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Abstract

Distributed Constraint Optimization Problems (DCOP)
have, for a long time, been considered an important re-
search area for multi-agent systems because a vast number
of real-world situations can be modele d by them. The gal
of many of the researchers inteested in DCOP has been to
find ways to solve them efficiently using fully distributed al-
gorithms which are often based on existing centr alizel tech-
niques. In this paper, we present an optimal, distributed al-
gorithm calle doptimal asynchronous partial overlay (Op-
tAPO) for solving DCOPs that is based on a partial cen-
tralization technique called coop erative mdiation. The key
ideas use d by this algorithun e that agents, whemting
as a mediator, centr alize relevant prtions of the DCOP,
that these centr alize d subpoblems overlap, and that agents
incr ease the size of their subpoblems as the problem solv-
ing unfolds. We present empirical evidence that shows that
OptA PO performs better than other known, optimal DCOP
techniques.

1. Introduction

For a n unber of years now, researchers in distributed
problem solving have struggled with the question of how
to find an optimal assignment to a set of variables spread
over a number of agents which have interdependencies.
Out of this w ork,a number of formulations ha vearisen
including the distributed partial constraint satisfaction
problem (DPCSP)[2], distributed valued constraint sat-
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isfaction problem [4], and the distributed constraint opti-
mization problem (DCOP) [8].

A number of pow erful, distributed algorithms ha ve
been developed that solve these problems either optimally,
or close to optimally. F or example, Distributed Depth-
first Branch and Bound (DDBB) and Distributed Itera-
tive Deepening (DID) [8], Syndironous Branch and Bound
(SBB) and Iterative Distributed Breakout (IDB) [2], and
the Asynchronous Distributed Optimization (Adopt) al-
gorithm [6]. Each of these algorithms has, at their core,
tw o common threads. First, their basic design originated
directly from an associated centralized algorithm and sec-
ond, they maintain total separation of the agents’ knowl-
edge during the problem solving process.

In this paper, w epresent a cooperative, mediation-
based DCOP protocol, called Optimal Asynchronous Par-
tial Overlay (OptAPO), that allows the agents to ex-
tend and overlap the context that they use for making
their local decisions as the problem solving unfolds. When
an agent acts as a mediator, it computes a solution to
a portion of the overall problem and recommends value
changes to the agents inwlved in the mediation session.
This algorithm, like its DCSP variant APO [5], provides
rapid, distributed, asynchronous problem solving without
the explosive communications overhead normally associ-
ated with current distributed algorithms. OptAPO rep-
resents a rew methodology that simultaneously exploits
the speed of centralized techniques and the ability of dis-
tributed problem solving to iden tify problem substruc-
ture. In the graph coloring domain, this algorithm per-
forms better, both in terms of communication and com-
putation, than the Adopt algorithm which is currently the
fastest known complete DCOP technique.

In the rest of this paper, we present a formalization of
the DCOP problem. We then present the OptAPO algo-
rithm and present an example of its execution on a simple
problem. Next, we present the results of extensive testing
that compares OptAPO with Adopt within the commonly
used graph coloring domain. Lastly, w ediscuss some of



procedure initialize
d; < random d € D;;
Ff «0;
pi + sizeof(neighbors);
m; < activ e
mediate < none;
add z; to the good_list;
send (init, (z;,ps,d;, m;, D;, Cy, path; ;)) to neighbors;
initList <— neighbors;
end initialize;

when received (init, (z;,p;,d;, m;,D;,Cj, [path;;])) do
Add (z;,pj,d;,mj, D;j,Cj,path) to agent_view;
ifz; is a neighbor of some x;, € good_list do
add z; to the good_list;
add all z; € agent_view and x; ¢ good_list
that can now be connected to the good_list;
pi < sizeof(good_list);
end if;
ifz; ¢ initList do
send (init, (z;,pi,d;,m;, D;, C;)) to Tj;
else
removex; from initList;
check_agen tview;
end do;

when received (value?, (z;,p;,d;,m;j,c;)) do
update agent_view with (z;,p;,d;,mj,c;);
check_agen tview;
end do;
Figure 1. The OptAPO procedures for initialization,
receiving “init” messages, and receiving “value?”

messages.

our conclusions.

