Hierarchical Multi-Agent Reinforcement Learning

*
Rajbala Makar Sridhar Mahadevan Mohammad
Department of Computer Department of Computer Ghavamzadeh
Science Science Department of Computer
Michigan State University Michigan State University Science

East Lansing, MI 48824
makarraj@cse.msu.edu

ABSTRACT

In this paper we investigate the use of hierarchical rein-
forcement learning to speed up the acquisition of cooper-
ative multi-agent tasks. We extend the MAXQ framework
to the multi-agent case. Each agent uses the same MAXQ
hierarchy to decompose a task into sub-tasks. Learning is
decentralized, with each agent learning three interrelated
skills: how to perform subtasks, which order to do them
in, and how to coordinate with other agents. Coordination
skills among agents are learned by using joint actions at the
highest level(s) of the hierarchy. The Q nodes at the high-
est level(s) of the hierarchy are configured to represent the
joint task-action space among multiple agents. In this ap-
proach, each agent only knows what other agents are doing
at the level of sub-tasks, and is unaware of lower level (prim-
itive) actions. This hierarchical approach allows agents to
learn coordination faster by sharing information at the level
of sub-tasks, rather than attempting to learn coordination
taking into account primitive joint state-action values. We
apply this hierarchical multi-agent reinforcement learning
algorithm to a complex AGV scheduling task and compare
its performance and speed with other learning approaches,
including flat multi-agent, single agent using MAXQ), selfish
multiple agents using MAXQ (where each agent acts inde-
pendently without communicating with the other agents), as
well as several well-known AGV heuristics like ”first come
first serve”, ”highest queue first” and ”nearest station first”.
We also compare the tradeoffs in learning speed vs. perfor-
mance of modeling joint action values at multiple levels in
the MAXQ hierarchy.

1. INTRODUCTION

Consider sending a team of robots to carry out recon-
naissance of an indoor environment to check for intruders.

*Currently at Agilent Technologies, CA.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

AGENTS 01, May 28-June 1, 2001, Montréal, Quebec, Canada.

Copyright 2001 ACM 1-58113-326-X/01/0005 ...$5.00.

East Lansing, MI 48824
mahadeva@cse.msu.edu

Michigan State University
East Lansing, Ml 48824

ghavamza@cse.msu.edu

This problem is naturally viewed as a multi-agent task [19].
The most effective strategy will require coordination among
the individual robots. A natural decomposition of this task
would be to assign different parts of the environments, for
example rooms, to different robots. In this paper, we are
interested in learning algorithms for such cooperative multi-
agent tasks, where the agents learn the coordination skills by
trial and error. The main point of the paper is simply that
coordination skills are learned much more efficiently if the
robots have a hierarchical representation of the task struc-
ture [13]. In particular, rather than each robot learning its
response to low-level primitive actions of the other robots
(for instance if robot-1 goes forward, what should robot-2
do), it learns high-level coordination knowledge (what is the
utility of robot-2 searching room-2 if robot-1 is searching
room-1, and so on).

We adopt the framework of reinforcement learning[14],
which has been well-studied in both single agent and multi-
agent domains. Multi-agent reinforcement learning has been
recognized to be much more challenging, since the number
of parameters to be learned increases dramatically with the
number of agents. In addition, since agents carry out ac-
tions in parallel, the environment is usually non-stationary
and often non-Markovian as well [9]. We do not address the
non-stationary aspect of multi-agent learning in this paper.
One approach that has been successful in the past is to have
agents learn policies that are parameterized by the modes
of interaction [18].

Prior work in multi-agent reinforcement learning can be
decomposed into work on competitive models vs. coopera-
tive models. Littman [8], and Hu and Wellman [5], among
others, have studied the framework of Markov games for
competitive multi-agent learning. Here, we are primarily
interested in the cooperative case. The work on cooperative
learning can be further separated based on the extent to
which agents need to communicate with each other. On the
one hand are studies such as Tan [17], which extend flat Q-
learning to multi-agent learning by using joint state-action
values. This approach requires communication of states and
actions at every step. On the other hand are approaches
such as Crites and Barto [3], where the agents share a com-
mon state description and a global reinforcement signal, but
do not model joint actions. There are also studies of multi-
agent learning which do not model joint states or actions
explicitly, such as by Balch [2] and Mataric [9], among oth-
ers. In such behavior-based systems, each robot maintains

its position in the formation depending on the locations of
the other robots, so there is some implicit communication or
sensing of states and actions of other agents. There has also
been work on reducing the parameters needed for Q-learning
in multi-agent domains, by learning action values over a set
of derived features[12]. These derived features are domain-
specific, and have to be encoded by hand, or constructed by
a supervised learning algorithm.

