
HIERARCHICAL MULTIAGENT REINFORCEMENT LEARNING
IN MARKOV GAMES

Ville Könönen

Neural Networks Research Centre
Helsinki University of Technology

P.O.Box 5400, FI-02015 TKK, FINLAND
ville.kononen@tkk.fi

ABSTRACT

Interactions between intelligent agents in multiagent sys-
tems can be modeled and analyzed by using game theory.
The agents select actions that maximize their utility func-
tion so that they also take into account the behavior of the
other agents in the system. Each agent should therefore
utilize some model of the other agents. In this paper, the
focus is on the situation which has a temporal structure
and in which the exact form of the interaction between the
learning agents is initially unknown and should be learned
from the experience.

1. INTRODUCTION

Game theory provides a framework for constructing and
analyzing various social interactions between intelligent
and rational decision makers. In many cases, the roles
of the decision makers are not identical; some decision
makers may know their opponents’ action selections and
some may not. By utilizing this information, space and
computational requirements of the methods utilizing game
theory can be considerably reduced.

In this paper, the focus is on the situation in which the
exact structure of the task is initially unknown and should
be learned from the experience. For making optimal deci-
sions in multiagent systems, actions of other agents should
be taken into account and therefore it is essential to be able
to model the behavior of the opponents. Particularly, we
concentrate on problems with a temporal structure. Meth-
ods based on Markov Decision Processes (MDPs) provide
a solution to such sequential decision problems and our
proposed methods lean on the multiagent extensions of
MDPs, i.e. Markov Games (MGs). We propose a tempo-
ral difference method for complex learning problems of
three or more learning agents.

The first learning method for multistate Markov games
was proposed by Littman in [1]. He introduced an off-
policy method for Markov games with two players and
a zero-sum payoff structure. This method is guaranteed
to converge from arbitrary initial values to the optimal
value functions. However, the zero-sum payoff structure
can be a very restrictive requirement in some systems and
thus Hu and Wellman extended this algorithm to general-
sum Markov games in [2]. Unfortunately, their method

is guaranteed to converge only under very restrictive con-
ditions. Littman proposed a new method in [3], which
relaxes these limitations by adding some additional (a pri-
ori) information about the roles of the agents in the sys-
tem. Wang and Sandholm proposed a method that is guar-
anteed to converge with any team Markov game to the op-
timal Nash equilibrium in [4]. Conitzer and Sandholm
presented an algorithm that converges to a Nash equilib-
rium in self-play and learns to play optimally against sta-
tionary opponents in [5].

It still remains an open question whether any compu-
tationally efficient methods for computing Nash equilibria
of finite games exist. To overcome this problem, Green-
wald and Hall proposed a multiagent reinforcement learn-
ing method in [6] that uses the correlated equilibrium con-
cept in place of the Nash equilibrium. Correlated equilib-
rium points can be calculated using linear programming
and thus the method remains tractable also with larger
problem instances. Some complexity results about Nash
equilibria can be found in [7].

Our previous contributions in the field of multiagent
reinforcement learning include an asymmetric multiagent
reinforcement learning model [8], a hybrid model for mul-
tiagent reinforcement learning [9], and numerical meth-
ods for multiagent reinforcement learning [10, 11]. In
addition, we have investigated asymmetric multiagent re-
inforcement learning method as a solution method for a
pricing problem in [12].

We begin this paper by introducing the background
and basic solution concepts of game theory. Next we dis-
cuss more complex decision making situations and com-
pact ways to mathematically describe and solve these sit-
uations. Then we briefly go through the theory behind
MDPs and introduce some practical learning methods ap-
plied to reinforcement learning. Based on the theory of
MDPs, we describe multiagent systems as MGs and dis-
cuss also some solving and learning methods designed for
MGs. Finally, we demonstrate the presented ideas with a
small example task.

2. GAME THEORY

This section is mainly concerned with the basic problem
settings and definitions of game theory. We start with

a2

a2

b2

b21.1

2.2
3,1

0,0

0,0

1,3

2.2

a

b

1

1

Figure 1. An example of a game in extensive form. Nodes
1.1 and 2.2 are decision nodes of the player 1 and 2,
respectively. Each arch connected to a decision node
(marked witha andb) is denoting the decision of the cor-
responding player. Dashed boxes are information states
for the corresponding player, e.g. player 2 does not ob-
serve the actual strategy choice of the player 1. Theith
number in a leaf node is the resulting payoff for the player
i.

some preliminary information about mathematical games
and then proceed to their solution concepts which are es-
sential for the rest of the paper. Finally, we discuss com-
bining different solution concepts.