2. Distributed Constraint Optimization

A Constraint Optimization Problem (COP) consists of
the following:

e a set of n variablesV = {z1,...,z,}.

e discrete, finite domains for each of the variables D =
{D1,...,Dy,}.

e a set ofcost functions f = {f1,..., fm} where each
fi(di,la- . .,d@j) is function ft : Di,l X e X Di,j —
N U co.

The problem is to find an assignment A* =
{di,...,dy|d; € D;} such that the global cost, called
F, is minimized. Although the algorithm presented will
w ork for any associative, commutativ e, monotonic ag-
gregation function defined overa totally ordered set of
values, with min and max elements, in this paper, F is de-
fined as follows

In the distributed version of this problem, DCOP, eac h
agent is assigned one or more variables along with the
functions on their variables. Overall, COP and DCOP
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procedure chec kagent_view

if initList # 0 or mediate #none do
return;

C’i —{zj 3z € fi N fi> fih

m' < none;

//Compute my new mediate intentions

if(Fi > Fi* and Hj (f] < fJ’-k Apj < pl)) do
m) < activ e

else if F; > F* do
m) < passiv e

//Active me diate and I'm not expcting from a higher priority
if m, == active and —3;(p; > p; A m; == activ ¢
ifA(d] € D;) (d; U agent_view causes F; == F})
and changes are with lower priority neigh bors
d; +— d;;
m; <—none;
C; —{zj|3pxi € fi A fi > f;};
send (value?, (zi,p;,di,mi,c;)) toall z; € agent_view;
else
do mediate(m});

//Passive mediate
else if m) = =passiv e
do mediate(m));

//Mediate flag or ¢ onflict set change d
else if m; #m/) or (m; == none and ¢; # c)
m; <= m;
send (value?, (z;,p;, d;, m;, c;)) toall z; € agent_view;

//Nothing to do, see if I need to update my good_list

else if m; —= none
forVz;,zy x; € agent_view Az, € cj N\
xy, ¢ good_list A mj == none do

for Vz; on the path to zx A z; ¢ agent_view do
send (il’lit, (xhpi: dl y My, Di7 Civpath'i,l)) to zy;
add z; to initList;
end do;
end do;
end if;
ci < c;
end chec kagen tview;

Figure 2. The OptAPO check_agent_view proce-
dure.

In this paper, w erestrict ourselves to the case where
eac h agert is assigned a single variable and is given knowl-
edge of its functional relationship with other neighboring
variables. Since each agent is assigned a single variable, we
will refer to the agent by the name of the variable it man-
ages. Also, w erestrict ourselves to considering only bi-
nary functions which are of the form f;(z;1,x). Our ap-
proach can be extended to handle cases where one or both
of these restrictions are removed.

Throughout the paper, w euse the term relationship
graph to refer to the graph formed by representing the
agents as nodes and the functional relationships as edges.
The term neighbors is used to refer to agents that are con-
nected by an edge in the relationship graph.

3. Optimal APO

Figures 1, 2, 3,4, and 5 present the OptAPO algorithm.
OptAPO works by constructing a good_list and maintain-



procedure mediate(m))
preferences < (;
counter < 0;
for eac hr; € good_list do
send (ev aluate?, (z;, p;,m})) to ;;
counter ++;
end do;
mediate < m};
m; <= ml;
end mediate;

when receive (w ait}(z;,p;)) do
counter - -;
if counter == 0 do ¢ hoosesolution;
end do;

when receive (evaluatel (z;,p;, labeled Dj)) do
record (zj, labeled Dj) in preferences;
counter - -;
if counter == 0 do ¢ hoosesolution;

end do;
Figure 3. The procedures for mediating in OptAPO.

ing a structure called the agent_view. The agent_view
stores the names, values, domains and functional relation-
ships of agents in the environment that are linked to the
owner of the agent_view. The good_list holds the names
of the agents that the owner has identified either a di-
rect or indirect relationship to through one or more func-
tional relations in the relationship graph.

