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ABSTRACT 
Coalition formation methods allow agents to join together and are 
thus necessary in cases where tasks can only be performed 
cooperatively by groups. This is the case in the Request For 
Proposal (RFP) domain, where some requester business agent 
issues an RFP - a complex task comprised of sub-tasks - and 
several service provider agents need to join together to address 
this RFP. In such environments the value of the RFP may be 
common knowledge, however the costs that an agent incurs for 
performing a specific sub-task are unknown to other agents. 
Additionally, time for addressing RFPs is limited. These 
constraints make it hard to apply traditional coalition formation 
mechanisms, since those assume complete information, and time 
constraints are of lesser significance there.  
To address this problem, we have developed a protocol that 
enables agents to negotiate and form coalitions, and provide them 
with simple heuristics for choosing coalition partners. The 
protocol and the heuristics allow the agents to form coalitions in 
the face of time constraints and incomplete information. The 
overall payoff of agents using our heuristics is very close to an 
experimentally measured optimal value, as our extensive 
experimental evaluation shows.  

Categories and Subject Descriptors 
I.2.11 [Distributed Artificial Intelligence]: Multi-agent Systems, 
Coherence and Coordination, Intelligent Agents. 

General Terms 
Algorithms, Design, Economics, Experimentation. 

Keywords 
Coalition formation, Incomplete information, RFP, task 
allocation, experimentation. 

1. INTRODUCTION 
Coalition formation is an important cooperation method in multi-
agent systems. Within coalitions, agents may be able to jointly 
perform tasks that they would otherwise be unable to perform, or 
will perform poorly. To allow agents to form coalitions, one 

should devise a coalition formation mechanism that includes a 
protocol as well as strategies to be implemented by the agents 
given the protocol. Coalition formation mechanisms proposed to 
date (e.g., [5][11][13]) commonly provide these, however they 
include several restrictive assumptions, which do not hold in real-
world domains where coalitions are necessary. In this study we 
relax some of these assumptions thus arrive at an automated 
coalition formation mechanism better suited for real domains. In 
particular, we do not assume complete information. Rather, we 
assume, in similarity to practical economic situations, that agents 
value tasks differently—resulting in multiple valuations of a 
specific task—and that agents do not know the value of a task to 
other agents, although they may have a rough idea of the range of 
values the task may have. Additionally, we assume that the 
coalition formation process, as an economic process, is bounded 
in time, and that the value of a task is discounted as time elapses 
during the process. These assumptions, which are unique to our 
solution, are necessary for providing a solution applicable to a 
real-world coalition formation.  
Under the assumptions of incomplete information, heterogeneous 
task valuations, and short time for completion of the coalition 
formation process, traditional coalition formation mechanisms are 
inadequate. Therefore we need to devise a new mechanism. 
Ideally, we would like a coalition formation mechanism to not 
only allow agents form coalitions for joint task execution, but also 
arrive at a coalition configuration which is optimal (in terms of 
utility maximization), stable, and fair. However, the 
computational complexity required for such solutions is 
exponential (see [8]). Therefore, a practical solution to be used 
among business parties must give up some of these ideal 
properties. In the business arena, although the ultimate goal of 
businesses is to increase their gains, optimization of these gains is 
usually compromised, and stability is commonly a goal of equal 
importance. This may result from stability being an enabler of 
gains. Thus, an important property of a mechanism of the type we 
study is its stability. 
One way to arrive at a stable coalition configuration among self-
interested agents is to compute a solution such as, e.g., the Kernel 
[1]. Although stable, the Kernel is computationally hyper-
exponential, thus inappropriate for practical use. Relaxation of 
this complexity was performed in [10], however the relaxed 
solution (which is polynomially complex) still requires complete 
knowledge of the values of coalitions, and assumes that each 
coalition has a unique value. Another way to provide stability is 
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to design a computationally feasible stable coalition formation 
mechanism. This will inevitably require that the utility be 
compromised, however stability and fairness can be planned for. 
The goal of this study is to develop such a mechanism.  
We design, implement and evaluate a mechanism that allows 
business parties to form coalitions for performing tasks jointly. 
An example business domain in which such a mechanism is 
applicable is the business-to-business (B2B) Request For Proposal 
(RFP) domain. In the B2B RFP domain, contractors attempt to 
join together to address complex requests, composed of several 
subtasks, for products or services. To beneficially address these 
requests it may be essential to form coalitions. Time is however 
very limited, and although each request may have a price tag 
attached to it, its value to each business party is typically different 
and unknown to the other parties. The mechanism we developed 
addresses exactly such conditions. We provide a protocol for 
agents to negotiate the formation of coalitions based on their 
estimated values. We further provide heuristics for proposal 
preparation and selection as well as adaptation methods, to be 
used by the agents in conjunction with the protocol. Our 
experiments demonstrate stability, as deviation from pure strategy 
profiles proves non-beneficial. They further show satisfying 
gains, proved to be close to the (experimentally computed) 
optimum. 