2.1. Basic concepts

Mathematical games can be defined by using different rep-
resentations. The most important forms are theextensive
form and thestrategicform. Although the extensive form
is the most richly structured way to describe game situa-
tions, the strategic form is conceptually simpler and can be
derived (normal representation) from the extensive form.
In this paper, we use games in strategic form for making
decisions at each time step.

Games in strategic form are usually referred to asma-
trix gamesand particularly in the case of two players, if
the payoff matrices for both players are separated, asbi-
matrix games. In general, anN -person matrix game is
defined as follows:

Definition 1 A matrix gameis a tupleΓ = (A1, . . . , AN ,
r1, . . . , rN), whereN is the number of players,Ai is the
strategy space for playeri andri : A1×A2×. . .×AN →
R is the payoff function for playeri.

An example extensive form game can be seen in Fig-
ure 1 and its normal representation in Table 1.

Table 1. The normal form representation of the extensive
form game in Figure 1.

a2 b2

a1 3, 1 0, 0
b1 0, 0 1, 3

In a matrix game, each playeri simultaneously imple-
ments a strategyai ∈ Ai. In addition to pure strategies

Ai, we allow the possibility that the player uses a random
(mixed) strategy. If we denote the space of probability
distributions over a setA by ∆(A), a randomization by a
player over its pure strategies is denoted byσi ∈ Σi ≡
∆(Ai).

2.2. Equilibrium concepts

In decision problems with only one decision maker, it is
adequate to maximize the expected utility of the decision
maker. However, in games there are many players and we
need to define more elaborated solution concepts. Next
we will shortly present two relevant solution concepts of
matrix games.

Definition 2 If N is the number of players, the strategies
σ1
∗, . . . , σ

N
∗ constitute aNash equilibriumsolution of the

game if the following inequality holds for allσi ∈ Σi and
for all i:

ri(σ1
∗, . . . , σ

i−1
∗ , σi, σi+1

∗ , . . . , σN
∗) ≤ ri(σ1

∗, . . . , σ
N
∗)

The idea of the Nash equilibrium solution is that the
strategy choice of each player is a best response to its op-
ponents’ play and therefore there is no need for deviation
from this equilibrium point for any player alone. Thus, the
concept of Nash equilibrium solution provides a reason-
able solution concept for a matrix game when the roles of
the players are symmetric. Note that this case corresponds
the situation depicted in Figure 1, in which player 2 does
not know the action selection of player 1.

However, there are decision problems in which one
of the players has the ability to enforce its strategy to
other players. For solving these kind of optimization prob-
lems we have to use a hierarchical equilibrium solution
concept, i.e. theStackelberg equilibriumconcept. In the
two-player case, where one player is acting as the leader
(player 1) and the another as the follower (player 2), the
leader enforces its strategy to the opponent and the fol-
lower reacts rationally to this enforcement.

The basic idea is that the leader selects its strategy so
that he enforces the opponent to select the response that
leads to the optimal response for the leader. Algorithmi-
cally, in the case of finite bimatrix games where player 1 is
the leader and player 2 is the follower, obtaining a Stack-
elberg solution(a1

S , a2
S(a1)) can be seen as the following

two-step algorithm:

1. a2
S(a1) = arg maxa2∈A2 r2(a1, a2)

2. a1
S = arg maxa1∈A1 r1(a1, a2

S(a1))

In step 1, the follower’s strategy is expressed as a function
of the leader’s strategy. In step 2, the leader maximizes
its own utility by selecting the optimal strategy pair. The
only requirement is that the follower’s response is unique;
if this is not the case, some additional restrictions must be
set. This setting can be expressed as an extensive form

1.1

2.2

2.3

3,1

0,0

0,0

1,3

a

A
b

1

1

B

2

a2

2

b2

Figure 2. An example extensive form game representing
two-player Stackelberg solution with player 1 acting as
the leader.

Table 2. The normal form representation of the extensive
form game in Figure 2.

a2A2 a2B2 b2A2 b2B2

a1 3, 1 3, 1 0, 0 0, 0
b1 0, 0 1, 3 0, 0 1, 3

game depicted in Figure 2, in which player 2 knows what
strategy player 1 has selected at the previous time step.