As the problem solving unfolds, each agent tries to im-
pro e the value of the subproblem they have cen tralized
within their good_list or to justify its cost by identify-
ing o ver-constrained structures in the relationship graph.
T odo this, agents tak e the role of the mediator, com-
pute the optimal value of their subsystem, and attempt
to change the assignments of the variables within the ses-
sion to achiev ethis optimal value. Whenever, this can-
not be achieved without causing cost for agents outside
of the session, the mediator links with those agents assum-
ing that they are involved in related cost-justifying sub-
structure. This process continues until eac h of the agerts
have justified the cost of their centralized subproblem and
they have ensured that this centralized portion contains
all of the cost-barring substructures that they are part of.

In order to facilitate the problem solving process, each
agent has a dynamic priorit y that is based on the size
of their good_list (ties are broken b y the ordering of the
agents names). Priorities are used by the agents to de-
cide the order in which one or more agents mediate when
they have a need. Priority ordering is important for tw o
reasons. First, priorities ensure that the agents with the
most kno wledgegets the make the decisions. This im-
pro vesthe efficiency of the algorithm by decreasing the
effects of myopic decision making. Second, priorities im-
pro ve the effectieness of the mediation process. Because
low er prioriy agents expect higher priority agents to me-
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procedure choose_solution
select a solution s using a Branch and Bound search that:
1. minimizes the cost for the agents in the good_list
2. minimizes the cost for the agents not in the session;
F? < cost(s);
F < F;+ current cost for agents not in the session;
F} + F}+ cost of using s for agents not in the session;
if mediate = = active and F < F/ do
d; d;;
for eac hr; € agent_view do
ifz; € preferencesdo
ifd’. € sviolates an z}, and z, ¢ agent_view do
send (init, (z;,p;i, di, ms, D;, Cy, path; ) to x;
add xy, to initList;
end if;
if mediate = = active and F; < F do
send (accept!, (d; ,Ti, Pi,d;)) to z;;
update agent_view for x;

else if mediate == active and F] > F] do
send (accept!, (d;, i, pi, d;)) to z;;
end if;
else if mediate == active do
send (value?, (z;, p;, d;, m;, ¢;)) to z;;
end if;
end do;

mediate < none;
chec kagent_view;
end choose_solution;

Figure 4. The procedure for choosing a solution.

3.1. Initialization (Figure 1)

On startup, the agents are provided with the value
(they pick it randomly if one isn’t assigned) and the func-
tions on their variable. Initialization proceeds by having
each of the agerts, 7, send out an “init” message to each
of its neighbors, j. This initialization message includes
the variable’s name (z;), priorit yp;), current value(d;),
domain(D;), and functional relationships(C;). Also in-
cluded in this message are the variable m;, which indi-
cates the agents current desire to mediate, and a list of
agents that lie betw eeni and j in the relationship graph.
The purpose of both of these pieces of information will
be described below. The array initList records the names
of the agents that initialization messages have been sent
to, the reason for which will become immediately appar-
ent.

When an agent receives an initialization message (ei-
ther during the initialization or through a later link re-
quest), it records the information in its agent_view and
adds the variable to the good_list if it can. An agent is
only added to the good_list if it is connected to another
agent already in the list through a functional relation-
ship. This ensures that the graph created by the agents
in the good_list always remains connected. TheinitList is
then chec led to see if this message is a link request or a re-
sponse to a link request. If the agent is not in the initList
then it means this is a link request, so a response “init” is
generated and sent. If an agent is in the initList, it means
that this message is a response to a request that was pre-
viously sent. In this case, a response message is not gen-
erated. This mechanism prevents the agents from sending



when received (evaluate?, (z;,p;, m;)) do
update agent_view with (z;,p;,m;);
if (mediate # none or 33 (py, > p; A mj, == activ ¢)
and m; == active do
send (w ait! (z;,p;));
else
if mediate # active do
mediate < m;;
label eachd € D; with the names of the agents
and associated costs incurred by setting d; < d;
send (evaluate! (z;,p;, labeled D;));
end if;
end do;

when received (accept!, (d,z;,p;,d;,m;)) do
d; + d;
mediate < false;
send (value?, (z;,p;, d;, m;, ¢;)) to all ; in agent_view;
update agent_view with (z;,pj,d;,m;);
check_agen tview;
end do;

Figure 5. Procedures for receiving a session.