2. PROBLEM DESCRIPTION 
We consider situations where a set of RFP tasks, ℑ ={T1,...,Tn} 
should be satisfied as soon as possible. Each task Ti ∈ ℑ consists 
of sub-tasks Ti1,…,Tin.  There is a set of self-interested agents, 
Å={A1,…,Am} that are able to perform some of these sub-tasks 
and each tries to maximize its benefits. An agent is capable of 
performing only a subset of the subtasks of a given task. We 
assume that there is a boolean function, φ from ℑXÅ to {true, 
false}, that associates with an agent Aj, and a sub-task Tik the 
value true if the agent is capable of performing Tik and the value 
false otherwise. We further assume that all the agents know this 
function. That is, each agent knows its own capabilities and the 
capabilities of all the other agents. An agent Aj has a cost, bj

ik, for 
each subtask Tik it can perform. These costs are private knowledge 
and an agent, while knowing its own costs, does not know the 
costs of other agents and may be able only to estimate these costs.  
Since an agent cannot perform all of the subtasks of a given task, 
it must cooperate with other agents in order to satisfy that task. 
Thus, we assume that agents form coalitions in order to satisfy 
tasks. A coalition is paid for satisfying a task. A coalition ℭT for a 
task T is a tuple 〈C,alloc,u〉 where C is a set of member agents, 
alloc is an allocation function that associates with each subtask of 
T a member of C such that alloc(Tik)=Aj only if  φ(Aj,Tik)=true.  u 
is a payoff distribution vector – its elements are the benefits of ℭT  
members.  As the payment made to a coalition to perform its task 
increases and the sum of the costs associated with the 
performance of the subtasks by the coalition members decreases, 
the efficiency of the coalition increases and its members may be 
able to increase their benefits. We assume that an agent is rational 
and will join a coalition only if it believes that joining will 
increase its benefits. 
For simplicity, we assume that an agent cannot participate in more 
than one coalition at a time and also, as a member of a coalition, it 
can perform only one sub-task at a time.  

3. SOLUTION APPROACH 
To allow agents to form coalitions given the special settings 
presented above, we devise a mechanism that consists of a 
protocol (Section 3.1) and a set of strategies (Section 3.2). To 
avoid the unrealistic exponential search complexity for optimal 
strategies, we suggest strategies, which are based on a set of 
heuristics. These strategies are later evaluated experimentally 
(Section 4). Participating agents must adhere to the protocol, and 
this adherence is enforceable. Of course, agents may choose not 
to participate in the protocol, yet by that they choose to avoid the 
potential gains from participation. When participating in the 
coalition formation and following the protocol, agents are free to 
select strategies other than those we propose. We nevertheless 
believe, based on our experimental evaluation, that the proposed 
strategies are highly beneficial, and given their low computational 
complexity it is reasonable to assume that agents will use them 
instead of searching for others. The details of the protocol and the 
strategies follow. 

3.1 Protocol 
The coalition formation protocol we propose is a special type of 
an auction with an extension for coalition formation. The protocol 
consists of a central manager and multiple agents that can join in. 
The manager supports two roles – an auctioneer role and a 
coalition negotiation manager role. Both of these roles are 
assumed to be neutral trusted third parties that do not discriminate 
among the participating agents and do not disclose their private 
information to others.  
The auctioneer represents businesses that are in a pressing need 
for complex products or services and they express their needs by 
publishing RFPs. At the time of publishing an RFP, its issuer sets 
its price, however as a result of the urgency, the value of the RFP 
to its issuer decreases as time elapses. The role of the auctioneer 
is thus to publish the available RFPs, to collect proposals of 
coalitions addressing these RFPs, to determine the winning 
coalition for each RFP, and to discount the price of the RFP over 
time. The auctioneer is also responsible for distributing the 
payments to coalition members after they complete the execution 
of an RFP.  
In our model each RFP is a task and its complexity is manifested 
by its partition into sub-tasks. The auction protocol is used to 
allocate the tasks in ℑ to coalitions.  The auction is divided into 
rounds, r1,r2,... and it ends when there are no more tasks to 
auction or no more agents that participate in the auction, or the 
values of the remaining tasks are all nullified. At the beginning of 
the auction, the auctioneer announces, for each task Ti ∈ ℑ, the 
price, P(Ti), that will be paid to a coalition that will perform Ti at 
the first round of the auction. In each round, the prices of 
unallocated tasks are reduced by a factor δ. This δ is announced 
by the auctioneer at the beginning of the auction as well. At each 
round r, for each unallocated task Ti ∈ ℑ, there may be zero or 
more coalitions that propose to perform the task. The auctioneer 
verifies that the members of the proposing coalitions can jointly 
perform the task (i.e., they hold all of the required capabilities) 
and awards each task to the first qualified coalition that proposed 
to perform that task. When two (or more) qualified coalitions 
submitted their proposals simultaneously, the auctioneer selects 
one of them randomly. The winning coalition is paid P(Ti) δr upon 
performing the entire task. Partial fulfillment of a task yields no 
payment. Additionally, the submission of a proposal to the 
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auctioneer is binding, i.e., after a coalition is awarded a given task 
its members cannot break their contract (this can be enforced by 
imposing very high fines).  

