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ABSTRACT

Game theory provides a wealth of tools that
can be applied to the design and operation of
communications systems. In this article, we pro-
vide a brief introduction to game theory. We
then present applications of game theory to
problems in random access and power control.
In the case of random access, we examine the
behavior of selfish users in a simplified Aloha
system; surprisingly, rational selfish users do not
implement the “always transmit” strategy that
one might expect. In the case of power control,
we show that game theoretic techniques can
yield an optimal operating point without the
intervention of an external controller.

INTRODUCTION

The design and deployment of a cellular network
is a tedious process. The propagation character-
istics of the area are estimated, base station sites
are carefully selected, and the equipment is
installed. Once the network is operational,
adjustments must often be made, up to and
including the placement of additional cell towers
and repeaters to eliminate dead spots. Addition-
al adjustments may be necessary as usage pat-
terns evolve. All in all, this is a time-consuming
and manpower-intensive series of tasks. If end-
less funding is available, this may not present a
problem, but as the cellular approach gives way
to modern, flexible, multiservice wireless net-
works, financial considerations may require that
some of the configuration and adaptation
involved in network layout and management be
handled automatically. Furthermore, it may not
even be possible to determine ideal operating
configurations, leaving human intervention not
only expensive, but ineffective.

In this article we propose a new approach to
wireless network configuration and management
that places the decision-making burden on the
individual terminals. Control is thus distributed

and local, and network scalability is enhanced. In
this scenario the network consists of a communi-
ty of local agents. Design and operational deci-
sions are made without explicit representations
of the global environment or even of the other
users. Global network configuration and perfor-
mance are emergent phenomena that are deter-
mined solely by the decisions of individual
agents. Although our examples here present sim-
ple problems at the physical layer (power con-
trol) and the medium access control sublayer
(random access), we believe that this approach is
applicable to a wide range of problems at all lay-
ers of a communications network.

The first step in designing such a system is
determining the extent of knowledge and range
of actions available to the agents. At one
extreme we have the tools made available from
the study of self-organization in the insect world.
Stigmergy is the term used for seemingly compli-
cated behavior that emerges from extremely sim-
ple local rules. Termites can build a nest, for
example, by individually following rules that,
should we choose to replicate them in code,
would amount to only a few lines of assembly
language [1]. At the other extreme we have the
tools of game theory, in which individual agents
are generally assumed to be completely “ratio-
nal.” In this article we will focus on the game-
theoretic approach.

We begin with a brief introduction to game
theory. We then apply game-theoretic tech-
niques to two standard problems in wireless net-
works: random access and power control. We
will show that the tools of game theory lead to
strategies in which optimal behavior emerges
“naturally” from the selfish interests of the
agents and the rules of the games.

GAME THEORY

Some concepts of game theory date back cen-
turies, but modern game theory began in the
mid-20th century. One of its earliest modern
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applications was as a tool for modeling decision

making by aggressive superpowers. A more

enduring application has been as a powerful

array of techniques for modeling economic

behavior. The basic unit of game theory is, of

course, the game. A game has three basic ele-

ments:

* A description of strategic interaction
between players )

* A set of constraints on the actions the play-
ers can take

* A specification of the interests of the play-
ers

Games are usually represented in one of two
forms: the normal form and the extensive form.
The normal form game for two players is repre-
sented as a bimatrix, as shown in Fig. 1. An
extensive form game is depicted as a tree, where
each node represents a decision point for one of
the players. The normal form is easier to ana-
lyze, but the extensive form captures the struc-
ture of a real game in time.

Figure 1 shows our normal-form version of a
coordination game known as “The Battle of the
Sexes.” In this game, Abelard and Eloise would
like to attend a concert together. Unfortunately
they have different tastes in music: Abelard
would prefer to attend a Rolling Stones con-
cert, while Eloise would prefer an opera by
Mozart. Both, however, would rather go to
either performance together than attend their
favorite alone. In the normal form version of
this game, the rows represent Abelard’s choice
of strategies, while the columns represent
Eloise’s choices. In this case the same strategies
are available to both, although this need not be
the case. Given strategy selections by both play-
ers, we go to the corresponding bimatrix ele-
ment and read off the payoffs for the two
players, with the row player (Abelard) getting
the first number and the column player (Eloise)
the second. The higher number represents the
greater payoff.