“init” messages to one another in an infinite loop

A t times, the agetts in the good_list are a subset of the
agents con tained in theagent_view. This is done to main-
tain the integrity of the good_list and allo wlinks to be
bidirectional. To understand this point, consider the case
when a single agent has repeatedly mediated and has ex-
tended its local subproblem down a long path in the re-
lationship graph. As it does so, it links with agents that
may have a very limited view and therefore are unaw are
of their indirect connection to the mediator. In order for
the link to be bidirectional, the receiv erof the link re-
quest has to store the name of the requester, but cannot
add the them to their good_list un til a path can be iden-
tified.

In order to ensure the optimality of the algorithm, each
of the agents does not terminate until all of the func-
tional relations f; > fr that include an agent within its
agent_view appear in its good_list. During periods of in-
activit y agents try to achiev e thiscondition by growing
their good_list to include these “non-optimal” relations.
This is how agents prev en t unnecessary cetralization and
where the path information pro vided as part of the ini-
tialization message comes into pla y. This process ensures
that the follo wing property is enforced at the termina-
tion of the algorithm:

Property 1 Vz,;Vf; ((z; € agentview; Az € fj A f; >
fi) = fj € good_list;) upon termination.

3.2. Checking the agent view (Figure 2)

After the agents receiv eall of the initialization mes-
sages, they execute the check_agent_view procedure. In
this procedure, the agent_view (assigned, known variable
values) is used to calculate the current cost, F;, of the
relationship subgraph formed by the agents within the
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F7, it conducts either an active or passive mediation ses-
sion. This check ensure that the following property is ob-
tained at the termination of the algorithm:

Property 2 V,;F; == F; upon termination

A tstartup, the value of F}" is always initialized to O
meaning that the best answer obtained thus far has no
cost. This value changes as the agent cen tralizes substruc-
tures which must have some cost in the optimal answer.
Agents can determine this cost because of the cen tral-
ized solv er usedin the mediation process. Whenever an
agent mediates, it recomputes the value of F* by run-
ning a centralized search on its entire good_list.

Agents decide betw een an actie or passive mediation
based on whether or not one of the suboptimal functional
relations in their good_list has an agent in it that is lower
or equal (itself) priority to itself. If one of the agents is
low er or equal prioriy, the mediation will be active, oth-
erwise, it will be passive.

There are tw o main difference bew een actie and pas-
sive mediation. First, during an active mediation, the re-
ceiving agent sets its mediate flag. This flag prev ents it
from starting or engaging in another active mediation un-
til it is cleared. This causes a region of stability in the
agent system which allows to mediation session to ha ve
the full effect but, reduces parallelism because it prevents
other agents from mediating. The second difference is re-
ally based on the intent. The irtent of passive mediation
is to v erify and understand the results that higher priority
agents have obtained without interfering in their actions
or changing their current solution. In other words, the in-
tent of passive mediation is to change the value of F}, the
inten tof activ emediation is to change F;* and F;. P as-
sive mediation both increases the parallelism of the prob-
lem solving and allows agents to gain additional context
(extend their views) without causing system instability.

If an agent decides that it wishes to actively mediate, it
can only do so when it has not been told by a higher pri-
ority agent that they w an tto activ ely mediate. Agents
within the system are able to tell when a higher priority
agent wants to mediate because of the m; flag mentioned
in the previously section. Whenever an agent checks its
agent_view it recomputes the value of this flag which indi-
cates its desire to mediate in the future if given the oppor-
tunity. This information is shared with each of the agents
in its agent_view whenever the v alue hanges. The over-
all effect of the m; flag is similar to the tw o-phase com-
mit commonly seen in database systems and ensures that
the protocol remains live-lock and deadlock free.

As an active mediator, an agent first attempts to rec-
tify the suboptimal condition by changing its own vari-
able. This simple technique prevents sessions from occur-
ring unnecessarily, which stabilizes the system and saves
messages and time. If the mediator finds a value that
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makes F; == F; and it finds that the functional rela-



tionships being improved b y the ¢ hange are shared with gorithm because it prevents agents from gaining enough

only low er prioriy agents, it makes the c hange and sends
out a “value?” message to the agents in its agent_view. If
cannot find such a value, it starts an active mediation ses-
sion which is described in section 3.3.