Our approach differs from all the above in one key re-
spect, namely the use of explicit task structure to speed
up cooperative multi-agent reinforcement learning. Hier-
archical methods constitute a general framework for scal-
ing reinforcement learning to large domains by using the
task structure to restrict the space of policies. Several al-
ternative frameworks for hierarchical reinforcement learning
have been proposed, including options [15], HAMs [10] and
MAXQ [4]. We assume each agent is given an initial hi-
erarchical decomposition of the overall task (as described
below, we adopt the MAXQ hierarchical framework). How-
ever, the learning is distributed since each agent has only
a local view of the overall state space. Furthermore, each
agent learns joint abstract action-values by communicating
with each other only the high-level subtasks that they are
doing. Since high-level tasks can take a long time to com-
plete, communication is needed only fairly infrequently (this
is another significant advantage over flat methods).

A further advantage of the use of hierarchy in multi-agent
learning is that it makes it possible to learn co-ordination
skills at the level of abstract actions. The agents learn joint
action values only at the highest level(s) of abstraction in the
proposed framework. This allows for increased co-operation
skills as agents do not get confused by low level details. In
addition, each agent has only local state information, and is
ignorant about the other agent’s location. This is based on
the idea that in many cases, an agent can get a rough idea
of what state the other agent might be in just by knowing
about the high level action being performed by the other
agent. Also, keeping track of just this information greatly
simplifies the underlying reinforcement learning problem.

These benefits can potentially accrue with using any type
of hierarchical learning algorithm, though in this paper we
only describe results using the MAXQ framework. The rea-
son that we decided to adopt the MAXQ framework as a ba-
sis for our multi-agent algorithm is the fact that the MAXQ
method stores the value function in a distributed way in all
nodes in the subtask graph. The value function is propa-
gated upwards from the lower level nodes whenever a high
level node needs to be evaluated. This propagation enables
the agent to simultaneously learn subtasks and high level
tasks. Thus, by using this method, agents learn the co-
ordination skills and the individual low level tasks and sub-
tasks all at once.

However, it is necessary to generalize the MAXQ frame-
work to make it more applicable to multi-agent learning. A
broad class of multi-agent optimization tasks, such as AGV
scheduling, can be viewed as discrete-event dynamic sys-
tems. For such tasks, the termination predicate used in
MAXQ has to be redefined to take care of the fact that the
completion of certain subtasks might depend on the occur-
rence of an event rather than just a state of the environ-
ment. We extended the MAXQ framework to continuous-
time MDP models, although we will not discuss this exten-
sion in this paper.

2. THE MAXQ FRAMEWORK

The multi-agent reinforcement learning algorithm intro-
duced in this paper is an extension of the MAXQ method
for single agent hierarchical learning [4]. This approach in-
volves the use of a graph to store a distributed value func-
tion. The overall task is first decomposed into subtasks up
to the desired level of detail, and the task graph is con-
structed. We illustrate the idea using a simple two-robot
search task shown in Figure 1. Consider the case where a
robot is assigned the task of picking up trash from trash cans
over an extended area and accumulating it into one central-
ized trash bin, from where it might be sent for recycling or
disposed. This is a task which can be parallelized, if we have
more than one agent working on it. An office (rooms and
connecting corridors) type environment is shown in figure.
A1l and A2 represent the two agents in the figure. Note the
agents need to learn three skills here. First, how to do each
subtask, such as navigating to T'1 or T2 or Dump, and when
to perform Pickup or Putdown action. Second, the agents
also need to learn the order to do subtasks (for instance go
to T'1 and collect trash before heading to the Dump). Fi-
nally, the agents also need to learn how to coordinate with
other agents (i.e. Agentl can pick up trash from T'1 whereas
Agent2 can service T2). The strength of the MAXQ frame-
work (when extended to the multi-agent case) is that it can
serve as a substrate for learning all these three types of skills.

