
Composing Workflows of Semantic Web Services

Mikko Laukkanen and Heikki Helin
TeliaSonera Finland

P.O.Box 970 (Teollisuuskatu 13)
FIN-00051 SONERA, Helsinki, Finland

{mikko.laukkanen,heikki.j.helin}@teliasonera.com

ABSTRACT
Web services are software components that can be accessed
over the Internet by other software components. Web service
workflows are a set of web services that are executed in a
structured way. This paper introduces a workflow composer
agent, which is able to compose web service workflows, and
more importantly, uses semantic descriptions of web services
in finding and matching web services for a workflow. We will
show how a workflow can be composed by utilizing semantic
web service ontologies. With this technology we will present
a model for composing web service workflows, and provide
a example scenario, which shows how the composition of a
web service workflow can be done in practise.

1. INTRODUCTION
The web, once solely a repository of static data, such as of

text and images, is evolving into a provider of services [6]. In
the future the web will be increasingly dynamic in its nature,
that is, services may be available infrequently, for instance
based on time and location. Furthermore, the services will
be composed of one or more web services, and it is normal
to expect web services to be integrated as part of workflow
processes [3].

Web services are standard-based software components that
can be accessed over the Internet by other software com-
ponents [13]. Web services can vary in functionality from
simple operations, such as a retrieval of a stock quote, to
complex business systems, such as online travel schedul-
ing, which access and combine information from multiple
sources. Once deployed, other applications and web services
can discover and invoke the web service.

When speaking about a composition of web service work-
flows, one may refer to at least two cases. Firstly, one can
have a system, where the workflow is already defined, but
one or more web services of it is unavailable. Secondly, a
brand new workflow can be generated, and the web services
for it are searched. In both cases, it may happen that one
or more web services in the workflow are not available at

.

the time of invocation, thus, it is required to search and
find a replacing web service(s) to complete the workflow.
Should this be the case, the replacing web service(s) must
implement similar enough functionality than the one that is
to be replaced. Because web services are deployed by vari-
ous organizations world-wide, in reality it is very unlikely to
find a perfect match for a web service. The reason can be for
instance the different number of input or output parameters,
but maybe above all, the semantic meaning of the input and
output parameters. There has to be a way to find seman-
tically similar kinds of services, which have the same kind
of pre- and post-conditions. In other words, semantically
similar services have a same kind of effect on the “state of
the world”.

The rest of this paper is structured as follows. Section 2
will give background information about ontologies and Busi-
ness Process Execution Language for Web Services (BPEL4-
WS), which are used later in the paper. In Section 3 we
will describe how the web service workflow can be composed
using the semantic descriptions of the web services. Section
4 will give an example, which illustrates how the model can
be applied in practise. Finally, in Section 5 we will discuss
some open issues and future work, and conclude this paper.

2. BACKGROUND

2.1 Ontologies
There is a need for an ontology when applying search and

semantic matching for web services. To illustrate this, let us
consider the following scenario. A web service that provides
the location of a user’s mobile phone needs to be found. In
the search arguments we specify that the inputs for the web
service should be the “phoneNumber”, and the outputs are
the “longitude” and “latitude” of the phone. Unfortunately,
when searching for replacing web service, a exact match is
not found. However, a service, where the input is called
“MSISDN”, and the output is called “Location”, is avail-
able. Without knowing anything about the semantics, we
would discard this service in the first place. However, if
we would have a ontology defining that “MSISDN is-kind-
of phoneNumber” and “Location is-composed-of longitude
and latitude”, we could see that in fact the found web service
would serve our needs.

The DARPA Agent Markup Language (DAML) [5] is a
language for expressing sophisticated class definitions and
properties. The DAML-S [2] is a DAML-based web ser-
vice ontology, which specifies how a web service can be sup-
plemented with a semantic description. The DAML-S is



divided into three parts: a service profile, a process model,
and a grounding. The service profile is used for advertising
and discovering services, that is, it describes the service in
terms of its inputs, outputs, preconditions and the effects it
has once it is executed. The process model gives a detailed
description of a service’s operation, that is, how the service
should be used. While the service profile and the process
model are abstract descriptions of the service, the ground-
ing on the other hand provides concrete details on how to
interoperate with a service. For instance, in DAML-S 0.7
and later the grounding can be binded to WSDL, which in
turn allows it to be interoperable within the web service
world.