The game proceeds by having each player
simultaneously announce their choices. In this
simple game, we assume that each player is stuck
with whatever choice he or she makes. Suppose
that Abelard and Eloise both choose to go to the
Rolling Stones concert. Note that even if one of
them could change their choice of strategy at
this point, neither would. The (Rolling Stones,
Rolling Stones) strategy pair, like the (Mozart,
Mozart) pair, is thus a Nash equilibrium — a
selection of strategies such that neither player
can improve his or her payoff by changing strate-
gies while the other players’ strategies remain
fixed. The Nash equilibrium is thus, in a sense, a
stable operating point for a system defined by a
game.

We need not limit Abelard and Eloise to the
choice of one strategy or the other. Such a choice
is called a pure strategy, in contrast to a mixed
strategy that is a probability distribution on a
player’s available pure strategies. For example,
Eloise may decide that she will attend each con-
cert with probability 0.5. To obtain the payoff
when one or both players chooses a mixed strat-
egy, we simply compute the expected value of
each player’s payoff. As an example, suppose
that both players choose a 50/50 mixed strategy.

Eloise
Rolling Stones Mozart
Rolling Stones 2,1 0,0
Abelard
Mozart 0,0 1,2

N

W Figure 1. Coordination game with conflicting interests (Battle of the Sexes).

Senator Column

Don't confess Confess
Don't confess 1yr, yr 10 yrs, 0 yrs
Senator Row
Confess | 0yrs, 10 yrs 3yrs, 3yrs

M Figure 2. The Prisoners’ Dilemma.

An expected value analysis shows that each play-
er can expect a payoff of 0.75.

“The Battle of the Sexes” does have a Nash
equilibrium in mixed strategies. In the mixed
strategy Nash equilibrium, each player chooses
his or her preferred concert with probability 2/3
and chooses the other concert with probability
1/3. This equilibrium gives each player an expect-
ed payoff of 2/3.

Note that Nash equilibria do not always entail
the same payoffs. The three equilibria we have
identified in this game offer three different pay-
offs to each of the players. The concept of Pare-
to efficiency can be used to compare different
outcomes. An outcome is said to be Pareto effi-
cient if it is impossible to increase the payoff of
any player without decreasing the payoff of
another player. In our example, the pure strate-
gy Nash equilibria are Pareto efficient; the mixed
strategy equilibrium is not.

The economist and Nobel Laureate John
Nash showed that if each player in an n-player
game has a finite number of pure strategies,
then the game has a Nash equilibrium in pure or
mixed strategies [2, 3]. Nash equilibria are often
associated with “rationality.” In other words, it
would be irrational for players with complete
knowledge of the game to choose any combina-
tion of strategies that does not constitute a Nash
equilibrium. In the realm of economics, people
often select strategies that are not rational. For-
tunately we need not worry about this issue, for
we are interested in programmed agents that will
always do what we tell them to do.

Figure 2 shows a two-player normal form
game that has achieved great fame as the Prison-
ers’ Dilemma. We will give a slightly varied ver-
sion of the setting. Two senators have been
caught accepting bribes. There is not sufficient
evidence for a full conviction of both senators,
so the Justice Department offers each a deal.
Each is told that they may either confess and

IEEE Communications Magazine * November 2001

127



Pp. equilibrium transmit probability

© © © © © o o

gy

o o
[+ - Y« ]

w » o W

)

o =

? x 4
P e, ° .
X -
+  x x
+ x x x
o, ]
oy, A +
© §=09 i
x § =0.95
+ §=0.99 1
1 i i L 1 L 1 L i 1 1 1 L 1 1L L
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

n, number of backlogged users

B Figure 3. Symmetric Nash equilibrium retransmit probabilities for G(n).

testify against the other (the defection strategy)
or remain silent and suffer the potential conse-
quences (the cooperation strategy). The resulting
payoffs are shown in the figure in the form of
the resulting prison sentence; obviously, players
in this game would prefer lower payoffs.

The original version of the Prisoners’ Dilem-
ma is due to Merrill Flood and Melvin Dresher.
They developed the game at the RAND Corpo-
ration while trying to model the interaction of
the then Soviet Union and the United States in
a nuclear standoff. Note that this game has only
one Nash equilibrium: (confess, confess). Fortu-
nately neither side in the Cold War opted for
the Nash equilibrium strategy.

