problems again not solvable in

polynomial time. This restriction might be valid for auctions of airport landing slots since

flight companies are mostly interested on pairs of landing and take-off slots.

5.2. OPTIMAL ALGORITHMS

There are two approaches used to optimally find the revenue-maximizing bidset X∗.

The first one is based on the reformulation of the problem as linear programming prob-

lem, which can then be, solved in polynomial time with well-known algorithms. The only

restriction is that prices should be attached to single items in the auction. In many cases

this requirement can be satisfied by simply adding the missing singleton bids, each with

a value of 0 [29]. The second approach is to conduct one of the standard artificial intelli-

gence (AI) searches over all possible allocations, given the bids submitted. The advantage

of this approach over using a linear programming solver is that the AI search algorithms

can be tweaked and be optimized to solve specific problems. That is, we can put some of

our domain knowledge into the algorithm to make it run faster, as we shall see.

5.2.1. Linear Programming Approach. As explained before, the winner determina-

tion problem is very hard even when we try to limit its complexity. However, the WDP in

combinatorial auctions can be reduced to a linear programming problem and, therefore,

solved in polynomial time with well-known algorithms (due to its rapid development in the

last years, the commercial solver ILOG CPLEX has become the state-of-the art algorithm

for the WDP using this approach.) but only if prices can be attached to single items in the

25



auction [29]. That is, there needs to be a singleton bid for every item. In many cases we

can satisfy this requirement by simply adding the missing singleton bids, each with a value

of 0. Specifically, the linear program which models the winner determination problem is to

find the x that satisfies the following:

Maximize: ∑
b∈B

x[b]bprice

Subject to: ∑
b | j∈bitems

x[b] ≤ 1,∀j ∈M

x[b] ∈ {0, 1},∀b ∈ B,

, where x[b] is a bit which denotes whether bid b is a winning bid. That is, maximize the

sum of the bid values given that each item can be in, at most, one winning bid. It has also

been shown that the linear programming problem will solve a combinatorial auction when

the bids satisfy any one of the following criteria [29]:

(1) When the sets of items can be linearly ordered such that all bids are for consecutive

sub-ranges of the items.

(2) The sets of items in all the bids form a nested hierarchy. That is, for every two

subsets of items S, S ′ that appear as part of any bid, we have that either they are

disjoint or that one contains the other.

(3) The bids are only OR-of-XORs of singleton bids.

(4) The bids are all singleton bids.

(5) The bids are downward sloping symmetric. That is, each bidder values all items

as if they are identical, and has a sequence of valuations p1 ≥ p2 ≥ · · · ≥ pm,

where pj specifies his valuation of the j′th item she wins.

5.2.2. AI-Search Based Approaches. In this class, algorithms for the WDP have con-

centrated on using branch and bound methods. Branch and bound methods construct de-

cision trees,and try to eliminate certain regions of the solution space by pruning sub-trees.

26



BUILD-BRANCH-ON-ITEMS-SEARCH-TREE

1 Create a singleton bid for any item that does not have one
2 Number items from 1 to m
3 Create empty root node
4 for n ∈M in order
5 do Add as its children all bids that
6 include the smallest item that is not an ancestor of n but
7 that do not include any item that is an ancestor of n.

FIGURE 5.1. Algorithm for building a branch on items search tree [44].
This algorithms does not find a solution, it only builds a tree for the purpose
of illustration.

This is accomplished by finding lower and upper bounds for the unknown optimal solution.

Before we can do search we need to define our search tree. One way we can build a

search tree is by having each node be a bid and each path from the root to a leaf correspond

to a set of bids where no two bids share an item. In [44] an algorithm for building this tree

is presented, we show the algorithm in Figure 5.1. We refer to this tree as a branch on

items search tree. In general, we know that the number of leaves in the tree is bounded.

The number of leaves in the tree produced by BUILD-BRANCH-ON-ITEMS-SEARCH-TREE

is no greater than (|B|/|M |)|M |. The number of nodes is no greater than |M | times the

number of leaves plus 1 [38].

We can also build a binary tree where, as before, each node is a bid, but this time, each

edge represents whether or not that particular bid is in the solution. We refer to this tree as

a branch on bids search tree. Each edge in the tree indicates whether the parent node (bid)

is to be considered as part of the final bidset.

We now have to decide how to search our chosen tree. Since both trees have a number

of nodes that is exponential on the number of bids a breadth first search would require too

much memory. However, a depth first search is possible, but time consuming. A branch

and bound algorithm helps to reduce the search space and speed up computation. In order

to implement it we first need a function h which gives us an upper bound on the value of

27



BRANCH-ON-BIDS-CA()

1 r∗ ← 0 � Max revenue found. Global variable.
2 g∗ ← ∅ � Best solution found. Global variable.
3 BRANCH-ON-BIDS-CA-HELPER(∅)
4 return g∗

BRANCH-ON-BIDS-CA-HELPER(g)

1 if
⋃

b∈g b
items = M � g covers all items

2 then if
∑

b∈g b
price > r∗ � g has higher revenue than r∗

3 then g∗ ← g
4 r∗ ←

∑
b∈g b

price

5 return
6 for b ∈ {b ∈ B | bitems ∩

⋃
b1∈g b

items
1 = ∅}� b’s items do not overlap g

7 do g′ ← g + b

8 if
∑

b1∈g′ b
price
1 + h(g′) > r∗

9 then BRANCH-ON-BIDS-CA-HELPER(g′)

FIGURE 5.2. A centralized branch and bound algorithm that searchers a
branch on bids tree and finds the revenue maximizing solution given a set B
of combinatorial bids over items M [44].

allocating all the items that have yet to be allocated. One such function is h

h(g) =
∑

j∈M−
⋃

b∈g bitems

max
b|j∈bitems

bprice

|bitems|
, (4)

where g is the set of bids that have been cleared. The function h simply adds up the

maximum possible revenue that each item not in g could contribute by using the bid that

pays the most for each item, divided by the number of items on the bid. This function

provides an upper bound since no feasible bidset with higher revenue can exist.

Given the upper bound h(g) we can then implement the branch and bound algorithm

shown in Figure 5.2. This algorithm searches the branch on bids tree. It maintains a

partial solution g to which it adds one bid on each recursive call. Whenever it realizes that

partial solution will never be able to achieve revenue that is higher than the best revenue

it has already found then it gives up on that subtree, see line 8 of BRANCH-ON-BIDS-CA-

HELPER. This algorithm is complete and thus guaranteed to find the revenue maximizing

bidset.

28



We can also use the same heuristic function to do an A∗ search. Unfortunately, since

A∗ acts much like a breadth first search it generally consumes too much memory. A viable

solution is to use iterative deepening A∗. IDA∗ guesses how much revenue we can expect

and runs a depth-first search that prunes nodes that have used more than that. If a solution is

not found then the guess is reduced and we try again. IDA∗, with some optimizations, was

implemented by the Bidtree algorithm [37] on the branch on items search tree. In practice,

this approach was found to often be slower than a branch and bound search.

The BRANCH-ON-BIDS-CA algorithm is the basic framework for the Combinatorial

Auction Branch on Bids (CABOB) algorithm [40]. CABOB improves the performance of

the basic algorithm in several ways, one of which is by improving the search for new bids

to add to the partial solution. Specifically, we note that a naive implementation of line 6 of

BRANCH-ON-BIDS-CA-HELPER would mean that we would build this set on each recursive

call to the function. That would be very time consuming as there are an exponential number

of bids in B. CABOB handles this problem by maintaining graph data structure which has

all the bids that can still be used given g. The nodes in the graph are the bids that are still

available and the edges connect every pair of bids that share an item. In this way when

a new bid is added to g it is removed from the graph as well as all the other bids that are

connected to it.

We can also perform the branch and bound search on the branch on items search tree,

as shown in Figure 5.3. This algorithm is the basis for the CASS (Combinatorial Auc-

tion Structured Search) algorithm which also implements further refinements on the basic

algorithm [11].

Most algorithms for centralized winner determination in combinatorial auction expand

on the basic branch and bound search by using specialized data structures to speed up access

to the information need—the viable bids given the current partial solution—and implement

heuristics which have been shown to reduce the size of the search space, especially for

certain popular bid distributions. In general the best speed attainable by the best algorithms

29



BRANCH-ON-ITEMS-CA()

1 r∗ ← 0 � Max revenue found. Global variable.
2 g∗ ← ∅ � Best solution found. Global variable.
3 BRANCH-ON-ITEMS-CA-HELPER(1, ∅)
4 return g∗

BRANCH-ON-ITEMS-CA-HELPER(i, g)

1 if i = m � g covers all items
2 then if

∑
b∈g b

price > r∗ � g has higher revenue than r∗

3 then g∗ ← g
4 r∗ ←

∑
b∈g b

price

5 return
6 for b ∈ {b ∈ B | i ∈ bitems ∧ bitems ∩

⋃
b1∈g b

items
1 = ∅}� b’s items do not overlap g

7 do g′ ← g + b

8 if
∑

b1∈g′ b
price
1 + h(g′) > r∗

9 then BRANCH-ON-BIDS-CA-HELPER(g′)

FIGURE 5.3. A centralized branch and bound algorithm that searchers a
branch on items tree and finds the revenue maximizing solution given a set
B of combinatorial bids over items M [44].

varies greatly depending on the type of bids submitted. Some optimizations and heuristics

that have been found useful include the following [44]:

• Keep only the highest bid for any set. That is, if there is a bid of $10 for items 1,2

and another bid of $20 for 1,2 then we get rid of the $10 bid.

• Remove provably noncompetitive bids, that is, those that are dominated by another

bid or sets of bids. For example, if there is a bid for $10 for item 1 and another

bid for $5 for items 1,2 then the $10 bid dominates the $5 bid—any situation in

which we choose the $5 bid would be made better if we changed that bid for the

$10 bid.

• Decompose bids into connected sets, each solved independently. If we can sepa-

rate the set of bids into two or more sets of bids where all bids for any item are

to be found in only one of the sets then this set of bids becomes a smaller, and

independent, winner determination problem.

30



• Mark noncompetitive tuple of bids. For example, if there are bids $1:(1,2), $1:(3,4),

$10:(1,3), $10:(2,4) then the pair of $10 bids dominates the pair of $1 bids, so we

can get rid of them.

• In the branch-on-items tree place the items with the most bids first on the tree.

This way the most constrained items are tried first thereby creating fewer leafs.

• If the remaining search subtree is the same for different nodes in the search tree,

as can happen when different items are cleared but by different bids, then these

subtrees can be cached. The subtree is solved once and the answer, that is, the best

set of bids found in it, is saved for possible future use.

5.3. APPROXIMATE ALGORITHMS

Approximate (or non-optimal) algorithms are another way to tackle the problem of

finding an optimal bidset. These algorithms usually cannot guarantee the quality of the

solution but have fast running times. Some of them are also any-time algorithms, when a

reasonable solution is available at any time but it becomes better with time.

One of the simplest methods is the greedy algorithm [23]. The basic algorithm can be

summarized into two steps:

(1) The bids are sorted by bprice/|bitems|c for some number c, 0 ≤ c ≤ 1. The authors

showed that c = 0.5 was the approximate best value, it guarantees an approxima-

tion ratio of at least
√
M , where M is the number of goods.

(2) Proceed down the sorted list of bids accepting bids if the goods in demand are still

unallocated and not conflicted, where bids bj and bk conflict if bitems
j ∩ bitems

k 6= ∅.

Several other similar techniques and meta-heuristics have been used, such as stochastic

local search [14], limited discrepancy search [36], a combination of approximated positive

linear programming and stepwise random updates of allocations [49], genetic algorithms

[2], and hill climbing and simulated annealing [12].

31



CHAPTER 6

THE COMBINATORIAL AUCTION TEST SUITE (CATS)

CATS (Combinatorial Auction Test Suite) is a generator of combinatorial auction in-

stances for the testing of winner determination algorithms [24]. It features five distributions

of instances from realistic, economically motivated domains, as well as a collection of ar-

tificial distributions that have been used in the literature. The following is the list of bid

distributions with a economically motivated domains:

• Paths in space – Is based in real-world domains like railroad network, truck ship-

ping, network bandwidth allocation, natural gas pipeline, etc. In this domain the

goods are edges in a graph, and the bidders acquire a path from a to b by buying

a set of edges. CATS generates a random graph, instead of using a real railroad

map, to be able to scale in the number of goods. Based in this graph, it generates

bids for each bidder.

• Proximity in space – The real-world domain that motivates this distribution is

real estate. Here the goods are nodes in a graph and the edges indicate adjacency

between goods, and bidders are interested on buying a set of adjacent nodes ac-

cording to common and private values.

• Arbitrary (arbitrary relationships). The motivation of this distribution is the

type of problems where the goods do not give rise to a notion of adjacency, but

regularity in complementarity relationships can still exist, for example, physical

objects like collectables, semiconductors, etc.

• Temporal Separation (matching) – The real-world problems that motivate this

distribution are those where time slices must be secured on multiple resources.

For example, aircraft take-off and landing rights. It is based in the map of airports

32



for which take-off and landing rights are actually sold, the four busiest airports in

the USA (La Guardia, Kennedy, O’Hare, and Reagan). In this airport map, the

goods are time slots, not nodes or edges, thus, a random graph is not needed for

scalability.

• Scheduling (Temporal Adjacency). The motivation of this distribution is the

problem of distributed job-shop scheduling with one resource. Here, the bidders

want to use the resource for a given number of time units. They have one or more

deadlines with different values for them. It is assumed that all jobs are eligible to

start in the first time-slot and each job is allocated continuous time on the resource.

As mentioned before, CATS has also a legacy distributions section, since CA algorithm

researchers have compared performance using each other’s distributions [1, 4, 9, 11, 32,

37]. Despite some drawbacks (e.g. they do not explicitly model bidders and lack a real-

world economic motivation [24]), these distributions remain important for comparing new

work to previously published work.

33



CHAPTER 7

THE PAUSE AUCTION

The PAUSE auction is an increasing price combinatorial auction that naturally dis-

tributes the problem of winner determination among the bidders. In the PAUSE auction,

the bidders have an incentive to perform the needed computation, as shown below. A

PAUSE auction for m items has m stages:

(1) Stage 1 consists of having simultaneous ascending price open-cry auctions. Dur-

ing this stage the bidders can only place bids on individual items. At the end of

this state we will know what the highest bid for each individual item is and who

placed that bid.

(2) Each successive stage k = 2, 3, . . . ,m consists of an ascending price auction. In

these stages the bidders must submit bidsets that cover all items but each one of

the bids must be for k items or less.

In stages k ≥ 2 the bidders are allowed to use bids that other agents have placed in

previous rounds when building their bidsets, thus allowing them to find better solutions

(remember that their bidsets have to cover all items). Also, any new bidset has to have

a sum of bid prices which is bigger than that of the currently winning bidset. At the end

of each stage k all agents know the best bid for every subset of size k or less. Also, at

any point in time after stage 1 has ended there is a standing bidset whose value increases

monotonically as new bidsets are submitted.

Since in the final round all agents consider all possible bidsets, we know that the final

winning bidset will be one such that no agent can propose a better bidset. Note, however,

that this bidset is not guaranteed to be the one that maximizes revenue since we are using

an ascending price auction so the winning bid for each set will be only slightly bigger

34



than the second highest bid for the particular set of items. That is, the final prices will not

be the same as the prices in a traditional combinatorial auction where all the bidders bid

their true valuation; which represent an incentive for the bidders to participate in this type

of auction. However, there remains the open question of whether the final distribution of

items to bidders found in a PAUSE auction is the same as the revenue maximizing solution.

Chapters 10, 11, and 12 provide answers to this question by presenting the tests and results

of the set of bidding strategies we have developed.

7.1. THE JOB OF THE AUCTIONEER IN THE PAUSE AUCTION

The PAUSE auction makes the job of the auctioneer very easy. All it has to do is to

make sure that each new bidset has a revenue bigger than the current winning bidset, as well

as make sure that every bid in an agent’s bidset that is not his does indeed correspond to

some other agents’ previous bid (Figure 1.3). The computational problem shifts from one

of winner determination to one of bid generation. Each agent must search over the space of

all bidsets which contain at least one of its bids. The search is made easier by the fact that

the agent needs to consider only the current best bids and only wants bidsets where its own

utility is higher than in the current winning bidset. Each agent also has a clear incentive for

performing this computation, namely, its utility only increases with each bidset it proposes

(of course, it might decrease with the bidsets that others propose). Finally, the PAUSE

auction has been shown to be envy-free in that at the conclusion of the auction no bidder

would prefer to exchange his allocation with that of any other bidder [8].