The cost Bℭ of a coalition ℭT = 〈C,alloc,u〉 is the sum of the costs 
of the agents for performing their allocated subtasks within ℭT, 
i.e., Bℭ = Σj bj, where bj is the cost of Aj and the sum is over all Aj 
members of C. Thus, the net benefits of a coalition ℭT that was 
awarded task Ti at round r is N = P(Ti) δr - Bℭ. The protocol 
manager is in charge of distributing Bℭ among the members of C. 
Each agent Aj is paid its cost bj plus an equal share of N. That is, 
Aj will be paid bj + N/|C|. Here, a member of C is uncertain 
regarding Bℭ since it is uncertain about the costs of the other 
members. Yet, the protocol manager must know the exact bj 
values for payment calculation, and the protocol dictates that the 
agents disclose this information to the manager. We are aware 
that self-interested agents may be motivated to deceitfully inflate 
their cost to increase the payment allocated to them, however we 
assume that they do not do that.* As stated in the introduction, our 
major goal it to provide the coalition formation and task 
allocation protocols. Payment distribution schemes other than the 
one we use may be devised however are not the focus of this 
paper. Prior to submitting proposals to the auctioneer, the agents 
need to form coalitions. For this, we suggest that the agents 
negotiate in order to form coalitions. This negotiation is 
facilitated by our mechanism via its negotiation manager role. 
During the coalition formation negotiation, agents send and 
receive proposals for coalitions to be formed. A proposal by an 
agent Aj specifies a coalition ℭT =〈C,alloc,u〉  where Aj, ∈C. The 
coalition formation negotiation is performed via the negotiation 
manager. At each auction round the protocol allows only one 
negotiation round. This is enforced by the manager. At each 
negotiation round, the manager orders the agents randomly, and 
the agents perform negotiation actions in that order. Each agent, 
in its turn, can either send a proposal for forming a coalition C to 
all of its members or accept such a formation proposal made to it 
by another. An agent has only one turn in each round. All offers 
are valid for one round and thus an agent making an offer must 
wait until it hears from all of the agents to which it proposed. It 
cannot accept any other proposal in this round. Note that 
proposals are all sent via the auctioneer and recorded there. As a 
result, an attempt to bypass the protocol - sending proposals 
externally and agreeing on coalitions to be formed – will be 
detected by the manager and can be penalized for. If all the 
members of a proposed coalition accept the proposal, the coalition 
is proposed to the auctioneer for performing a specific task. If a 
coalition is awarded the task then the members of the coalition 
quit the protocol. The agents that have not joined a coalition in a 
given round continue to negotiate in the next round.   

3.2 Heuristics 
An agent that participates in the protocol presented above needs 
means to decide which coalitions to propose to which other 
agents. It also needs to be able to decide upon acceptance and 
                                                                 
* Our payment distribution scheme was chosen for its simplicity. 

However businesses, and in particular publicly held ones, are 
audited by their accountants and later need to reveal this 
information to shareholders. Deceitful expenses can be exposed 
in this process and will be penalized for. Therefore, our 
payment scheme is reasonable for a B2B environment. 