A “value?” message is similar to an “init” message, in
that it contains information about the priorit y,current
value, etc. of a variable. Unlike the “init” message how-
ever, “value?” messages contain a list, ¢;, which gives the
name of any agent which shares a relation with the sender
that has a cost greater than 0. Using this list, an agent
can tell when conflicts exist that may need to be included
in their good_list. This allo ws the agents to prev em un-
necessary centralization when the situation clearly indi-
cates that it has no direct benefit. In other words, there
is no need to add an agent to the local subsystem when
they are not involwed in a relationship which is increas-
ing the global cost.

3.3. Mediation (Figures 3, 4, and 5)

The most complex and certainly most interesting part
of the protocol is the mediation session. As w asprevi-
ously mentioned in this section, an agent decides to medi-
ate if it finds that F; > F;*. The mediation session starts
with the mediator sending out “evaluate?” messages to
each of the agents in its good_list. The purpose of this
message is tw o-fold. First, it informs the receiving agen
that a mediation is about to begin and, as mentioned ear-
lier, if the mediation is active, tries to obtain a lock from
that agent. The second purpose of the message is to ob-
tain information from the agent about the effects of mak-
ing them change their local value. This is a key point. By
obtaining this information, the mediator gains informa-
tion about variables and relationships outside of its lo-
cal view without having to directly and immediately link
with those agents.

When an agent receiv esa mediation request, it will
respond with either a “wait!” or “evaluate!” message.
Agents respond with a “wait” message whenever the re-
quest is for an active session and the agent is either cur-
rently involved in another active session or is expecting a
request for an active session from an agent that is higher
priorit ythan the requester. This allo ws for a great deal
of parallelism because all passive requests are responded
to and active requests are only turned aw § when abso-
lutely needed. Whenever it can, the agent evaluates each
of its domain elements and labels them with the names of
the agents that w ouldha vea shared functional relation
with cost f; > f; along with that cost if it were asked
to take that value. In the graph coloring domain, the la-
beled domain can never exceed O(|D;| + n). This infor-
mation is returned in an “evaluate!” message.It should be
noted that, although in this implementation, the agents
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con text, but does provides some degree of autonomy and
priv acy to the agers.

When the mediator has received a response from all of
the agents that it has sent a request to (the counter vari-
able reaches 0), it chooses a solution. Agents that sent a
“wait!” message are dropped from the mediation, but the
mediator attempts to fix whatever problems it can based
on the information it receives from the remaining agents.
The mediator then conducts a Branch and Bound search
[1] which, as a primary criteria, minimizes the cost of the
subproblem in the good_list and as a secondary criteria
minimizes the costs for agents outside of the session. The
results of minimizing the primary criteria, being the op-
timal value for the subproblem in the good_list, is saved
as Fj*.

The agents employ tw o special tactics during this
search. First, the values are ordered so that the first
branch of the search is the current solution. This usually
causes the bound to become very close to F}" after it is ex-
plored takingdv an tage ofprevious work that has been
done on the problem. This has the overall effect of improv-
ing the search speed as was reported in [7]. The second
tactic terminates the search early whenever the bound is
equal to the current F}* and the cost for agents outside of
the mediation is 0. This method works because the cur-
rent F;* is always an low er bound on the actualF™ and F}*
only increases on successive search because of the mono-
tonic nature of the number of variables in the search and
the aggregation function. This method considerably re-
duces the effort used during this search.

A t the conclusion of the local seart, the mediator com-
putes tw ovalues, F} and F). The value F] is the cost,
given the current set of variable values, for the extended
subsystem which is composed of the agents within the
good_list along with any other agents which appear in the
preference information returned in the “ev aluate!” mes-
sages. The value F} is the cost for this same extended
subsystem given the solution s returned by the cen tral-
ized search. Ideally, these values will be the same. In other
words, s has a non-negative effect on the current state of
the global problem. Because agents act myopically when
they compute s, they sometime choose a solution which
appears to be good, but overall has a very negative effect.
Whenever this happens, the mediator ignores s (keeping
an y changes to F}* how ever)and reverts to the current
solution, effectively preventing itself from making a lo-
cally optimal decision that has obviously bad global con-
sequences. The overall effect is similar to passive media-
tion in that it maintains stability in the system while the
agent gains context information.