Room2

Corridor

Room3
T1: Location of one trash can.

T2: Location of another trash can.

Dump: Final destination location for depositing all trash.

Figure 1: A (simulated) multi-agent robot trash col-
lection task.

This trash collection task can be decomposed into sub-
tasks and the resulting task graph is shown in figure 2. The
task graph is then converted to the MAX(Q graph, which
is shown in figure 3. The MAXQ graph has two types of
nodes: MAX nodes (triangles) and @ nodes (rectangles),
which represent the different actions that can be done under
their parents. Note that MAXQ allows learning of shared
subtasks. For example, the navigation task Nav is common
to several parent tasks.

The multi-agent learning scenario under investigation in
this paper can now be illustrated. Imagine the two robots

Root

‘ NavigatetoTl‘ ‘Na«igatetoTZ‘ Navi Pick
Navigate

‘ FoIIowWaII‘ ‘AIignwithWa‘lHFindWall ‘

Figure 2: The task graph for the trash collection
task.

A : Max Node

Q:QNode

T1: Location of trash 1
T2: Location of Trash 2
D: Location of dump

Figure 3: The MAXQ graph for the trash collection
task.

start to learn this task with the same MAXQ graph struc-
ture. We can distinguish between two learning approaches.
In the selfish case, the two robots learn with the given MAXQ
structure, but make no attempt to communicate with each
other. In the cooperative case, the MAXQ structure is modi-
fied such that the Q nodes at the level(s) immediately under
the root task include the joint action done by both robots.
For instance, each robot learns the joint Q-value of navigat-
ing to trash T'1 when the other robot is either navigating to
T1 or T2 or Dump or doing a Put or Pick action. As we will
show in a more complex domain below, cooperation among
the agents results in superior learned performance than in
the selfish case, or indeed the flat case when the agents do
not use a task hierarchy at all.

More formally, the MAX(Q method decomposes an MDP
M into a set of subtasks My, M;...M,,. Each subtask is a
three tuple (73, Ai,E) defined as:

e T;(s;) is a termination predicate which partitions the
state space S into a set of active states S;, and a set
of terminal states T;. The policy for subtask M; can
only be executed if the current state s € S;.

e A, is a set of actions that can be performed to achieve
subtask M;. These actions can either be primitive ac-
tions from A, the set of primitive actions for the MDP,
or they can be other subtasks.

. E(sl |s,a) is the pseudo reward function, which spec-
ifies a pseudo-reward for each transition from a state
s € S; to a terminal state s € T;. This pseudo-reward
tells how desirable each of the terminal states is for
this particular subtask.

Each primitive action a is a primitive subtask in the
MAXQ decomposition, such that ¢ is always executable,
it terminates immediately after execution, and it’s pseudo-
reward function is uniformly zero. The projected value func-
tion V7™ is the value of executing hierarchical policy 7 start-
ing in state s, and at the root of the hierarchy. The com-
pletion function (C™ (i, s, a)) is the expected cumulative dis-
counted reward of completing subtask M; after invoking the
subroutine for subtask M, in state s.

The (optimal) value function V;i(i,s) for doing task i in
state s is calculated by decomposing it into two parts: the
value of the subtask which is independent of the parent task,
and the value of the completion of the task, which of course
depends on the parent task.

Vi(i,s) = mazrqQi(i,s,a) if iis composite
BT S P(sT | s, 4)R(S | s,0) if i is primitive

Q+(i,s,a) = Vi(a, s) + Ce(i, s,a) (1)

where Q+(i,5s,a) is the action value of doing subtask a in
state s in the context of parent task .
The @ values and the C' values can be learned through
a standard temporal-difference learning method, based on
sample trajectories (see [4] for details). One important point
to note here is that since subtasks are temporally extended
in time, the update rules used here are based on the semi-
Markov decision process (SMDP) model [11].