rejection of proposals it receives from others. As stated earlier, 
computing the best strategy to handle such proposals is 
exponentially complex. Hence, we present a set of heuristics on 
which these strategies rely. These heuristics will provide the agent 
with a method for ranking the coalitions it can be part of 
according to their desirability to it. For this ranking, several 
criteria may be used.  
To rank candidate coalitions, an agent should first inspect the set 
of RFP tasks and their partition into sub-tasks. It should then 
examine the other agents and their capability to perform these 
sub-tasks. (As stated above, these capabilities are assumed to be 
common knowledge). Following, the agent can compute the 
coalitions that can jointly address the RFP. Only then can the 
agent rank these coalitions. Suppose that there are n agents, m 
tasks and a maximal number of k subtasks per task. For each sub-
task s of a task T that the agent can perform, there are O(nk) 
possible sets of agents that can perform the other subtasks of T. 
The number of subtasks that the agent can perform is of order 
O(mk). Thus, overall the agent faces an exponential complexity. 
In our solution we assume that k is small. Fortunately, in many 
real-world RFP environments this assumption holds. 
Consequently, inspection of all possible coalitions is feasible in 
spite of the exponential complexity. Otherwise, the search itself 
would require simplifying heuristics to provide feasibility. 
Ranking is affected by the knowledge that agents have. Some 
heuristics are applicable only in case that an agent has enough 
knowledge about the costs of other agents. The agents may try to 
build estimations about the costs of the other agents in the 
negotiation process. With no prior information, an agent can 
evaluate the cost of a sub-task to other agents as equal to its own 
cost for performing that sub-task. The agent may however have a 
rough estimation, based on “common knowledge” of the cost of 
other sub-tasks. During the negotiation, an agent may change its 
estimations regarding the costs of different agents, according to 
their behavior in the negotiation. A payoff demanded by an agent 
as part of a proposal is not a good estimator of its cost, because it 
includes the desired profit as well, and thus it is an over-estimator 
of the cost.† Nevertheless, combined with other estimators, payoff 
requests can be useful for cost estimation.  
Once an agent has computed the list of candidate coalitions and 
has acquired some knowledge of the costs the other members of 
these coalitions should incur when performing the sub-tasks 
allocated to them within these coalitions, it can rank the 
coalitions. Following, we provide heuristics to be used by the 
agent for this ranking. We consider two basic heuristics for 
ranking coalitions as well as two adaptation methods that can be 
used in conjunction with the basic heuristics. Our experimental 
results show (see section 4) that, in spite of the simplicity of the 
proposed heuristics, they provide good results when compared to 
a centralized experimental optimum (computed via iterative hill 
climbing). We also developed, implemented and tested other 
heuristics. However, the ones presented in the paper were lead to 
the best results.  

                                                                 
† Some agents may try to inflate their demands, either in an 

attempt to mislead regarding their costs, or out of mere greed. 
However, an agent that demands too much may hurt itself, since 
it incurs the risk that proposals the exclude it will be favored. 
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Marginal heuristic: The first heuristic is based on the marginal 
profit of the whole coalition (thus called henceforth marginal). 
This heuristic suggests that, in order to rank a coalition, an agent 
should sum the estimated costs of all the agents participating in 
the coalition for performing their allocated subtasks, and subtracts 
the sum from the current value of the coalition. This difference is 
the agent’s estimation of the net value of the task. To enable 
comparison of the heuristic with other heuristics, we will 
normalize the net value by dividing it by the maximal possible 
value of a coalition. The marginal heuristic guides the agent to 
choose a coalition with the highest normalized value. 
This heuristic represents a simple, common sense, behavioral 
pattern. Preferring coalitions that have a greater net value is a 
reasonable decision, as these may provide a higher utility to the 
member agents as well. In fact, given our protocol, a greater net 
value of the coalition guarantees (in the case of coalitions of an 
equal size), a higher individual utility. The only issue here is that, 
in practice, the agent only estimates the net value of the coalition, 
this estimation may be far from the actual net value, and therefore 
utility maximization is not guaranteed. 
Expert heuristic: The second heuristic is based on reduction of 
competition, allowing an agent to capitalize on its expertise (thus 
called henceforth expert). An agent may be considered an expert 
(with respect to a subtask required for some RFP) when only a 
few other agents can perform it as well. The expert heuristic 
directs an agent to seek tasks with a low number of competitors. 
The marginal heuristic may be problematic when several agents 
compete over the same subtask. This might result in many 
rejected offers, lowering overall utility. The expert heuristic tries 
to resolve this problem. It suggests that an agent try to form 
coalitions in which it performs subtasks of which it is an expert. 
The normalized value of the heuristic for a coalition is 1 minus 
the number of agents capable of performing the task that the 
agents perform in the coalition, divided by the total number of 
agents. The expert heuristic attempts to minimize collisions of the 
agents, by driving them to a subtask allocation based on their 
capabilities. It also aims at better matching agents to subtasks, 
resulting in a wider range of tasks being performed. 
Both of the heuristics that we provide yield similar ranking results 
on successive negotiation rounds. As a result, an offer, which was 
rejected on one round, may be regenerated, offered again, and 
rejected again on the proceeding round. Thus, recurring rejected 
offers may be a major problem of the suggested heuristics. In fact, 
in our control experiments, we were able to generate this problem. 
To solve this problem, we applied two methods that allow agents 
to adapt their proposals and responses based on results of 
preceding negotiation rounds.  
The first adaptation method suggests that an agent will exclude 
agents that have rejected its current proposals from any future 
coalition proposal it makes. This inevitably leads to choosing 
other agents, different from the rejecting ones, thus increasing the 
chances of successful negotiation. Our experiments show that this 
method indeed improves the results of the coalition formation 
process. The first adaptation method, however, may be reacting 
too severely. Excluding other agents from any future proposal 
may prevent the formation of beneficial coalitions. Hence, we 
devised another adaptation method, according to which an agent 
that offered a coalition that was rejected will not offer the same 
allocation of subtasks to the rejecting agents in the following 