The Prisoners’ Dilemma becomes even more
interesting if we choose to repeat the game.
First consider the case in which the players are
told that they will repeat the game a fixed,
finite number of times. We assume that their
sentences for the entire game are the sum of
their sentences at each stage. Such a repeated
game is said to have a finite horizon. You might
imagine that the prisoners would want to coop-
erate with each other — if they didn’t, their
counterpart would punish them in the next
stage. Due to the finite horizon, this is not the
case. In the last game, there is no possibility of
punishment in a subsequent game, so the ratio-
nal players defect. They know this, so at the
penultimate game they also defect, and so on
back to the first game.

Now suppose that the players do not know
when the game is going to end. In this infinite
horizon game there is always a possibility of pun-
ishment, and one Nash equilibrium strategy pro-
file is for each player to always cooperate unless
his or her opponent has defected in the past, in
which case he or she always defects.

The utility function is another concept that is
important to applications of game theory. We
refer the reader to [2] for a development of von
Neumann and Morgenstern utility.

We now have sufficient tools to pursue sim-

ple self-configuration and adaptation games in
wireless networks. The reader who would like to
learn more about game theory should consider
Binmore’s Fun and Games [2] as a starting point.
Fudenberg and Tirole’s Game Theory {3] is an
intermediate text that provides a detailed treat-
ment of the field.

RANDOM ACCESS GAMES

As a first example of a situation for which game
theory is an appropriate analysis tool, we con-
sider random access to a communications chan-
nel. Users who wish to transmit typically wish
to do so as soon as possible. If multiple users
try to transmit simultaneously, though, all
accesses fail; in addition, unsuccessful attempts
to transmit may be costly. The users trying to
transmit have conflicting objectives; game theo-
ry gives us some insight into this situation.
Specifically, we will examine slotted Aloha, one
of the best known random access protocols in
existence [4, 5].

In slotted Aloha, time is divided into slots
and via some method of synchronization, all
users are presumed to know where the slot
boundaries are located. When a user wishes to
access the shared channel the user waits until
the next slot boundary and then begins attempt-
ing to transmit. If two or more users try to trans-
mit in the same slot, the users become
“backlogged” and must attempt to transmit
again in a future slot. Obviously, if the users use
the same deterministic algorithm for determin-
ing the slot in which they will retry, they will col-
lide again and again. So the users typically use a
random retransmission algorithm.

Most studies of Aloha presume that the sys-
tem designer dictates the retransmission strategy
users will use, but we examine the situation in
which users selfishly determine their own
retransmission strategies. For our simplified
model of Aloha, we will be using an extensive
form game we call the “collision game.” For
now, we assume that players know the number
of backlogged users, n. Let G(n) be the game in
which there are currently n users backlogged. In
each stage of G(n) each of the n backlogged
players must decide whether to transmit (T) or
wait (W). If one player decides to transmit and
the rest decide to wait, the player who transmits
will receive a payoff of 1, and each of the other
(n - 1) players will play G(r — 1) in the next
period. If either no users transmit or more than
one user transmits, all players will play G(n)
again in the next period. Players place a lower
value on payoffs in later stages than on current
payoffs. This is represented by a per period dis-
count factor & < 1. Let u; , represent user i’s
utility from playing G(n) and let K be a random
variable denoting the number of other users who
transmit in a given slot. For n = 1 the player
should transmit and achieve utility u;; = 1 and
for n > 1 we express u; , as a function of player
’s action (T) or wait (W)) recursively:

u; o(T) = P[K = 0] + &u; ,P[K > 0]
; (W) = 8u;,,_1 PIK = 1] + du;,, P[K # 1]

That is, forn > 1:
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That is, forn > 1:

ui"(T):_PM_
: 1-5-P[K >0]
e (W) = 5-PIK =1]

—_— U,
1-8-P[K=1] """

This game has some very simple asymmetric
Nash equilibrium strategies. For instance, if n
users are backlogged, user 1 can transmit in
period 1, user 2 in period 2, and so on until user
n transmits in period n. Such an asymmetric
equilibrium is not applicable to Aloha, however,
because there is no way for us to distinguish
between users. So, from now on we will confine
ourselves to searching for symmetric equilibria,
in which all users play the same strategy.

In addition, due to the stationary nature of
our game (the players face the same situation
repeatedly until one user successfully transmits),
we will confine our players to the following
strategies: each user i selects a vector of transmit
probabilities p; = (p; 1, pi 2, ...) where p; , repre-
sents the probability that player i will transmit in
a period where G(n) is being played. Note that
each player’s decision of whether or not to trans-
mit is independent of all other players’ decisions.