Later in this paper we will show how a semantically anno-
tated service profile plays an essential role when finding
semantically similar web services The service profile could
be realized for instance using DAML-S.

2.2 Business Process Execution Language for
Web Services

Business Process Execution Language for Web Services
(BPEL4WS) [1] allows modeling business processes (work-
flows) for web services. BPEL4WS depends on WSDL [14],
XML Schema [12], and XPath [11]. Of these, the WSDL has
the most influence on BPEL4WS; in fact, BPEL4WS builds
on top of WSDL. BPEL4WS represents the combination of
two previously competing standards: XML business process
language (XLANG) [10] from Microsoft, and web services
Flow Language (WSFL) [4] from IBM.

The BPEL4WS workflow can be defined using the follow-
ing general structure:

<process name="TheProcess">
<partners>

<!-- lists the external web services
invoked from within the workflow -->

</partners>

<variables>
<!-- specifies the data elements that
flow within the workflow -->

</variables>

<correlationSets>
<!-- specifies bindings for a set of
operations to a service instance -->

</correlationSets>

<faultHandlers>
<!-- lists the elements to catch
faults -->

</faultHandlers>

<compensationHandler>
<!-- specifies the elements that
implement compensating actions in
the case of transaction rollback -->

</compensationHandler>

<eventHandlers>
<!-- for receiving external events to
the workflow -->

</eventHandlers>

<sequence>
<!-- the workflow execution logic -->

</sequence>
</process>

Every process begins with a “header” XML fragment,
which specifies the process name and namespaces being refer-
red to. Partner section specifies the external web services
invoked from within the workflow. Partner definition has
also reference to the WSDL documents of the web service.
When composing workflows, the partner section is created
based on the web services that have been found during seman-
tic matching. Variables contain the data that flows within
the workflow. Based on the web services’ inputs and out-
puts (as specified in the WSDL document), the variables
section can be formed. Correlation sets are used to bind
a set of operations to a service instance. Fault handlers
are used in catching failures and the sequence comprises the
actual workflow logic. Compensation handlers are used to
implement compensating actions in the case of transaction
rollback. Event handlers are used to receive external events
to the workflow. Finally, the web services can be invoked as
specified by the sequence section, which may include basic
control flow structures, such as sequence, switch (for condi-
tional routing), while (for looping), flow (for parallel execu-
tion), and pick (for race conditions based on external trig-
gers).

3. COMPOSING WORKFLOWS

3.1 Model for Composing Workflows
Figure 1 depicts the general entities of the web service

composition model and the information flow between them.
When a new web service instance is created, it is advertised
by registering the WSDL and DAML-S description to the
directory, which can be for instance UDDI [7] (1). The
workflows are stored in the workflow repository, from where
they are fed into the workflow composer agent (2). Each
workflow is composed of one or more web services, which
can be situated anywhere on the web. The DAML-S and
WSDL descriptions of the web services are queried from the
directory (3), and the semantic matching is applied. The
workflow composer agent composes the executable workflow,
and feeds it into the workflow execution engine (4). Finally,
the execution engine executes the workflow using the web
service instances.

There are two cases to consider when composing web ser-
vices: to replace a web service in a existing workflow with a
similar functionality or to define a whole new workflow using
the available web services on the web. In the following, both
of these options are discussed in detail, and a four-step algo-
rithm is presented for composing a workflow.

3.2 Creating or Updating a Web Service Work-
flow Dynamically

The web is evolving from a collection of information to a
distributed computing environment of web services, where
the web services may be available more or less infrequently,
depending on for instance the time and location. When a
workflow is composed of such web services, it may happen
that at the time of initiating the workflow, one or more of
the web services are not available. Should this happen, a
similar functionality, implemented by one or more web ser-
vices, should be found. In addition to replacing unavailable
web services in a workflow, there might be a need to com-
pose a whole new workflow, or extend an existing workflow
to cover new web services.