rounds. This method increases the variety of proposed coalitions, 
without being too preventive.  
Using the proposed heuristics and the adaptation methods, each 
agent at its turn (set by the protocol) inspects and ranks possible 
coalitions. In case it has not received any proposal at the current 
negotiation round, it sends the coalition with the highest rank as a 
proposal to the members of the candidate coalition.  An agent that 
received proposals compares its share from the best proposal 
received to its estimated share from the coalition it plans to form.  
It takes into consideration the discount rate, by willing to accept 
an offer even if its proposed share is less than its share in its 
preferable coalition, but more than the discounted desirable share. 
If the best proposal is acceptable, it sends an acceptance message 
to the sender of the proposal. Otherwise, it sends the coalition 
with the highest rank as a proposal to the members of the 
candidate coalition.     
The heuristics we suggest as well as the adaptation method were 
evaluated experimentally. The details of this evaluation follow. 

4. EXPERIMENTAL EVALUATION 
To examine our protocol and to compare between the proposed 
heuristics and to study how parameters of the environment 
influence the agents’ behavior we have developed a simulation 
system and performed a series of experiments.  We present below 
the settings of these experiments, followed by the results. 

4.1 Settings 
A setting in our experiment consists of the following: (1) the 
number of agents; (2) the number of tasks and (3) the number of 
subtasks per task. To create a specific configuration, the following 
parameters were determined: the value of each task, the 
capabilities of each agent (i.e., which sub-tasks it can perform) 
and the cost of a given agent to perform the tasks it is able to do. 

In most of the experiments we considered six basic settings:  (i) 6 
agents, 2 tasks and 3 subtasks/task; (ii) 10 agents, 2 tasks and 5 
subtasks/task; (iii) 10 agents, 5 tasks and 5 subtasks/task; (iv) 12 
agents, 3 tasks and 4 subtasks/task; (v) 16 agents, 4 tasks and 4 
subtasks/task; (vi) 16 agents, 5 tasks and 4 subtasks/task. We 
chose these settings since they provide a variety of agents/tasks 
combinations varying the number of agents between 6 and 16. In 
some environments the number of subtasks to be performed is 
larger than the number of agents (settings iii and vi) thus, given 
our assumptions that each agent could perform only one subtask 
at a time, not all tasks can be performed in these settings. In other 
settings the number of agents is equal to the number of possible 
subtasks to be performed (settings i,ii,iv,v), thus the ability to 
perform all tasks depends on the agents’ capabilities. We also 
experimented with larger settings: (1) 80 agents, 20 tasks and 3 
subtasks/task; and (2) 60 agents, 20 tasks and 3 subtasks/task. 
In each experiment, for each of the basic settings, we randomly 
generated between 100 and 1,500 configurations (depending on 
the experiment). For each such configuration, we randomly chose 
50% of the subtasks to be “specialized tasks” while the rest were 
“regular tasks”. Each agent had a probability of 0.4 to be able to 
perform a regular subtask, but only probability of 0.15 to perform 
a specialized task. For each configuration, the value of the task 
and the costs for performing the subtasks were determined as 
following. First, for each subtask, we have randomly selected a 
mean cost with a uniform distribution between 1 and 99. The 
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value of a task was determined to be the sum of the means of its 
subtasks times 1.5, giving an average profit of 50%. The actual 
cost for a given subtask to be performed by an agent that is 
capable of doing it was determined using a normal distribution 
with the mean cost of that we have randomly associated with the 
given subtask before, and a certain deviation (2 in the basic 
settings). In most of the experiments, the discount factor δ was set 
to 0.01. Finally, we consider two settings with respect to the 
information available to the agents. In the first setting, which we 
refer to as “complete information” case, each agent knows the 
costs of the other agents, while in the “incomplete information” 
case, they know only the mean values of the costs. In both cases 
each agent knows the capabilities of all the agents. 

4.2 Results 
When evaluating our proposed protocol and strategies, we are 
interested in the ratio between the total overall outcome of agent 
systems acting according to our proposed heuristics, and the 
optimal centralized outcome of such systems. Because of the high 
complexity of computing the optimal task allocation, we have 
computed a near-optimal value by using a hill-climbing 
algorithm. 