Even such a simple model produces some
interesting insights. Figure 3 shows the transmit
probability that produces a symmetric Nash
equilibrium for different levels of backlog. This
value seems to be unique provided that users at
“lower levels of backlog are also playing the sym-
metric equilibrium. Interestingly, while the trans-
mit probability initially decreases with increasing
n, it ultimately increases and approaches 1
asymptotically. This is due to the fact that as the
number of backlogged users increases, the prob-
ability of exactly one user transmitting in a slot
goes to zero. Thus, the probability of a collision
goes to one, and since transmissions are costless
in G(n), users opt to transmit because as the
utility of the current game goes to zero, trans-
mitting becomes marginally better than waiting.

So far, our game accounts only for the fact
that players wish to transmit sooner rather than
later. Certainly transmission, whether or not it is
successful, will have a cost if players are wireless
users with finite battery life. It is easy to aug-
ment our model with a fixed transmission cost, c.
We call this new game G (n) where there are n
backlogged users. This gives us a new utility
function:

;o (T) = _PIK=0]-¢
1-6- P[K >0]

Figure 4 shows that including the transmis-
sion cost, ¢, in our model produces the desirable
effect that users decrease their transmission
probability as # increases. Preliminary results
indicate that a selfish Aloha system achieves sta-
bility for sufficiently low attempt rates.

POWER CONTROL GAMES

The power control problem in a code-division
multiple access (CDMA)-like system is a second
example of a problem in communication net-
works that is appropriate for the use of game-
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theoretic tools. In the power control problem,
each user’s utility is increasing in signal-to-inter-
ference-and-noise ratio (SINR) and decreasing
in power level. We will model this trade-off with
a utility function. If all other users’ power levels
were fixed, increasing one’s power would
increase one’s SINR. Raising one’s power has
other consequences, though; when a user raises
his or her transmission power, this action
increases the interference seen by other users,
driving their SINRs down, inducing them to
increase their own power leévels. Game theory is
a good tool for analyzing this situation.

The power control problem for data users in
a CDMA-like system was first framed as a game
theory problem in [6, 7]. This work was further
expanded in [8-10]. In all of these papers, very
similar utility functions are developed and uti-
lized. In this article we will utilize the same utili-
ty function used in [10]. We note, however, that
the issue of the proper utility function for data
users on a wireless network deserves further
research. )

Suppose that users in a wireless system trans-
mit information at the rate R b/s in L bit pack-
ets. Let p; be the power transmitted by user j; we
assume that users choose their power levels from

_ the set of nonnegative real numbers, p; € [0, ).

Finally, let y; be the SINR of user j. (Note that
user j’s SINR is a function of his/her transmitted
power, the power transmitted by other users, the
amount of background noise, and the path gain
between each user and the base station.) If our
transmission scheme is noncoherent frequency
shift keying (FSK) in an additive white Gaussian
noise (AWGN) channel, then the following has
been shown to be a useful utility function:

R —05y .
4(ppyj)= (1= 03 (10},
i

To this point, we have defined our user’s util-
ity functions and their strategy spaces. Suppose

W Figure 4. Symmetric Nash equilibrium retransmit probabilities for G(n) with
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that we let each user unilaterally decide how
much power to transmit. The outcome for each
user is a function of that user’s own decisions as
well as the decisions of the other users. What
will the users decide to do? In game-theoretic
terms, we have defined a power control game.
The users will attempt to make the best possible
choices, taking into account that the other users
are doing the same thing. By assumption, our
users have complete information about each
other. Then, according to game theory, rational
users will choose an operating point that is a
Nash equilibrium.

Implicitly assuming a one-shot game, Shah,
Mandayam, and Goodman prove that the power
control game as described here has a unique
Nash equilibrium [6]. This Nash equilibrium has
the property that all users have the same
received power at the base station, and hence all
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users have the same SINR [6]. In addition to its
intuitively appealing “fairness,” this property is
optimal for despreading the received signals in a
CDMA system [11].