Let us assume that an agent is at state s while doing task ¢,
and chooses subtask j to execute. Let this subtask terminate

after N steps and result in state s’. Then, the SMDP Q-
learning rule used to update the completion function is given

by

Cit+1(4,8,7) — (1 —ar)C(3,8,7) + at'yN (m%x V(a',s') + Ci(i,s',a"))
a

A hierarchical policy 7 is a set containing a policy for each
of the subtasks in the problem: m = {mo...7}. The pro-
jected value function in the hierarchical case, denoted by
V7 (s), is the value of executing hierarchical policy 7 start-
ing in state s and starting at the root of the task hierarchy. A
recursively optimal policy for MDP M with MAXQ decom-
position {Mg ... M,} is a hierarchical policy # = {7 ... 7}
such that for each subtask M; the corresponding policy 7;
is optimal for the SMDP defined by the set of states S;, the
set of actions A;, the state transition probability function
P’r(s,7N|s7a), and the reward function given by the sum
of the original reward function R(sl|s,a) and the pseudo-

reward function Ri(s/). The MAXQ learning algorithm has
been proven to converge to 7., the unique recursively opti-
mal policy for MDP M and MAXQ graph H, where M =
(S, A, P,R, Py) is a discounted infinite horizon M DP with
discount factor -y, and H is a MAXQ graph defined over
subtasks {Mo ... My,}.

3. MULTI-AGENT MAXQ ALGORITHM

The MAXQ decomposition of the Q-function relies on a
key principle: the reward function for the parent task is
the value function of the child task (see Equation 1). We
show how this idea can be extended to joint-action values.
The most salient feature of the extended MAXQ algorithm,
which is proposed in this paper, is that the top level(s) (the
level immediately below the root, and perhaps lower levels)
of the hierarchy is (are) configured to store the completion
function (C) values for joint (abstract) actions of all agents.
The completion function C?(i,s,a’, a’...a’...a™) is defined
as the expected discounted reward of completion of subtask
a’ by agent j in the context of the other agents performing
subtasks a*,Vi € {1,...,n},i1 # j.

More precisely, the decomposition equations used for cal-
culating the projected value function V have the following
form (for agent j)

Jes o 1 J—1 41 ny _
V7@, s,a,...,a° " ,a’ ... a") =

maz,; Ql(i,s,at...a’ ...a") if composite(i)

S P(s" | s, 9)R(s" | s,4) if primitive(i)

Ql(i,s,a"...a’...a") =Vi(d,s) +Cl(i,s,a" ...a"...a")

at the highest (or lower than the highest as needed) level(s)
of the hierarchy, where joint action values are being modeled,
and a’ is the action being performed by agent j. Compare
the decomposition in Equation 1 with Equation 2. Given a
MAXQ hierarchy M for any given task, we need to find the
highest level at which this equation provides a sufficiently
good approximation of the true value. For both the AGV
and the trash collection domain, the subtasks immediately

below the root seem to be a good compromise between good
performance and reducing the number of joint state action
values that need to be learned.

To illustrate the multi-agent MAXQ algorithm, for the
two-robot trash collection task, if we set up the joint action-
values at only the highest level of the MAXQ graph, we get
the following value function decomposition for Agentl:

Q1 (Root, s, NavT1, NavT2) = v} (NavT1,s) +

C}(Root, s, NavT1, NavT?2)

which represents the value of Agentl doing task NavT'1 in
the context of the overall Root task, when Agent2 is doing
task NavT2. Note that this value is decomposed into the
value of the NavT1 subtask itself and the completion cost of
the remainder of the overall task. In this example, the multi-
agent MAXQ decomposition embodies the heuristic that the
value of Agentl doing the subtask NavT'1 is independent of
whatever Agent2 is doing.

A recursive algorithm is used for learning the C' values.
Thus, an agent starts from the root task and chooses a sub-
task till it gets to a primitive action. The primitive action
is executed, the reward observed, and the leaf V' values up-
dated. Whenever any subtask terminates, the C(i, s, a) val-
ues are updated for all states visited during the execution of
that subtask. Similarly, when one of the tasks at the level
just below the root task terminates, the C(i,s,a’,... ,a™)
values are updated according to the MAXQ learning algo-
rithm.