The normal form of this game is shown in Table 2.
One of the Nash equilibria of this strategic form game
corresponds the Stackelberg solution(a1, a2) leading to
the payoff values(3, 1) for the players (all Stackelberg
equilibria are also Nash equilibria). Another way to solve
the game is to apply the previously declared two-step al-
gorithm for the game shown in Table 1. This method
also leads to more compact representation of the extensive
form game.

2.3. Complex game settings

A very wide range of social interactions can be modeled as
mathematical games by combining symmetric and asym-
metric solution concepts. For example, let us consider the
extensive form game depicted in Figure 3. In this game,
player 2 can distinguish between the strategies of player 1.
Player 3 cannot, however, distinguish between the strate-
gies of player 2 and hence the overall game is a combina-
tion of symmetric and asymmetric decision tasks.

The normal representation of the game in Figure 3 can
be seen as a three dimensional tensor containing2 × 4 ×
4 = 32 values for each player. This kind of games usu-
ally have lots of Nash equilibria and thus some additional
properties should be required from the desired equilibrium
solution. In addition, it is usually possible to reduce space
requirements in this way.

A natural requirement for the equilibrium solution is
the Subgame Perfectness Property (SGP). A solution sat-
isfying this property can be achieved by evaluating the
game tree from the leaf nodes to the root node and replac-
ing each subtree with the value of a subtree’s Nash equi-
librium. When the root node is reached, the value of the
whole game is evaluated. There is a very close relation-

a1

b1

a2

b2

A2

B2

b3

a3

a3

b3

A3

A3
B3

B3

1.1

2.2

2.3

3.4

3.5

0,0,0

0,0,0

1,1,1

0,0,0

2,1,1

0,0,0

1,1,1

2,1,1

3.4

3.5

Figure 3. An example of the three-player extensive form
game. Players 2 and 3 can observe the action selection of
player 1 but players 2 and 3 make their decisions simulta-
neously.

Table 3. The resulting subgame when player 1 selects the
strategya1.

a3 b3

a2 1,1,1 0,0,0
b2 0,0,0 1,1,1

ship with the Stackelberg solution concept and the SGP
property; in fact a solution satisfying the SGP property
can been seen as an extension to the Stackelberg equilib-
rium solution.

If we are interested only on solutions satisfying the
SGP property, it is possible to reduce the actual space
needed to store the game depicted in Figure 3 by keep-
ing in mind the actual structure of the original extensive
form game. Because all the players have 2 strategy op-
tions available, it suffices to store2 × 2 × 2 = 8 num-
bers for each player. As the players 2 and 3 know the
actual strategy selection of player 1, player 1 is acting as
the leader and players 2 and 3 as the followers. For mak-
ing optimal decisions in the sense of SGP property, player
1 should take into account the possible responses of the
other players. Tables 3 and 4 show the resulting subgames
in both cases. Both subgames contain three Nash equilib-
ria of which two are optimal in the sense that both players
2 and 3 get the maximal payoff in these equilibria. Player
1 gets a higher payoff value with the strategy selectionb1

than with the strategy selectiona1 and thus it is rational
for player 1 to select strategyb1.

Table 4. The resulting subgame when player 1 selects the
strategyb1.

a3 b3

a2 0,0,0 2,1,1
b2 2,1,1 0,0,0

3. REINFORCEMENT LEARNING IN MARKOV
DECISION PROCESSES

In this section, we briefly introduce the mathematical the-
ory of noncompetitiveMarkov decision processes. In ad-
dition, practical solution methods for these processes are
discussed at the end of this section.

3.1. Markov decision process

A fundamental concept in a Markov Decision Process is
anagentthat interacts with the environment in the manner
illustrated in Figure 4. The environment evolves (changes
its state) probabilistically and for each state there is a set
of possible actions that the agent may take. Every time the
agent takes an action, a certain cost is incurred.

Environment

Agent

Action

Cost
State

Figure 4. An overview of the learning system.

Formally, we define the Markov decision process as
follows:

Definition 3 A Markov Decision Process (MDP)is a tu-
ple(S, A, p, r), whereS is the set of all states,A is the set
of all actions,p : S × A → ∆(S) is the state transition
function andr : S×A → R is the reward function.∆(S)
is the set of probability distributions over the setS.

