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Abstract—In this paper, we present a cooperative mediation-
based protocol that solves a distributed resource allocation prob-
lem while conforming to soft real-time constraints in a dynamic
environment. Two central principles are used in this protocol that
allow it to operate in constantly changing conditions. First, we
frame the allocation problem as an optimization problem, simi-
lar to a partial constraint satisfaction problem (PCSP), and use
relaxation techniques to derive conflict (constraint violation) free
solutions. Second, by using overlapping mediation sessions to con-
duct the search, we are able to prune large parts of the search space
by using a form of arc-consistency. This allows the protocol to both
quickly identify situations when the problem is over-constrained,
and to determine the appropriate repair. From the global perspec-
tive, the protocol has a hill climbing behavior and because it was
designed to work in dynamic environments, is approximate. We
describe the domain which inspired the creation of this protocol,
as well as discuss experimental results.

Index Terms—Artifical intelligence, distributed traking, re-
source management.

I. INTRODUCTION

R ESOURCE allocation is a classic problem that has been
studied for years by multiagent systems researchers [1],

[2]. The reason for this is that resource allocation shares a
number of characteristics that are common to a wide range
of multiagent domains. For example, resource allocation re-
quires search, and is often too complex and time consum-
ing to perform in a centralized manner when the environ-
mental characteristics are both distributed and dynamic. In
fact, in environments where search is being conducted and
the costs associated with continuously centralizing a lot of
information are impractical, distributed techniques become
imperative.

Cooperative iterative search (negotiation) has been viewed
as a viable technique for handling complex searches of this
type that include multilinked interacting subproblems [1]. Un-
fortunately, a common drawback to this technique is that it
prevents the agents from making informed decisions about the
effects of changing their local allocation without actually doing
it. Because of the length of time required for this technique to
converge on a solution, researchers have often abandoned the
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optimization portions of resource allocation, instead modeling
them as distributed constraint satisfaction problems [3], [4], in
order to provide reasonable solution speed.

In this work, we extend the traditional formulation of the
resource allocation problem in two ways. First, we introduce
soft real-time deadlines on the protocol’s behavior. These dead-
lines require the protocol to adapt to the remaining available
time, which is estimated dynamically as a result of emerging
environmental conditions. Second, we reformulate the resource
allocation task as an optimization problem, and like the dis-
tributed partial constraint satisfaction problem (PCSP) [5]–[7],
use constraint relaxation techniques to find a conflict-free solu-
tion while maximizing the social utility of the agents.

In this paper, we present a distributed, mediation-based proto-
col that takes advantage of the cooperative nature of the agents in
the environment to maximize social utility. By mediation-based,
we are referring to the ability of each of the agents to act in a
mediator capacity when resource conflicts are recognized. As a
mediator, an agent gains a localized, partial view of the global
allocation problem and makes suggestions to the allocations for
each of the agents involved in the mediation session. This al-
lows the mediator to identify over-constrained subproblems and
make suggestions to eliminate such conditions. In addition, the
mediator can perform a localized arc-consistency check, which
potentially allows large parts of the search space to be elimi-
nated without having to go through a number of trial and error
steps. Together with the fact that regions of mediation overlap,
the agents rapidly converge on solutions that are, in most cases,
good enough and fast enough. Overall, the protocol has many
characteristics in common with distributed breakout [8], par-
ticularly its distributed hill-climbing nature and the ability to
exploit parallelism by having multiple mediated sessions occur
simultaneously.

In the remaining sections of this paper, we introduce the dis-
tributed monitoring and tracking application, which motivated
the development of our protocol. Next, we describe scalable,
periodic, anytime mediation (SPAM), a distributed, coopera-
tive mediation-based protocol that was developed for and has
been tested on actual sensor hardware. In Section IV, we will
introduce Farm, a distributed simulation environment used to
test SPAM, and present and discuss the results of testing SPAM
within that simulator. Section V presents conclusions for this
work.

II. DOMAIN

The resource allocation problem that motivated this work re-
quires an efficient allocation of distributed sensing resources to
the task of tracking targets in an environment. In this problem,
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multiple sensor platforms are distributed with varying orienta-
tions in a real-time environment [9]. Each platform has three
distinct radar-based sensors, each with a 120 degree viewable
arc, which are capable of taking amplitude (measuring distance
from the platform) and/or frequency (measuring the relative ve-
locity of the target) measurements. In order to track a target, and
therefore obtain utility, at least three of the sensor platforms must
take a coordinated measurement of the target, which are then
fused to triangulate the target’s position. Increasing the number,
frequency, and/or relative synchronization of the measurements
yields better overall quality in estimating the target’s location,
and provides a higher quality solution. The sensor platforms are
restricted to only taking measurements from one sensor head at
a time with each measurement taking about 500 ms. These key
restrictions form the basis of the resource allocation problem.

Each of the sensor platforms is controlled by a single agent
which may take one or more organizational roles, in addition to
managing its local sensor resources. Each of the agents in the
system maintains a high degree of local autonomy, being able
to make tradeoff decisions about competing tasks using the soft
real time architecture (SRTA) agent architecture [10].

One notable role that an agent may take on is that of track
manager. As a track manager, the agent becomes responsible for
determining which sensor platforms and which sensor heads are
needed both now and in the future for tracking a single target.
Track managers also act to fuse the measurements taken from
the individual sensor platforms into a single location. Because
of this, track managers are the focal point of any activities that
take place as part of resolving resource contention.

Dynamics are introduced into the problem as a result of target
movement. During the course of a run, targets continuously enter
and leave the viewable area of different sensors, which then
require track managers to continuously evaluate and revise their
resource requirements. This, in turn, changes the underlying
structure of the actual allocation problem. In addition, these
dynamics drive the need for real-time problem solving, because
a particular problem structure only holds for a limited amount
of time.