After computing these values, the mediator links
(sends “init” messages) with any agent that is not
in its agent_view and has been forced to havean in-
creased cost as result of s. This occurs even if the medi-



constraint

.......... violation

constraint

.......... violation

(c) After ND2 Mediates

ator c hooses not to uses. This step expands the agent’s
good_list so that the next time it mediates, it does not re-
peat the same mistake. The mediator concludes the
session by sending “accept!” messages (if the ses-
sion was active) to the agents in the session, who, in
turn, adopt the proposed answer and “value?” mes-
sages to all of the other agents in its agent view.

3.4. An Example

Counsider the 2-coloring problem in figure 6(a)whic h
was chosen to illustrate the algorithms features without
being overly complicated. In this problem there are 6 vari-
ables, each assigned to a different agent, and 8 functional
relations between the variables. Each of the functional re-
lations is a ’not equals’ and has a cost of 1 for being vi-
olated and 0 otherwise. The goal of the agents is to min-
imize the global cost F* (the sum of the values returned
by the functional relations), which in this case is 1. In
other words, this is a MaxSAT problem instance.

On startup, the problem is in the state in figure 6(a).
The current cost of the system is 4, because 4 of the 'not
equals’ relationships are violated (indicated by the dotted
lines). Each of the agents has an internal optimal subsys-
tem value, F;* = 0, since none of them have mediated and
therefore computed the actual value.

Following the protocol, the agents send out “init” mes-
sages to each of their neighbors. So, for example, NDO
send out “init” messages to ND1, ND2, and ND3. As the
“init” messages are received, the agents add each of their
neighbors to their good_list because they have a direct
path through a shared relation.

Once all of the “init” messages are received, the agents
check their agent_view. All of the agents are able to de-
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(b) After ND5 Mediates

(d) Termination

because it has NDO, ND2, ND3, ND4, and ND5 in its
good_list and can see the cost of the relations betw een
NDO and ND2, ND2 and ND3, as well as ND4 and ND5.
This causes ND2 to set its m; flag to active. In this ex-
ample, each of the agents is involv ed in a suboptimal re-
lation so they all set their m; flag to active. ND2 is the
highest priority agent in the system, it has a priority of
5, elects to take over as the mediator and begins an ac-
tive session with NDO, ND3, ND4, and ND5.

As the mediator, ND2 first checks to see if it can cor-
rect the suboptimality by making a local change, which it
cannot. It sends “evaluate?” messages to NDO, ND3, ND4,
and ND5. Each of these agents, upon receiving the mes-
sage, checks to see if it is expecting a mediation from a
higher priority agent, which they are not, and then sets
its mediate flag to active. They label each of their do-
main elements and reply with the following information
each using an “ewluate!” message (since the costs are all
1, they are left out for clarity):

e NDO - Black conflicts with ND1; Red conflicts with ND2

e ND3 - Black conflicts with ND5; Red conflicts with ND2

e ND4 - Black conflicts with ND1 and ND5; Red conflicts
with ND2

e ND5 - Black conflicts with ND4; Red conflicts with ND2
and ND3

ND2 conducts a Branch and Bound search and finds
that F* =1 for its good_list as well as finding a solution
which has 0 conflicts external to the mediation. It tells
ND4 to change its value to Red and changes its own color
to Black, lea ving the system in the state in figure 6(c).

All of the agents check their agent_view again. Several
agents detect a suboptimal subsystem. In fact, ND3, ND4
and ND5 have suboptimal subsystems. ND5 set itsm; flag
to active and ND3 and ND4 sets their m; to passive, be-
cause the only cost they see is betw een ND2 f; = 5) and



ND5 (p; = 4, tie broken on name) who are both higher
priorit y.

This time ND5 actively mediates. ND5 is unable to lo-
cally correct the difference in its F; and F}* so it sends
“ev aluate?” messages to ND2, ND3, and ND4. It receiwes
the follo wing information from those agents in the re-
turned “evaluate!” messages:

e ND2 - Black conflicts with ND5; Red conflicts with NDO,
ND3, and ND4

e ND3 - Black conflicts with ND2 and ND5; Red causes no
conflicts

e ND4-Black conflicts with ND1,ND2, and ND5; Red causes
no conflicts

A t the same time, ND4 starts a passie mediation ses-
sion with ND1, ND2, and ND5. and ND3 starts a passive
session with ND2 and ND5.