We can even envision completely eliminating the auctioneer and, instead, have every

agent perform the task of the auctioneer (Figure 1.4). That is, all bids are broadcast and

when an agent receives a bid from another agent it updates the set of best bids and deter-

mines if the new bid is indeed better than the current winning bid. The agents would have

an incentive to perform their computation as it will increase their expected utility. Also,

any lies about other agents’ bids are easily found out by keeping track of the bids sent out

by every agent (the set of best bids). Namely, the only one that can increase an agent’s bid

35



value is the agent itself. Anyone claiming a higher value for some other agent is lying. The

only thing missing is an algorithm that calculates the utility-maximizing bidset for each

agent.

36



CHAPTER 8

RELATED WORK

Although the research of various aspects of combinatorial auctions is vast (we recom-

mend [8] for a good review), the study of distributed winner determination algorithms for

combinatorial auctions is still relatively new (besides the PAUSE auction there are few

other attempts to do this). As mentioned in the introduction chapter, a simple way to dis-

tribute the winner determination problem is by using sequential or simultaneous single item

auctions. However, this approach exposes the bidders to the possibility that they will win

some, but not all the items they desire [7]. Another way of distributing the WDP among

the bidders is provided by the Virtual Simultaneous Auction (VSA) [11] which is based

on market-oriented programming ideas [46]. It is an iterative algorithm where successive

auctions for the items are held and the bidders change their bids based on the last auction’s

outcome. The auction is guaranteed to find the optimal solution when the bidding termi-

nates. Unfortunately, there is no guarantee that bidding will terminate and experimental

results show that in most cases bidding appears to go on forever. Another approach con-

sists of the algorithms for distributing the WDP in combinatorial auctions presented in [28],

but these algorithms assume the computational entities are the items being sold and thus

end up with a different type of distribution. In [31] the authors present a distributed mech-

anism for calculating VCG payments in a mechanism design problem. Their mechanism

roughly amounts to having each agent calculate the payments for two other agents and give

these to a secure central server which then checks to make sure results from all pairs agree,

otherwise a re-calculation is ordered. This general idea, which they call the redundancy

principle, could also be applied to our problem but it requires the existence of a secure

center agent that everyone trusts. Another interesting approach is given in [30] where the

37



bidding agents prioritize their bids, thus reducing the set of bids that the centralized winner

determination algorithm must consider, making the problem easier. Finally, in the compu-

tation procuring clock auction [5] the agents are given an ever-increasing percentage of the

surplus achieved by their proposed solution over the current best. As such, it assumes the

agents are impartial computational entities, not the set of possible buyers as assumed by

the PAUSE auction.

38



Part 3

Research Contributions of this Dissertation



CHAPTER 9

BIDDING IN THE PAUSE AUCTION: PROBLEM

FORMULATION

In the PAUSE auction the bidders are the ones who do the computation to find the

allocation. Their job is to find the set of bids that form a valid solution (bidset) and that

maximizes their utility. The agents maintain a set B of the current best bids, one for each

set of items of size ≤ k, where k is the current stage. At any point in the auction, after the

first round, there will also be a set W ⊆ B of currently winning bids. This is the set of bids

that covers all the items and currently maximizes the revenue, where the revenue (r) of W

is given by

r(W ) =
∑
b∈W

bprice. (5)

Agent i’s value function is given by vi(S) ∈ < where S is a set of items. Given

an agent’s value function and the current winning bidset W we can calculate the agent’s

utility from W as

ui(W ) =
∑

b∈W | bagent=i

vi(b
items)− bprice. (6)

That is, the agent’s utility for a bidset W is the value it receives for the items it wins in W

minus the price it must pay for those items. If the agent is not winning any items then its

utility is zero.

The goal of the bidding agents in the PAUSE auction is to maximize their utility, subject

to the constraint that their next set of bids must have a total revenue that is at least ε bigger

than the current revenue, where ε is the smallest increment allowed in the auction. Formally,

40



given that W is the current winning bidset, agent i must find a g∗i such that

g∗i = arg max
g⊆2B

ui(gi), (7)

where each gi is a set of bids that covers all items, r(gi) ≥ r(W ) + ε, and ∀b∈g (b ∈ B) or

(bagent = i and bprice > B(bitems) and |bitems|) ≤ k), and B(items) is the value of the bid in

B for the set items (if there is no bid for those items it returns zero). That is, each bid b in

g must satisfy at least one of the two following conditions:

(1) b is already in B,

(2) b is a bid of size less than or equal to k in which the agent i bids higher than the

price for the same items in B.

If we have an algorithm that can find that g∗i , we would be interested in analyzing the

solutions that this algorithm and the PAUSE auction generate. We would be interested on

determining how long it would take for populations of agents using this algorithm to arrive

at a solution, as well as quantifying the bidders expected utility of this solution. Also we

would be interested in knowing if the agents in a PAUSE auction arrive at the revenue-

maximizing solution. In the following section we define some metrics to analyze a bidding

algorithm for the PAUSE auction.

9.1. METRICS

As designers we would be interested in the (allocative) efficiency of the solutions found

by the PAUSE auction. One of the most widely used criteria for comparing alternative

mechanism by comparing the solutions that the mechanism lead to, is the social welfare.

The social welfare is the sum of all agents’ payoffs or utilities in a given solution. It

measures the global good of the agents. Thus, an optimal solution would be one that

maximizes the social welfare (as explained in Section 4.2).

Additionally, knowing the optimal solution of an auction, we could compare the ef-

ficiency of the PAUSE auction as ratio to the optimal solution. This would be useful for

knowing how different is a solution obtained by PAUSE from the optimal solution, in terms

41



of global good of the agents. We define the efficiency ratio to be the ratio of the sum of

the valuations of the winning bidders for the bids they win to the optimal solution.

efficiencyRatio(Ws) =

∑
b∈Ws

vbagent(bitems)

r∗
, (8)

where vbagent(bitems) ∈ < is the valuation that the bidder bagent, the winner of bid b, has for

items bitems. It gives us the efficiency of the allocation Ws found by PAUSE using the

bidding algorithm s as compared to r∗, the social welfare of the optimal solution. A ratio

of 1 means that the PAUSE solution has allocated the items to the same buyers that they

are allocated to in the optimal allocation—or at least to a set of buyers with the same sum

of valuations.

In an auction the seller wants to maximize the revenue. We can compare the revenue

generated by the PAUSE auction to the maximum possible revenue for that auction, which

would be obtained if the bidder agents bid their private valuation 1. We can do this by

calculating a revenue ratio.

revenueRatio(Ws) =
r(Ws)

r∗
, (9)

where r∗ is the social welfare of the optimal solution—the maximum revenue assuming that

bidders bid truthfully—and r(Ws) is the revenue generated by the allocation Ws found by

the PAUSE auction using bidding algorithm s. As mentioned before, we know beforehand

that the prices paid in PAUSE are lower than those that would be paid in a in a centralized

one-shot first price sealed-bid combinatorial auction assuming truthfully bidding, because

PAUSE is an English auction. Thus, the prices paid are roughly the second highest price

plus some ε.

In a one-shot first price sealed-bid combinatorial auction, assuming that bidder pay their

true valuation, the bidders’ utility is zero. In the PAUSE auction, the bidders’ utility can

be greater than zero, since as mentioned before, the winners end up paying less than their

1although this is not a realistic scenario, since in practice bidders tend to bid lower than their true valuation,
unless the mechanism is incentive compatible and strategyproof like the Vickrey-Clarke-Groves (VCG) [17]

42



private valuations; given that PAUSE is an increasing price auction. When considering

whether or not to participate in a PAUSE auction, bidders would be more interested in

knowing the expected utility from switching to the PAUSE auction or, more precisely, the

expected utility of choosing amongst the different bidding algorithms. We calculate the

bidders’ expected utility ratio by dividing the sum of the bidders utility by r∗.

expectedUtilityRatio(Ws) =

∑
b∈Ws

ubagent(b)

r∗
, (10)

where ubagent(b) = vbagent(bitems)− bprice is the utility obtained by bidder bagent, who is wining

bid b; and as before, Ws is the allocation found by PAUSE using the bidding algorithm s

and r∗ is the social welfare of the optimal solution.

In order to determine the scalability of the PAUSE auction we can analyze the running

time required to finish an auction. In general, the time required to find the winning bidset

is tied to the number of goods and bids in the auction. In the PAUSE auction there is one

more factor involved, the number of bidders, since they are the ones that actually solve the

problem. Knowing how the PAUSE auction scales based on the bidding algorithm is of

interest not only to the seller and the buyer, but also the designer.

43



CHAPTER 10

MYOPICALLY-OPTIMAL BIDDING ALGORITHMS FOR A

DISTRIBUTED COMBINATORIAL AUCTION

According to the PAUSE auction, during the first stage we have only several English

auctions, with the bidders submitting bids on individual items. In this case, an agent’s

dominant strategy is to bid ε higher than the current winning bid until it reaches its valuation

for that particular item. Our algorithms focus on the subsequent stages: k > 1. When

k > 1, agents have to find g∗i . This can be done by performing a complete search on B.

However, this approach is computationally expensive since it produces a large search tree.

Our algorithms represent alternative approaches to overcome this expensive search.

10.1. THE PAUSEBID ALGORITHM

In the PAUSEBID algorithm (shown in Figure 10.1) we use branch and bound to prune

the search tree. Given that bidders want to maximize their utility and that at any given point

there are likely only a few bids withinB which the agent can dominate, we start by defining

my-bids to be the list of bids for which the agent’s valuation is higher than the current best

bid, as given in B. We set the value of these bids to be the agent’s true valuation—but

we won’t necessarily be bidding true valuation, as we explain later. Similarly, we set

their -bids to be the rest of the bids from B. Finally, the agent’s search list is simply the

concatenation of my-bids and their -bids . Note that the agent’s own bids are placed first on

the search list as this will enable us to do more pruning (PAUSEBID lines 3 to 9). The agent

can now perform a branch and bound search on the branch-on-bids tree produced by these

bids, implemented by PBSEARCH (Figure 10.3). Our algorithm not only implements the

44



PAUSEBID(i, k)

1 my-bids ← ∅
2 their -bids ← ∅
3 for b ∈ B
4 do if bagent = i or vi(b

items) > bprice

5 then my-bids ← my-bids +new Bid(bitems, i, vi(b
items))

6 else their -bids ← their -bids +b
7 for S ∈ subsets of k or fewer items such that vi(S) > 0 and ¬∃b∈Bb

items = S
8 do my-bids ← my-bids +new Bid(S, i, vi(S))
9 bids ← my-bids + their -bids

10 g∗ ← ∅ � Global variable
11 u∗ ← ui(W ) � Global variable
12 PBSEARCH(bids , ∅)
13 g∗ ← DISTRIBUTEPAYMENTS(i, g∗)
14 return g∗

FIGURE 10.1. The PAUSEBID algorithm which implements a branch and
bound search. i is the agent and k is the current stage of the auction, for
k ≥ 2.

DISTRIBUTEPAYMENTS(i, g)

1 surplus ←
∑

b∈g | bagent=i b
price −B(bitems)

2 if surplus > 0
3 then min-payment ← max(0, r(W ) + ε− (r(g)− ri(g)),

∑
b∈g | bagent=iB(bitems))

4 for b ∈ g | bagent = i
5 do if min-payment ≤ 0
6 then bprice ← B(bitems)

7 else bprice ← B(bitems) + min-payment · b
price−B(bitems)

surplus

8 return g

FIGURE 10.2. The DISTRIBUTEPAYMENTS function distributes the pay-
ments of the bids agent i, included in g, proportionally to the agent’s true
valuation for each set of items.

standard bound but it also implements other pruning techniques in order to further reduce

the size of the search tree.

The bound we use is the maximum utility that the agent can expect to receive from a

given set of bids. We call it u∗. Initially, u∗ is set to ui(W ) (PAUSEBID line 11), where

W is the current winning bidset, since that is the utility the agent currently receives and

any solution he proposes should give him more utility. If PBSEARCH ever comes across a

45



partial solution where the maximum utility the agent can expect to receive is less than u∗

then that subtree is pruned (PBSEARCH line 22). We can determine the maximum utility

only after the algorithm has searched over all of the agent’s own bids (which are first on the

list) because after that we know that the solution will not include any more bids where the

agent is the winner thus the agent’s utility will no longer increase. For example, if an agent

has only one bid in my-bids then the maximum utility he can expect is equal to his value

for the items in that bid minus the minimum possible payment we can make for those items

and still come up with a set of bids that has revenue greater than r(W ). The calculation of

the minimum payment is shown in line 19 for the partial solution case and line 9 for the

case where we have a complete solution in PBSEARCH. Note that in order to calculate the

min-payment for the partial solution case we need an upper bound on the payments that

we must make for each item. This upper bound is provided by

h(S) =
∑
s∈S

max
{b∈B | s∈bitems}

bprice

|bitems|
. (11)

This function produces a bound identical to (4), the one used by the Bidtree algorithm—it

merely assigns to each individual item in S a value equal to the maximum bid in B divided

by the number of items in that bid.

To prune the branches that cannot lead to a solution with revenue greater than the cur-

rent W , the algorithm considers both the values of the bids in B and the valuations of the

agent. Similarly to (11) we define

hi(S, k) =
∑
s∈S

max
{S′| s∈S′∧vi(S′)>0∧|S′|≤k}

vi(S
′)

|S ′|
(12)

which assigns to each individual item s ∈ S the maximum value produced by the valuation

of S ′ divided by the size of S ′, where S ′ is a set of items for which the agent has a valuation

greater than zero, contains s, and its size is less or equal than k. The algorithm uses the

heuristics h and hi (lines 15 and 19 of PBSEARCH), to prune the just mentioned branches.

A final pruning technique implemented by the algorithm is ignoring any branches where

46



PBSEARCH(bids , g)

1 if bids = ∅ then return
2 b← first(bids)
3 bids ← bids −b
4 g ← g + b
5 Īg ← items not in g
6 if g does not contain a bid from i
7 then return
8 if g includes all items
9 then min-payment ← max(0, r(W ) + ε− (r(g)− ri(g)),

∑
b∈g | bagent=iB(bitems))

10 max -utility ← vi(g)−min-payment
11 if r(g) > r(W ) and max -utility ≥ u∗

12 then g∗ ← g
13 u∗ ← max -utility
14 PBSEARCH(bids , g − b) � b is Out
15 else max -revenue ← r(g) + max(h(Īg), hi(Īg))
16 if max -revenue ≤ r(W )
17 then PBSEARCH(bids , g − b) � b is Out
18 elseif bagent 6= i
19 then min-payment ← (r(W ) + ε)− (r(g)− ri(g))− h(Īg)
20 max -utility ← vi(g)−min-payment
21 if max -utility > u∗

22 then PBSEARCH({x ∈ bids |xitems ∩ bitems = ∅}, g) � b is In
23 PBSEARCH(bids , g − b) � b is Out
24 else
25 PBSEARCH({x ∈ bids |xitems ∩ bitems = ∅}, g) � b is In
26 PBSEARCH(bids , g − b) � b is Out
27 return

FIGURE 10.3. The PBSEARCH recursive procedure where bids is the set of
available bids and g is the current partial solution.

the agent has no bids in the current answer g and no more of the agent’s bids are in the list

(PBSEARCH lines 6 and 7).

The resulting g∗ found by PBSEARCH is thus the set of bids that has revenue bigger

than r(W ) and maximizes agent i’s utility. However, agent i’s bids in g∗ are still set to its

own valuation and not to the lowest possible price. The function DISTRIBUTEPAYMENTS

shown in Figure 10.2 is responsible for setting the agent’s payments so that it can achieve its

maximum utility u∗. If the agent has only one bid in g∗ then it is simply a matter of reducing

the payment of that bid by u∗ from the current maximum of the agent’s true valuation.

47



However, if the agent has more than one bid then we face the problem of how to distribute

the agent’s payments amongst these bids. There are many ways of distributing the payments

and there does not appear to be a dominant strategy for performing this distribution. We

have chosen to distribute the payments in proportion to the agent’s true valuation for each

set of items.