Resource contention is introduced when more than one target
enters the viewable range of the same sensor platform. Because
of the time it takes to perform a measurement, combined with
the fact that each sensor can take only one measurement at a
time, track managers must come to an agreement over how to
share sensor resources without causing any targets to be lost.
This local agreement can have profound global implications.
For example, what if, as part of its local agreement, a track
manager relinquishes control of a sensor platform and takes
another instead? This may introduce contention with another
track manager already using that sensor, who may then have
to request alternate sensor resources to make up for the new
deficiency.

A. The Resource Allocation Problem

Generally speaking, we say that a resource allocation prob-
lem is the problem of assigning a (usually limited) number of
resources to a set of tasks. Each of the tasks may have different

resource requirements, and may have the potential for varying
utility depending on which resources they use. The goal is to
maximize the global utility of the assignment, choosing the right
options for the tasks, and assigning the correct resources to them.
More formally, a resource allocation problem is comprised of:

1) a set of tasks, T = {t1, . . . , tn};
2) a set of resources R = {r1,1, . . . , rj,k}, where j is the

number of resources and k is the planning horizon for the
resource; and

3) a set of utility functions, each associated with one of the
tasks U = {U1, . . . , Un |Ui : 2R �→ �}.

The goal of the problem is to come up with an allocation
A = {a1, . . . , an |ai ∈ 2R} such that the following conditions
are met:

1)
∑n

i=1 Ui(ai) is maximized.
2)

⋂n
i=1 ai = ∅.

The notation 2R is used to indicate the power-set of the re-
sources. Because the resource requirements may change over
time, or a particular pattern of resource usage may be needed
to obtain utility for a task, resources are broken down on both
the resource and time dimensions, hence the need for a plan-
ning horizon. Increasing the number of resources or the planning
horizon can have a significant effect on the overall complexity of
the allocation problem, which is known to be NP-complete [11].

The first condition basically makes this problem an optimiza-
tion problem and can be viewed as a soft constraint on the solu-
tion. The second condition is a hard constraint, since we know
that a single resource cannot be applied to two tasks simultane-
ously. As we will discuss later, we may not always strictly adhere
to the second condition using high level distributed search. In
fact, we rely on the agents within the system to always ensure
this condition is satisfied during times when the SPAM protocol
has not.

According to this problem formulation, each task has its own
utility function, and the utility of assigning a set of resources
to a task is strictly dependent on that individual function. In
fact, in dynamic domains, these function may change over time,
which alters the underlying relationships between tasks. What
this also means is that due to the sharing of resources, increasing
the utility of a particular task may not increase the global utility.
We make no assumptions in this article about task independence.

The distributed version of the resource allocation problem,
which is the focus of this paper, has each task assigned to a
single agent. However, in general, an agent may take on more
than one task.

B. Tracking as Resource Allocation

Modeling the target tracking domain as a resource allocation
problem is fairly straightforward. Each of the targets in the
environment can be considered a task, which is assigned to a
track manager. The sensors are the resources, and the job of
the track managers is to obtain enough sensing time from the
correct sensors to track their targets.

At any given time, each of the targets is within the viewable
range of some subset of the sensors. That means that as the
targets move from the viewable range of some sensors to others,
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Fig. 1. Utility of taking a single, coordinated measurement from a set of
sensors.

the utility function associated with each of the tasks change.
In addition, tracking involves coordinating measurements from
three or more sensors which are then fused together to form
an estimated position of the target. Increasing the number of
sensors improves the quality of an estimate by the function
given in Fig. 1, which is based on the RMS minimization method
used to triangulate the targets. Increasing the frequency of the
triangulation yields a linear increase in the overall quality of the
track; i.e., two measurements during a given period is twice as
good as one.

Because targets are often in the viewable range of a sensor
for an extended period of time, planning within our system is
periodic. This simply means that the sensors continuously repeat
their assigned schedules until a change is made. We often refer
to the planning horizon (corresponds to k) as a period, and an
individual element within the period as a slot.

If we say that Mi
s is the set of good sensor measurements

(can see the target) leading to the positional estimate in a single
slot s for a task i, then the utility function for that task during a
specific period is

Ui(ai) =
k∑

s=1

Util(Mi
s) (1)

which basically states the utility of a task for a specific period
is the sum of the slot utilities for the slots within the period.

The special nature of the utility functions in the tracking
domain actually allow us to consider a much smaller subset of
the possible allocations for a given task. In fact, track managers
within our system use a simplified set of objective levels defined
by their utility functions to assign resources to their targets.
Each objective level is expressed as a cross product Dm × Ds

denoting the number of resources from their acceptable set,
desired for a number of slots in planning horizon. For example,
a track manager may wish to have three sensors for two slots,
which is denoted 3× 2. Although the number of slots in a period
is variable, for this domain, we typically set it to match the
number of sensor heads on each platform, which is three.

There are essentially two benefits to using this abstract ap-
proach to resource scheduling. First, this representation vastly
reduces the search space by discretizing time into slots and

aligning the slots between the agents (the agents are time syn-
chronized using network time protocol (NTP)). It is easy for a
manager to know that its measurements are coordinated if it has
scheduled all of them during slot 1, and it knows that each of
the sensors executes methods in slot 1 at about the same time.
Second, by working abstractly, managers leave the details of
the actual implementation of the period-based schedule to the
agents themselves. This leaves the individual agents quite a bit
of flexibility in how they internally manage competing tasks.

Note that if a target is ignored (i.e., not being triangulated at
all during a full period), we penalize ourselves by subtracting
two from the social utility. This penalty approximates the ex-
pected gain the agents would obtain by starving one of the track
managers, which makes the allocations a bit more “fair.”