Additionally, we need apolicy, i.e. a rule stating what
to do, given the knowledge of the current state of the en-
vironment. The policy is defined as a function from states
to actions:

π : St → At, (1)

wheret refers to the discrete time step. The policy issta-
tionary if there are no time dependents, i.e. :

π : S → A. (2)

In this paper, we are only interested about stationary poli-
cies. The goal of the agent is to find the policyπ∗ that
maximizes its expected discounted utilityR:

Vπ(s) = Eπ[R|s0 = s] = Eπ

[∞∑
t=0

γtrt+1|s0 = s

]
,

(3)
wherert is an immediate reward at time stept andγ is a
discount factor. Moreover, the value for each state-action
pair is:

Qπ(s, a) = Eπ[R|s0 = s, a0 = a] = r(s, a)

+ γ
∑
s′

p(s′|s, a)Vπ(s′). (4)

Finding the optimal policyπ∗ can be seen as an optimiza-
tion problem, which can be solved e.g. using dynamic pro-
gramming algorithms.

3.2. Solving MDPs

Using dynamic programming requires solving the follow-
ing equation for all statess ∈ S:

Vπ∗(s) = max
a∈A(s)

Qπ∗(s, a). (5)

These equations,Bellman optimality equations, form a ba-
sis for reinforcement learning algorithms. There are two
basic methods for calculating the optimal policy,policy
iteration andvalue iteration. In the policy iteration algo-
rithm, the current policy is evaluated and then improved
using greedy optimization based on the evaluation step.
The value iteration algorithm is based on successive ap-
proximations of the value function and there is no need
for repeated computation of the exact value function.

In both algorithms, the exact model of the environ-
ment should be known a priori. In many situations, how-
ever, we do not have the model available. Fortunately,
it is possible to approximate the model from individual
samples on-line. These methods are called temporal dif-
ference methods and can be divided to off-policy and on-
policy methods based on whether they are using the same
policy they are optimizing for learning or not. An exam-
ple of on-policy methods isSARSA-learningwhich has the
update rule [13]:

Qt+1(st, at) = (1− αt)Qt(st, at)
+ αt[rt+1 + γQt(st+1, at+1)],

(6)

where the action selection in the statest+1 occurs accord-
ing to the current policy. An example of off-policy meth-
ods is Q-learning. Its update rule is [14]:

Qt+1(st, at) = (1− αt)Qt(st, at)
+ αt[rt+1 + γ max

b∈A
Qt(st+1, b)].

(7)

4. MULTIAGENT REINFORCEMENT LEARNING
IN MARKOV GAMES

Until now, we have only discussed the case where there
is only one agent in the environment. In this section we
extend the theory of MDPs to the case of multiple deci-
sion makers in the same environment. At the end of the
section, a number of solving and learning methods for this
extended model are briefly discussed.

4.1. Markov games

With multiple agents in the environment, the fundamental
problem of single-agent MDPs is that the approach treats
the other agents as a part of the environment and thus ig-
nores the fact that the decisions of the other agents may
influence the state of the environment.

One possible solution is to use competitive multia-
gent Markov decision processes, i.e.Markov games. In
a Markov game, the process changes its state according to

the action choices of all the agents and can thus be seen as
a multicontroller Markov decision process. Formally, we
define a Markov game as follows:

Definition 4 A Markov game(stochastic game) is defined
as a tuple(S, A1, . . . , AN , p, r1, . . . , rN), whereN is the
number of agents,S is the set of all states,Ai is the set
of all actions for each agenti ∈ {1, N}, p : S × A1 ×
. . . × AN → ∆(S) is the state transition function,ri :
S×A1× . . .×AN → R is the reward function for agent
i. ∆(S) is the set of probability distributions over the set
S.

Again, as in the case of single-agent MDP, we need a
policy πi for each agenti (the policies are assumed to be
stationary):

πi : S → Ai,∀i ∈ {1, N}. (8)

The expected discounted utility of agenti is the following:

V i
π1,...,πN (s) = Eπ1,...,πN [Ri|s0 = s]

= Eπ1,...,πN

[∞∑
t=0

γtri
t+1|s0 = s

]
,

(9)

whereri
t is the immediate reward at time stept for agent

i andγ is a discount factor. Moreover, the value for each
state-action pair is

Qi
π1,...,πN (s, a1, . . . , aN)

= Eπ1,...,πN [Ri|s0 = s, a1
0 = a1, . . . , aN

0 = aN]

= ri(s, a1, . . . , aN)

+ γ
∑
s′

p(s′|s, a1, . . . , aN)V i
π1,...,πN (s′).