10.2. THE CACHEDPAUSEBID ALGORITHM

PAUSEBID repeats the whole search from the scratch at every time it is invoked. We can

minimize this problem by caching the result of previous searches. The CACHEDPAUSEBID

algorithm (shown in Figure 10.4) is our second approach to solve the bidding problem in

the PAUSE auction. It utilizes a cache table where for storing some solutions to avoid doing

a complete search every time. The problem is the same; the agent i has to find g∗i . We note

that g∗i is a bidset that contains at least one bid of the agent i. Let S be a set of items for

which the agent i has a valuation such that vi(S) ≥ B(S) > 0, let gS
i be a bidset over S

such that r(gS
i ) ≥ r(W ) + ε and

gS
i = arg max

g⊆2B
ui(g), (13)

where each g is a set of bids that covers all items and ∀b∈g (b ∈ B) or (bagent = i and bprice >

B(bitems)) and (∃b∈gb
items = S and bagent = i). That is, gS

i is i’s best valid bidset (contains

all the items) that includes a bid from i for the set of items S. In the PAUSE auction we

cannot bid for sets of items with size greater than k. So, if we have the corresponding gS
i

for each set of items S for which vi(S) > 0 and |S| ≤ k then g∗i is the gS
i that maximizes

the agent’s utility. That is

g∗i = arg max
{S | vi(S)>0∧|S|≤k}

ui(g
S
i ). (14)

Each agent i implements a hash table C -Table such that C -Table[S ] = gS for all S

with vi(S) ≥ B(S) > 0. We can then find g∗ by searching for the gS , stored in C -Table[S ],

that maximizes the agent’s utility, considering only the set of items S with |S| ≤ k. The

48



CACHEDPAUSEBID(i, k, k -changed)

1 for each S in C -Table
2 do if vi(S) < B(S)
3 then remove S from C -Table
4 else if k -changed and |S| = k
5 then B′ ← B′ + new Bid(i, S, vi(S))
6 g∗ ← ∅
7 u∗ ← ui(W )
8 for each S with |S| ≤ k in C -Table
9 do S̄ ← Items− S

10 gS ← C -Table[S ] � Global variable
11 min-payment ← max(r(W ) + ε,

∑
b∈gS B(bitems))

12 uS ← r(gS)−min-payment � Global variable
13 if (k -changed and |S| = k)or(∃b∈B′bitems ⊆ S̄ and bagent 6= i)
14 then B′′ ← {b ∈ B′|bitems ⊆ S̄}
15 bids ← B′′ + {b ∈ B|bitems ⊆ S̄ and b /∈ B′′}
16 for b ∈ bids
17 do if vi(b

items) > bprice

18 then bagent ← i
19 bprice ← vi(b

items)
20 if k -changed and |S| = k
21 then n← | bids |
22 uS ← 0
23 else n← |B′′|
24 g ← ∅+ new Bid(S, i, vi(S))
25 CPBSEARCH(bids , g, n)
26 C -Table[S ]← gS

27 if uS > u∗ and r(gS) ≥ r(W ) + ε
28 then g∗ ← DISTRIBUTEPAYMENTS(i, gS)
29 u∗ ← ui(g

∗)
30 else if uS ≤ 0 and vi(S) < B(S)
31 then remove S from C -Table
32 return g∗

FIGURE 10.4. The CACHEDPAUSEBID algorithm that implements a
caching based search to find a bidset that maximizes the utility for the agent
i. k is the current stage of the auction (for k ≥ 2), and k -changed is a
boolean that is true right after the auction moved to the next stage.

remaining problem is maintaining the C -Table updated and avoiding the search for every

gS every time. CACHEDPAUSEBID deals with this and other details.

Let B′ be the set of bids that contains the new best bids, that is, B′ contains the bids

recently added to B and the bids that have changed price (always higher), bidder, or both

49



and were already in B. Let S̄ = Items − S be the complement of S (the set of items not

included in S). CACHEDPAUSEBID takes three parameters: i the agent, k the current stage

of the auction, and k -changed a boolean that is true right after the auction moved to the next

stage. Initially C -Table has one row or entry for each set S for which vi(S) > 0. We start

by eliminating, from C -Table (line 3), the entries corresponding to each set S for which

vi(S) < B(S). Then, in the case that k -changed is true, for each set S with |S| = k, we

add to B′ a bid for that set with value equal to vi(S) and bidder agent i (line 5); this is a bid

that the agent is now allowed to consider. We then search for g∗ amongst the gS stored in

C -Table, for which we only need to consider the sets with |S| ≤ k (line 8). But how do we

know that the gS in C -Table[S ] is still the best solution for S? There are only two situations

when we are not sure about that and we need to do a search to update C -Table[S ]; i) when

k -changed is true and |S| ≤ k, since there was no gS stored in C -Table for this S; ii) when

there exists at least one bid in B′ for the set of items S̄ or a subset of it submitted by an

agent different than i, since it is probable that this new bid can produce a solution better

than the one stored in C -Table[S ].

We handle the two cases mentioned above in lines 13 to 26 of CACHEDPAUSEBID. In

both of these cases, since gS must contain a bid for S we need to find a bidset that covers the

missing items, that is S̄. Thus, our search space consists of all the bids on B for the set of

items S̄ or for a subset of it. We build the list bids that contains only those bids. However,

we put the bids from B′ at the beginning of bids (lines 14 and 15 of CACHEDPAUSEBID)

since they are the ones that have changed. Then, we replace the bids in bids that have a

price lower than the valuation the agent i has for those same items with a bid from agent i

for those items and value equal to the agent’s valuation (lines 16–19).

The recursive procedure CPBSEARCH, called in line 25 of CACHEDPAUSEBID and

shown in Figure 10.5, is the one that finds the new gS . CPBSEARCH is a slightly modified

version of our branch and bound search implemented in PBSEARCH. The first modification

is that it has a third parameter n that indicates how deep on the list bids we want to search,

since it stops searching when n is less or equal to zero and not only when the list bids is

50



CPBSEARCH(bids , g, n)

1 if bids = ∅ or n ≤ 0 then return
2 b← first(bids)
3 bids ← bids −b
4 g ← g + b
5 Īg ← items not in g
6 if g includes all items
7 then min-payment ← max(0, r(W ) + ε− (r(g)− ri(g)),

∑
b∈g | bagent=iB(bitems))

8 max -utility ← vi(g)−min-payment
9 if r(g) > r(W ) and max -utility ≥ uS

10 then gS ← g
11 uS ← max -utility
12 CPBSEARCH(bids , g − b, n− 1) � b is Out
13 else max -revenue ← r(g) + max(h(Īg), hi(Īg))
14 if max -revenue ≤ r(W )
15 then CPBSEARCH(bids , g − b, n− 1) � b is Out
16 elseif bagent 6= i
17 then min-payment ← (r(W ) + ε)− (r(g)− ri(g))− h(Īg)
18 max -utility ← vi(g)−min-payment
19 if max -utility > uS

20 then CPBSEARCH({x ∈ bids |xitems ∩ bitems = ∅}, g, n+ 1) � b is In
21 CPBSEARCH(bids , g − b, n− 1) � b is Out
22 else
23 CPBSEARCH({x ∈ bids |xitems ∩ bitems = ∅}, g, n+ 1) � b is In
24 CPBSEARCH(bids , g − b, n− 1) � b is Out
25 return

FIGURE 10.5. The CPBSEARCH recursive procedure where bids is the set
of available bids, g is the current partial solution and n is a value that indi-
cates how deep in the list bids the algorithm has to search.

empty (line 1). Each time that there is a recursive call of CPBSEARCH n is decreased by

one when a bid from bids is discarded or out (lines 12, 15, 21, and 24) and n remains the

same otherwise (lines 20 and 23). We set the value of n before calling CPBSEARCH, to be

the size of the list bids (CACHEDPAUSEBID line 21) in case i), since we want CPBSEARCH

to search over all bids; and we set n to be the number of bids from B′ included in bids

(CACHEDPAUSEBID line 23) in case ii), since we know that only the first n bids in bids

changed and can affect our current gS .

Another difference with PBSEARCH is that the bound in CPBSEARCH is uS which

we set to be 0 (CACHEDPAUSEBID line 22) when in case i) and r(gS) − min-payment

51



(CACHEDPAUSEBID line 12) when in case ii). We call CPBSEARCH with g already contain-

ing a bid for S. After CPBSEARCH is executed we are sure that we have the right gS , so we

store it in the corresponding C -Table[S ] (CACHEDPAUSEBID line 26).

When we reach line 27 in CACHEDPAUSEBID, we are sure that we have the right gS .

However, agent i’s bids in gS are still set to its own valuation and not to the lowest possible

price. If uS is greater than the current u∗, as in PAUSEBID, we have chosen to distribute

the payments in proportion to the agent’s true valuation for each set of items (using the

function DISTRIBUTEPAYMENTS) to achieve maximum utility. Otherwise, when uS ≤ 0

and the valuation that the agent i has for the set of items S is lower than the current value

of the bid in B for the same set of items, we remove the corresponding C -Table[S ] since

we know that is not worthwhile to keep it in the cache table (CACHEDPAUSEBID line 31).

10.3. TEST AND COMPARISON: MYOPIC-OPTIMAL ALGORITHMS

We have implemented both algorithms and performed a series of experiments in order

to determine how their solution compares to the revenue-maximizing solution and how their

times compare with each other. In order to do our tests we had to generate value functions

for the agents. The algorithm we used is shown in Figure 10.6. The type of valuations it

generates correspond to domains where a set of agents must perform a set of tasks but there

are cost savings for particular agents if they can bundle together certain subsets of tasks.

For example, imagine a set of robots which must pick up and deliver items to different

locations. Since each robot is at a different location and has different abilities, each one

will have different preferences over how to bundle. Their costs for the item bundles are

subadditive, which means that their preferences are superadditive.

We fixed the number of agents to be 5. We experimented with different number of items

m, namely from 2 to 10. We created a dataset consisting of 900 different sets of agents (set

of valuations), each one representing a different auction; 100 auctions for each number of

items. In the dataset, each bidder has different private valuations for approximately 2m set

of items. For these experiments, the minimum increment allowed in the auction was set

52



GENERATEVALUES(i, items)

1 for x ∈ items
2 do vi(x) = EXPD(.01)
3 for n← 1 . . . (num-bids − items)
4 do s1, s2 ←Two random sets of items with values.
5 vi(s1 ∪ s2) = vi(s1) + vi(s2) + EXPD(.01)

FIGURE 10.6. Algorithm for the generation of random value functions.
EXPD(x) returns a random number taken from an exponential distribution
with mean 1/x.

2 4 6 8 10
Items

20

40

60

80

100

%
 O

p
ti

m
a
l 
a
u
ct

io
n
s

Allocative efficiency

PAUSEBID
CACHEDPAUSEBID

2 4 6 8 10 12
Items

0.992

0.994

0.996

0.998

1.000

A
v
g
. 

e
ff

ic
ie

n
cy

 r
a
ti

o

Efficiency ratio

PAUSEBID
CACHEDPAUSEBID

FIGURE 10.7. Efficiency of the myopic-optimal algorithms as a function of
the number of items in the auction. The plot on the left shows the percentage
of auctions that arrive to the optimal allocation, the social welfare maximiz-
ing solution. The plot on the right shows the average efficiency ratio (8) of
the auctions.

to 1, that is ε = 1. We use the metrics defined in Section 9.1. We calculated the optimal

solution and the social welfare (r∗) using CASS [11]. That is, for each agent i and each

set of items S for which vi(S) > 0 we generated a bid. This set of bids was fed to CASS

which implements a centralized winner determination algorithm to find the solution which

maximizes revenue, which, in this case, is also the social welfare maximizing solution.

The first question we have was, does the auction allocate items to the bidders who value

them most highly? So the first experiment we performed simply ensured the proper func-

tioning of our algorithms by analyzing the allocative efficiency. Thus, first we calculated

53



the percentage of auctions in which the solution was the social welfare maximizing so-

lution. When analyzing the efficiency, we realized that they do not always find the same

distribution of items as the optimal solution (as shown in the corresponding plot in Fig-

ure 10.7). The cases where our algorithms failed to arrive at the distribution of the social

welfare maximizing solution, which in this case is also the revenue-maximizing solution,

are those where there was a large gap between the first and second valuation for a set (or

sets) of items. If the revenue-maximizing solution contains the bid (or bids) using these

higher valuation then it is impossible for the PAUSE auction to find this solution because

that bid (those bids) is never placed. For example, if agent i has vi(1) = 1000 and the

second highest valuation for (1) is only 10 then i only needs to place a bid of 11 in order to

win that item. If the optimal solution requires that 1 be sold for 1000 then that solution will

never be found because that bid will never be placed. However, in these experiments, only

few auctions finished with an allocation different from the optimal one; up to 2% PAUSE-

BID and up to 4% for CACHEDPAUSEBID. Another important observation is that the our

myopic-optimal algorithms do not always arrive to the same solution. We have to remem-

ber that the PAUSE auction is multi-stages and in each stage bidders have many chances

to formulate bids. This small difference is the result of the no determinism implicit when

ordering the bids list to create the search tree, which make them search in different order.

We also found that average efficiency ratio increases non-monotonically as the number

of items increases for both algorithms (as shown in the corresponding plot in Figure 10.7 ).

For 2 items this average is higher than 0.998 and it reaches 1 for 10 items. This means that

the social welfare of the solutions that did not converged to the optimal solution (the social

welfare maximizing solution) where very close to it. On average the allocations found by

our algorithms are highly efficient, for both of the algorithms.

We know that the revenue generated by the PAUSE auction is generally lower than

the revenue of the revenue-maximizing solution, when assuming truthful bidding and first

price payments, but how much lower? To answer this question we analyzed the average

revenue ratio (9). We found that the average revenue ratio of our algorithms increases

54



0 2 4 6 8 10 12
Items

0.65

0.70

0.75

0.80

0.85

0.90

A
v
g
. 

re
v
e
n
u
e
 r

a
ti

o

Revenue ratio
PAUSEBID
CACHEDPAUSEBID

0 2 4 6 8 10 12
Items

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

A
v
g
. 

e
x
p
e
ct

e
d
 u

ti
lit

y
 r

a
ti

o

Exp. utility ratio

PAUSEBID
CACHEDPAUSEBID

FIGURE 10.8. Revenue and utility obtained by the myopic-optimal algo-
rithms as a function of the number of items in the auction. The plot on the
left shows the average revenue ratio (9). The plot on the right shows the
average bidders’ expected utility ratio (10).

as the number of items increases, as shown in Figure 10.8. Both algorithms generate, on

average, the same revenue ratio. In the case of 2 items, the average revenue ratio is 0.702

for CACHEDPAUSEBID and 0.714 for PAUSEBID, while in the other extreme (10 items),

both algorithms have on average a revenue ratio of 0.874. Thus, this shows that on average

the revenue generated by the PAUSE auction when using our algorithms is between 13%

and 28% less than the optimal revenue.

To analyze the bidders’ expected utility we calculated the average bidders’ expected

utility ratio. As shown in the corresponding plot of Figure 10.8, the average bidders’

expected utility ratio decreases as a function of the number of items in the auction. The

curve of the plot is inverse of that of the average revenue ratio, and in general, is similar for

both algorithms. For the case of 2 items, the average bidders’ expected utility ratio is 0.284

for PAUSEBID and 0.295 for CACHEDPAUSEBID. For the case of 10 items, the average

bidders’ expected utility ratio is the same for both algorithms. about 0.125.

Finally, we analyzed the running time of our algorithms. The experiments where carried

on in an SGI Altix 4700 with 128 Itanium Cores @ 1.6 GHz/8MB Cache and 256 GB of

RAM (shared-memory system). As shown in Figure 10.9, CACHEDPAUSEBID is faster

55



0 2 4 6 8 10 12
Items

10-1

100

101

102

103

104

A
v
g
. 

ti
m

e
 (

se
cs

)

Time (secs.)
PAUSEBID
CACHEDPAUSEBID

2 4 6 8 10
Items

10-1

100

101

102

103

104

A
v
g
. 

n
u
m

. 
o
f 

e
x
p
a
n
d
e
d
 n

o
d
e
s

Num. of expanded nodes

PAUSEBID
CACHEDPAUSEBID

FIGURE 10.9. Computational efficiency and scalability of the myopic-
optimal algorithms as a function of the number of items in the auction. The
plot on the left shows the average running time per auction. The plot on the
right shows the average number of expanded nodes per auction.

than PAUSEBID, the difference in execution speed is even more clear as the number of

items increases. As expected since this is an NP-Hard problem, the running time grows

exponentially with the number of items. The average running time of CACHEDPAUSEBID

is about half the running time of PAUSEBID.