III. PROTOCOL

SPAM is built around the principle of good enough and fast
enough. As such, the protocol is actually divided into two major
stages. As the protocol transitions from the first stage to the
second, the agent acting as the track manager gains more context
information and is, therefore, able to improve the quality of its
overall decision. In addition, to allow stage 2 time to complete
without losing all quality in the interim, stage 1 of the protocol
always ensures that at least some solution has been obtained. So,
at any time after the completion of stage 1, the track manager can
choose to stop the protocol and is assured of having a solution,
albeit not necessarily a good one.

The SPAM protocol is activated whenever a local change in
the resources is needed, or if a manager detects a change in
the level of contention within one of the resources it is using.
Detecting a change in the resource needs is done by monitoring
the location of the target as it moves within the sensor field.
Track managers constantly evaluate each of the sensors based
first on the ability of the sensor to see their target, and second,
on the expected value of the raw data returned by the sensor.
This can be most easily understood as a change to the utility
function used for the track.

Whenever a target moves out of the view of one of the sensors
currently being used to track it and into the view of a new sensor,
or if a sensor currently not being utilized becomes more valuable
than a sensor being used, the manager starts a SPAM session.
When SPAM is activated for any on of these reasons, managers
set their objective level to the highest possible value, which
ensures the hill-climbing nature of the algorithm. To understand
this point, consider the following example:

Let us say that a new resource were added to the possible
resources that could be used by manager T1 to track its target.
Let us also say that another manager, T2, who has more than
enough available resources to itself, was using that resource. If
T1 starts SPAM at a low objective level, it may find a solution
that is conflict-free, but will never realize that it could have got-
ten a better solution where T2 just gives up the entire conflicted
resource. From a PCSP perspective, this just means that when-
ever the structure of a CSP changes, the PCSP algorithm should
reset its initial bound and attempt to satisfy all of the constraints
before beginning relaxation.
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The second reason for starting a SPAM session is when a man-
ager recognizes a change in the level of contention within one of
the sensors currently being used to track its target. This differs
considerably from a resource change. Here, the manager is rec-
ognizing that there is a change in the utility being obtained, or
could potentially be obtained, for its target. The utility function
itself has not been changed; only the interactions between it and
some other function within another manager. Track managers
detect these changes by monitoring the resource schedules of the
sensors. To facilitate this process, sensors inform the managers
that are utilizing them about the state of their resource schedule
whenever a change occurs. It is certainly conceivable, and in
fact likely, for two managers to detect changes in contention at
the same time.

There are actually two separate cases here. When a manager
recognizes a previously unknown conflict (i.e., a new restric-
tion), it is most likely caused by another manager choosing an
assignment that uses the resources because it either didn’t know
it was being used, or was forced to as a result of a mediation.
In other words, this case most often occurs when there is a
multilinked problem within the environment. When managers
recognize this case, they do not change their objective level be-
fore starting SPAM. The reason for this is easy to understand
after considering an example. Let us say you have three man-
agers, T1, T2, and T3. T1 has a conflict with T2, and T2 is
sharing resources with T3, but is not in conflict. As a result of
a mediation between T1 and T2, their conflict is solved, but
it creates a conflict between T2 and T3. When T2 recognizes
this problem, if it reset its objective level, the problem becomes
harder to solve because it may reintroduce conflict with T1 as
well as increase the conflict with T3.

The other type of change occurs when there is a relaxation of
contention on a resource. Again, managers recognize this type
of change by monitoring the resource schedules of the sensors
they are using. Whenever a manager realizes that it can improve
its local utility (increase its objective level) without creating new
conflicts, it sets its objective level to that new increased value,
and starts SPAM. As you will see, when SPAM executes, it will
make a simple local change to its assignment to take advantage
of the additional resources because it can find a local solution
that is conflict free.

A. Stage 1

Stage 1 of SPAM (see Fig. 2) serves three primary functions.
The first is to find a suitable solution within the context of the
information that the protocol has when it starts up. Like the
asynchronous weak commitment (AWC) protocol [12], each of
the agents tries to find a resource assignment that is based solely
on their incomplete or inconsistent view of the current resource
schedules from the sensors. Resource assignments derived at
this level must meet two criteria. First, they must find at the
objective level that was set at the startup of SPAM. This ensures
the continued hill-climbing nature of the search. Second, the
resource assignment cannot create a conflict with another track
manager. This criteria ensures that the overall effect of the as-
signment is not globally negative. If an assignment is found that

Fig. 2. Stage 1 of the SPAM protocol.

adheres to these restrictions, then no further work is needed, and
the protocol terminates at the end of stage 1.

We should mention that a tradeoff exists between communi-
cation overhead/solution speed and utility based on the selection
of the objective level that was set at the startup of the protocol.
If each of the managers chooses to use every available resource
(sensors able to see their target), the possibility for contention
over resources greatly increases in the environment, thereby
causing the execution of stage 2 to occur more frequently.
However, if the agents decide to start with at a lower objective
level (and correspondingly less utility), the social utility may
suffer unnecessarily.

To take advantage of this trade-off, stage 1 was designed
with a feature called utility concessioning. The key idea behind
utility concessioning is that often, small changes in a manager’s
local utility can both remove all of the conflicts on its resource
assignment (thus improving global utility) and prevent it from
having to wait for a mediation session to finish. In SPAM, we
have a parameter, called the concession rate, which controls the
maximum amount of the local solution quality a track manager
is willing to concede to find a violation-free solution, in an
attempt to avoid executing stage 2.

The concession rate is defined as a percentage of the man-
ager’s current utility, so as the manager’s utility drops, the
amount they are willing to concede drops as well. In critically
constrained tracking environments, where each manager is get-
ting very little utility, this causes the managers to attempt to
mediate more frequently because they are not willing to give
up local utility without good cause. The amount they actually
concede is always minimized to be the smallest amount needed
to find a conflict free assignment. This prevents the managers
for giving up utility when they don’t have to.
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Fig. 3. Results of experimentation with the utility concessioning used in Stage 1 of the SPAM protocol. (a) Utility. (b) Tracks. (c) Messages. (d) Convergence
Time.