(10)

Contrast to the single-agent MDP, finding the optimal pol-
icy πi

∗ for each agenti can be seen as a game theoretical
problem where the strategies the players can choose are
the policies defined in Eq. (8).

4.2. Solving Markov games

In the case of multiagent reinforcement learning, it is not
enough to maximize the expected utilities of individual
agents. Instead, our goal is to find an equilibrium policy
of the Markov game, e.g. a Nash equilibrium policy. The
Nash equilibrium policy is defined as follows:

Definition 5 If N is the number of agents andΠi is the
policy space for agenti, the policiesπ1

∗, . . . , π
N
∗ consti-

tute a Nash equilibrium solution of the game if the follow-
ing inequality holds for allπi ∈ Πi and for all i in each
state:

V i
π1
∗,...,πi,...,πN

∗
(s) ≤ V i

π1
∗,...,πN

∗
(s)

It is noteworthy that Definition 5 coincides with Defini-
tion 2 when individual strategies are replaced with poli-
cies. The Stackelberg equilibrium concept can be defined

for policies in similar fashion. We refer to methods build
on Markov games with the Nash equilibrium concept as
symmetric methods and to methods that utilize the Stack-
elberg equilibrium concept as asymmetric methods.

If the exact model, i.e. rewards and state transition
probabilities, is known a priori, it is possible to solve the
game using standard mathematical optimization methods.
However, only a few special cases of Markov games can
be solved with linear programming and, in general, more
complex methods are needed.

4.3. Symmetric learning in Markov games

As in the case of single agent reinforcement learning, Q-
values defined in Eq. (10) can be learned from observa-
tions on-line using some iterative algorithm. For example,
in the two-agent case, if we use Q-learning, the update rule
for agent 1 is [15]:

Q1
t+1(st, a

1
t , a

2
t) = (1− αt)Q1

t (st, a
1
t , a

2
t)

+ αt[r1
t+1 + γNash{Q1

t (st+1)}],
(11)

where Nash{Q1
t (st+1)} is the Nash equilibrium outcome

of the bimatrix game defined by the payoff function
Q1

t (st+1). The update rule for agent 2 is symmetric.
Note that it is guaranteed that every finite matrix game

possesses at least one Nash equilibrium in mixed strate-
gies. However, there need not exist a Nash equilibrium
point in pure strategies and therefore Nash{Q1

t (st+1)} in
Eq. (11) returns the value of a mixed strategy equilibrium.

4.4. Asymmetric learning in Markov games

A Markov game can be seen as a set of matrix games asso-
ciated with each states ∈ S. If the value functions of both
the leader and the follower are known, we can obtain an
asymmetric solution of the Markov game by solving the
matrix game associated with each states using the Stack-
elberg solution concept. The following three stage pro-
tocol solves a Stackelberg equilibrium solution in a state
s ∈ S:

1. Determination of the cooperation strategiesac =
(a1c, a2c) by finding the maximum element of the
matrix gameQ1

π1,π2
in the states:

arg max
a1∈A1

a2∈A2

Q1
π1,π2(s, a1, a2). (12)

2. Determination of the leader’s enforcement (and ac-
tion, a1

S = g(s, ac)):

g(s, ac) = arg min
a1∈A1

‖f(Q2
π1,π2(s, a1, a2)), ac‖.

(13)

3. Determination of the follower’s responsea2
S :

a2
S = arg max

a2∈A2
Q2

π1,π2(s, g(s, ac), a2). (14)

In the protocol,‖a, ac‖, a ∈ A2 is a distance measure, de-
fined in the Q-value space of the leader, measuring the dis-
tance between the Q-value corresponding a particular ac-
tion and the Q-value associated to the cooperation strate-
gies (maximal possible payoff for the leader), i.e. :

‖x, ac‖ = |Q1
π1,π2(s, a1, x)−Q1

π1,π2(s, a1c, a2c)|. (15)

The functionf is used to select actions by player 2; e.g. in
the case of of greedy action selectionf = arg maxa2∈A2 .
In practical implementations of the protocol, e.g. when the
protocol is applied to action selection during learning, the
minimization in step 2 can be replaced with thesoftmin
function and the maximization in step 3 with thesoftmax
function for ensuring the proper exploration of the state-
action space.