The scalability of our algorithms (or computational efficiency) can also be determined

by counting the number of nodes expanded in the search tree. For this we count the number

of times that PBSEARCH gets invoked for each time that PAUSEBID is called and the number

of times that CPBSEARCH gets invoked for each time that CACHEDPAUSEBID, respectively

for each of our algorithms. As expected since this is an NP-Hard problem, the number of

expanded nodes does grow exponentially with the number of items (as shown in the cor-

responding plot in Figure 10.9). However, we found that CACHEDPAUSEBID outperforms

PAUSEBID, since it expands on average less than half the number of nodes. For example,

the average number of nodes expanded when 2 items is zero for CACHEDPAUSEBID while

for PAUSEBID is 2; and in the other extreme (10 items) CACHEDPAUSEBID expands on aver-

age only 633 nodes while PAUSEBID expands on average 1672 nodes, a difference of more

than 1000 nodes. Although the number of nodes expanded by our algorithms increases as

56



function of the number of items, the actual number of nodes is a much smaller than the

worst-case scenario of nn where n is the number of items. For example, for 10 items we

expand slightly more than 103 nodes for the case of PAUSEBID and less than that for the

case of CACHEDPAUSEBID which are much smaller numbers than 1010. Notice also that

our value generation algorithm (Figure 10.6) generates a number of bids that is exponential

on the number of items, as might be expected in many situations. As such, these results do

not support the conclusion that time grows exponentially with the number of items when

the number of bids is independent of the number of items. We would expect that both algo-

rithms will grow exponentially as a function the number of bids, but stay roughly constant

as the number of items grows.

10.4. CONCLUSIONS: MYOPIC-OPTIMAL ALGORITHMS

We have presented two algorithms, PAUSEBID and CACHEDPAUSEBID, that bidder

agents can use to engage in a PAUSE auction. Both algorithms implement a myopic utility

maximizing strategy that is guaranteed to find the bidset that maximizes the agent’s utility

given the set of outstanding best bids at any given time, without considering possible future

bids. Both algorithms find, most of the time, the same distribution of items as the revenue-

maximizing solution. The cases where our algorithms failed to arrive at that distribution

are those where there was a large gap between the first and second valuation for a set (or

sets) of items. As it is an NP-Hard problem, the running time of our algorithms remains

exponential but it is significantly better than a full search. PAUSEBID performs a branch and

bound search completely from scratch each time it is invoked. CACHEDPAUSEBID caches

partial solutions and performs a branch and bound search only on the few portions affected

by the changes on the bids between consecutive times. CACHEDPAUSEBID has a better

performance since it explores fewer nodes (less than half) and it is faster. As expected the

revenue generated by a PAUSE auction is lower than the revenue of a revenue-maximizing

solution found by a centralized winner determination algorithm. We also found that the

57



revenue generated by our algorithms increases as function of the number of items in the

auction.

Our algorithms have shown that it is feasible to implement the complex coordination

constraints supported by combinatorial auctions without having to resort to a centralized

winner determination algorithm. Moreover, because of the design of the PAUSE auction,

the agents in the auction also have an incentive to perform the required computation. Our

bidding algorithms can be used by any multiagent system that would use combinatorial

auctions for coordination but would rather not implement a centralized auctioneer. How-

ever, a system using theses algorithms would have poor scalability. Thus, our next step is

to develop faster algorithms that can scale for more complex problems involving a bigger

number of items and bidder agents.

58



CHAPTER 11

APPROXIMATE BIDDING ALGORITHMS FOR A

DISTRIBUTED COMBINATORIAL AUCTION

The algorithms previously presented implement a complete search over the set of cur-

rent best bids B in order to find the new bidset which is myopic-optimal. Approximate

bidding algorithms forgo optimality in favor of heuristics and simple local searches which

deliver a solution very quickly. The approximate algorithms we have developed are based

in the greedy algorithm introduced in Section 5.3 and the well-known hill climbing algo-

rithm.

11.1. THE GREEDYPAUSEBID ALGORITHM

The GREEDYPAUSEBID algorithm (Figure 11.1) is based in the greedy strategy dis-

cussed in Section 5.3. However, it maximizes the bidder’s utility, instead of maximizing

the seller’s revenue, under the condition that the resulting revenue has to be greater or equal

than r(W ) + ε. We start by defining my-bids to be the list of bids for which the agent’s

valuation is higher than the current best bid, as given in B. We set the value of these bids

to be the agent’s true valuation (but we won’t necessarily be bidding true valuation, as we

explain later). Similarly, we set their -bids to be the rest of the bids from B. If my-bids

is empty, there is no bid that the agent can dominate at this time and the algorithm ends.

The function SORTFORGREEDY (called in lines 12 and 16) sorts the list of bids received as

first parameter by bprice/|bitems|c. After my-bids is sorted, we take the first bid and add it to

the initial bidset g, to make sure that the solution includes the bid from my-bids with the

highest rank. Finally, to complete the allocation containing all the items, the agent’s search

list is simply the concatenation of their -bids and the rest of my-bids sorted again by the

59



GREEDYPAUSEBID(i, k, c)

1 my-bids ← ∅
2 their -bids ← ∅
3 for b ∈ B
4 do if bagent = i or vi(b

items) > bprice

5 then my-bids ← my-bids +new Bid(bitems, i, vi(b
items))

6 else their -bids ← their -bids +b
7 for S ∈ subsets of k or fewer items such that vi(S) > 0 and ¬∃b∈Bb

items = S
8 do my-bids ← my-bids +new Bid(S, i, vi(S))
9 g ← ∅

10 if my-bids = ∅
11 then return g
12 my-bids ← SORTFORGREEDY(my-bids , c)
13 b← first(my-bids)
14 g ← g + b
15 bids ← their -bids +rest(my-bids)
16 bids ← SORTFORGREEDY(bids , c)
17 while bids 6= ∅
18 do b← first(bids)
19 bids ← rest(bids)
20 Ig ← items in g
21 if bitems ∩ Ig = ∅
22 then g ← g + b
23 bids ← {x ∈ bids |xitems ∩ bitems = ∅}
24 if r(g) > r(W ) + ε
25 then g ← DISTRIBUTEPAYMENTS(i, g)
26 if ui(g) ≤ ui(W )
27 then g ← ∅
28 else g ← ∅
29 return g

FIGURE 11.1. Our GREEDYPAUSEBID algorithm returns an empty bidset
if the solution it finds does not improve the utility of bidder i. c is the bids
sorting factor and k is the current stage of the auction, for k ≥ 2.

same criteria (lines 16 and 15 respectively). After we finish walking down the bids list,

we have an allocation g. However, agent i’s bids in g are still set to his own valuation and

not to the lowest possible price. If r(g) ≤ r(W ) + ε, then the algorithm ends. Otherwise

(when r(g) > r(W ) + ε), we call the procedure DISTRIBUTEPAYMENTS with g as param-

eter (line 25), the same method used by PAUSEBID. After distributing the payments of g

60



HILLCLIMBING(i, g, bids)

1 remain-bids ← {x ∈ bids |x /∈ g}
2 for b ∈ remain-bids
3 do g′ ← {x ∈ g |xitems ∩ bitems = ∅}
4 g′ ← CONSISTENTBIDS(g′, remain-bids)
5 if g′ = ∅
6 then continue
7 if ui(g

′) > ui(g)
8 then g ← g′

9 return HILLCLIMBING(i, g, bids)
10 return g

FIGURE 11.2. The HILLCLIMBING is a local search algorithm that explores
the neighborhood’s bidsets or allocations until the point where there are no
more bidsets that produce higher utility for the agent i. bids is the bid list
that contains my-bids + their -bids . g is the initial greedy solution as found
by GREEDYPAUSEBID.

the algorithm ends by returning g if the utility that the agent receives from g is greater than

that it gets from W , otherwise it returns an empty bidset.

11.2. THE GREEDYPAUSEBID+HILL ALGORITHM

A simple extension to the greedy approach consists of using a local search algorithm

that continuously updates the initial allocation found by the greedy algorithm [12], thus

locally searching in the remaining bids to improve the solution. We implement this idea in

the GREEDYPAUSEBID+HILL algorithm. This algorithm starts with the solution provided

by GREEDYPAUSEBID and then explores the neighborhood of that solution, using a simple

hill climbing, looking for allocations that generate a higher utility for the bidder. It consist

of two main steps:

(1) Call GREEDYPAUSEPID algorithm with appropriate input and c = 0.5.

(2) If the solution g returned by GREEDYPAUSEBID is not empty then call the proce-

dure HILLCLIMBING with bids = my-bids + their -bids sorted by c.

The HILLCLIMBING is a local search algorithm that explores the neighborhood’s bidsets

or allocations until the point where there are no more bidsets that produce higher utility for

61



the agent i. The function CONSISTENTBIDS (called in line 4) finds consistent bids for the

bidset g′ by walking down the list remain-bids . g′ consists of all the bids in g that are

not conflicted with b (line 3), so there will be free items to allocate after the insertion of

b. The function CONSISTENTBIDS tries to insert other bids to complete the bidset since

a complete bidset must contain all the items. CONSISTENTBIDS returns and empty bidset

when it cannot complete a feasible bidset.

11.3. TEST AND COMPARISON: MYOPIC-OPTIMAL AND APPROXIMATE

ALGORITHMS

Our approximate bidding algorithms allow an agent to place good, but not necessarily

myopic-optimal, bids in a PAUSE auction. But the use of these new strategies raises sev-

eral questions. Does a system of approximate bidders arrive at a different solution than the

optimal biding agents? Do the agents lose utility by switching to these faster algorithms?

Is there any difference in the revenue generated by a system of approximate bidders com-

pared with the revenue generated by a system of optimal bidders? How faster are our new

algorithms as compared to PAUSEBID and CACHEDPAUSEBID?

We carried out an experimental simulation with the same dataset used in the experiment

presented in Section 10.3. We calculated the metrics presented in Section 9.1 to compare

the solutions found by both optimal and approximate algorithms to the social welfare max-

imizing solution. As in the previous chapter, in these experiments we set ε (the minimum

bid increment) to be 1 and the whole population of bidders is homogeneous: all bidders

use the same bidding strategy.

As shown in Figure 11.3, we found that the running time required to clear an auction

grows exponentially as a function of the number of items when using PAUSEBID, but re-

mains linear when using any of the other algorithms. GREEDYPAUSEBID is up to 99 times

faster than PAUSEBID and 10 times faster than GREEDYPAUSEBID+HILL (for the case of 10

items). Something important to notice is that, different from the myopic-optimal algorithms

62



0 2 4 6 8 10 12
Items

10-1

100

101

102

103

104

A
v
g
. 
ti

m
e
 (

se
cs

)

Time (secs.)

PAUSEBID
CACHEDPAUSEBID
GREEDYPAUSEBID
GREEDYPAUSEBID+HILL

FIGURE 11.3. Computational efficiency of the myopic-optimal and ap-
proximate algorithms. The plot shows the average running time per auction
as a function of the number of items in the auction.

2 4 6 8 10
Items

20

40

60

80

100

%
 O

p
ti

m
a
l 
a
u
ct

io
n
s

Allocative efficiency

PAUSEBID
CACHEDPAUSEBID
GREEDYPAUSEBID
GREEDYPAUSEBID+HILL

0 2 4 6 8 10 12
Items

0.980

0.985

0.990

0.995

1.000

A
v
g
. 
e
ff

ic
ie

n
cy

 r
a
ti

o
Efficiency ratio

PAUSEBID
CACHEDPAUSEBID
GREEDYPAUSEBID
GREEDYPAUSEBID+HILL

FIGURE 11.4. Allocative Efficiency of the myopic-optimal and approxi-
mate algorithms. The plot on the left shows the percentage of auctions that
arrive to the optimal allocation, the social welfare maximizing solution. The
plot on the right shows the average efficiency ratio (8) of the auctions.

which curve grows exponential as a function of then number of items, the approximate al-

gorithms curve remains linear.

In the previous chapter, we showed that the myopic-optimal algorithms converge to the

same distribution of items to bidders as the social welfare maximizing solution more than

95 percent of the time. As show in Figure 11.4, the percentage of auctions that end up with

63



an optimal solution is lower for all the approximate algorithms. When using GREEDY-

PAUSEBID, the percentage of auctions that convergence to the optimal solution, drops

monotonically as function of the number of items, going from 98% with 2 items down

to 48% with 10 items. The case of the GREEDYPAUSEBID+HILL algorithm is much better,

although not as efficient as the case of the myopic-optimal, the percentage of auctions that

convergence to the optimal solution drops as function of the number of items, going from

99% with 2 items down to 80% with 10 items. This experiment shows that a system with

approximate bidders does arrive at a different solutions than a system with myopic-optimal

bidders.

As expected the average efficiency ratio (8) decreases as a function of the number of

items too (as shown in the corresponding plot in Figure 11.4). Although the average effi-

ciency ratio of GREEDYPAUSEBID+HILL decreases as a function of the number of items, it

is maintained above 0.995 when 10 items. In terms of efficiency, GREEDYPAUSEBID+HILL

is much better than GREEDYPAUSEBID, but it is not better than the myopic-optimal algo-

rithms. However, the (allocative) efficiency of the solutions found by all our algorithms is

high.

We calculate the revenue ratio of the solutions found by our algorithms to the optimal

revenue. As expected, since PAUSE is an increasing price combinatorial auction, the win-

ners end up paying less than in a centralized one-shot first price sealed-bid combinatorial

auction. However, the revenue increases as a function of the number of items. For 10 items,

the revenue generated by the myopic-optimal algorithms is about 4% higher than the one

generated by GREEDYPAUSEBID+HILL and 6% higher than that of GREEDYPAUSEBID.

The low payments obtained in the PAUSE auction are translated in higher bidder’s

utility. In the corresponding utility plot in Figure 11.5 we show the bidders’ expected

utility ratio. The plot shows that the approximate bidding algorithms, on average, provide

higher bidder’s utility than the myopic-optimal ones (up to 0.05 higher). It might seem

counter-intuitive that bidders receive a higher utility when using an approximate algorithm

than when using an algorithm that guarantees a bid that gives them the highest possible

64



0 2 4 6 8 10 12
Items

0.65

0.70

0.75

0.80

0.85

0.90

A
v
g
. 

re
v
e
n
u
e
 r

a
ti

o

Revenue ratio

PAUSEBID
CACHEDPAUSEBID
GREEDYPAUSEBID
GREEDYPAUSEBID+HILL

0 2 4 6 8 10 12
Items

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

A
v
g
. 

e
x
p
e
ct

e
d
 u

ti
lit

y
 r

a
ti

o

Exp. utility ratio

PAUSEBID
CACHEDPAUSEBID
GREEDYPAUSEBID
GREEDYPAUSEBID+HILL

FIGURE 11.5. Revenue and utility obtained by the myopic-optimal and ap-
proximate algorithms as a function of the number of items in the auction.
The plot on the left shows the average revenue ratio (9). The plot on the
right shows the average bidders’ expected utility ratio (10).

utility. However, we must consider that the agents are engaged in a PAUSE auction and

that their utility depends, not on the intermediate bids placed by the agents, but only on the

result of the auction. It seems that having all agents place less than optimal bids makes the

competition for the items end sooner, dominated bidders give up, and the result is that they

all, on average, get higher utility.

11.4. CONCLUSIONS: MYOPIC-OPTIMAL AND APPROXIMATE ALGORITHMS

Our tests have shown that our heuristic greedy algorithms offer higher bidders utility

and high speed as a second incentive. We have also shown that the allocations obtained

with our algorithms are very efficient, although the ones from the myopic-optimal are in

average better. In general, the revenue generated by a PAUSE auction is lower than the

optimal, and the greedy approximate algorithms generate about 5% less revenue than the

other algorithms; nevertheless, we found that it increases as the number of items in the

auction increases. However this is translated into more utility for the bidders. Thus, the

bidders’s benefits provided by PAUSE will attract more bidders, which would result in

more benefits for the seller in addition of the savings from eliminating the tax paid to the

65



third party. From these experiments we could say that the approximate algorithms are the

best option for the bidders. However, we need other type of experiments to make that

conclusion. The next section presents an analysis to find out if this is true or not.