To understand how concessioning works, assume say we have
two managers, T1 and T2. Both T1 and T2 have solutions with
four sensors for three time slots, which is a local expected utility
of 4.24, with one sensor in which all the time slots are in conflict.
Let us further say that T1 has a concession rate of 0.4, which
at its current utility value allows it to concede up to 1.7 units
of utility before going into stage 2. When T1 sees the conflict,
it will actually solve this problem by conceding 1.24 units of
utility by giving up the shared resource and accepting a solution
with three sensors for three slots.

To demonstrate the effects of the concession rate on the SPAM
protocol, we conducted a series of tests that varied the conces-
sion rate and the number of targets within a fixed 20 sensor en-
vironment. So, as the number of targets increases, the resource
contention over the sensors increases as well. Each data point
represents the average over 50 runs where both the targets and
sensors are placed in the environment at a fixed, random location
then the SPAM protocol is run until the agents reach a solution.
A total of 4400 test runs were conducted to collect this data.

The results of these experiments can be seen in Fig. 3. As you
can see from the graphs, the local concession rate has a profound
effect on the overall systems utility, the number of targets being
tracked, the convergence time, and the number of messages. For
most scenarios, a concession rate of about 0.6 leads to relatively
high utility while saving vast amounts of communication and
computation. For example, for nine targets, Fig. 3(a) shows
that the utility is not dramatically effected by increasing the
concession rate, but according to Fig. 3(d), increasing the rate
considerably improves the convergence time for the protocol.
The effects of loosing local utility become apparent at higher
concession rates though. The dramatic dropoff that occurs at a

rate of 0.6 is caused by agents conceding all of their local utility
in order to become conflict free. Essentially, the agents begin
to ignore their targets by conceding all of their local utility in
order to avoid having to mediate.

The second function of stage 1 is to ensure that some degree
of utility is obtained as soon as possible whenever the protocol
is started due to a resource requirement change. This solution,
although not conflict free, has the ability to obtain utility while
the manager tries to get a better solution by going into stage 2.
Conflicts that are unresolved during this period of time are left
to the individual sensor agents to handle. Sensor agents can use
one of a number of techniques, including slot boundary shifting,
less expensive measurement types, or task rotation, in order to
solve such conflicts. To the track manager, whether or not they
get a measurement from a conflicted sensors is probabilistic.

The third function of stage 1 is to provide the protocol with
anytime characteristics. Because a solution is always derived
and applied during stage 1, managers don’t necessarily have to
enter stage 2. They can stop the process at the end of stage 1 and
accept the results that they have achieved. This is often done if
a target’s movement causes the resource needs to change faster
than the expected time it would take to complete stage 2. The ex-
pected time to complete stage 2 is computed based on both previ-
ous experience and the current estimated communication speeds
for the track managers that would be in the mediation session.

B. Stage 2

Stage 2 is the heart of the SPAM protocol (See Fig. 4). Stage 2
attempts to resolve resource contention by elevating the discus-
sion to the track managers that are in direct conflict. To do this,
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Fig. 4. Stage 2 of the SPAM protocol.

one of the track managers takes the role of the mediator for the
local conflict (note that multiple mediation sessions can occur
in parallel in the environment). As the mediator, it becomes re-
sponsible for gathering all of the information needed to generate
alternative solutions, generating these solutions which may in-
volve changes to the objective levels of the managers involved,
and finally choosing a solution to apply to the problem. Because
these solutions are generated without full global information, the
final solution may lead to newly introduced nonlocal conflict.
If this occurs, another track managers can choose to take over
the role of mediator in order to correct these newly introduced
conflicts if they have the time. So, what started out as a new
target or resource requirement change, may lead to a number of
mediation sessions propagating across the problem landscape.

Looking at this from a more formal perspective. If the set of
resources that are usable for a single task ti is defined as

R(ti) = {ru,v |ru,v ∈ R ∧ ∃a(Ui(a ∪ ru,v ) > Ui(a)))} (2)

then the set of acceptable resource assignments for a single task
ti is

D(ti) = {a|a ∈ 2R(ti ) ∧ Ui(a) > 0} (3)

and the neighbor tasks to a mediator m are

Nm = {ti |ti ∈ T ∧ R(tm ) ∩ R(ti) 
= ∅}. (4)

Then the problem that a mediating manager m is working on is
1) a set of tasks, Tm = {tm ∪ Nm};
2) a set of resources Rm = {ru,v | ru,v ∈ (

⋃
∀ti ∈Nm

R(ti)) ∩ R(tm )}; and
3) a set of utility functions Û = {Ûi |ti ∈ Tm}.
The goal of this subproblem is the same as the goal of the

global problem. The notation Ûi is used to indicate an approxi-
mation function to the actual Ui for each of the managers. Also
note that Rm ⊆

⋃
∀ti ∈Nm

R(ti). What this means is that the
view of the mediating manager is limited to only the constraints
that arise from the sharing of a resource with the mediator. These
conditions, when combined together, indicate that the estimated

Fig. 5. Example of a common contention for resources. Track manager T2 has
just been assigned a target and contention is created for sensors S3, S4, S5 and
S6.

utility of a solution to the subproblem is always either equal to,
or an overapproximation to, the actual utility obtained socially.
This is simply a byproduct of performing a localized search.
The mediator never knows if the assignments it proposes at a
given utility value will cause conflict outside of its view, which
is why we allow the managers to propagate. You should also
note that the set Tm may not strictly include every one of the
mediator’s neighbors. Some track managers may not be using a
resource from R(tm ) even though that resource belongs to their
R(ti), and therefore cannot be seen by the mediator (i.e., the
mediator is unaware of their relationship).

The best way to explain how stage 2 operates is through
an example. Consider Fig. 5. This figure depicts a commonly
encountered form of contention. Here, track manager T2 has
just been assigned a target. The target is located between two
existing targets that are being tracked by track managers T1 and
T3. This creates contention for sensors S3, S4, S5, and S6.