ND3, ND4, and ND5 conduct an internal searches and
eac h find a solution with an F;* = 1, and no external con-
flicts. The solution they find, in fact, is iden ticalto the
current assignment which w asthe first branch in their
searc h tree. ND5 sends out “accept!” messages and, since
they are passively mediating, ND3 and ND4 change their
internal low er bound and send “wlue?” messages to their
neighbors

Finally, NDO sees the conflict betw een ND2 and ND5.
It sees that their mediate flags are set to none, so it links
with ND5. This leaves the problem in the state in figure
6(b).

After t w o additional passeymediation sessions by NDO
and some additional linking, the algorithm terminates
in the state in figure 6(d). Each of the agents has a
F} == F;. Notice that only one of the agents achiev es
complete cen tralization.In this example, NDO achiev ed
this linking near the very end of the execution by identify-
ing the cost between ND2 and ND5, causing it to link with
ND5. This forced it to justify that cost, so it passively me-
diated and disco veredND3 and ND4. This caused it to
link with them, allowing it to justify the total cost of 1.

4. Evaluation

T o test OptAPO, ve implemented the protocol in a dis-
tributed simulation environment called the Farm [3] and
conducted a number of experiments in the distributed
MaxSAT 3-coloring domain. We downloaded the Adopt
simulator and algorithm which was constructed by Prag-
nesh Jay Modi, the designer of the algorithm, and veri-
fied that both of the simulators use a comparable notion
of a cycle. In both simulators, during a cycle, all of the in-
coming messages are delivered and processed, and outgo-
ing messages are queued for delivery at the beginning of
the next cycle. We then instrumented the Adopt simula-
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Figure 7. Comparison of OptAPQ and Adopt for var-
ious graph sizesatm = 2.0n.

We ran tw oseries of tests within the MaxSAT do-
main to compare these algorithms. In the first series of
tests, w ecompared the number of cycles and messages
used by OptAPO and Adopt. For this series, we created
random graph coloring instances with m = 2.0n (under-
constrained) and m = 3.0n (very over-constrained). W
generated 100 instances at n = 8, 12, 16, 20, 24, and 28
for a total of 1200 individual graphs. For fairness, we used
the same graphs to test both algorithms. The results of
this series can be seen in figures 7(a) 7(b), 8(a), and 8(b).

In the second set of tests, we compared the actual run
times of the tw o algorithms against eah other. Both al-
gorithms were run on a single, dedicated 2.8 GHz Pen-
tium 4 with 512MB of RAM on a 25 instance subset of
the graphs from the first series of tests. To show that Op-
tAPO’s performance was not simple an artifact of the
Branch and Bound search internal to the agents, we ran
that algorithm on the graph instances as w ell. The re-
sults from this test can be seen in figures 9(a) and 9(b)
which are logarithm scale.

As you can see from the figure, OptAPO outperforms
Adopt in terms of cycles, messages, and runtime on both
under and ov er-constrained problems. OptAPQ’s superior
performance can be most directly attributed to its com-
bined use of centralization and distribution. Adopt works
by iteratively trying different combinations of variables
while simultaneously refining its upper and low er bound.
OptAPO avoids this iterative discovery process which al-
lows the agents to find the optimal or near optimal as-
signment quickly and then to verify its correctness and
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Figure 8. Comparison of OptAPQ and Adopt for var-
ious graph sizesatm = 3.0n

make repairs when appropriate. What you should also no-
tice is that OptAPO actually runs faster that the Branch
and Bound searc h that it uses internally .This is by no
means meant to sho wthat a distributed algorithm op-
erates faster than a centralized one, but shows that the
run time characteristics of the algorithm are not simple
a byproduct of the centralized search. In fact, the im-
pro vemets in search time over the centralized search are
most likely caused by the combination of the value order-
ing heuristic and early search termination method talked
about in section 3.3.

5. Conclusions

In this paper, w epresented a new method for solv-
ing DCOPs called Optimal Asynchronous Partial Over-
lay (OptAPO). The key features of this technique are
that agents mediate over conflicts, the context they use
to make local decisions overlaps with that of other agents,
and as the problem solving unfolds, the agents gain more
con textinformation along the critical paths within the
problem to improve their decisions. We have shown that
the OptAPO algorithm is both optimal and complete
and that it performs better than the Adopt algorithm
on MaxSAT graph coloring problems.
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