4. THE AGV SCHEDULING TASK

Automated Guided Vehicles (AGVs) are used in flexi-
ble manufacturing systems (FMS) for material handling [1].
They are typically used to pick up parts from one location,
and drop them off at another location for further processing.
Locations correspond to workstations or storage locations.
Loads which are released at the dropoff point of a worksta-
tion wait at its pick up point after the processing is over
so the AGV is able to take it to the warehouse or some
other locations. The pickup point is the machine or work-
station’s output buffer. Any FMS system using AGVs faces
the problem of optimally scheduling the paths of AGVs in
the system[7]. For example, a move request occurs when a
part finishes at a workstation. If more than one vehicle is
empty, the vehicle which would service this request needs
to be selected. Also, when a vehicle becomes available, and
multiple move requests are queued, a decision needs to be
made as to which request should be serviced by that vehi-
cle. These schedules obey a set of constraints that reflect the
temporal relationships between activities and the capacity
limitations of a set of shared resources.

The uncertain and ever changing nature of the manufac-
turing environment makes it virtually impossible to plan
moves ahead of time. Hence, AGV scheduling requires dy-
namic dispatching rules, which are dependent on the state of
the system like the number of parts in each buffer, the state
of the AGV and the processing going on at the workstations.
The system performance is generally measured in terms of
the throughput, the online inventory, the AGV travel time
and the flow time, but the throughput is by far the most
important factor. In this case, the throughput is measured
in terms of the number of finished assemblies deposited at

P: Pick up Station
D: Drop off Station
M: Machine

Load
T

60m)|

Warehouse 60m
20m|

Assembl iﬁ
60m
1
Unload
D3+ | M3 D4+ | M4

1 1

20m 40m

P3 P4
40m 40m
Figure 4: A multiple automatic guided vehicle

(AGV) optimization task. There are four AGV
agents (not shown) which carry raw materials and
finished parts between the machines and the ware-
house.

the unloading deck per unit time. Since this problem is
analytically intractable, various heuristics and their combi-
nations are generally used to schedule AGVs[6, 7]. However,
the heuristics perform poorly when the constraints on the
movement of the AGVs are reduced.

Previously, Tadepalli and Ok [16] studied a single-agent
AGYV scheduling task using “flat” average-reward reinforce-
ment learning. However, the multi-agent AGV task we study
is more complex. Figure 4 shows the layout of the system
used for experimental purposes. Parts of type i have to
be carried to drop off station at workstation ¢ and the as-
sembled parts brought back into the warehouse. The AGV
travel is unidirectional (as the arrows show).

The termination predicate has been redefined to take care
of the fact that the completion of certain tasks might depend
on the occurrence of an event rather than just a state of the
environment. For example, if we consider the DM 1 subtask
in the AGV problem (see Figure 5), the state of the system
at the beginning of the subtask might be the same as that at
the end, as the system is very dynamic. New parts contin-
uously arrive at the warehouse, and the machines start and
end work on parts at random intervals. Also, the actions
of a number of agents affects the environment. This kind
of discrete event model makes it necessary to have termi-
nation of subtasks to be defined in terms of events. Hence,
a subtask terminates when the event associated with that
subtask is triggered by the robot performing the subtask,
for example DM1 subtask terminates when the “unload of
material 1 at drop off station of machine 1” event occurs.

4.1 State Abstraction

The state of the environment consists of the number of
parts in the pickup station and in the dropoff station of
each machine, and whether the warehouse contains parts of
each of the four types. In addition, each agent keeps track
of its own location and state as a part of the state space.

A : Max Node

() .QNode

DMi: Deliver Material to Station i
DA.i: Deliver Assembly to Station i
NavL oad: Navigate to Loading Deck
NavPuti: Navigate to Dropoff Station i

(b)

Figure 5: MAXQ graph for the AGV scheduling
task.

Thus, in the flat case, the size of the state space is ~ 100
locations, 3 parts in each buffer, 9 possible states of the AGV
(carrying Partl, ..., carrying Assemblyl, ..., Empty), and 2
values for each part in the warehouse, i.e. 100 x 4% x 9 x 2%
~ 230 which is enormous. The MAXQ state abstraction
helps in reducing the state space considerably. Only the
relevant state variables are used while storing the completion
functions in each node of the task graph. For example, for
the Navigate subtask, only the location state variable is
relevant, and this subtask can be learned with 100 values.
Hence, for the highest level with 8 actions, i.e. DMI1, ...,
DM4, and DA1, ..., DA4, the relevant state variables would
be 100 x 9 x 4 x 2 ~ 2'3. For the lower level state space,
the action with the largest state space is Navigate with 100
values. This state abstraction gives us a compact way of
representing the C functions, and speeds up the algorithm.