Following the protocol for the example in Fig. 5, track man-
ager T2, as the originator of the conflict, takes on the role of
mediator. It begins the solution generation phase by request-
ing metalevel information from all of the track managers that
are involved in the resource conflict. The information that is
returned includes the current objective level that the track man-
ager is using, the number of sensors which could possibly track
the target, the names of the sensors that are in direct conflict
with the mediator, and any additional conflicts that the manager
has. To continue our example, T2 sends a request for informa-
tion to T1 and T3. T1 and T3 both return that they have four
sensors that can track their targets, the list of sensors that are
in direct conflict (i.e., T1(S3, S4), T3(S5, S6)) their objective
level (4× 3 for both of them) and that they have no additional
conflicts outside of the immediate one being considered. Note
that sensors S1, S2, S7, and S8 are not in direct conflict, and
therefore are not mentioned by T1 and T3.

Using this information, T2 is able to generate D(ti) for
each of the tasks in the set Tm for the objective levels that
are passed in as part of the metalevel information(see Section
III-D). With the full set of D(ti)s, it is fairly easy to generate
all possible satisfying assignments A with each element being
a particular Am = {ai |ti ∈ Tm ∧ ai ∈ D(ti)} s.t. the condition⋂

∀ai ∈Am
ai = ∅ is met.

As you can see in Fig. 4, T2 enters a loop that involves at-
tempting to generate these sets followed by lowering one of the
track manager’s objective level if A = ∅ given the current ob-
jective levels of each of the track managers. One of the principle
questions that we are currently investigating is how to choose
the track manager that gets its objective level lowered when A
is empty. Right now, this is done by choosing the track manager
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with the highest current objective level, which cannot support
its demands with resources outside of the set Rm and lower-
ing them. This has the overall effect of balancing the objective
levels of the track managers involved in the session. Whenever
two or more managers have the same highest objective level,
we choose to lower the objective level of the manager with the
least amount of external conflict. By doing this, it is our belief,
that track managers with more external conflict will maintain
higher objective levels, which leaves them more leverage to use
in subsequent sessions as a result of propagation.

You should note that although this has similarities to the tech-
niques used in PCSPs, this differs in that the actual CSP problem
changes as the objective levels are changed. PCSP techniques,
such as [5]–[7] choose a subset of the constraints to satisfy, we
actually change the structure of the constraints, removing them
by lowering the objective levels, until the problem becomes
satisfiable. We also differ from the distributed constraint opti-
mization (DCOP) [13], [14] work in that although DCOPs have
a utility function over the possible assignments to a problem,
methods for solving them do not change the underlying CSP to
ensure satisfiability.

The solution generation loop is terminated under one of two
conditions. First, if given the current objective levels for each of
the track mangers, the set A 
= ∅, the session enters the solution
evaluation phase. Second, we cannot find a track manager to
lower without D(ti) = ∅ and A = ∅. Under this condition, the
session is terminated and the mediator takes a partial solution at
the lowest objective level that minimizes the resulting conflict,
conceding that it cannot find a full solution.

Continuing our example, T2 first lowers the objective level of
T1 (choosing T1 at random because they all have equal external
conflict). No full solutions are possible under the new of set
objective levels, so the loop continues. It continues, in fact, until
each of the track managers has an objective level of 3× 2, at
which time T2 is able generate a set of 216 (the number of
elements in A) solutions to the problem.

During the solution evaluation phase, the mediator sends each
of the track managers a set:

di = {a|a ∈ D(ti) ∧ ∃Am ∈ A(a ∈ Am )} (5)

What should be clear is that each of the di is arc-consistent for
every constraint between elements in the set Rm . What that
means is that for the mediator’s resources, all constraints are
satisfied.

The purpose of this message is actually two-fold. The first
purpose is to obtain information about the effect of impos-
ing a particular solution. The second purpose is to obtain a
lock from the conflicting manager. This lock prevents the man-
ager from changing its value while it is in a session, which
allows multiple sessions to occur simultaneously in the en-
vironment. If the manager is already locked, it informs the
mediator who simply drops them from the session. This, of
course, means that the overall session may not end with an
entirely conflict-free solution, but in most cases allows the me-
diator, to correct some of the conflicts while it waits for the lock
to clear.

Each of the managers that remains in the session, using its set
di and a revised objective level, determines which, if any, of the
solutions are satisfiable given the local agent view and which is
best given the actual Ui . In our example, T2 sends 24 alternatives
to T1, 24 alternatives to itself, and 24 alternatives to T3. T1 is
only sent 24 alternatives because only 24 of its elements from
the set D(t1) exist in the set A. This means that most of the
elements from D(t1) do not appear in d1 because they were
not consistent with at least one combination of elements from
D(t2) and D(t3).

In our current implementation, each of the track managers
orders alternatives from best to worst, based on the number
of new conflicts that will be introduced and the desirability of
the particular resources present in the alternative. This has a
min-conflict heuristic [15] like flavor, and is an integral part
of the hill-climbing nature of the algorithm. Currently, we are
looking at a number of alternative techniques for providing
local preference information to the mediator, including simply
returning utility values for each solution and assigning solutions
to a finite set of equivalence classes.

Once the mediator has the orderings from the track man-
agers, it chooses a particular Am to apply to the problem.
This is done using a dynamic priority method based on the
number of constraints each of the managers has external to
the mediation, a form of metalevel information. The basic no-
tion is similar to the priority order changes in AWC [12]; try
to find the task which is most heavily constrained and ele-
vate it in the orders. Our impression is that this helps stem
the propagation because it leaves the most constrained tasks
with the best choices. This allows those managers to main-
tain violation free solutions if they exist in the alternatives
presented to them. Let us say that the priority ordering for
the tasks is (th , th−1, . . . , t0). The mediator iteratively prunes
the set A by creating a set Ath

= {Am |Am ∈ A ∧ ∀Ai ∈
A(priorityh(au ∈ Am ) ≥ priorityh(av ∈ Ai))}. This newly
created list is pruned in the same way for each of the managers
until |A| = 1.