66



CHAPTER 12

A GAME THEORETICAL ANALYSIS OF BIDDING

STRATEGIES FOR A DISTRIBUTED COMBINATORIAL

AUCTION

Our algorithms show that it is feasible to implement distributed combinatorial auctions

without having to resort to a central auctioneer (Section 11.3). Furthermore, the allocations

obtained with the PAUSE auction, when using our algorithms, are very efficient. Thus, a

rational bidder agent that aims to maximize her utility would prefer joining to a PAUSE

auction over joining to a centralized auction. First, because she does not have to reveal her

private valuations, and second, because of the opportunity of obtaining the items at a lower

price that in a one-shot first price combinatorial auction; although she has to perform some

computational work. However, since the bidder does not know neither the other bidders’

bidding strategies nor their valuations functions, she faces the predicament of choosing a

bidding strategy. Which bidding algorithm should she use? Is it better for her to spend

more time in computation and bid optimally, or save computational time and bid with some

approximate strategy? Should her decision depend on the algorithms the other bidders in

the auction are using? In this section we present an experimental game theoretical analysis

to answer this questions.

12.1. EXPERIMENTAL MODEL

Although we know that there might be a number of possible bidding algorithms or

strategies, in this experiment we consider only three of our algorithms, which represent the

67



extremes of the possible bidding algorithms. In one hand, we have one of our myopic-

optimal algorithms, PAUSEBID, representing the extreme where a bidder uses all her re-

sources to bid with total optimality in each round, which we consider it is the best the

bidders can do; the only strategy that could be better than this would be a look-ahead al-

gorithm, which would be very difficult to design and implement. In the other hand, we

have the GREEDYPAUSEBID algorithm, representing the extreme where a bidder follows a

greedy strategy that is very simple and fast but is not optimal; we consider this the simplest

approach which in theory has very good results. We also have the GREEDYPAUSEBID+HILL

algorithm, an strategy that combines the greedy approach enhanced with local search, this

approach would be in between the other two approaches.

In Section 11.3 we showed that the approximate bidding algorithms, on average, pro-

vide higher expected utility for all the bidders. However, a rational selfish agent does not

care about others’ utility, she cares only about her own utility. Thus, the predicament the

bidder faces is in choosing the bidding strategy. What strategy should I use? What if all the

other bidders are using PAUSEBID, should I still join? What if they are all using GREEDY-

PAUSEBID? We modeled the problem as a strategic game. In the game Me is the bidder

deciding to join to the auction, and Others represent the rest of the bidders in the auction.

Their possible strategies are the 3 bidding algorithms: PAUSEBID, GREEDYPAUSEBID, and

GREEDYPAUSEBID+HILL. Notice that, for simplifications purposes, we did not include

CHACHEDPAUSEBID in the game because it generates about the same amount of bidders’

expected utility than PAUSEBID. In this game, we assume that each bidder chooses her

bidding strategy once and for all, and does not change it during the time the auction last.

We used the same data set used in Sections 10.3 and 11.3. That is, we fixed the number of

agents to be 5. We experimented with different number of items m, namely from 2 to 10.

The dataset consists of 900 different sets of agents (set of valuations), each one represent-

ing a different auction; 100 auctions for each number of items. In the dataset, each bidder

has different private valuations for approximately 2m set of items.

68



FIGURE 12.1. Payoff matrix. The payoffs correspond to the average utility
obtained from all the auctions. Each auction has 5 bidders and each one
gets to play the Me role. The others payoff is the average of the average
sum of the utilities of the other 4 bidders. Here we use PB for PAUSEBID,
GP GREEDYPAUSEBID, and GH for GREEDYPAUSEBID+HILL.

We obtained their ordinal preferences, shown in the payoff matrix in Figure 12.1, by

an experimental simulation in which we let each bidder play the Me role for each pair of

bidding strategies, Others payoff is average of the sum of the other bidders utility divided

by 4 (the number of the other bidders). Notice that in cases where Me and Others have

homogeneous strategies, we only need to run the auction once, since all possible com-

binations will lead to the exact same final allocation. The payoff matrix shows that the

social welfare solution is the case when bidder uses GREEDYPAUSEBID+HILL and the oth-

ers use GREEDYPAUSEBID. However, if everybody thinks as Me, everybody would be us-

ing GREEDYPAUSEBID+HILL. Thus, the game has two pure Nash equilibria, GP/GH (Me

GREEDYPAUSEBID, Others GREEDYPAUSEBID+HILL) and GH/GH (Me GREEDYPAUSE-

BID+HILL, Others GREEDYPAUSEBID+HILL). The payoffs for Me in the outcomes of

GP/GH and GH/GH are the same, which makes GH/GH a non-strict Nash equilibrium;

thus the game has an equilibria in which a player is indifferent between her equilibrium ac-

tion and some other action, given the other players’ actions. That is, if Others are playing

GH then Me will be ambivalent between GP and GH, so she might choose GP since that

uses a bit less computation.

However, the most important point, confirmed by this game model, is that all the bidders

get more utility by moving away from PAUSEBID. That is, the heuristic greedy algorithms

strictly dominate PAUSEBID.

69



12.2. CONCLUSIONS: GAME-THEORETICAL ANALYSIS

Based on the results of our experiments, we believe that the approximate bidding al-

gorithms are a realistic tool for the development of large-scale distributed combinatorial

auctions, with no need for a centralized auctioneer. Furthermore, they are dominant strate-

gies over the myopic-optimal ones, and bidders have double incentive to use them: they are

faster and they provide the bidders higher utility. Specifically, as shown by our game theo-

retical model, the case where everybody bids using GREEDYPAUSEBID+HILL algorithm is

a non-strict Nash equilibrium. Although these strategies reduce total revenue and thus, the

seller’s utility; even the seller can benefit from them, since she does not have to pay a com-

mission for the auctioneer’s job (a third party agency or the maintenance of system) and

they might attract more bidders. We envision a future where complex sourcing problems

are solved by millions of automated agents bidding and negotiating in distributed combi-

natorial auctions and even more complex negotiation networks. For our future work we are

looking at how to further increase the scalability of the PAUSE auction by allowing agents

to place incomplete bid sets and only communicate their bids to a subset of agents. Our

goal is to develop new auctions which can scale to any number of bidders while distributing

the computational cost evenly amongst them.

Now, we are interested in knowing about the performance of the PAUSE auction and

our algorithms in other problem domains. In the next Chapter, we present an study for this

purpose, which includes different type of problems.

70



CHAPTER 13

THE ECONOMIC AND COMPUTATIONAL EFFICIENCY OF

PAUSE AND OUR ALGORITHMS UNDER DIFFERENT BID

DISTRIBUTIONS

Having myopic-optimal and heuristic greedy algorithms for bidding in the PAUSE auc-

tion, we were next interested in determining how long it would take for populations of

agents using these algorithms to arrive at a solution, as well as quantifying the expected

utility of this solution, under different problems or scenarios. Since the efficiency of a

winner determination algorithm varies greatly depending on the input bid distribution we

decided to use four different problem settings from the Combinatorial Auctions Test Suite

[24], known as CATS.

13.1. CATS DISTRIBUTIONS

As mentioned in Chapter 6, CATS is a generator of combinatorial auction instances for

the testing of winner determination algorithms. It features five distributions of instances

from realistic, economically motivated domains, as well as a collection of artificial distri-

butions that have been used in the literature. A classification by gross hardness of ten of this

distributions is presented by [25]. This classification is based on an experiment that shows

what distributions are harder to solve, thus the corresponding gross hardness corresponds

to time requirements. In order to observe the PAUSE auction and our bidding algorithms

in different economic scenarios we selected four of those ten CATS distributions, covering

the whole hardness range.

71



goods 5
bids 6
dummy 2

0  275.643  0  1  2  3  4  #
1  156.029  1  3  4  5  #
2  194.279  0  3  4  5  #
3  170.399  0  4  #
4  203.440  0  2  3  6  #
5  198.771  1  2  3  6  # 

Bid Price
Assigned to Bidder 0

Assigned to Bidder 1

Assigned to Bidder 2

Assigned to Bidder 3

Bid ID Items on bid

FIGURE 13.1. An example of the content of a CATS file and how we use
it. It contains six bids enumerated from 0 to 5; five items, from 0 to 4; and
two dummies, 5 and 6.

• Scheduling. This distribution is motivated by the distributed job shop scheduling

problem. It is the second easiest amongst all the CATS distributions. It allows

XOR bids.

• L2 (weighted random). An artificial distribution with no economic motivation.

Based on its gross hardness, this distribution is in the middle.

• Arbitrary. Based on scenarios where some goods do not give rise to a notion

of adjacency but regularity in complementarity relationships can still exist (e.g.,

physical objects like collectables, semiconductors). This distribution is the third

hardest one. It allows XOR bids.

• L3 (uniform). This is another artificial distribution, which is the hardest amongst

all the CATS distributions.

13.1.1. Using CATS files to feed the decentralized combinatorial auction. CATS

was created to test centralized algorithms that find winning bidset in combinatorial auc-

tions. These algorithms ignore the identity of the bidders, focusing instead on the bids.

Their goal is to find the allocation that maximizes revenue regardless of who placed those

bids. For this reason, CATS does not identify the bidder that placed the bid, nor does it

72



Bidders Bids Goods
for Bidders∗ (3 to 11) 20 10

for Bids 5 (12-20) 10
for Goods 5 20 (10 to 17)

TABLE 13.1. Combination of parameters used to create the data set for
each one of the CATS distributions described in the previous section. ∗The
number of bidder cannot be manipulated in the L2 and L3 distributions, in
these cases the number of bidders is equal to the number of bids.

provides us with the bidder’s utility function, it only includes a bid id, the price of the bid,

and the set of items in the bid. To implement a PAUSE auction we need to know every

bidder’s valuations. In order to use a CATS file in the PAUSE auction without changing

the economic distribution, we had to assign each bid from the file bid to a different bidder,

except when the bids are XOR bids. The XOR bids in the CATS file include an easily

identifiable dummy item. All bids with the same dummy item are assigned to one bidder.

In addition, CATS does not offer a direct way to control the number of bidders. The only

way to do this is by generating a file and then check how many bidders can be obtained.

Figure 13.1 shows an example of a CATS file and how we use it.

13.2. EXPERIMENTAL SETTINGS

Our experiments consist of combinations of the parameters mentioned in previous sub-

sections. We created a dataset for each one of the CATS distribution mentioned above.

Each data set contains 100 bid files or auctions for some combinations of number of bid-

ders, bids, and goods. Table Table 13.1 shows the combinations used in the experiments.

To analyze the effect of one variable we fix the value of the other two.

In this experiment we try our four bidding algorithms (strategies): PAUSEBID, CACHED-

PAUSEBID, GREEDYPAUSEBID, and GREEDYPAUSEBID+HILL. For each bidding strategy

we carried out a PAUSE auction over each distribution and calculate the metrics described

in Section 9.1. It is important to remember that in each auction all the bidders use the

same bidding algorithm. The experiments where carried on in an SGI Altix 4700 with 128

Itanium Cores @ 1.6 GHz/8MB Cache and 256 GB of RAM (shared-memory system). We

73



4 5 6 7 8 9 10
Bidders

100

101

102

103

104

A
v
g
. 

ti
m

e
 (

se
cs

)

Arbitrary

PAUSEBID
CACHEDPAUSEBID
GREEDYPAUSEBID
GREEDYPAUSEBID+HILL

3 4 5 6 7 8 9 10
Bidders

100

101

102

103

104

105

106

Scheduling

PAUSEBID
CACHEDPAUSEBID
GREEDYPAUSEBID
GREEDYPAUSEBID+HILL

FIGURE 13.2. Average time as a function of the number of bidders in the
auction. The number of goods and bids is fixed at 10 and 20 respectively.

calculated the revenue-maximizing solution (r∗) using CASS [11]. To maintain a good

estimation of the time, each auction was executed in a single core.

13.3. TIME

In our first test we look at the time the system takes to clear an auction as a function

of the number of bidders. Remember that when using CATS the number of bidders can

be (indirectly) controlled only in distributions that allow XOR bids, that is, only in the

arbitrary and the scheduling distributions. Figure 13.2 shows the average time for these

two distributions as function of the number of bidders.

In the arbitrary distribution, the time for all the bidding algorithms grows linearly as a

function of the number of bidders. As expected, PAUSEBID has greatest average of time,

its curve has a slope of 514.7. As also expected, CACHEDPAUSEBID is second in time

requirements, its curve has a slope of 30.8. It is important to notice that the difference on

average time between these two myopic-optimal algorithms is huge. CACHEDPAUSEBID

is about 95% faster than PAUSEBID, for example, when the number of bidders is 10, the

average time for PAUSEBID is 5676.94 seconds while for CACHEDPAUSEBID it is only

295.93 seconds. The approximate algorithms are much faster, GREEDYPAUSEBID+HILL is

about 99% faster than PAUSEBID and GREEDYPAUSEBID is even faster (about 99.88%); for

example, when the number of bidders is 10, their corresponding time averages are 56.4 and

6.7 seconds respectively.

74



10 12 14 16 18 20
Bids

100

101

102

103

104

A
v
g
. 
ti

m
e
 (

se
cs

)

Arbitrary

PAUSEBID
CACHEDPAUSEBID
GREEDYPAUSEBID
GREEDYPAUSEBID+HILL

10 12 14 16 18 20 22
Bids

100

101

102

103

104

Scheduling

PAUSEBID
CACHEDPAUSEBID
GREEDYPAUSEBID
GREEDYPAUSEBID+HILL

10 12 14 16 18 20 22
Bids

101

102

103

104
L2

PAUSEBID
CACHEDPAUSEBID
GREEDYPAUSEBID
GREEDYPAUSEBID+HILL

10 12 14 16 18 20
Bids

101

102

103

104
L3

PAUSEBID
CACHEDPAUSEBID
GREEDYPAUSEBID
GREEDYPAUSEBID+HILL

FIGURE 13.3. Average time as a function of the number of bids in the auc-
tion. The number of goods is fixed at 10, and the number of bidders at 5 (for
L2 and L3 the number of bidders is the same as the number of bids).

In the scheduling distribution, the average time of PAUSEBID grows exponentially with

the number of bidders. CACHEDPAUSEBID is about 98.05% faster than PAUSEBID. For

example, when the number of bidders is 10, the average time for PAUSEBID is 135450.76

seconds while for CACHEDPAUSEBID it is 2637.38 seconds. The average time for the ap-

proximate bidding algorithms is, as in the arbitrary distribution, linear as a function of the

number of bidders, although here their corresponding slopes are steeper.

Figure 13.3 shows the average running time as a function of the number of bids. This

figure shows that the number of bids does not significantly affect the average time. In

all the distributions, except L3, the time grows linearly as a function of the number of

bids, of course the slopes of the curves of the myopic-optimal algorithms are bigger, and

the increment is not monotonic. We make two interesting observations. The first one is

that in L3 the average time decreases as function of the number of bids, and the second

is that CACHEDPAUSEBID is even faster than GREDYPAUSEBID+HILL in the L2 and L3

distributions. For the myopic-optimal bidding algorithms the most difficult distribution

(highest average time) is the arbitrary one, followed by scheduling, L2, and L3; while for

the greedy strategies, the hardest one is L3 followed by L2, arbitrary and scheduling.

When analyzing the average running time as a function of the number of goods, we

find that results are very similar to the results we found earlier using different distributions

[26, 27] (the time is analyzed as function number of items too, using an original value

function or distribution), where the myopic-optimal biding strategies show an exponential

75



9 10 11 12 13 14 15 16
Goods

100

101

102

103

104

105

A
v
g
. 

ti
m

e
 (

se
cs

)

Arbitrary

PAUSEBID
CACHEDPAUSEBID
GREEDYPAUSEBID
GREEDYPAUSEBID+HILL

10 11 12 13 14 15 16
Goods

100

101

102

103

104

105

Scheduling

PAUSEBID
CACHEDPAUSEBID
GREEDYPAUSEBID
GREEDYPAUSEBID+HILL

10 11 12 13 14 15 16
Goods

100

101

102

103

104

105

L2

PAUSEBID
CACHEDPAUSEBID
GREEDYPAUSEBID
GREEDYPAUSEBID+HILL

10 11 12 13 14 15 16
Goods

100

101

102

103

104

L3

PAUSEBID
CACHEDPAUSEBID
GREEDYPAUSEBID
GREEDYPAUSEBID+HILL

FIGURE 13.4. Average time as a function of the number of goods in the
auction. The number of bids is fixed at 20, and the number of bidders at 5
(for L2 and L3 the number of bidders is the same as the number of bids).

growth rate and the approximate ones show a linear growth rate (Figure 13.4). The only dif-

ference is that in these experiments the CACHEDPAUSEBID is much faster than PAUSEBID,

here CACHEDPAUSEBID is more that 95% faster in the arbitrary, scheduling and L2 dis-

tributions, and 85% in the L3 distribution; while in the previously mentioned experiments

CACHEDPAUSEBID was only 50% faster than PAUSEBID.