5. EXPERIMENTAL RESULTS

We first describe experiments in the simple two-robot
trash collection problem, and then we will turn to the more
complex AGV task.

5.1 Trash Collection Task

We first provide more details of how we implemented the
trash collection task. In the single agent scenario, one robot
starts in the middle of Room 1 and learns the task of picking
up trash from T1 and T2 and depositing it into the Dump.
The goal state is reached when trash from both T1 and T2
has been deposited in Dump. The state space here is the
orientation of the robot (N,S,W E), and another component
based on its percept. We assume that a ring of 16 sonars
would enable the robot to find out whether it is in a corner,
(with two walls perpendicular to each other on two sides of
the robot), near a wall (with wall only on one side), near
a door (wall on either side of an opening), in a corridor
(parallel walls on either side) or in an open area (the middle
of the room). Thus, each room is divided into 9 states, and
the corridor into 4 states. Thus, we have ((9x 3)+4) x4, or
124 locations for a robot. Also, the trash object from trash

basket T'1 can be at T'1, carried with robot, or at Dump,
and the trash object from trash basket T2 can be at T2,
carried by robot, or at Dump. Thus the total number of
environment states is 124 x 3 x 3, or 1116 for the single
agent case. Going to the two-agent case would mean that
the trash can be at either T'1 or T2, Dump, or carried by
one of the two robots. Thus, in the flat case, the size of the
state space would grow to 124 x 124 x 4 x 4, or ~ 24 x 10%.

The environment is fully observable given this state de-
composition, as the direction which the robot is facing, in
combination with the percept (which includes the room the
agent is in) gives a unique value for each location. The prim-
itive actions considered here are behaviors to find a wall in
one of four directions, align with the wall on left or right
side, follow wall, enter or exit door, align south or north in
the corridor, or move in the corridor.

In the two-robot trash collection task, examination of the
learned policy in Figure 6 reveals that the robots have nicely
learned all three skills: how to achieve a subtask, what order
to do them in, and how to coordinate with other agents. In
addition, as Figure 7 confirms, the number of steps needed
to do the trash collection task is greatly reduced when the
two agents coordinate to do the task, compared to when a
single agent attempts to carry out the whole task.

Learned Policy for Agent 1

T00%
navigate to trash 1
go to location of trash 1 in room

pick trash 1
navigate to bin
exit room 1
enter room 3
go to location of dump in room 3
put trash 1 in dump
end

Learned Policy for Agent 2

root
navigate to trash 2
go to location of trash 2 in room

pick trash 2
navigate to bin
exit room 1
enter room 3
go to location of dump in room 3
put trash 2 in dump
end

Figure 6: This figure shows the policy learned by
the cooperative multi-agent MAXQ algorithm in the
trash collection task.

5.2 AGV Domain

We now present detailed experimental results on the AGV
scheduling task, comparing several learning agents, includ-

120

T T T T T
Two Co-operating Agents performing task s—
A

110 | ingle Agent performing task —+- |

100 |
90
80 of
70 +
60
50

40

30

wf el e da L

10

Number of primitive actions required to complete task

satath Eﬁ Sl
.
0 200 400 600 800 1000 1200 1400 1600 1800 2000
Number of trials averaged over 10 runs

Figure 7: Number of actions needed to complete the
trash collection task.

14 , : : ‘
Co-operating Multi-Agent MAXQ ——
Selfish Multi-Agent MAXQ -----
Single Agent MAXQ ------ |

12 -

Throughput of the system

I I I I I I
0 5000 10000 15000 20000 25000 30000 35000 40000
Time since start of simulation (sec)

Figure 8: This figure shows that the cooperative
multi-agent MAXQ approach outperforms both the
selfish (non-cooperative) and single-agent MAXQ
approaches when the AGV travel time is very much
less compared to the assembly time.

ing a single agent using MAXQ), selfish multiple agents using
MAXQ (where each agent acts independently and learns its
own optimal policy), and the new co-operative multi-agent
MAXQ approach. In this domain, there are four agents
(each AGV is an agent).