In our example, T2 collects the ordering from T1, T2, and
T3. T3 is given first choice. By its ordering, it ranked alternative
0 the highest. This restricts the choice for T2 to alternatives 0,
1, 2, and 3. T2 ranked 0 highest from this set of alternatives,
restricting T1’s choice to its 0th, 1st, and 2nd alternatives. It
turns out that T1 likes its 0th solution the best, so the final
solution is composed of T3’s alternative 0, T2’s alternative 0,
and T1’s alternative 0.

The last phase of the protocol is the solution implemen-
tation phase. Here, the mediator simply informs each of the
track managers of its final choice. Each of the track man-
agers then implements the final solution. At this point, each
of the track managers is free to propagate and mediate if
it chooses.

Fig. 6 shows the starting and ending state of the resource
schedules for the example problem. The columns represent the
slots within the periodic schedules of the sensors. The rows
represent the sensors. Notice that before T2 mediates, sensor S4
has two managers, T1 and T2, scheduled during every slot. After
the mediation ends, all of the conflict has been removed and each
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Fig. 6. A solution derived by SPAM to the problem in Fig. 5. The table on the
left is before track manager T2 mediates with T1 and T3. Notice that a number
of slots have two or more tasks scheduled. The table on the right is the result of
stage 2, which is conflict-free.

manager obtains a 3× 2 configuration with T1 alternating the
use of S3 and S4 in slots 2 and 3.

C. Oscillation

Because the SPAM protocol operates in a local manner, a
condition known as oscillation can occur. Say that from our
previous example, track manager T1 originated a mediation with
track manager T2. In addition, assume that T2 had previously
resolved a conflict with manager T3 that terminated with neither
T2 nor T3 having unresolved conflict. Now, when T1 mediates
with T2, T1 in the end gets a locally unconflicted solution, but
in order for that to occur, T2 conflicts with T3. It is possible that
when T2 propagates, that the original conflict between T1 and
T2 is reintroduced, leading to an oscillation.

There are actually a number of ways to prevent this from
happening when the problem being worked on is static. For
example, in [12], [16], the authors use global prioritization, static
in one, dynamic in the other, to prevent loops in the constraint
network, and also maintain nogood lists to ensure a complete
search.

We explored a method in which each track manager main-
tains a history of the sensor schedules that were being mediated
over whenever a negotiation terminated. By doing this, man-
agers were able to determine if they have previously been in a
state which caused them to propagate in the past. To stop the
oscillation, the propagating manager lowered its objective level
to force itself to explore different areas of the solution space. It
should be noted that in certain cases, oscillation was incorrectly
detected using this technique, which resulted in having the track
manager unnecessarily lower its objective level.

This technique is similar to that applied in [3], where a nogood
is annotated with the state of the agent storing it. Unfortunately,
none of these techniques work well when complex interrelation-
ships exist and are dynamically changing. Because the problem
changes continuously, previously explored parts of the search
space need to be constantly revisited to ensure that an invalid
solution has not recently become valid. Currently, we allow the
agents to enter potential oscillation, maintaining no prior state
other than objective levels from session to session, and rely on
the environment to break oscillations through the movement of
the targets, asynchrony of the communications, timeouts, etc.

D. Generating Solutions

Generating the set A for the domain described earlier involves
taking the information that was provided through communica-
tions with the conflicting track managers and assuming that the
sensors that are in the set

⋃
∀ti ∈Nm

D(ti) − R(tm ) are freely
available. In addition, because the track manager that is gen-
erating full solutions only knows about the sensors which are
in direct conflict, it only creates and poses solutions for those
sensors. That means that ∀a a ∈ di → a ∈ Rm . The following
formula illustrates the basic mechanism that task managers use
to generate task alternatives. Here, k is the number of slots that
are available in the planning horizon, Ds is the number of slots
that are desired based on the objective level for the track man-
ager, |R(ti)| is the number of sensors available to track the target
(those that can see it), Dm is the number of sensors desired in the
objective function, and Ci = |R(ti) ∩ R(tm )| is the number of
sensors under direct consideration because they are conflicting.

|D(ti)| =
(

k
Ds

)
 min(Ci ,Dm )∑

u=max(0,Dm −|R(ti )|+Ci )

(
Ci

u

)


Ds

.

(6)
As can be seen by (6), every combination of slots that meets

the objective level is created, and for each of the slots, every
combination of the conflicted sensors is generated such that the
track manager has the capability of meeting its objective level
using the sensors that are available to it. For instance, say that a
track manager has four sensors S1, S2, S3, and S4 available to
it. The track manager has a current objective level of 3× 2 and
sensors S2 and S3 are under conflict. The generation process
would create the three combinations of slot possibilities, and
then for each possible slot, it would generate the combination
of sensors such that three sensors could be obtained. The only
possible sensor combinations in this scenario would be that the
track manager gets either S2 or S3 (assuming that the manager
will take the other two available sensors), or it gets S2 and S3
(assuming it only takes one of the other two). Therefore, a total
of 27 possible solutions would be generated.

It is interesting to note that we use this same formula for
alternative solutions in stage 1 of the protocol. This special case
generation is actually done by simply setting Ci = |R(ti)|. In
this case, (6) reduces to:

|D(ti)| =
(

k
Ds

) (
Ci

Dm

)Ds

. (7)

We can also generate partial solutions when there are a num-
ber of preexisting constraints on the use of certain slot/sensor
combinations. Simply by calculating the number of available
sensors for each of the slots, and using this as a basis for deter-
mining which slots can still be used, we can reduce the number
of possible solutions considerably.