Something important to notice here is that according to the study done in [25], the

hardest CATS distribution is L3, closely followed by the arbitrary, L2, and scheduling.

However, in the PAUSE auction, L3 is the easiest one for the myopic-optimal bidding

strategies and, it gets easier as the number of goods and the number of bids increases 1.

Another interesting observation is that for the approximate bidding strategies, L2 is usually

the hardest, followed by the L3 and the arbitrary.

13.4. REVENUE

The average revenue ratio (9) increases as a function of the number of bidders in the

auction, as shown in Figure 13.5, for all the bidding algorithms. It seems that as the com-

petence increases, the prices that the winning bidders pay also increase. Also in general,

the myopic-optimal algorithms have a higher revenue ratio than the greedy strategies, how-

ever the ratios become very close to each other as the number of bidders increases. In the

arbitrary distribution, the average revenue ratio curve starts at .76 for the greedy algorithms

1We have carried out few experiments, not shown here, with much bigger values for all the variables where
the greedy strategies are even faster than CASS under this distribution.

76



3 4 5 6 7 8 9 10 11
Bidders

0.70

0.75

0.80

0.85

0.90

0.95

A
v
g
. 
re

v
e
n
u
e
 r

a
ti

o

Arbitrary

PAUSEBID
CACHEDPAUSEBID
GREEDYPAUSEBID
GREEDYPAUSEBID+HILL

3 4 5 6 7 8 9 10 11
Bidders

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90
Scheduling

PAUSEBID
CACHEDPAUSEBID
GREEDYPAUSEBID
GREEDYPAUSEBID+HILL

FIGURE 13.5. Average revenue ratio (9) as a function of the number of
bidders in the auction. The number of goods and bids is fixed at 10 and 20
respectively.

10 12 14 16 18 20 22
Bids

0.74

0.76

0.78

0.80

0.82

0.84

0.86

0.88

A
v
g
. 
re

v
e
n
u
e
 r

a
ti

o

Arbitrary

PAUSEBID
CACHEDPAUSEBID
GREEDYPAUSEBID
GREEDYPAUSEBID+HILL

10 12 14 16 18 20 22
Bids

0.72

0.74

0.76

0.78

0.80

0.82

0.84

0.86
Scheduling

PAUSEBID
CACHEDPAUSEBID
GREEDYPAUSEBID
GREEDYPAUSEBID+HILL

10 12 14 16 18 20 22
Bids

0.80

0.81

0.82

0.83

0.84

0.85

0.86

0.87

0.88

0.89
L2

PAUSEBID
CACHEDPAUSEBID
GREEDYPAUSEBID
GREEDYPAUSEBID+HILL

10 12 14 16 18 20
Bids

0.78

0.80

0.82

0.84

0.86

L3

PAUSEBID
CACHEDPAUSEBID
GREEDYPAUSEBID
GREEDYPAUSEBID+HILL

FIGURE 13.6. Average revenue ratio (9) as function of the number of bids
in the auction. The number of goods and bidders is fixed at 10 and 5 respec-
tively. Notice that all the bidding algorithms overlap under the L2 distribu-
tion.

and .81 for the myopic-optimal ones, and ends in .90 and .91 respectively with 10 bidders.

In this distribution, there is a small difference of about .1 between GREEDYPAUSEBID and

GREEDYPAUSEBID+HILL when the number of bidders is less than 7, but it disappears af-

terwards. In the scheduling distribution, the curves start a little bit lower at around .61 for

the greedy strategies and .68 for the myopic-optimal ones, and also end a little bit below

.86 and .87 with 10 bidders. In this distribution, there is a small difference of about .05

between PAUSEBID and CACHEDPAUSEBID when the number of bidders is less than 8, but

it disappear afterwards.

Figure 13.6 shows a comparison of the average revenue ratio as a function of the number

of bids. In the arbitrary distribution both PAUSEBID and CACHEDPAUSEBID have the same

average revenue ratio. In this distribution, the revenue ratio decreases non-monotonically,

as a function of the number of bids. Although the myopic-optimal algorithms generate

77



9 10 11 12 13 14 15 16
Goods

0.76

0.78

0.80

0.82

0.84

0.86

0.88

0.90

A
v
g
. 
re

v
e
n
u
e
 r

a
ti

o

Arbitrary

PAUSEBID
CACHEDPAUSEBID
GREEDYPAUSEBID
GREEDYPAUSEBID+HILL

9 10 11 12 13 14 15 16
Goods

0.65

0.70

0.75

0.80

0.85

Scheduling

PAUSEBID
CACHEDPAUSEBID
GREEDYPAUSEBID
GREEDYPAUSEBID+HILL

9 10 11 12 13 14 15 16
Goods

0.835

0.840

0.845

0.850

0.855

0.860

0.865

0.870

0.875
L2

PAUSEBID
CACHEDPAUSEBID
GREEDYPAUSEBID
GREEDYPAUSEBID+HILL

10 11 12 13 14 15 16
Goods

0.82

0.84

0.86

0.88

L3

PAUSEBID
CACHEDPAUSEBID
GREEDYPAUSEBID
GREEDYPAUSEBID+HILL

FIGURE 13.7. The Average revenue ratio (9) as a function of the number
of goods in the auction. The number of bids and bidders is fixed at 20 and 5
respectively.

higher revenue than GREEDYPAUSEBID and GREEDYPAUSEBID+HILL, the difference is

only .02 and .01 respectively and these differences are very uniform over the number of

bids. The maximum value obtained by the myopic-optimal algorithms is .87 and the min-

imum is .79. In the scheduling distribution there is a difference (about .01) between the

average ratio of the two myopic-optimal algorithms, in favor of PAUSEBID. The average

revenue ratio for these algorithms tends to increase non-monotonically as function of the

number of bids, while it decreases non-monotonically for the approximate strategies, get-

ting more distant from each other as the number of bids increases. Although at the begin-

ning both greedy strategies curves are identical, after 17 bids, the curve of GREEDYPAUSE-

BID starts going lower, however the difference at 20 bids is still less than .01. In the L2

distribution, all the bidding strategies have the same average revenue ratio and it increases

non-monotonically as function of the number of bids; reaching up to .87 with 18 bids. Al-

though in L3 the average revenue ratio also increases non-monotonically as function of the

number of bids, although it does not go as high as L2 (the maximum is .87). Although

the curves are not identical under this distribution, they are very close to each other. When

the number of bids is 20, the CACHEDPAUSEBID shows higher revenue ratio (.85) followed

by PAUSEBID and GREEDYPAUSEBID+HILL (both .84), where GREEDYPAUSEBID has the

lowest ratio (.83). Amongst the four distributions, L2 is the one in which PAUSE generates

higher revenue, followed by arbitrary, L3, and scheduling.

78



3 4 5 6 7 8 9 10 11
Bidders

20

40

60

80

100

%
 O

p
ti

m
a
l 
a
u
ct

io
n
s

Arbitrary

PAUSEBID
CACHEDPAUSEBID
GREEDYPAUSEBID
GREEDYPAUSEBID+HILL

3 4 5 6 7 8 9 10 11
Bidders

20

40

60

80

100

Scheduling

PAUSEBID
CACHEDPAUSEBID
GREEDYPAUSEBID
GREEDYPAUSEBID+HILL

FIGURE 13.8. Percentage of optimal auctions as function of the number of
bidders in the auction. The number of goods and bids is fixed at 10 and 20
respectively.

Figure 13.7 shows the average revenue ratio as a function of the number of goods. The

distribution where, on average, higher revenue is generated is L2. In this distribution all

the bidding strategies have about the same average revenue ratio which remains between

.85 and .86 regardless of the number of goods. In the arbitrary distribution the revenue

ratio decreases non-monotonically, the corresponding curves of PAUSEBID and CACHED-

PAUSEBID are the same and they are .03 above GREEDYPAUSEBID and .02 above GREEDY-

PAUSEBID+HILL. In the L3 distribution the revenue ratio decreases non-monotonically as

a function of the number of goods. In general, under this distribution the myopic-optimal

biding algorithms have higher revenue ratio. The L3 distribution has the third highest

average revenue. The lowest revenue is achieved in the scheduling distribution. In this dis-

tribution the curves tend to decrease non-monotonically as the number of goods increases.

PAUSEBID has higher average revenue ratio than all the other bidding algorithms, although

CACHEDPAUSEBID has the same values after 14 goods. Here, GREEDYPAUSEBID+HILL is

.05 below and GREEDYPAUSEBID is .06 below PAUSEBID.

13.5. ALLOCATIVE EFFICIENCY

When analyzing the efficiency of the solutions obtained by our algorithms, we found

that the number of auctions finishing with an optimal allocation increases as a function of

the number of bidders. For example, in the arbitrary distribution, the curve of the myopic-

optimal algorithms (shown in Figure 13.8) starts at 76% with 4 items and ends in 95% with

79



3 4 5 6 7 8 9 10 11
Bidders

0.90

0.92

0.94

0.96

0.98

1.00

A
v
g
. 

e
ff

ic
ie

n
cy

 r
a
ti

o

Arbitrary

PAUSEBID
CACHEDPAUSEBID
GREEDYPAUSEBID
GREEDYPAUSEBID+HILL

3 4 5 6 7 8 9 10 11
Bidders

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1.00
Scheduling

PAUSEBID
CACHEDPAUSEBID
GREEDYPAUSEBID
GREEDYPAUSEBID+HILL

FIGURE 13.9. Average efficiency ratio (8) as function of the number of
bidders in the auction. The number of goods and bids is fixed at 10 and 20
respectively.

10 items. That is, in average, 87.8% of all the auctions in this experiment (615 out of 700)

ended up with an optimal allocation; when using any of the myopic-optimal algorithms.

Meanwhile, the curve of GREEDYPAUSEBID starts with 51% at 4 items, and increases to

84% at 10 items; only 68.8% of all the auctions in this experiment ended up with an op-

timal solution when using this algorithm. The GREEDYPAUSEBID+HILL produces better

solutions than GREEDYPAUSEBID; in average, the percentage of the total auctions arriving

to the optimal solution is 6% higher. However, this percentage is about 13% lower than

that of the myopic-optimal algorithms.

Although the curves of the plots for the two distributions presented in Figure 13.8 are

very similar, the percentage of total auctions ending up with an optimal allocation is about

11% higher in the scheduling distribution than in the arbitrary distribution, for all the al-

gorithms. This shows that the bid distribution or problem scenario has in impact on the

efficiency of the mechanism and the algorithms.

Figure 13.9 shows the allocative efficiency ratio (8) in the arbitrary and scheduling

distributions as a function of the number of bidders. In general, the efficiency increases

monotonically as function of the number of bidders. The fact that the efficiency ratio is not

1 (except for both PAUSEBID and CACHEDPAUSEBID in the scheduling distribution with

more than 6 bidders) indicates that the allocation of goods to bidders is different in PAUSE

than when using a centralized solution. In general, the myopic-optimal algorithms have

an average efficiency ratio higher than the other two and GREEDYPAUSEBID+HILL has a

80



12 14 16 18 20
Bids

20

40

60

80

100

%
 O

p
ti

m
a
l 
a
u
ct

io
n
s

Arbitrary

PAUSEBID
CACHEDPAUSEBID
GREEDYPAUSEBID
GREEDYPAUSEBID+HILL

12 14 16 18 20
Bids

20

40

60

80

100

Scheduling

PAUSEBID
CACHEDPAUSEBID
GREEDYPAUSEBID
GREEDYPAUSEBID+HILL

12 14 16 18 20
Bids

20

40

60

80

100
L2

PAUSEBID
CACHEDPAUSEBID
GREEDYPAUSEBID
GREEDYPAUSEBID+HILL

12 14 16 18 20
Bids

20

40

60

80

100
L3

PAUSEBID
CACHEDPAUSEBID
GREEDYPAUSEBID
GREEDYPAUSEBID+HILL

FIGURE 13.10. Percentage of optimal auctions as a function of the number
of bids in the auction. The number of goods and bidders is fixed at 10 and 5
respectively.

higher ratio than GREEDYPAUSEBID. However, their differences decrease as the number of

bidders increases.

Figure 13.10 shows that the number of auctions finishing with an optimal allocation

decreases as a function of the number of bids, in three of the four bid distributions in the

experiment: arbitrary, scheduling, and L3. Only in the L2 distribution the number of bids

did not affect the efficiency of the solutions; most of the auctions ended up in an optimal

allocation. As in the previous experiment, a higher percent of the auctions ended up in an

optimal allocation when using the myopic-optimal algorithms. In the arbitrary distribution,

90% of all the auctions where optimal with both PAUSEBID and CACHEDPAUSEBID. While

only 71% of all the auctions were optimal when using GREEDYPAUSEBID and 77% when

using GREEDYPAUSEBID+HILL. In the scheduling distribution, the percentages were 98%,

95%, 84% and 90% for PAUSEBID, CACHEDPAUSEBID, GREEDYPAUSEBID, and GREEDY-

PAUSEBID+HILL respectively. In the L3 distribution, the corresponding percentage are

98%, 96%, 89%, and 92%. Finally, the percentage of optimal auctions is the same for all

the algorithms under the L2 distribution, 99%.

When analyzing how the number of bids affects the efficiency ratio (Figure 13.11), we

notice that the L2 distribution is not affected at all and that in this distribution all the biding

strategies reach the highest efficiency ratio. The efficiency in L3 is also very high (more

than .98) and although all the curves are very close to each other, we notice that PAUSE-

BID has a higher efficiency. In general, the efficiency ratio decreases a small amount as a

81



10 12 14 16 18 20 22
Bids

0.94

0.95

0.96

0.97

0.98

0.99

1.00

A
v
g
. 
e
ff

ic
ie

n
cy

 r
a
ti

o

Arbitrary

PAUSEBID
CACHEDPAUSEBID
GREEDYPAUSEBID
GREEDYPAUSEBID+HILL

10 12 14 16 18 20 22
Bids

0.96

0.97

0.98

0.99

1.00
Scheduling

PAUSEBID
CACHEDPAUSEBID
GREEDYPAUSEBID
GREEDYPAUSEBID+HILL

10 12 14 16 18 20 22
Bids

0.992

0.994

0.996

0.998

1.000
L2

PAUSEBID
CACHEDPAUSEBID
GREEDYPAUSEBID
GREEDYPAUSEBID+HILL

10 12 14 16 18 20 22
Bids

0.980

0.985

0.990

0.995

1.000
L3

PAUSEBID
CACHEDPAUSEBID
GREEDYPAUSEBID
GREEDYPAUSEBID+HILL

FIGURE 13.11. Average efficiency ratio (9) as a function of the number of
bids in the auction. The number of goods and bidders is fixed at 10 and 5
respectively.

function of the number of bids, with the greedy algorithms affected the most. In the sched-

uling distribution the efficiency remains high (.998 on average) when using the myopic-

optimal bidding algorithms. Both greedy algorithms have an efficiency ratio of .997 at 12

bids, which is almost as high as that of the myopic-optimal algorithms. However, as the

number of bids increases, it decreases non-monotonically and their corresponding curves

separate from each other. The efficiency ratio reaches .977, for GREEDYPAUSEBID+HILL,

and 0.959, for GREEDYPAUSEBID, at 20 bids. The arbitrary distribution has the lowest

efficiency among all the distributions studied here. However, it is still high (above .945).

Under this distribution we notice that the efficiency ratio curves of all the bidding algo-

rithms tend to decrease non-monotonically. Both, PAUSEBID and CACHEDPAUSEBID, start

at .993 with 12 bids and drop to .978 at 18 bids, although they increase again to .986.

Here, GREEDYPAUSEBID and GREEDYPAUSEBID+HILL are, on average, .03 and .02 below

PAUSEBID respectively.