Actual learning of the payoffsQ1
π1

S ,π2
S

andQ2
π1

S ,π2
S

can
be done by using any suitable method from the field of re-
inforcement learning. In this paper we present the equa-
tions for asymmetric multiagent Q-learning. If agent 1 is
the leader and agent 2 is the follower, update rules for the
Q-values are as follows:

Q1
t+1(st, a

1
t , a

2
t) = (1− αt)Q1

t (st, a
1
t , a

2
t)

+ αt[r1
t+1 + γ max

b∈A1
Q1

t (st+1, b, T b)]

(16)

and

Q2
t+1(st, a

1
t , a

2
t) = (1− αt)Q2

t (st, a
1
t , a

2
t)

+ αt[r2
t+1

+ γ max
b∈A2

Q2
t (st+1, g(st+1, a

c
t+1), b)].

(17)

In Eq. (16), the operatorTb conducts the follower’s re-
sponse to the leader’s action enforcementb.

4.5. Learning in complex decision tasks

As discussed above, various social interaction situations
between agents can be learned by combining asymmetric
and symmetric learning methods. It is possible to solve all
problem instances by using the normal form representa-
tion in each state but the number of strategies grows very
fast with the number of information states. Therefore it
would be more efficient to evaluate the state values by us-
ing the techniques presented in Section 2.3.

The general form of the temporal-difference learning
rule takes the following form:

Qi
t+1(st, a

1
t , . . . , a

N
t) = (1− αt)Qi

t(st, a
1
t , . . . , a

N
t)

+ αt[ri
t+1 + γf{Qi

t(st+1)}],
(18)

where the operator f evaluates the value of a state and thus
works as discussed in Section 2.3. Note that the learning
rule is the same for all agents in the system but the ac-
tual implementation of the operator f may be different for
different agents.

Table 5. The subgame when player 1 selects the strategy
a1 in state 1.

a3 b3

a2 598.492 595.492
b2 595.492 598.492

Table 6. The subgame when player 1 selects the strategy
b1 in state 2.

a3 b3

a2 601.508 592.508
b2 592.508 601.508

5. SIMPLE EXAMPLE

In this section, we solve a simple example task with two
states and three learning agents. Each agent has two op-
tions available in both states. All options cause the system
to switch its state to the other state. The example is solved
by using the off-policy method defined by Eq. (18). Fig-
ure 5 illustrates the decision tasks in both states and also
lists the payoff values for each agent. In state 1, an order-
ing among the agents is only partial (agents 2 and 3 make
their decisions simultaneously) whereas in state 2 the or-
dering is full.

As all the agents have two options available in both
states, a three dimensional array for each agent and for
each state is needed for storing the Q-values during the
learning process. The learned Q-values for agent 1 in the
case of action selectiona1 in state 1 and action selection
b1 in state 2 are shown in Tables 5 and 6, respectively. The
discount factorγ was 0.99 in the simulation runs and all
state-action tuples were visited 5000 times.

In Figure 6, the convergence of the Q-values of agent
1 is illustrated. In this figure, the Euclidean distance be-
tween vectors containing values from consecutive training
rounds is plotted against the round number. Only the case
of agent 1 in state 1 is shown. The system converged to the
optimal value function and the changes in Q-values were
very small after 700 iterations. Convergence properties in
all other cases are similar.

6. CONCLUSIONS

In this paper, we proposed the idea of associating arbi-
trarily complex decision tasks with states in multiagent

a1

b1

a2

b2

A2

B2

b3

a3

c 3

d3

A3

C3
B3

D3

a1

b1

a2

b2

A2

B2

b3

a3

a3

b3

A3

A3
B3

B3

1.1

2.2

2.3

3.4

3.6

0,0,0

0,0,0

1,1,3

9,1,3

0,0,0

9,3,1

1,3,1

0,0,0

1.1

2.2

2.3

3.4

3.5

0,0,0

3,1,3

1,1,3

0,0,0

1,3,1

3,3,1

0,0,0

3.5

3.7

0,0,0

3.4

3.5

Figure 5. Extensive form games corresponding to the
states in the example. In state 1 (left), an ordering among
the agents is only partial whereas in state 2 (right) it is full.

0 200 400 600 800
0

5

10

15

Iteration number

C
ha

ng
es

 in
 Q

−v
al

ue
s

Figure 6. Convergence of Q-values in the two-state exam-
ple. The learning rate parameter was a constant. Only the
case of agent 1 in state 1 is plotted. Convergence curves
in other cases are similar.

reinforcement learning systems. These decision tasks are
represented as mathematical games and it is possible to
reduce the space needed for storing these games by com-
bining asymmetric and symmetric learning models. In
addition, a concrete learning method is presented for off-
policy reinforcement learning in Markov games and a sim-
ple two-state learning task is solved by using this method.