Using the ability to impose constraints on the alternatives
generated for a given track manager allows us to generate full
solutions for the track managers in stage 2. By recursively going
through the track managers and using the results from earlier
track managers as constraints for lower precedence ones, we
can do a full search of the localized subproblem.
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This can view this as a tree-based search, where the top level
of the tree is the set of alternatives for one track manager. Each
of the nodes at this level may or may not have a number of
children which are the alternatives available to the second track
manager, and so on. Only branches of the tree that have a depth
equal to one less than the number of track managers are added
to the set A. If there are no branches that meet this criteria, then
the problem is considered over-constrained.

E. Handling Dynamics

By far, one of the most interesting characteristics of the SPAM
protocol is its ability to operate in environments that are highly
dynamic. The SPAM protocol employs a number of techniques
to deal with the effects of environmental dynamics, both from
a global perspective and a local perspective. One of the most
useful techniques that SPAM employs is the localization of me-
diation sessions. By limiting the context of the problem solving
to only its immediate neighbors, agents can rapidly generate
solutions to considerably smaller problems than would be faced
by centralizing the entire problem, computing a solution, and
later redistributing an answer. This technique alone would be no
better than a one look-ahead greedy method, however, if it were
not for the use of overlapping context in the problem solving
and the ability for managers to propagate the conflicts. Globally,
this leads to a great deal of parallelism in the search, although
it may lead to suboptimal solutions.

Within an individual session, SPAM handles dynamics by
having both a multistage and multistep mediation process. By
breaking apart the protocol into 2 stages, SPAM can stop pro-
cessing after stage 1 if it either predicts that it will, or actually
does, run out of time during stage 2. In addition, within stage 1,
an agent can concede some of its local utility in order to avoid
engaging in time consuming mediation sessions, and try to find
solutions that only require localized changes to the resource
schedules.

The mediation session itself is broken into several distinct
phases. Mediators can place deadlines on each of these phases,
and at any time can drop another agent for the session or ter-
minate it all together. Although not currently implemented, it is
easy to see that a scheduler could be used to set these deadlines
based on the expected duration of a resource need, the expected
communications delay with individual agents, etc. In fact, me-
diators can even place deadlines on their internal searches. The
algorithm used by the agents to generate solutions can be ter-
minated at any time and will return the set of the solutions
generated up to that point.

Lastly, the mediation itself is limited to the sensors that the
mediator wishes to use. That means that track managers within
the session are only given schedules for the sensors that are
desired by the mediator and have considerable flexibility in the
actual implementation of their local solutions. For example, say
that a mediator T1 concludes a session with another manager T2,
which involves a single sensor S1. The solution T1 has generated
has T2 only using S1 during the third slot of its schedule. T2 is
free to implement any local solution, as long as it does not use
S1 during its first or second slot. In fact, if T2’s target moves

outside of the view of S1 during the session, it can decide not
to use S1 at all.

IV. TESTING

SPAM was implemented and successfully tested in the envi-
ronment described in Section II. However, due to the variabil-
ity created by using actual hardware, properly testing SPAM
was problematic. Thus, to more systematically and rigorously
evaluate the SPAM protocol, we implemented a model of the
domain in a simulation environment called Farm [17]. Farm is a
component-based, distributed simulation environment written in
Java, where individual components have responsibility for par-
ticular encapsulated aspects of the simulation. For example, they
may consist of agent clusters, visualization or analysis tools, en-
vironmental or scenario drivers, or provide some other utility or
autonomous functionality. These components or agent clusters
may be distributed across multiple servers to exploit parallelism,
avoid memory bottlenecks, or utilize local resources.

The actual model used for testing SPAM has both sensor and
track manager agents. Each of the sensor agents represents a
single sensor which was placed in a fixed location within the
world. These sensors agents are very simple, and only main-
tain a local schedule, which is not actually performed in any
tangible way. A fixed number of targets is introduced into the
world, and one track manager per target is created to manage
the resources needed to track that target. The targets can move
through the environment with random trajectories that have a
random, bounded speed. As the simulation progresses, the sim-
ulator continuously updates the position of the targets, and for
each target calculates the set of sensors that are able to track it.
The track managers can obtain their candidate sensor lists from
the simulation environment and follow the SPAM protocol to
allocate resources.

We ran two test series, one to test the effectiveness of our
approach, and the other to test its scalability.

A. Effectiveness

For the first test series, we wanted to determine the effective-
ness and runtime characteristics of the protocol given different
levels of resource contention. In this test series, we randomly
placed 20 sensors within the environment and between two and
nine concurrent targets. Each of the targets maintained a static
location throughout the run to allow the protocol to reach qui-
escence for the sake of measuring the convergence time.

For comparison purposes, we also implemented functions to
compute solutions that:

1) Would be obtained by greedy agents;
2) have the optimal utility; and
3) track the optimal number of targets.
Greedy agents each request all of the available (can see their

target) resources to track their targets. These requests may po-
tentially override each other in the sensors’ schedules, leading
to poor performance in areas of high contention.

The optimal utility algorithm computes the maximal set of
objective levels that is satisfiable in the environment. This is
done by having the algorithm perform a complete search of the
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Fig. 7. Results of 20 sensor and varying target experiments comparing greedy, SPAM and optimal allocations. (a) SPAM utility. (b) Gready utility. (C) Tracks.
(d) Time.

space of allowable objective levels, where each one is checked
for satisfiability using a modified version of the complete
search algorithm presented in Section III-D. To make the
search go faster, we prevent it from checking satisfiability on
solutions that have utilities less than the best already obtained
(i.e., branch and bound [5]), and do a simple arc-consistency
check (using the pigeon hole principle) to prune obviously
overconstrained problems.