The experimental results were generated with the follow-
ing model parameters. The inter-arrival time for parts at
the warehouse is uniformly distributed with a mean of 4 sec
and variance of 1 sec. The percentage of Partl, Part2, Part3
and Part4 in the part arrival process are 20, 28, 22 and 30
respectively. The time required for assembling the various
parts is normally distributed with means 15, 24, 24 and 30
sec for Partl, Part2, Part3 and Part4 respectively, and the
variance 2 sec. Each experiment was conducted five times
and the results averaged.

Figure 8 shows the throughput of the system for the three
types of approaches. As seen in Figure 8, the agents learn
a little faster initially in the selfish multi-agent method, but
after some time, undulations are seen in the graph showing
not only that the algorithm does not stabilize, but also that
it results in sub-optimal performance. This is due to the fact

14 T T

Multiple Co-operating Agents —<—
Multiple Selfish Agents -+~

12 B

08 - 1

0.6 4

Throughput of the system

0.4 4

02 | 1

0 I I I I
0 50000 100000 150000 200000 250000
(a) Time since start of simulation (sec)

Figure 9: This figure compares the cooperative
multi-agent MAXQ approach with the selfish (non-
cooperative) MAXQ approach, when the AGV
travel time and load/unload time is the aver-
age assembly time.

1
10th

0.08 T
Flat Q Learner -—

0.04 -

0.03 -

Throughput of the system

o Le I I I I I I I
10000 20000 30000 40000 50000 60000 70000 80000 90000
Time since start of simulation (sec)

Figure 10: A flat Q-learner learns the AGV domain
extremely slowly, showing the need for using a hier-
archical task structure.

that two or more agents select the same action, but once the
first agent completes the task, the other agents might have
to wait for a long time to complete the task, due to the
constraints on the number of parts that can be stored at a
particular place. The system throughput achieved using the
new cooperative multi-agent MAXQ method is significantly
higher than the single agent or selfish multi-agent case. This
difference is even more significant in figure 9, as when the
agents have a longer travel time, the cost of making a mis-
take is greater.

Figure 10 shows results from an implementation of a sin-
gle flat Q-Learning agent with the buffer capacity at each
station set at 1. As can be seen from the plot on the left, the
flat algorithm converges extremely slowly. The throughput
at 70,000 sec has gone up to only 0.07, compared with 2.6
for the hierarchical single agent case. Figure 11 compares
the cooperative multi-agent MAXQ algorithm with several
well-known AGV scheduling rules, showing clearly the im-
proved performance of the reinforcement learning method.

14 T T

T T
Co-operative Multi-Agent MAXQ ——
First Come First Served Heuristic -----
Highest Queue First Heuristic ------
12 - Nearest Station First Heuristic 7

Throughput of the system

0 I
0 5000 10000 15000 20000 25000 30000 35000 40000
Time since start of simulation (sec)

Figure 11: This plot shows the multi-agent MAXQ
outperforms three well-known widely used (indus-
trial) heuristics for AGV scheduling.

14 T T T

Joint-Action in the Top Level of the Hierarchy ——
Joint-Action in the Top Two Levels of the Hierarchy -----

12 - b

Throughput of the system

) I I I I
0 20000 40000 60000 80000 100000
Time since start of simulation (sec)

Figure 12: This plot compares the performance of
the multi-agent MAXQ algorithm with joint actions
at the top level vs. joint actions at the top two
levels.

Finally, Figure 12 shows that when the Q-nodes at the top
two levels of the hierarchy are configured to represent joint
action-values, learning is considerably slower (since the num-
ber of parameters is increased significantly), and the overall
performance is not better. The lack of improvement is due in
part to the fact that the second layer of the MAXQ hierarchy
is concerned with navigation. Adding joint actions does not
help improve navigation because coordination is not neces-
sary in this environment. However, it might turn out that
adding joint actions in multiple layers will be worthwhile,
even if convergence is slower, due to better overall task per-
formance.

6. CONCLUSIONS AND FUTURE WORK

We described an approach for scaling multi-agent rein-
forcement learning by extending the MAXQ hierarchical re-
inforcement learning method to use joint action values. This
decomposition relies on a key principle: the value of a par-
ent task can be factored into the value of a subtask (which is
independent of joint action values) and the completion cost
(which does depend on joint action values). The effective-
ness of this decomposition is most apparent in tasks where
agents rarely interact in carrying out cooperative tasks (for
example three robots that service a large building may rarely
need to exit through the same door at the same time).
Since interaction is modeled at an abstract level, coordina-
tion skills are learned rapidly. This approach can be easily
adapted to constrained environments where agents are con-
stantly running into one another (for example 10 robots in a
small room all trying to leave the room at the same time) by
using joint action-values at all levels of the hierarchy. How-
ever, this will result in a much larger set of action values
that need to be learned, and consequently learning will be
much slower.