WS
WS

WS

WS WS

WS

Web Service instances

Workflow Repository (BPEL)

Workflow

Composer Agent

Workflow Execution

Engine

Workflow Execution

Engine

(2)

(3)
(1)

(4)

(5)

Directory

Figure 1: Enabling architecture for dynamic work-
flow composition. For explanations for the numbers
in parentheses, see the body text.

The process of finding a web service to replace an unavail-
able one in some workflow or creating a whole new workflow
can be divided into the following general steps:

1. Identifying the required functionality

2. Semantic matching of web services

3. Creating or updating the workflow

4. Executing and monitoring the workflow

In the following, each of the steps are described in more
detail.

3.3 Identifying the Required Functionality
The first task is to identify the general functionality that

the workflow should accomplish. When replacing some un-
available web service in a workflow, the identification for
the functionality is easy; a similar web service or web ser-
vices implementing the similar functionality than the un-
available one has to be found. However, when creating a
new workflow, the identification for the functionality usu-
ally originates from some problem that needs to be solved.
For instance, there could be a need to arrange a business trip
to a foreign country. This kind of workflow consists of sev-
eral tasks, such as booking airline tickets, booking a hotel,
and renting a car. Furthermore, these tasks may have some
dependencies on each other. For instance, if the the arriv-
ing airport is far a way from the hotel, renting a car may be
the best choice, whereas if the airport is near to the hotel,
the use of public transportation could be better justified.
The output of the first step is a list of tasks (later mapped
to web services), which are described in terms of pre- and
post-conditions as well as input and output arguments.

3.4 Semantic Matching of Web Services
After the general tasks have been identified, the web ser-

vices implementing the workflow can be searched and match-

ed. Semantic matching can be divided into two parts: find-
ing the web service(s) that fulfills the pre- and post-condi-
tions of the needed functionality, and finding the web ser-
vice(s) that accept the required input and output arguments.
To make this possible, the available web services have to be
accompanied with a semantic description, which is able to
express this kind of information. Furthermore, the pre/post-
conditions and input/output arguments should refer to an
ontology.

Pre-conditions specify the state of the “world” before, and
post-conditions after the web service is executed. When
an unavailable web service is to be replaced, the replacing
functionality, let it be a single web service, or a set of web
services executed as a composed service, must have the same
pre- and post-conditions.

While the similar pre- and post-conditions generally is
enough, in practise the input and output arguments need
also be matched. This step follows the ideas of Paolucci
et al [8], where the semantic matching algorithms for input
and output arguments are presented. When searching and
matching web services, a similar kind of DAML-S descrip-
tion that the advertisement, so called search template, is
created.

The input and output parameters in both the advertise-
ment and the search template refer to an ontology, and
the similarity is evaluated by the relationships between the
referred classes in the ontology. This results in that there
can be four different kinds of matches [8]:

• Exact match—the searched service and the advertise-
ment refer to the same class in the ontology.

• Plug-in—the advertisement is more general than the
searched service.

• Subsumes—the searched service is more general than
the advertisement; in this case the advertisement can-
not completely fulfill the searched service.

• Fail—No subsumption relation between the search tem-
plate and the advertisement can be found.

In the case of exact match the advertised web service can
be used as such. However, in the case of plug-in and sub-
sumption, the advertised web service can be used, but some
additional processing may be needed. The plug-in service
produces more results than needed, thus, some kind of fil-
tering is needed. The subsumed result is not complete, so
the requester may need other web services to complete the
result set.

3.5 Defining the Workflow
Assuming all the web services implementing the required

functionality are found, the next step is to define the work-
flow or update the existing one. This includes the (re)bind-
ing of the web services to the workflow, and definition of the
possible dependencies.

If the composition of the workflow is about replacing un-
available web services, this phase is trivial; the only thing to
do is to update the partner section in the workflow to refer
to the new web services (i.e., to their WSDL documents).
However, if a new workflow is created, this phase is far more
complex, and most likely requires human interaction at least
in defining the actual workflow logic. In this paper we are
not discussing this side of the coin, but leave it as the future
work.