Another desirable characteristic of the out-.
come of a game (or any optimization problem
involving several different objective functions) is
Pareto efficiency. It is easy to see that if the
power control problem were centralized, the
centralized controller would never want to
choose an outcome that was Pareto inefficient
— a centralized controller would always want to
improve the outcome for a user if such an
improvement could be made without harming
the rest of the users. The Nash equilibrium of
the power control game is shown to be Pareto
inefficient in [6].

Here, we will look at an alternative power
control game. We will model the game as a
repeated game, in which we assume that the
players are not myopic, but consider the impact
of their current actions on future play.

When the power control game is analyzed as
a one-shot game, users are myopic; their only
concern is the current value of the utility func-
tion. By modeling the power control game as a
repeated game, we create users who can consid-
er the consequences of their actions. A user who
“cheats” in the current time slot may be pun-
ished by other users in future time slots.

We will require that our repeated power con-
trol game have an infinite horizon. In other
words, a user must always expect to transmit
again in the next period. Punishment in the
repeated game will not be instantaneous. If a
user knew when his last transmission was com-
ing, he could exploit this information to cheat;
his immediate withdrawal from the game would
then allow him to go unpunished. The infinite
horizon assumption seems reasonable, however,
since a mobile terminal would rarely know when
a transmission might end. We will assume a dis-
crete time model. In each time slot, every user
transmits one packet. Furthermore, we assume
every user knows the received power of all trans-
missions in the previous time slots; this informa-
tion must be broadcast by the base station.

A general strategy for a repeated game speci-
fies the player’s (user’s) action for each possible
game history. Implementing an arbitrary strategy
is extremely difficult, though. The usual restric-
tion, then, is that each player’s strategy be imple-
mentable with a finite-state machine. Each state
specifies the strategy that will be played. After
each repetition of the constituent game, the out-
come of the game determines the transition
between states.

Each transmission of a packet gives rise to
some utility, which is calculated via the same
utility function used for the one-shot game. The
user values the repeated game by taking a dis-
counted sum of the utilities earned in the trans-
mission of each packet. The discount rate, & €
(0, 1), is a measure of the value the user places
on the future. We assume that § is very close to
one. Since packets in a wireless network will
come in such quick succession, it seems unlikely
that the user’s valuation of the current packet
will be drastically different than the valuation of
the next packet.
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The repeated game has an infinite number of
Nash equilibria. In fact, a well known theorem in
game theory says that any feasible set of payoffs
in a repeated game can be achieved by a Nash
equilibrium of that game provided that § is close
enough to 1 [3]. As system designers, we can
choose a “desirable” equilibrium. By the defini-
tion of a Nash equilibrium, no individual user
will have any incentive to deviate from our cho-
sen equilibrium.

We select our desired equilibrium operating
point based on two properties: fairness and
Pareto efficiency. We seek an operating point
which is fair in the sense that all users will have
the same received power at the base station. As
noted earlier, this is optimal for despreading
[11]. Along this continuum, we choose the
received power that gives the users’ the highest
utility. It turns out that all users’ utility functions
peak at the same received power level.

As long as no user exceeds the desired received
power, the system operates normally. If a user has
exceeded the desired receive power, however,
then during the next packet period, the rest of the
users will punish the wayward user by increasing
their powers to the Nash equilibrium of the one-
shot game. Once adequate punishment has been
dispensed, the system returns to normal. Accord-
ing to our simulations, punishment generally lasts
only for the duration of one packet transmission.
This is a Nash equilibrium strategy when played
against other users using the same strategy. Hence,
the best strategy for a user entering a system in
which everyone is playing fair and administering
punishment to cheaters is to do likewise.

We have chosen a static situation with users dis-
tributed uniformly within a 5 km circular cell to com-
pare the operating point of a repeated game with that
of a one-shot game. Figures 5 and 6 show the results
for our scenario. Figure 5 shows the utility vs. dis-
tance from the base station for this case. From this
graph, it is easy to see that the repeated game pro-
vides Pareto improvement over the one-shot Nash
equilibrium. Similarly, Fig. 6 shows that users utilize
much lower transmit powers in the repeated game.

CONCLUSION

We have shown that the use of simple tools from
game theory can lead to self-coordinating behavior
in relatively complex networks. In particular, we
have shown that desirable behavior in power con-
trol and random access protocols can be obtained
from autonomous selfish agents. In our continuing
work, we plan to apply this approach from the phys-
ical to the application layer in an effort to develop
truly adaptive self-configuring systems. For further
details on work mentioned herein, see [12, 13].
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