The algorithm used for finding the optimal number of tracks
determines the largest number of targets that can be tracked,
given the available resources. For clarity, a target is considered
tracked if one coordinated triangulation occurs from three or
more sensors during a given period. To obtain the optimal num-
ber of tracks, a search similar to the optimal utility is done. In
this search, the only objective levels that need to be checked
are either a minimal tracking (i.e., 3× 1), or no tracking at all
(0 × 0) making this search very fast.

We compared greedy and SPAM based on their achieved
utility and the number of targets they tracked as a percentage of
the optimal values over 20 test runs. A total of 180 tests were
conducted for this series.

Fig. 7(a)–(d) summarize the results of this series. As shown
in the graphs, SPAM does quite well when compared to both
greedy and optimal. For the greedy method, the problem
begins to become over-constrained at around four targets.
SPAM provide reasonably good results (over 80% optimal
for utility) for all of the configurations tested. Two things
in particular are interesting about these results. First, for
tracking targets, SPAM performs nearly 100% optimally.
This is due to the fact that SPAM is trying to optimize the
balance of resources so that as many targets can be tracked

as possible. Fig. 7(d) shows another interesting result. As
the problem gets harder, SPAM has a linear increase in the
time it takes to converge. This is very promising, considering
the allocation problem is known to be NP-complete. It should
be noted that the optimal solution took between a few seconds
(for two targets) to several days (for nine targets) to compute.

Lastly, there was at least one case where SPAM entered an os-
cillation. The utility obtained during the oscillation varied only
slightly, and the number of unresolved global conflicts fluctu-
ated back and forth from two to three. As mentioned previously,
this is a result of the localization of the search, and in a dy-
namic environment, probably would have been eliminated due
to the targets’ motion, which changes the underlying relation-
ship graph.

B. Scalability

For the second simulation series we wanted to investigate the
scalability of the protocol given a fixed level of contention and
fixed sensor field density. In these experiments, a fixed ratio
of 2.5 sensors per target were used while varying the number
of agents n from 100–800. This ratio was chosen because it
represents a fairly overconstrained problem, since each track
manager needs three sensors to track its target. The field density
was fixed at four sensors per point, which ensured overlap of
the resources desired by the agents. The width and height of the
environment were calculated as follows:

width =

√
sπr2

4
(8)

where s is the number of sensors, and r is the sensor’s
viewable radius (20 feet for these sensors). So, for 700 agents,
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Fig. 8. Results of scale experiments conducted with a field density of four sensors per point and resource ratio of 2.5 sensors per target. (a) Utility. (b) Tracks.
(c) Messages.

we would have 500 sensors in an environment of 396 ft× 396 ft
with 200 targets which all move with a uniformly random speed
between 0 and 2 ft/s per second. Each of the 20 simulation runs
lasted three minutes and were on a different sensor field layout.
So, the values reported here are an average over 1 h of runtime.
For comparison purposes, we also ran the greedy algorithm
once again.

One very important thing to note is that the greedy algo-
rithm is part of the simulation, and therefore is given access
to the global state and is not penalized for computation time
or communication delays. This means that it computes a so-
lution to a static problem at each instant of time. The tar-
gets are stopped while it computes to ensure that the prob-
lem state does not change before it determines its answer.
Overall, this means that the results returned by the greedy
algorithm over-estimates the utility that greedy agents would
obtain.

SPAM, on the other hand, must explicitly communicate to
gain information, is explicitly charged for computation time,
works with incomplete and inaccurate information due to the
targets continuous motion, and is not given credit for its solu-
tion until it is actually implemented in the sensor agents. Overall,
the utility values calculated for SPAM are a very accurate repre-
sentation of the actual values that would be obtained in real-time
environments.

Fig. 8(a), (b), and (c) show the results for this series. As can
be seen, as the number of agents increases linearly, so does
the the utility for SPAM and the greedy algorithm, which is
not entirely surprising. Notice, though, that even with the large
advantage that the greedy algorithm is given, SPAM consistently
outperforms it.

The two other interesting results from these experiments are
the percentage of targets tracked and the number of messages
being used by the agents. As the number of targets increase, the
percentage of targets being effectively tracked remains almost
constant, and the number of messages being communicated by
each agent per second remains constant as well. This suggests
that the methods being used by SPAM to break apart the multi-
linking of interdependencies between the track manager agents
is actually very effective. Independent analysis of the SPAM
protocol presented in [18] verifies these findings.

V. CONCLUSION

In this paper, we described a distributed, cooperative,
mediation-based protocol which was built to solve resource al-
location problems in a soft real-time environment. The protocol
exploits the fact that agents within the environment are both co-
operative and autonomous, and employs a number of techniques
to operate in highly dynamic environments. Included in these
techniques are mapping the resource allocation problem into an
optimization problem, applying arc-consistency techniques to
quickly prune the search space, breaking the protocol into mul-
tiple stages and phases to allow it to make time/quality tradeoffs
appropriate for current conditions, and minimizing the effects
of long chains of interdependencies by localizing the scope of
individual mediations.

As it turn out, the core ideas used in SPAM, particularly
cooperative mediation, work quite well for solving static dis-
tributed problems, including distributed constraint satisfaction
(DCSP) and distributed constraint optimization (DCOP). Our
current work has focused on exploiting the power of this
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general technique for solving problems within these areas. As
such, we have developed a complete algorithm, called asyn-
chronous partial overlay (APO) [19] for DCSPs, and an op-
timal algorithm called optimal asynchronous partial overlay
(OptAPO) [20], for DCOPs that are based on the concept of
cooperative mediation. These algorithm are, to the best of our
knowledge, the fastest known methods for solving problems of
these types.

Unfortunately, even though these algorithms are the fastest
known, they still cannot operate in dynamic environments, as
they are unable to cope with rapidly changing conditions. This
fact necessitates the existence of algorithms and techniques that
perform both well enough and fast enough, like SPAM. The
results of this work are encouraging, and although we consider
the problems associated with distributed resource allocation in
dynamic environments to be an open research question, we feel
that SPAM is a step in the right direction.
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