Diameter

Class

MSISDN

Class

subClassOf

subClassOf

subClassOf

xsd:float

Altitude

hasLatitude

DataTypeProperty

hasLongitude

DataTypeProperty

hasAltitude

DataTypeProperty

xsd:float

Latitude

xsd:float

Longitude

range range range

domain

Thing

Class

Map

Class

PhoneNumber

Class

Location

Class

subClassOf

hasDiameter

ObjectProperty

domain

range

domain

domain

Figure 2: The example ontology used in the scenario

3.6 Executing and Monitoring the Workflow
Once the workflow is (re)defined, it can be executed by a

workflow execution engine, which both executes the work-
flow as defined, and makes the appropriate external web
service invocations. The workflow execution engines usually
provide tools for monitoring the execution of the workflows,
and for verifying the output of the workflow. To our knowl-
edge, there are at least two implementations for BPEL4WS
engine: BPWS4J 1 (IBM), and BPEL Orchestration Server 2

(Collaxa). The former is available as open-source distribu-
tion, whereas the latter is a commercial product.

4. EXAMPLE SCENARIO
Let us illustrate the workflow composition with the fol-

lowing scenario, where a traveler is on a vacation, and asks
for restaurants near her current location. Furthermore, the
restaurants should be pointed on a map.

During the execution of the scenario, the workflow com-
poser agent refers to an ontology, which is depicted in Fig-
ure 2.

There is a workflow specification for the required func-
tionality, and it is composed of two web services: LocateMap
and GetRestaurants. The LocateMap web service takes the
user’s phone number (MSISDN) and a diameter for a map
as an argument, and provides a map together with latitude
and longitude of the center point as output arguments. The
GetRestaurants web service uses the latitude, longitude and
map as the input arguments to add the nearby restaurants
to the map. The workflow is depicted in Figure 3.

In this scenario we will concentrate on the LocateMap web
service, which has the following pre- and post-conditions:

[LocateMap]
Pre-conditions: ¬known(latitude) ∧

¬known(longitude) ∧
¬known(map)

Post-conditions: known(latitude) ∧
known(longitude) ∧
known(map)

Furthermore, as shown in Figure 3, the LocateMap accepts
MSISDN and diameter as the input arguments, and latitude,
longitude and map as the output arguments.

1See: http://www.alphaworks.ibm.com/tech/bpws4j
2See: http://www.collaxa.com/home.index.jsp

Locate

Map

Get

Restaurants

<partners>

<partner name="LocateMap"/>

<partner name="GetRestaurants"/>

</partners>

<variables>

<variable name=”InitialInput”/>

<variable name=”Map”/>

<variable name=”FinalOutput”/>

</variables>

<sequence>

<receive partner=”user”

container=”InitialInput”/>

<invoke partner=”LocateMap”

inputContainer=”InitialInput”

outputContainer=”Map”/>

<invoke partner=”GetRestaurants”

inputContainer=”Map”

outputContainer=”FinalOutput”/>

<reply partner=”user”

container=”FinalOutput”/>

</sequence>

<InitialInput>

<msisdn>5555073321</msisdn>

<diam>100</diam>

</InitialInput>

Map with restaurants

Map

Figure 3: The existing workflow for locating nearby
restaurants. Please note that the BPEL4WS def-
inition only includes the relevant information and
therefore is not complete.

When the traveler makes the request for locating the near-
by restaurants, the workflow composer agent finds out that
the LocateMap web service is not available. It then begins to
search for replacing web services with one or more similar
matching pre- or post-conditions that the LocateMap has.
In this scenario there are three such web services available:
LocatePhone, GetLatLon, and GetMap. The pre- and post-
conditions as well as input and output arguments are as
follows:

[LocatePhone]
Pre-conditions: ¬known(location)

Post-conditions: known(location)
Input: MSISDN

Output: location

[GetLanLon]
Pre-conditions: known(location) ∧

¬known(latitude) ∧
¬known(longitude)

Post-conditions: known(latitude) ∧
known(longitude) ∧
known(map)

Input: location
Output: latitude ∧ longitude

[GetMap]
Pre-conditions: known(latitude) ∧

known(longitude) ∧
¬known(map)

Post-conditions: known(map)
Input: latitude ∧

longitude ∧
diameter

Output: map



From the available web services and their pre- and post-
conditions the workflow composer agent can infer the fol-
lowing:

1. GetLatLon fulfills the post-conditions, known(latitude)
and known(longitude), of LocateMap.

2. GetLatLon has a pre-condition known(location) than
in turn is the post-condition of the LocatePhone web
service. Thus, LocatePhone should be called in order
to fulfill the post-conditions for the GetLatLon.