Generally, space and computational requirements in-
crease very fast as the number of learning agents is in-
creased. Therefore it would be an interesting future re-
search direction to apply function approximators such as
neural networks in the approximation of value functions
and policies directly. Additionally, the proposed methods
will be tested with larger, realworld applications.

7. REFERENCES

[1] Michael L. Littman, “Markov games as a framework
for multi-agent reinforcement learning,” inProceed-
ings of the Eleventh International Conference on
Machine Learning (ICML-1994), New Brunswick,
NJ, 1994, pp. 157–163.

[2] Junling Hu and Michael P. Wellman, “Multiagent
reinforcement learning: Theoretical framework and
an algorithm,” inProceedings of the Fifteenth Inter-
national Conference on Machine Learning (ICML-
1998), Madison, WI, 1998, pp. 242–250.

[3] Michael L. Littman, “Friend-or-Foe Q-learning in
general-sum games,” inProceedings of the Eigh-
teenth International Conference on Machine Learn-
ing (ICML-2001), Williamstown, MA, 2001, pp.
322–328.

[4] Xiaofeng Wang and Tuomas W. Sandholm, “Rein-
forcement learning to play an optimal Nash equilib-
rium in team Markov games,” inAdvances in Neural
Information Processing Systems (NIPS-2002), Van-

couver, British Columbia, Canada, 2003, pp. 1603–
1610.

[5] Vincent Conitzer and Tuomas W. Sandholm, “AWE-
SOME: A general multiagent learning algorithm that
converges in self-play and learns a best response
against stationary opponents,” inProceedings of
the Twentieth International Conference on Machine
Learning (ICML-2003), Washington, DC, 2003, pp.
83–90.

[6] Amy Greenwald and Keith Hall, “Correlated-Q
learning,” in Proceedings of the Eighteenth Inter-
national Conference on Machine Learning (ICML-
2003), Washington, DC, 2003, pp. 242–249.

[7] Vincent Conitzer and Tuomas W. Sandholm, “Com-
plexity results about Nash equilibria,” inProceed-
ings of the International Joint Conference on Arti-
ficial Intelligence (IJCAI-2003), Acapulco, Mexico,
2003, pp. 765–771.

[8] Ville J. Könönen, “Asymmetric multiagent rein-
forcement learning,” Web Intelligence and Agent
Systems: An International Journal (WIAS), vol. 2,
no. 2, pp. 105–121, 2004.

[9] Ville J. Könönen, “Hybrid model for multiagent
reinforcement learning,” inProceedings of the In-
ternational Joint Conference on Neural Networks
(IJCNN-2004), Budapest, Hungary, 2004, pp. 1793–
1798.

[10] Ville J. Könönen, “Gradient based method for
symmetric and asymmetric multiagent reinforce-
ment learning,” inProceedings of the Fourth Inter-
national Conference on Intelligent Data Engineer-
ing and Automated Learning (IDEAL-2003), Hong
Kong, China, 2003, pp. 68–75.

[11] Ville J. Könönen, “Policy gradient method for mul-
tiagent reinforcement learning,” inProceedings of
the second International Conference on Computa-
tional Intelligence, Robotics and Autonomous Sys-
tems (CIRAS-2003), Singapore, 2003, CD-ROM.

[12] Ville J. Könönen and Erkki Oja, “Asymmetric mul-
tiagent reinforcement learning in pricing applica-
tions,” in Proceedings of the International Joint
Conference on Neural Networks (IJCNN-2004), Bu-
dapest, Hungary, 2004, pp. 1097–1102.

[13] Gavin A. Rummery and Mahesan Niranjan, “On-
line Q-learning using connectionist systems,” Tech.
Rep. CUED/F-INFENG/TR166, Cambridge Univer-
sity, Engineering Department, 1994.

[14] Christopher J.C.H Watkins,Learning from Delayed
Rewards, Ph.D. thesis, Cambridge University, 1989.

[15] Junling Hu and Michael P. Wellman, “Nash Q-
learning for general-sum stochastic games,”Jour-
nal of Machine Learning Research, vol. 4, pp. 1039–
1069, 2003.