4.2.1 Basic experiment 
The goal of our first set of experiments was to compare the 
marginal and expert heuristics described above, allowing agents 
to rank coalitions by assigning weights to each heuristic. Since the 
heuristics are destined to influence in different ways, our 
hypothesis was that some combination of the two heuristics would 
give better results than each of the pure heuristics alone would. 
We also assumed that having complete information would assist 
the marginal heuristic much more than it would assist the expert 
heuristic, since the former relies directly on the missing 
information (of the actual subtask costs, and hence, the actual net 
task value) in order to evaluate the coalitions. 

Figure 1. Incomplete information: the expert heuristic is better 
The experiments examined coalition formation with no adaptation 
during the negotiation. We tested several combinations of the two 
heuristics, from purely marginal heuristic to purely expert 
heuristic. When ranking possible coalitions, the combined 
heuristics associates with each coalition a weighted sum of the 
rankings of the pure heuristics. In particular, the pure marginal 

strategy assigns a weight of 1 to the marginal heuristic and 0 to 
the expert heuristic; The mostly marginal strategy assigns a 
weight of 3 to the marginal heuristic and 1 to the expert heuristic; 
The combination strategy allocates an equal weight to each of the 
two heuristics; The mostly expert strategy assigns a 3:1 ratio in 
favor of the expert heuristic; and the pure expert strategy assigns a 
0 weight to the marginal heuristic and 1 to the expert heuristic. 
The results of this set of experiments appear in figures 1 and 2. 
We measured the ratio between the utilities of the various 
heuristics, and the utility of the centralized near optimal utility.  
We were surprised to find out that the pure heuristics provided 
higher average gains than any combination of strategies did. In 
the case of incomplete information, the expert method was better 
than the marginal one; in the case of complete information, the 
marginal method was better. Moreover, in each case we can see a 
monotonic increase in the overall utility as a function of the ratio 

between marginal and expert weights. 
Figure 2. Complete information: the marginal heuristic is better 

Both heuristics performed significantly better when having 
complete information. As we have assumed, the marginal method 
was assisted by the information much more than the expert one 
was. To gain a better understanding of this phenomenon, we have 
inspected the number of coalition contracts signed. From this we 
learned that, whereas with incomplete information the expert 
heuristic draws its strength by being able to reach much more 
contracts than the marginal heuristic, in complete information 
case the number of signed contracts for the expert and the 
marginal heuristics is almost the same, though the marginal 
method performs much better by selecting more beneficial tasks. 
We also noted that when having complete information, the 
marginal heuristic arrived at contracts signing faster than the 
expert heuristic did. The reason for this pattern of contract signing 
is the reliance on information exhibited by the heuristics. When 
there is incomplete information, the marginal heuristic uses 
inaccurate information for decisions. It thus runs into conflicts, 
eventually closing fewer contracts. The expert heuristic does not 
use the inaccurate information used by the marginal heuristic and 
avoids these conflicts. When complete information is available, 
both heuristics can sign more contracts, thanks to a more accurate 
payoff estimation and division. 
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4.2.2 Negotiation with adaptation 
The second set of experiments examined the effect of adaptation 
on negotiation results. We have used the two adaptation methods 
discussed in Section 3.2. The first and second adaptation methods 
are referred to here as A1 ad A2, respectively. Recall that the aim 
of both adaptation methods is to reduce collisions and prevent 
recurring rejected offers. A1 should prevent many more collisions 
than A2 would, but may cause the missing of potentially 
beneficial coalitions. We hypothesized that adding either of the 
adaptation methods to the marginal and expert heuristics will 
yield higher gains than the pure marginal and expert without 
adaptation do. We tested the methods in an incomplete 
information environment similar to that of experiment 1. 

Figure 3. Adaptation increases profits 
The results of this experiment set appear in figure 3. As the figure 
shows, applying both adaptation methods has indeed increased the 
overall utility, for both the marginal and the expert heuristics. It 
appears that A1 was substantially better than A2, though. The 
reason is that the limited reaction of A2 to proposal rejection 
results in it not handling many collisions, in particular in cases 
where a new proposal is very similar to a previously rejected one. 
We have also conducted large-scale experiments to verify the 
results of experiments 1 and 2, with 60-80 agents and 20 subtasks. 
The results were consistent with smaller scale experiments. 