The effect of the number of goods on efficiency is very similar to the effect of the

number of bids. As shown in Figure 13.12, the percentage of optimal auctions decreases

as a function of the number of bids, this is for all the distributions except L2. In the ar-

bitrary distribution, the average of auctions finishing in an optimal allocation is 88% for

both, PAUSEBID and CACHEDPAUSEBID; and 70% and 77% for GREEDYPAUSEBID and

GREEDYPAUSEBID+HILL respectively. The corresponding percentages of auctions finish-

ing in a optimal allocation for PAUSEBID, CACHEDPAUSEBID, GREEDYPAUSEBID, and

82



9 10 11 12 13 14 15
Goods

20

40

60

80

100

%
 O

p
ti

m
a
l 
a
u
ct

io
n
s

Arbitrary

PAUSEBID
CACHEDPAUSEBID
GREEDYPAUSEBID
GREEDYPAUSEBID+HILL

9 10 11 12 13 14 15
Goods

20

40

60

80

100

Scheduling

PAUSEBID
CACHEDPAUSEBID
GREEDYPAUSEBID
GREEDYPAUSEBID+HILL

9 10 11 12 13 14 15 16
Goods

20

40

60

80

100
L2

PAUSEBID
CACHEDPAUSEBID
GREEDYPAUSEBID
GREEDYPAUSEBID+HILL

9 10 11 12 13 14 15
Goods

20

40

60

80

100
L3

PAUSEBID
CACHEDPAUSEBID
GREEDYPAUSEBID
GREEDYPAUSEBID+HILL

FIGURE 13.12. Percentage of optimal auctions as a function of the number
of goods in the auction. The number of bids and bidders is fixed at 20 and 5
respectively.

10 11 12 13 14 15 16
Goods

0.95

0.96

0.97

0.98

0.99

1.00

A
v
g
. 
e
ff

ic
ie

n
cy

 r
a
ti

o

Arbitrary

PAUSEBID
CACHEDPAUSEBID
GREEDYPAUSEBID
GREEDYPAUSEBID+HILL

9 10 11 12 13 14 15
Goods

0.88

0.90

0.92

0.94

0.96

0.98

1.00
Scheduling

PAUSEBID
CACHEDPAUSEBID
GREEDYPAUSEBID
GREEDYPAUSEBID+HILL

9 10 11 12 13 14 15
Goods

0.992

0.994

0.996

0.998

1.000
L2

PAUSEBID
CACHEDPAUSEBID
GREEDYPAUSEBID
GREEDYPAUSEBID+HILL

9 10 11 12 13 14 15
Goods

0.970

0.975

0.980

0.985

0.990

0.995

1.000
L3

PAUSEBID
CACHEDPAUSEBID
GREEDYPAUSEBID
GREEDYPAUSEBID+HILL

FIGURE 13.13. Average efficiency ratio (9) as a function of the number of
goods in the auction. The number of bids and bidders is fixed at 20 and 5
respectively.

GREEDYPAUSEBID+HILL are: 93%, 88%, 51%, and 65% in the scheduling distribution;

98%, 84%, 83%, and 88% in the L3 distribution; and 100% for all the algorithms in the L2

distribution.

From the point of the average efficiency ratio, the allocative efficiency of all the algo-

rithms is high in all the distributions and is not dramatically affected by any of the factors.

However, the myopic-optimal bidding algorithms are more efficient than the approximate

algorithms. All the PAUSE bidding algorithms have higher efficiency in the L2 and L3

distributions than in the other two distributions.

13.6. BIDDERS’ EXPECTED UTILITY

The average bidders’ expected utility ratio (10) produce curves (shown in Figures Fig-

ure 13.14, Figure 13.15, and Figure 13.16) with values roughly inverse to that of the average

83



3 4 5 6 7 8 9 10 11
Bidders

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

0.22

A
v
g
. 

e
x
p
e
ct

e
d
 u

ti
lit

y
 r

a
ti

o

Arbitrary

PAUSEBID
CACHEDPAUSEBID
GREEDYPAUSEBID
GREEDYPAUSEBID+HILL

3 4 5 6 7 8 9 10 11
Bidders

0.10

0.15

0.20

0.25

0.30

0.35

0.40
Scheduling

PAUSEBID
CACHEDPAUSEBID
GREEDYPAUSEBID
GREEDYPAUSEBID+HILL

FIGURE 13.14. Average expected utility ratio (10) as a function of the num-
ber of bidders in the auction. The number of goods and bids is fixed at 10
and 20 respectively.

10 12 14 16 18 20
Bids

0.12

0.14

0.16

0.18

0.20

0.22

A
v
g
. 

e
x
p
e
ct

e
d
 u

ti
lit

y
 r

a
ti

o

Arbitrary

PAUSEBID
CACHEDPAUSEBID
GREEDYPAUSEBID
GREEDYPAUSEBID+HILL

10 12 14 16 18 20 22
Bids

0.18

0.20

0.22

0.24

0.26

Scheduling

PAUSEBID
CACHEDPAUSEBID
GREEDYPAUSEBID
GREEDYPAUSEBID+HILL

10 12 14 16 18 20 22
Bids

0.12

0.14

0.16

0.18

0.20

L2

PAUSEBID
CACHEDPAUSEBID
GREEDYPAUSEBID
GREEDYPAUSEBID+HILL

10 12 14 16 18 20 22
Bids

0.14

0.16

0.18

0.20

0.22

L3

PAUSEBID
CACHEDPAUSEBID
GREEDYPAUSEBID
GREEDYPAUSEBID+HILL

FIGURE 13.15. Average expected utility ratio (10) as a function of the num-
ber of bids in the auction. The number of goods and bidders is fixed at 10
and 5 respectively.

revenue ratio (Figures Figure 13.5, Figure 13.6, Figure 13.7). This relation was expected,

since the higher the payments (the revenue) the lower the possible expected utility. That

means that in the L2 and L3 distributions, where the revenue of all the bidding algorithms is

very similar, the bidding strategy does not have any effect over the bidders’ expected utility.

The only incentive to choose one over the other is speed. Since, in general, GREEDYPAUSE-

BID is the fastest, it is the best choice.

In the arbitrary and scheduling distributions, where the revenue ratio is different amongst

the bidding strategies, the approximate bidding strategies result in higher bidders’ expected

utility—which provides prospective bidders with an incentive to join a PAUSE auction.

However, GREEDYPAUSEBID+HILL is the one that offers the highest expected utility and

not GREEDYPAUSEBID, which is the one that most often generates lower revenue; although,

as shown in Figures Figure 13.14, Figure 13.15, Figure 13.16, the error bars overlap most

of the time. GREEDYPAUSEBID+HILL is usually more allocative efficient, as shown before.

84



9 10 11 12 13 14 15
Goods

0.10

0.12

0.14

0.16

0.18

A
v
g
. 
e
x
p
e
ct

e
d
 u

ti
lit

y
 r

a
ti

o

Arbitrary

PAUSEBID
CACHEDPAUSEBID
GREEDYPAUSEBID
GREEDYPAUSEBID+HILL

9 10 11 12 13 14 15 16
Goods

0.16

0.18

0.20

0.22

0.24

0.26

Scheduling

PAUSEBID
CACHEDPAUSEBID
GREEDYPAUSEBID
GREEDYPAUSEBID+HILL

10 11 12 13 14 15 16
Goods

0.12

0.14

0.16

0.18

0.20

L2

PAUSEBID
CACHEDPAUSEBID
GREEDYPAUSEBID
GREEDYPAUSEBID+HILL

10 11 12 13 14 15 16
Goods

0.12

0.14

0.16

0.18

0.20
L3

PAUSEBID
CACHEDPAUSEBID
GREEDYPAUSEBID
GREEDYPAUSEBID+HILL

FIGURE 13.16. Average expected utility ratio (10) as a function of the num-
ber of goods in the auction. The number of bids and bidders is fixed at 20
and 5 respectively.

Thus, in the allocations obtained by GREEDYPAUSEBID+HILL the winners are bidders that

have higher valuations than those in the allocations obtained by GREEDYPAUSEBID, and

yet they do not pay as much as the bidders in the allocations obtained by PAUSEBID. The

previous example shows that there is a relation between efficiency and bidders’ expected

utility, and the latter does not depend solely on lower revenue (lower prices).

13.7. RESULTS SUMMARY

As a summary of the results of our study, Table Table 13.2 contains the average and

standard deviation and Figure 13.17 shows the dispersion measures from all the auctions

carried out. Besides the time, the metrics used for this study are the ratios of the bidders’

expected utility, allocative efficiency, and revenue. The corresponding values of these met-

rics for the revenue-maximizing solution are: zero for the first one and 1 the other two. The

results of our study show that all our algorithms offer about the same bidder’s expected

utility for switching from a centralized auction to a PAUSE auction, although the greedy

algorithms are a little bit better. On average, GREEDYPAUSEBID+HILL has higher bidder’s

expected utility ratio than all the other algorithms, its advantage is between 0.002 to 0.004

in the arbitrary distribution, 0.008 to 0.018 in the scheduling distribution, and 0.001 to

0.002 in the L2 distribution (Table Table 13.2). However, in the L3, GREEDYPAUSEBID

has an advantage between 0.001 and 0.005 over the other algorithms. In the scheduling

distribution almost 50% of the auctions had a bidder’s expected utility ratio grater than or

85



Distri- Bidding exp. utility ratio efficiency ratio revenue ratio time (secs)
bution Algorithm average stdev average stdev average stdev average stdev

Arbitrary

PB 0.135 0.104 0.989 0.040 0.854 0.106 9713 27550
CP 0.137 0.103 0.989 0.040 0.852 0.106 325 982
GP 0.137 0.107 0.961 0.077 0.824 0.118 5 2
GH 0.139 0.108 0.970 0.068 0.831 0.116 42 17

Scheduling

PB 0.203 0.144 0.997 0.022 0.794 0.144 12824 33185
CP 0.211 0.144 0.994 0.029 0.784 0.144 282 685
GP 0.213 0.153 0.965 0.079 0.751 0.155 2 1
GH 0.221 0.152 0.977 0.065 0.756 0.153 19 11

L2

PB 0.148 0.107 1.000 0.000 0.852 0.107 2057 4695
CP 0.149 0.107 1.000 0.000 0.851 0.107 80 178
GP 0.149 0.107 1.000 0.001 0.851 0.107 10 5
GH 0.150 0.107 1.000 0.000 0.850 0.107 93 61

L3

PB 0.167 0.105 0.999 0.009 0.832 0.105 1091 2586
CP 0.165 0.103 0.994 0.027 0.829 0.105 88 137
GP 0.170 0.103 0.992 0.026 0.822 0.101 7 8
GH 0.169 0.103 0.994 0.023 0.825 0.101 84 83

TABLE 13.2. Average and standard deviation of the metrics used in our
experiments for each distribution and bidding algorithm pair. For the ar-
bitrary and scheduling distributions the values correspond to the results of
2200 auctions. For the L2 and L3 distributions the values correspond to
the result of 1500 different auctions. We define exp. utility ratio in (10),
efficiency ratio in (8), and revenue ratio in (9). In the table we use PB for
PAUSEBID, CP for CACHEDPAUSEBID, GP for GREEDYPAUSEBID, and GH
for GREEDYPAUSEBID+HILL.

equal to 0.2 (Figure 13.17(b)); on average, in this distribution the highest bidder’s utility

was reached. In the arbitrary distribution about 75% of the auctions had a bidders’ expected

utility ratio less than 0.2 (Figure 13.17(a)). In this distribution the bidders might got, on

average, the lowest utility.

Our test results also show that our algorithms have a high efficiency ratio, this means

that they frequently arrive at the same allocation of items to bidders as the revenue-maximizing

solution. Most of the cases where our algorithms failed to arrive at that allocation are those

where there was a large gap between the first and second valuation for a set (or sets) of

items. In the L2 and L3 distributions all the algorithms have the same allocative effi-

ciency ratio. However, in the other two distributions there is small difference in favor of

the myopic-optimal algorithms. GREEDYPAUSEBID is the one with the lowest allocative

86



PB CP GP GH
0.0

0.2

0.4

0.6

0.8

1.0

Bidding Algorithms

exp. utility ratio

PB CP GP GH

0.2

0.4

0.6

0.8

1.0
efficiency ratio

PB CP GP GH
0.0

0.2

0.4

0.6

0.8

1.0
revenue ratio

PB CP GP GH
100

101

102

103

104

105
time (secs)

(A) Arbitrary

PB CP GP GH
0.0

0.2

0.4

0.6

0.8

1.0

Bidding Algorithms

exp. utility ratio

PB CP GP GH

0.2

0.4

0.6

0.8

1.0
efficiency ratio

PB CP GP GH
0.0

0.2

0.4

0.6

0.8

1.0
revenue ratio

PB CP GP GH
10-1

100

101

102

103

104

105
time (secs)

(B) Scheduling

PB CP GP GH
0.0

0.2

0.4

0.6

0.8

1.0

Bidding Algorithms

exp. utility ratio

PB CP GP GH

0.2

0.4

0.6

0.8

1.0
efficiency ratio

PB CP GP GH
0.0

0.2

0.4

0.6

0.8

1.0
revenue ratio

PB CP GP GH
100

101

102

103

104
time (secs)

(C) L2

PB CP GP GH
0.0

0.2

0.4

0.6

0.8

1.0

Bidding Algorithms

exp. utility ratio

PB CP GP GH

0.2

0.4

0.6

0.8

1.0
efficiency ratio

PB CP GP GH
0.0

0.2

0.4

0.6

0.8

1.0
revenue ratio

PB CP GP GH
10-1

100

101

102

103

104
time (secs)

(D) L3

FIGURE 13.17. Median and upper and lower quartiles of the different met-
rics used in our experiments for each distribution and bidding algorithm pair.
The plots contain the results of 2200 auctions, for the arbitrary and sched-
uling distribution, and 1500 auctions, for the L2 and L3 distributions. We
define exp. utility ratio in (10), efficiency ratio in (8), and revenue ratio in
(9). In these plots we use PB for PAUSEBID, CP for CACHEDPAUSEBID, GP
for GREEDYPAUSEBID, and GH for GREEDYPAUSEBID+HILL. The plots do
not contain outliers.

efficiency. The plots related to the revenue ratio in Figure 13.17(a) show that 50% of the

auctions carried out in the arbitrary distribution had an efficiency ratio lower than one when

using this algorithm; although only 25% of the auctions had an allocative efficiency ratio

between 0.9 and 0.95, the rest had an allocative efficiency ratio grater than .95. It is also

possible to appreciate, in Figure 13.17(b), that in the scheduling distribution 50% of the

auctions had also an efficiency ratio lower than when using GREEDYPAUSEBID; neverthe-

less, the lowest 25% of the auctions are between .97 and .98. Thus, we show that even the

algorithm with the worse allocative efficiency ratio is highly allocative efficient.

The running time of PAUSEBID and CACHEDPAUSEBID remains exponential in the

number of bidders, goods, and bids, although the last one does not affect the time as much

87



as the others. However, both algorithms are significantly better than a full search, and

CACHEDPAUSEBID is more than 95 times faster than PAUSEBID. The running time of the

greedy algorithms remains linear in the number of bidders, goods, and bids, and they are

up to 99 times faster than PAUSEBID; with GREEDYPAUSEBID being the fastest one. Ta-

ble Table 13.2 shows that the average time of the greedy algorithms is only a small fraction

of that of the myopic-optimal ones. Figures Figure 13.17(a) and Figure 13.17(b) show that,

under the arbitrary and scheduling distributions, all the auctions were cleared much faster

when using GREEDYPAUSEBID than when using the other algorithms. Those figures also

show that GREEDYPAUSEBID+HILL is, in general, much faster than the myopic-optimal

algorithms; although there are few cases where CACHEDPAUSEBID was faster. An interest-

ing observation is that under the L2 distribution CACHEDPAUSEBID is generally faster than

GREEDYPAUSEBID+HILL, Figure 13.17(c), and under L3 distribution their average time

and dispersion measurements are about the same, Figure 13.17(d).

Thus, the greedy algorithms offer a double incentive to the bidders, higher expected util-

ity and the speed. Rational bidders should use GREEDYPAUSEBID+HILL in the arbitrary,

scheduling, and L2 distributions when time is not an issue. When more speed is crucial,

they should use GREEDYPAUSEBID. On average the difference on bidder’s expected utility

ratio between GREEDYPAUSEBID+HILL and GREEDYPAUSEBID might not be very signifi-

cant (GREEDYPAUSEBID is only 0.002 below in the arbitrary and scheduling distributions

and 0.001 below in the L3 distribution), however their difference in time is more significant

(GREEDYPAUSEBID is more than 10 times faster).