3. GetMap web service has pre-conditions known(latitude)
and known(longitude), which are post-conditions of
GetLatLon. Clearly, GetLatLon should be invoked in
order to fulfill the preconditions of the GetMap.

4. GetMap has the same post-condition than the LocateMap
has. Therefore, together with GetLatLon, invoking the
GetMap fulfills all the post-conditions than the unavail-
able LocateMap.

What about the input and output arguments then? We
can see that the concept of Location is not present in the
unavailable LocateMap web service. However, by referring
to the ontology, the workflow composer agent, during the
semantic matching of the web services, is able to infer that
the Location in fact has the longitude and latitude as prop-
erties. Therefore, the when knowing the Location, the
latitude and longitude are also known. In the matter of
fact, if the ontology would also be used in the analysis of
the pre- and post-conditions, the workflow composer agent
could simplify the analysis by leaving the GetLatLon out; the
ontology states that a condition known(location) also means
that the conditions known(latitude) and known(longitude)
are also true.

Once the workflow composer agent has analysed the avail-
able web services, and found out that by combining them
in as a sequence the unavailable LocateMap web service can
be replaced, the workflow can be re-defined as depicted in
Figure 4.

5. DISCUSSION AND CONCLUSION
In this paper we have discussed the composition of web

service workflows, where one of the objectives is to automa-
tise the process of finding and matching the web services
accessed by the workflow. The model we have presented
still requires human interaction in the initial phase of the
workflow composition (see Section 3.3). To move the burden
of defining the requirements and creating the initial work-
flow description from a human user to a computer program
is out of this paper’s scope. This kind of automatisation
would require a complex planning and reasoning function-
ality, which are studied for instance by the software agent
technology research community.

The semantic matching phase (see Section 3.4) plays a
central role in the success of the workflow composition. In
this paper we referred to the work of Paolucci et al in [8] in
applying the actual semantic matching based on DAML-S
descriptions. Because web services are deployed by various
people world-wide, in reality it is very unlikely to find a per-
fect match for a web service. The reason can be for instance
the different number of input or output parameters, but
maybe above all, the semantic meaning of the input and

Locate

Phone

Get

Map

Get

Restaurants

Get

LatLon

<InitialInput>

<msisdn>5555073321</msisdn>

<Diam>100</diam>

</InitialInput>

<Location>

<lat>67.253</lat>

<lon>25.311</lon>

</Location>

<MapParams>

<lat>67.253</lat>

<lon>25.311</lon>

<diam>100</diam>

</MapParams>

Map

Map with restaurants

<partners>

<partner name="LocatePhone"/>

<partner name="GetLatLon"/>

<partner name="GetMap"/>

<partner name="GetRestaurants"/>

</partners>

<variables>

<variable name=”InitialInput”/>

<variable name=”Location”/>

<variable name=”MapParams”/>

<variable name=”Map”/>

<variable name=”FinalOutput”/>

</variables>

<sequence>

<receive partner=”user”

container=”InitialInput”/>

<invoke partner=”LocatePhone”

inputContainer=”InitialInput”

outputContainer=”Location”/>

<invoke partner=”GetLatLon”

inputContainer=”Location”

outputContainer=”MapParams”/>

<invoke partner=”GetMap”

InputContainer=”MapParams”

outputContainer=”Map”/>

<invoke partner=”GetRestaurants”

inputContainer=”Map”

outputContainer=”FinalOutput”/>

<reply partner=”user”

container=”FinalOutput”/>

</sequence>

Figure 4: The new workflow for locating nearby
restaurants. The BPEL4WS definition only includes
the relevant information and therefore is not com-
plete.

output parameters. The ontology and its ability to cover
the concepts used in the DAML-S descriptions is maybe the
most important issue in the semantic matching. In the worst
case the concept presented in the DAML-S description is not
found from the ontology, which means that the correspond-
ing Web Service cannot be used by the semantic matching
phase at all.