4.2.3 Discount rate 
In the basic setting, we set the discount rate to 0.01. In order to 
verify that our results are consistent when the discount rate 
changes, we performed a third set of experiments in which we 
varied the discount rate, keeping the other parameters fixed, 
similar to the parameters of the pervious experiments. We 
measured the ratio between the average utilities of the marginal 
and expert heuristics, and the centralized near-optimal utility. 
This was performed in both the incomplete information case 
(Figure 4) and the complete information cases (Figure 5). We 
assumed that an increase of the discount rate would cause a 
decrease in the number of contracts signed, and of the total utility. 
Although the agents consider the discount rate when answering 
proposals, if the discount rate is high and the contracts are not 
signed fast, they may never be signed. We thus expected that most 
of the contracts would be signed in the first negotiation rounds; 

this may reduce or even nullify the expert heuristic’s advantage of 
solving conflicts. 

Figure 4. Incomplete Information: utility decreases with increase 
in discount rate 

Figure 5. Complete Information: utility decreases with increase in 
discount rate  

As can be seen in figures 4 and 5, in all cases, the overall utility 
decreased when the discount rate increased. The expert heuristic 
utility was much more susceptible to the discount rate than the 
marginal heuristic utility was. When having incomplete 
information, a high discount rate led both heuristics to yield a 
similar number of signed contracts in similar time. In the case of 
complete information, not only had the marginal heuristic yielded 
many more signed contracts than the expert heuristic did, it also 
resulted in contracts being signed much earlier.  

4.2.4 Cost distribution 
As discussed above, the cost of an agent for performing each sub-
task is computed based on a distribution function of a “known 
average” with a specific standard deviation. The average reflects 
the common knowledge about the usual cost of performing a 
subtask; the higher the deviation is, the greater will be the 
dispersion of agents’ cost of performing a sub-task. In a sense, in 

Simulation profits / Optimal Profits
Incomplete Information

0.3
0.35
0.4

0.45
0.5

0.55
0.6

0.65
0.7

0.75

Marginal Marginal
w / A1

Marginal
w / A2

Expert Expert
w / A1

Expert
w / A2

Simulation profits / Optimal Profits
Incomplete Information

0
0.1
0.2
0.3
0.4
0.5
0.6

0.005 0.01 0.05 0.1 0.2
Discount Rate Marginal

Expert

Simulation profits / Optimal Profits
Complete Information

0

0.2

0.4

0.6

0.8

1

0.005 0.01 0.05 0.1 0.2
Discount Rate Marginal

Expert

6



the case of incomplete information, since the agents know only 
the mean value of the subtasks, as the dispersion increases the 
agents’ uncertainty also increases. We wanted to examine the 
effect of different deviations on the performance of the heuristics. 
For this, we performed an experiment similar to the previous 
ones, but this time we changed the standard deviation, keeping the 
other parameters unchanged. We assumed that a higher dispersion 
will lead to a decrease in the overall utility, compared to its 
optimal value and a smaller dispersion will be similar to the case 
of complete information. We expected the optimal value itself to 
increase when the deviation increases, since an optimal task 
allocation will allocate an agent with the smallest cost to each 
subtask; higher deviation from the average will result in higher 
net value. That is, if the deviation is small, the costs of some 
agents are slightly above the average cost of certain subtask, and 
some are slightly below it. In this case, the optimal algorithm will 
choose an agent that its cost is slightly below the average 
resulting in a relatively small profit. However, when the deviation 
is large, the cost of some agents is much lower than the average 
cost. The optimal allocation will select an agent with a cost that is 
much lower than the average, and gains a higher profit than in the 
small deviation case. Similarly, in the case of complete 
information (Fig. 7), the marginal heuristic results have not 
suffered much from increasing the deviation. Since the marginal 
heuristic chooses the most valuable tasks, increasing the 
deviation, and thus the dispersion, increases the possibility of 
gaining more from choosing the right tasks. However, the expert 
heuristic that does not take the task value into account suffers 
even in the case of the complete information when compared to 
the optimal solution. As appears in Fig. 6, when having 
incomplete information, a very small deviation of 0.01 had given 
results close to the results with complete information (Fig. 7), as 
we have anticipated. In addition, the marginal heuristics suffered 
more from increased uncertainty than the expert heuristics that 
relies less on the other agents’ costs. 

Figure 6. Incomplete information: the utility decreases with an 
increase in cost deviation 

4.2.5 Heterogeneous environments 
All the experiments so far have studied the agents’ performance in 
homogenous environments, where all the agents follow the same 
strategies. In our last experiment, we examined the effect that a 
deviation from the common strategy will have on the performance 

of one agent. It should be more interesting to examine the effect 
of a deviation from a superior strategy, since it is likely that the 
majority of agents will implement the superior strategy. Thus, in 
the case of incomplete information we examined the effect of one 
agent deviating from the (superior) expert heuristic practiced by 
the majority and implementing the marginal heuristic. In the case 
of complete information, we let one agent to implement the expert 
heuristic and the others to use the marginal heuristic. 