As expected, since PAUSE is an ascending price auction, the revenue generated by the

PAUSE auction is lower than the revenue of a revenue-maximizing solution, most of the

time. Under the arbitrary distribution, the average revenue ratio of PAUSEBID and CACHED-

PAUSEBID is around 0.85, while for GREEDYPAUSEBID and GREEDYPAUSEBID+HILL is

around 0.83. In the scheduling distribution their average revenue is 0.79 and 0.75 respec-

tively. In the other two distributions there is almost no difference amongst the revenue

generated by all the algorithms, 0.85 in L2 and 0.83 in L3.

88



Part 4

Conclusions



CHAPTER 14

CONCLUSIONS

In recent years, companies and governments around the world have left behind admin-

istered allocation systems, single item auctions, and other ad hoc mechanisms; tradition-

ally used to sell valuable commodities, solve sourcing problems, or allocate scarce public

resources; to take advantage of the power of combinatorial auction based market mecha-

nisms, maximizing revenue and minimizing cost of sales. The “package” bidding enabled

by these mechanisms allows bidders to benefit from combining the complementarities of

the items being auctioned and to better express the value of any synergies. Different from

consumer auctions platforms like eBay, combinatorial auctions platforms are used in high

stakes business-to-business environments. Thus, combinatorial auctions have been funda-

mentally changing the way of selling valuable resources, allowing the creation of elec-

tronic markets to supplement traditional sales channels like bilateral negotiated contracts,

and creating markets where in the past there were none or where the market is not exactly

a glowing example of great commercial outcomes.

However, combinatorial auctions mechanisms require a central auctioneer, a third party

that stays between the seller and the buyer or the provider and the consumer; which receives

the bids from the bidders and carries out the computation to find the best allocation—an

NP-complete problem—and, of course, it receives a fee for its service. Unfortunately, these

types of centralized auctions are not a good fit for some scenarios; as when for example,

the resources are owned by different entities and each entity has localized information,

when the bidders do not want to reveal their valuations (some times their bids represent

valuable information like production cost), or when it is difficult or unaffordable to estab-

lish a trusted auctioneer. These cases are the motivation of our research into distributed

90



combinatorial auctions, peer-to-peer incentive compatible mechanisms for solving the al-

location problem. An approach were the computational problem of finding an allocation

is distributed amongst the bidders, who have a clear financial incentive to perform this

computation.

The PAUSE auction is one of a few approaches to decentralize the winner determina-

tion problem in combinatorial auctions. With this auction, we can even envision completely

eliminating the auctioneer and, instead, have every agent perform the task of the auction-

eer. However, while PAUSE establishes the rules the bidders must obey, it does not tell

us how the bidders should calculate their bids. We have presented two myopic-optimal

(Chapters 10) and two heuristic-approximate 11 bidding algorithms. We implemented our

algorithms and carried out an experimental study over different type of problems.

Our algorithms have shown that it is feasible to implement distributed combinatorial

auctions without having to resort to a centralized winner determination algorithm (Sec-

tions 10.3 and 11.3). Bidder agents that are not currently part of a PAUSE auction have

an incentive to join a PAUSE auction and, because of the design of the PAUSE auction,

perform the required computation. We have shown that their utility will increase if they

abandon their centralized combinatorial auction in favor of PAUSE and use our algorithms.

We found that our heuristic greedy algorithms offer high speed as a second incentive (Sec-

tion 11.3). We have also shown that the allocations obtained with our algorithms are very

efficient. Moreover, we have shown, through a game theoretical analysis, that the case

where everybody bids using GREEDYPAUSEBID+HILL algorithm is a non-strict Nash equi-

librium (Chapter 12). The revenue generated by a PAUSE auction is lower than the optimal,

nevertheless, we found that it increases as the number of bidders in the auction increases

because of the increased competition (Chapter 13). Thus, the bidders’s benefits provided

by PAUSE will attract more bidders, which would result in more benefits for the seller in

addition of the savings from eliminating the tax paid to the third party.

Thus, our experiments have shown that, over a representative set of problems, the

PAUSE auction is both efficient in terms of the solution it finds as well as the time it

91



takes to find it (Chapter 13). We have shown that the PAUSE auction along with the heuris-

tic bidding algorithms is a realistic method for solving combinatorial allocation problems

without the use a centralized auctioneer. Moreover, because of the computational tractabil-

ity of this mechanism our algorithms are suitable for problems where agents with small

computational power are involved such as electronic commerce and automated negotiation.

Another possible application is in multirobot environments where robots are responsible for

coordinating complex tasks such as transporting equipments within a manufacturing plant,

delivering packages in an office, rescuing victims in situations inaccessible by humans, or

tracking enemy targets in battlefields. We have also shown that the nature of bidding distri-

butions related to the problem being solved do have a significant effect on the run time of

the algorithm, so this should be taken into consideration before deploying a PAUSE-based

system.

We are looking at how to further increase the scalability of the PAUSE auction to mil-

lions of agents by allowing agents to place incomplete bidsets and only communicate their

bids to a subset of agents. Our goal is to develop new auctions which can scale to any

number of bidders while distributing the computational cost evenly amongst them.

92



BIBLIOGRAPHY

1. Martin R. Andersson and Tuomas W. Sandholm, Contract types for satisficing task
allocation: Ii experimental results, AAAI Spring Symposium: Satisficing Models,
1998.

2. JianCong Bai, HuiYou Chang, and Yang Yi, An immune partheno-genetic algorithm
for winner determination in combinatorial auctions, ICNC (3), 2005, pp. 74–85.

3. Liad Blumrosen and Noam Nisan, Combinatorial auctions, Algorithmic Game Theory
(Noam Nisan, Tim Roughgarden, Eva Tardos, and Vijay V. Vazirani, eds.), Cambridge
University Press, New York, NY, USA, 2007, pp. 267–299.

4. Craig Boutilier and Holger H. Hoos, Bidding languages for combinatorial auctions,
Proceedings of the Seventeenth International Joint Conference on Artificial Intelli-
gence, 2001, pp. 1211–1217.

5. Paul J. Brewer, Decentralized computation procurement and computational robustness
in a smart market, Economic Theory 13 (1999), no. 1, 41–92.

6. Harumi Kuno Claudio Bartolini, Chris Preist, Requirements for automated negotiation,
W3C workshop on Web services, W3C, 2001.

7. Peter Cramton, Simultaneous ascending auctions, in Cramton et al. [8], pp. 99–114.

8. Peter Cramton, Yoav Shoham, and Richard Steinberg (eds.), Combinatorial auctions,
MIT Press, 2006.

9. Sven de Vries and Rakesh V. Vohra, Combinatorial auctions: A survey, INFORMS
Journal on Computing 15 (2003), no. 3, 284–309.

10. Joan Feigenbaum and Scott Shenker, Distributed algorithmic mechanism design: Re-
cent results and future directions, Proceedings of the 6th International Workshop on
Discrete Algorithms and Methods for Mobile Computing and Communications, ACM
Press, New York, 2002, pp. 1–13.

93



11. Yuzo Fujishima, Kevin Leyton-Brown, and Yoav Shoham, Taming the computational
complexity of combinatorial auctions: Optimal and approximate approaches, Proceed-
ings of the Sixteenth International Joint Conference on Artificial Intelligence, Morgan
Kaufmann Publishers Inc., 1999, pp. 548–553.

12. Naoki Fukuta and Takayuki Ito, Towards better approximation of winner determi-
nation for combinatorial auctions with large number of bids, Proceedings of the
IEEE/WIC/ACM international conference on Intelligent Agent Technology, 2006,
pp. 618–621.

13. Peter Gradwell and Julian Padget, Markets vs auctions: Approaches to distributed
combinatorial resource scheduling, Multiagent and Grid Systems 1 (2005), no. 4, 251
– 262.

14. Holger H. Hoos and Craig Boutilier, Solving combinatorial auctions using stochastic
local search, Proceedings of the Seventeenth National Conference on Artificial Intel-
ligence and Twelfth Conference on Innovative Applications of Artificial Intelligence,
AAAI Press / The MIT Press, 2000, pp. 22–29.

15. Brahim Chaib-draa Houssein Ben-Ameur and Peter Kropf, Multi-item auctions for
automatic negotiation, Information and Software Technology 44 (2002), no. 5, 291–
301.

16. Michael N. Huhns and Munindar P. Singh (eds.), Readings in agents, Morgan Kauf-
mann Publishers Inc., San Francisco, CA, USA, 1998.

17. Matthew O. Jackson, Mechanism theory, The Encyclopedia of Life Support Systems,
EOLSS Publishers, 2000.

18. Frank Kelly and Richard Stenberg, A combinatorial auction with multiple winners for
universal service, Management Science 46 (2000), no. 4, 586–596.

19. Sarit Kraus, Beliefs, time and incomplete information in multiple encounter negotia-
tions among autonomous agents, Annals of Mathematics and Artificial Intelligence 20
(1997), no. 1–4, 111–159.

20. , Automated negotiation and decision making in multiagent environments,
Mutli-agents systems and applications (Jaime G. Carbonell and Jorg Siekmann, eds.),
Springer-Verlag, 2001, pp. 150–172.

21. Alisa Land, Susan Powell, and Richard Steinberg, PAUSE: A computationally tractable
combinatorial auction, in Cramton et al. [8], pp. 139–157.

22. Daniel Lehmann, Rudolf Muller, and Tuomas Sandholm, The winner determination
problem, in Cramton et al. [8], pp. 297–317.

94



23. Daniel Lehmann, Liadan Ita Oćallaghan, and Yoav Shoham, Truth revelation in ap-
proximately efficient combinatorial auctions, Journal of the ACM 49 (2002), no. 5,
577–602.

24. Kevin Leyton-Brown, Mark Pearson, and Yoav Shoham, Towards a universal test suite
for combinatorial auction algorithms, Proceedings of the 2nd ACM conference on
Electronic commerce, ACM Press, 2000, pp. 66–76.

25. Kevin Leyton-Brown and Yoav Shoham, A test suite for combinatorial auctions, in
Cramton et al. [8], pp. 451–478.

26. Benito Mendoza and José M. Vidal, Bidding algorithms for a distributed combinato-
rial auction, Proceedings of the Autonomous Agents and Multi-Agent Systems Con-
ference, 2007.

27. , Approximate bidding algorithms for a distributed combinatorial auction
(short paper), Proceedings of the 7th International Conference on Autonomous Agents
and Multiagent Systems (Estoril, Portugal) (Padgham, Parkes, Müller, and Parsons,
eds.), May 2008.

28. Muralidhar V. Narumanchi and José M. Vidal, Algorithms for distributed winner deter-
mination in combinatorial auctions, LNAI volume of AMEC/TADA, Springer, 2006.

29. Noam Nisan, Bidding and allocation in combinatorial auctions, Proceedings of the
ACM Conference on Electronic Commerce, 2000, pp. 1–12.

30. Sunju Park and Michael H. Rothkopf, Auctions with endogenously determined al-
lowable combinations, Tech. report, Rutgets Center for Operations Research, January
2001, RRR 3-2001.

31. David C. Parkes and Jeffrey Shneidman, Distributed implementations of vickrey-
clarke-groves auctions, Proceedings of the Third International Joint Conference on
Autonomous Agents and MultiAgent Systems, ACM, 2004, pp. 261–268.

32. David C. Parkes and Lyle H. Ungar, Iterative combinatorial auctions: Theory and
practice, Procedings of the 17th National Conference on Artificial Intelligence (AAAI-
00), 2000, pp. 74–81.

33. Jeffrey S. Rosenschein and Gilad Zlotkin, Rules of encounter, The MIT Press, Cam-
bridge, MA, 1994.

34. Michael H. Rothkopf, Aleksandar Pekec, and Ronald M. Harstad, Computationally
manageable combinational auctions, Management Science 44 (1998), no. 8, 1131–
1147.

95



35. Stuart Russell and Peter Norvig, Artificial intelligence: A modern approach, second
ed., Prentice Hall, 2003.

36. Yuko Sakurai, Makoto Yokoo, and Koji Kamei, An efficient approximate algorithm for
winner determination in combinatorial auctions, EC ’00: Proceedings of the 2nd ACM
conference on Electronic commerce (New York, NY, USA), ACM, 2000, pp. 30–37.

37. Tuomas Sandholm, An algorithm for winner determination in combinatorial auctions,
Proceedings of the Sixteenth International Joint Conference on Artificial Intelligence,
1999, pp. 542–547.

38. , An algorithm for winner determination in combinatorial auctions, Artificial
Intelligence 135 (2002), no. 1-2, 1–54.

39. , Expressive commerce and its application to sourcing: How we conducted $35
billion of generalized combinatorial auctions, AI Magazine 28 (2007), no. 3, 45–58.

40. Tuomas Sandholm, Subhash Suri, Andrew Gilpin, and David Levine, CABOB: a fast
optimal algorithm for winner determination in combinatorial auctions, Management
Science 51 (2005), no. 3, 374–391.

41. Tuomas W. Sandholm, Distributed rational decision making, Multiagent Systems: A
Modern Approach to Distributed Artificial Intelligence (Gerhard Weiss, ed.), The MIT
Press, Cambridge, MA, USA, 1999, pp. 201–258.

42. Katia Sycara, Multiagent systems, AI Magazine 10 (1998), no. 2, 79–93.

43. Jay M. Tenenbaum, AI meets web 2.0: Building the web of tomorrow, today, AI Mag-
azine 27 (2006), no. 4.

44. Jose M. Vidal, Fundamentals of multiagent systems with netlogo examples, 2007.

45. Nikos Vlassis, A concise introduction to multiagent systems and distributed artifi-
cial intelligence, Synthesis Lectures on Artificial Intelligence and Machine Learning 1
(2007), no. 1, 1–71.

46. Gerhard Weiss (ed.), Multiagent systems: A modern approach to distributed artificial
intelligence, MIT Press, 1999.

47. Michael Wooldridge, Introduction to multiagent systems, John Wiley and Sons, 2002.

48. Michael Wooldridge and Nicholas R. Jennings, Intelligent agents: Theory and prac-
tice, The Knowledge Engineering Review 10 (1995), no. 2, 115–152.

96



49. Edo Zurel and Noam Nisan, An efficient approximate allocation algorithm for com-
binatorial auctions, Proceedings of the ACM Conference on Electronic Commerce,
2001.

97


	Acknowledgments
	Abstract
	List of Figures
	Part 1.  Overview
	Chapter 1. Introduction
	1.1. Motivation
	1.2. Contributions
	1.3. Outline


	Part 2.  Background and Related Work
	Chapter 2. Agents and Multiagent Systems
	2.1. Multiagent Systems

	Chapter 3. Mechanism Design
	Chapter 4. Auctions
	4.1. Single Good Auctions
	4.2. Combinatorial Auctions

	Chapter 5. The Winner Determination Problem
	5.1. Restricting the Winner Determination Problem
	5.2. Optimal Algorithms
	5.3. Approximate Algorithms

	Chapter 6. The Combinatorial Auction Test Suite (CATS)
	Chapter 7. The PAUSE Auction
	7.1. The Job of the Auctioneer in the PAUSE Auction

	Chapter 8. Related Work

	Part 3.  Research Contributions of this Dissertation
	Chapter 9. Bidding in the PAUSE Auction: Problem Formulation
	9.1. Metrics

	Chapter 10. Myopically-Optimal Bidding Algorithms for a Distributed Combinatorial Auction
	10.1. The pausebid Algorithm
	10.2. The cachedpausebid Algorithm
	10.3. Test and Comparison: Myopic-Optimal Algorithms
	10.4. Conclusions: Myopic-Optimal Algorithms

	Chapter 11. Approximate Bidding Algorithms for a Distributed Combinatorial Auction
	11.1. The greedypausebid Algorithm
	11.2. The greedypausebid+hill Algorithm
	11.3. Test and Comparison: Myopic-optimal and Approximate Algorithms
	11.4. Conclusions: Myopic-optimal and Approximate Algorithms

	Chapter 12. A Game Theoretical Analysis of Bidding Strategies for a Distributed Combinatorial Auction
	12.1. Experimental Model
	12.2. Conclusions: Game-Theoretical Analysis

	Chapter 13. The Economic and Computational Efficiency of PAUSE and our Algorithms Under Different Bid Distributions
	13.1. CATS Distributions
	13.2. Experimental settings
	13.3. Time
	13.4. Revenue
	13.5. Allocative Efficiency
	13.6. Bidders' Expected Utility
	13.7. Results Summary


	Part 4.  Conclusions
	Chapter 14. Conclusions
	Bibliography