The work presented in this paper did not depend on any
particular directory service. Because the UDDI is specified
as the repository for web services advertisements, we are
not ruling out the possibility of using UDDI in storing the
DAML-S descriptions together with the other information
of web services. To do this, the UDDI needs to be supple-
mented with the functionality to be able to hold DAML-S
descriptions. In fact, [9] describes how this can be done.

In this paper we have not discussed the relationship bet-
ween the semantic description stored in the directory service
and the concepts represented by the ontology: who updates
it and keeps it consistent? For instance, when a new web
service is deployed, is it the web service author’s task to look
up the ontology and “classify” the web service when creating
the DAML-S description? Or could it even be that the web
service author needs not to know about the existence of the
ontology at all? Instead, the administrator of the directory
service could be responsible for creating and maintaining the
DAML-S descriptions once a new web service is advertised.
These issues are out of this paper’s scope and remain as
future work.



6. REFERENCES
[1] T. Andrews, F. Curbera, H. D. Y. Goland, J. Klein,

F. Leymann, K. Liu, D. Roller, D. Smith, S. Thatte,
I. Trickovic, and S. Weerawarana. Business Process
Execution Language for Web Services, Version 1.1,
Mar. 2003.

[2] A. Ankolenkar, M. Burstein, J. R. Hobbs, O. Lassila,
D. L. Martin, D. McDermott, S. A. McIlraith,
S. Narayanan, M. Paolucci, T. R. Payne, and
K. Sycara. DAML-S: Web Service Description for the
Semantic Web. In Proceedings of The First
International Semantic Web Conference (ISWC),
Sardinia (Italy), June 2002.

[3] J. Cardoso and A. Sheth. Semantic e-Workflow
Composition. Technical report, LSDIS Lab, Computer
Science, University of Georgia, July 2002.

[4] F. Leymann. Web Service Flow Language (WSFL
1.0), May 2001. Available at: http://www-
4.ibm.com/software/solutions/webservices/
pdf/WSFL.pdf.

[5] J. Hendler and D. L. McGuinness. The DARPA Agent
Markup Language. IEEE Intelligent Systems,
15(6):67–73, 2000.

[6] S. McIlraith, T. C. Son, and H. Zeng. Semantic Web
Services. IEEE Intelligent Systems, 16(2):46–53, 2001.

[7] OASIS Consortium. UDDI Version 3.0 Specification.
July 2002. Working Draft, available at:
http://www.oasis-open.org/committees/uddi-spec/.

[8] M. Paolucci, T. Kawamura, T. Payne, and K. Sycara.
Semantic Matching of Web Services Capabilities. In
The Proceedings of The First International Semantic
Web Conference (ISWC), Sardinia (Italy), June 2002.

[9] M. Paolucci, T. Kawamura, T. R. Payne, and K. P.
Sycara. Importing the Semantic Web in UDDI. In
Web Services, E-Business and Semantic Web
Workshop (WES), pages 225–236, May 2002.

[10] S. Thatte. XLANG: Web Services for Business Process
Design. Microsoft Corporation, 2001. Available at:
http://www.gotdotnet.com/team/xml wsspecs/xlang-
c/default.htm.

[11] W3C. XML Path Language (XPath), Version 1.0.
Nov. 1999. W3C Recommendation, available at:
http://www.w3.org/TR/xpath/.

[12] W3C. XML Schema Part 0: Primer. May 2001. W3C
Recommendation, available at:
http://www.w3.org/TR/xmlschema-0/.

[13] W3C. Web Services Architecture. Nov. 2002. W3C
Working Draft 14, available at:
http://www.w3.org/TR/2002/WD-ws-arch-
20021114/.

[14] W3C. Web Services Description Language (WSDL)
Version 1.2. Jan. 2003. W3C Working Draft 24, work
in progress, available at:
http://www.w3.org/TR/2003/WD-wsdl12-20030124/.