Figure 7. Complete information: the expert utility decreases with 
an increase in cost deviation, while the marginal utility increases 

The basic settings were set as in the previous experiments. Since 
measuring the performance of one agent can lead to large 
fluctuations, we have performed 1500 runs, many more than in 
pervious experiments. We assumed that deviating from the 
common method might help an agent that implements the 
marginal heuristic, others using the expert heuristic. Such an 
agent may benefit from its ability to select more profitable tasks, 
relying on the other agents’ behavior for avoiding collisions. 

Figure 8. Deviation from the majority strategy is not beneficial. 
The results, as appear in Figure 8, clearly show that deviating 
from the dominant heuristic is not beneficial, nor does it harm the 
deviating agent. In the incomplete information case, the average 
utility of the deviated agent was exactly equal to the average of 
the others. In the complete information case, there was a slight 
decrease when deviating, but it was so small that it does not stand 
statistical analysis, in spite of the high number of experiments.  
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5. RELATED WORK 
Game theory provides an analysis of the possible coalitions that 
shall form as a result of a coalition formation process, and the 
resulting disbursements to the agents (see, e.g., [3]). However, 
game theory does not provide algorithms that agents can use to 
form coalitions. Given a formed coalition configuration (i.e., a 
partition of the agents to subsets) game theory usually 
concentrates on checking its stability or its fairness using concepts 
such as the Kernel [1] and on the calculation of the corresponding 
payments. Game theory is also not concerned with computational 
complexity, and the solutions are usually exponentially complex. 
We provide a coalition formation protocol focusing on feasibility 
and fairness, and suggest heuristics that provide benefits and 
maintain stability. There have been several attempts to generalize 
the stability concepts of coalition formation, such as the core, for 
situations of asymmetric information [12],[6]. As in the case of 
complete information, these studies focus on the stability concept, 
but algorithms for agents’ activity are not provided. 
Many algorithms for answering the question of group formation 
in cooperative environments were suggested (e.g., [11],[2]). In [1] 
the problem is addressed for self-interested agents, but in 
superadditive environments. In [10], solutions were proposed for 
non-superadditive environments, but the value of each coalition is 
known. Sandholm and Lesser [9] present a coalition formation 
model for bounded-rational agents and a general classification of 
coalition games.  As in [9] we also allow for varying coalitional 
values, but provide the agents with heuristics that could be 
computed in polynomial time. However, we assume that time is 
costly, and that agents take the coalition formation time into 
consideration when deciding on whether to join a coalition. In [9], 
the value of a coalition depends on the computation time. 
However, we consider cases in which the time for computing the 
coalition values is polynomial.  Sandholm et al. [8] offer an 
algorithm that gives a tight bound of an optimal coalition 
structure, but in their work they take into account only one value 
for each coalition; in our case, a coalition may have different 
values for each task it may perform. 
 All the works we mentioned assume complete information: each 
of the agents knows the exact value of each possible coalition. 
This is not our case, however. In real world situations, rarely do 
other agents know each agent’s exact value and costs of fulfilling 
each task [4]. Therefore, it is not possible to utilize the techniques 
presented in the above papers. In particular, the methods used to 
check the stability of a given state require that all agents will hold 
the same beliefs about the state. More related to our work is 
research on fuzzy and stochastic co-operative games [7].  In such 
games agents faces situations of uncertainty, including, for 
example, vagueness of expected coalition values and 
corresponding payoffs. This preliminary research attempts to find 
formal models to address these problems, while we provide 
experimental results that present the advantages of using our 
proposed protocol and heuristics.   

6. CONCLUSION 
In this paper we consider the problem of coalition formation for 
cases where groups can only perform tasks cooperatively. In 
particular, we consider situations where a complex task comprised 
of sub-tasks; each sub-task should be performed by a different 
agent; the costs that an agent incurs for performing a specific sub-
task may be unknown to other agents; and, time for addressing a 

task is limited. To address this problem, we have developed a 
protocol that enables agents to negotiate and form coalitions, and 
provided them with two simple heuristics for choosing coalition 
partners: “marginal” heuristic and “expert” heuristic. Via 
experiments, we found out that the marginal heuristic is the best 
when there is complete information, while the expert heuristic is 
better when the information is not complete. In both cases, the 
experiments showed that these heuristics are stable and beneficial. 
Deviation from following the recommended heuristic does not 
increase the deviated agent benefits. 
There are many open issues to address. The most important one is 
whether it is possible to relax the assumption of equal distribution 
of a coalition benefits, but to maintain the stability and the 
efficiency of the agents system.  For practical use in B2B RFP 
situations, the predictability, the stability and the fairness of the 
mechanism are most important, and these properties were 
experimentally proven for our solution.   
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