We presented detailed experimental results from a com-
plex AGV scheduling task, which show that the proposed
hierarchical cooperative multi-agent MAXQ approach per-
formed better than either the single agent or selfish (non-
cooperative) multi-agent MAXQ methods. This novel ap-
proach of utilizing hierarchy for learning co-operation skills
shows considerable promise as an approach that can be ap-
plied to other complex multi-agent domains. We primarily
explored the use of the MAXQ hierarchical framework in our
study, but we believe that other hierarchical methods could
also be adapted to speed up multi-agent learning. The suc-
cess of this approach depends of course on providing it with
a good initial hierarchy.

7. ACKNOWLEDGMENTS

This work is supported by the Defense Advanced Research
Projects Agency, DARPA contact No. DAANO2-98-C-4025.

8. REFERENCES

[1] R. Askin and C. Standridge. Modeling and Analysis of
Manufacturing Systems. John Wiley and Sons, 1993.

[2] T. Balch and R. Arkin. Behavior-based formation
control for multi-robot teams. IFEE Transactions on
Robotics and Automation, 14(6):1-15, 1998.

[3] R. Crites and A. Barto. Elevator group control using
multiple reinforcement learning agents. Machine
Learning, 33:235-262, 1998.

[4] T. Dietterich. Hierarchical reinforcement learning with
the MAXQ value function decomposition. Journal of
Artificial Intelligence Research, volume 13. pages
227-303, 2000.

[5] J. Hu and M. Wellman. Multiagent reinforcement
learning: Theoretical framework and an algorithm. In
Fifteenth International Conference on Machine
Learning, pages 242-250, 1998.

[6] C. Klein and J. Kim. Agv dispatching. International
Journal of Production Research, 34(1):95-110, 1996.

[7] J. Lee. Composite dispatching rules for
multiple-vehicle AGV systems. SIMULATION,
66(2):121-130, 1996.

[8] M. Littman. Markov games as a framework for
multi-agent reinforcement learning. In Proceedings of
the Eleventh International Conference on Machine
Learning, pages 157-163, 1994.

[9] M. Mataric. Reinforcement learning in the multi-robot
domain. Autonomous Robots, 4(1):73-83, 1997.

[10] R. Parr. Hierarchical Control and Learning for Markov
Decision Processes. PhD Thesis, University of
California, Berkeley, 1998.

[11] M. L. Puterman. Markov Decision Processes. Wiley
Interscience, New York, USA, 1994.

[12] P. Stone and M. Veloso. Team-partitioned,
opaque-transition reinforcement learning. Third
International Conference on Autonomous Agents,
pages 86-91, 1999.

[13] T. Sugawara and V. Lesser. Learning to improve
coordinated actions in cooperative distributed
problem-solving environments. Machine Learning,
33:129-154, 1998.

[14] R. Sutton and A. Barto. An Introduction to
Reinforcement Learning. MIT Press, Cambridge, MA.,
1998.

[15] R. Sutton, D. Precup, and S. Singh. Between MDPs
and Semi-MDPs: A framework for temporal
abstraction in reinforcement learning. Artificial
Intelligence, 112:181-211, 1999.

[16] P. Tadepalli and D. Ok. Scaling up average reward
reinforcement learning by approximating the domain
models and the value function. In Proceedings of
International Machine Learning Conference, 1996.

[17] M. Tan. Multi-agent reinforcement learning:
Independent vs. cooperative agents. In Proceedings of
the Tenth International Conference on Machine
Learning, pages 330-337, 1993.

[18] G. Wang and S. Mahadevan. Hierarchical optimization
of policy-coupled semi-markov decision processes. In
Proceedings of the Sixteenth International Conference
on Machine Learning, 1999.

[19] G. Weiss. Multiagent Systems: A Modern Approach to
Distributed Artificial Intelligence. MIT Press,
Cambridge, MA., 1999.

