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esearch to date on negotiation protocols has focused almost exclusively on defin-

ing simple contracts consisting of one or a few independent issues and a rela-

tively small number of possible contracts. Many real-world contracts, in contrast, are

much more complex, consisting of multiple interdependent issues and intractably large

contract spaces. The family of negotiation protocols
we’ve developed make substantial progress toward
achieving near-optimal outcomes for negotiations with
binary issue dependencies. We propose a simulated-
annealing-based approach, a refined version based on
a parity-maintaining annealing mediator, and an
unmediated version of the negotiation protocol.

Simple and complex contracts

Negotiation protocols work, in general, via the iter-
ative exchange of proposals and counter-proposals.
An agent starts with a contract that’s optimal for that
agent and makes concessions, in each subsequent
proposal, until either an agreement is reached or the
negotiation is abandoned because the latest pro-
posal’s utility has fallen below the agents’ reserva-
tion value—that is, the minimum level of contract
utility that the agent will accept.

Figure 1 shows the proposal exchange model of
negotiation, applied to a simple contract. The y-axis
represents a contract’s utility to each agent. Each
point on the x-axis represents a possible contract,
ordered in terms of its utility to agent B. Because
there’s no need to negotiate over issues that both par-
ties agree on, we consider only issues where
improvement for one party represents a decrement
for the other. The arrows represent how agents begin
with locally optimal proposals and concede toward
each other, with their subsequent proposals, as slowly
as possible. We have, for presentation purposes, “flat-
tened” the contract space onto a single dimension,

but there should actually be one dimension for every
issue in the contract.

This approach is perfectly reasonable for simple
contracts. Because issues are independent, a con-
tract’s utility for each agent can be calculated as the
weighted sum of the utility for each issue. The util-
ity function for each agent is thus a simple one, with
a single optimum and a monotonic drop-off in util-
ity as the contract diverges from that ideal.

Simple contract negotiations thus typically
progress as shown in Figure 2. In this example, the
contract consists of 40 binary issues. Each agent starts
with a locally optimal proposed contract (at the
extremes of the Pareto frontier, representing the set of
optimal contracts) and is required to reduce the Ham-
ming distance (the number of issues with different
values) between the two agents’ proposals until the
agents reach an agreement. With simple contracts,
this results in optimal outcomes. We estimated the
Pareto frontier using the standard technique of apply-
ing an annealing optimizer to differently weighted
sums of the two agents’ utility functions.

The proposals from each agent start at the agents’
separate ideals and then track the Pareto frontier until
they meet in the middle with an optimal agreement.
This happens because, with linear utility functions,
an agent can easily identify the proposal that repre-
sents the minimal concession: the contract that’s min-
imally worse than the current one is “next” to the cur-
rent one in the contract space and can be found by
moving in the direction with the smallest aggregate
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Figure 1. The proposal exchange model of
negotiation, applied to a simple contract.

utility slope. The utility functions’ simplicity,
moreover, lets agents infer enough about their
opponents that they can identify concessions
that are attractive to each other, resulting in
relatively quick negotiations.

Real-world contracts, by contrast, are gen-
erally much more complex, consisting of a
large number of interdependent issues. A typ-
ical contract might have tens or even hun-
dreds of distinct issues. Even with only 50
issues and two alternatives per issue, we
encounter a search space of roughly 103 pos-
sible contracts, too large to be explored
exhaustively. The value of one issue selec-
tion to an agent, moreover, will often depend
on the selection made for another issue. For
example, the value to me of a given couch
depends on whether it’s a good match with
the chair I plan to purchase with it.

As Figure 3 shows, such issue interde-
pendencies lead to nonlinear utility functions
with multiple local optima.! In such contexts,
an agent finding its own ideal contract
becomes a nonlinear optimization problem,
difficult in its own right. Simply conceding
toward the other agents’ proposals can result
in the agents missing contracts that would be
superior from both their perspectives (for
example, contract C in Figure 3).

Figure 4 shows how agents behave in com-
plex contract negotiations using standard nego-
tiation techniques. The agents start with an
approximation to their ideal contract and diverge
increasingly from the Pareto frontier as they
converge on an agreement. As you can see, the
minimal concession protocol that works opti-
mally for simple contracts produces substan-
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Figure 2. The utilities for the proposals made in a typical simple contract negotiation.
The contract consists of 40 binary issues. Each agent starts with a locally optimal
proposed contract and must reduce the number of issues with different values
between the two proposals until the agents reach an agreement.

tially suboptimal outcomes for complex con-
tracts. The degree of suboptimality depends
on the details of the utility function. In our
experiments, for example, the final contracts
averaged 94 percent of optimal. This is a sub-
stantial decrement when you consider that
the utility functions we used for each agent
were, individually, easy to optimize: a simple
steepest-ascent search averaged final utility
values roughly 97 percent of those reached
by a nonlinear optimization algorithm. It’s
striking that such relatively forgiving multi-
optima utility functions lead to substantially
suboptimal negotiation outcomes.

These suboptimal outcomes represent a
fundamental weakness with current negotia-
tion techniques. The only way to ensure that
subsequent proposals track the Pareto fron-
tier, and thus conclude with a Pareto-optimal
result, is to be able to identify the proposal
that represents the minimal concession from
the current one. But in a utility function with
multiple optima, that proposal might be quite
distant from the current one, and the only
way to find it is to exhaustively enumerate
all possible contracts. This is computation-
ally infeasible, however, because of the con-
tract space’s sheer size. Also, because the
utility functions are quite complex, it’s no

longer practical for one agent to infer the
other’s utility function. Complex contracts
therefore require different negotiation tech-
niques that let agents find win-win contracts
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Figure 3. Proposal exchange applied to a
complex contract. Because of issue inter-
dependencies, the utility functions have
multiple optima. The arrows show what
happens when each agent begins at a
local optimum and concedes toward the
other: they can miss win-win solutions
(such as that represented by contract C)
found elsewhere in the contract space.

NOVEMBER/DECEMBER 2003

www.computer.org/intelligent

33



Rgents and Markets
120
100
Final agreement
80 \
N
s Proposals from Agent 2
2 \
5 60 |
= Proposals from Agent 1
5
40 1 —o— Pareto
—— Agent 1
20 | Agent 2
0 T T T T T
0 20 40 60 80 100 120
Utility for Agent 1

Figure 4. The utilities for the proposals made in a typical complex contract negotiation.
This example differs from Figure 2 only in that each agent is using a nonlinear utility

function.

in intractable multioptima search spaces in a
reasonable amount of time.

Mediated single-text negotiation

A standard approach for dealing with com-
plex negotiations in human settings is medi-
ated single-text negotiation.” In this process,
amediator proposes a contract that’s then cri-
tiqued by the parties in the negotiation; the
mediator then generates a new, hopefully bet-

Utility for Agent 1

A
S

)

e A

Utility for Agent 2
/

Possible contracts

Figure 5. Single-text negotiation. The
vertical line represents the current
proposed contract; subsequent proposals
move that line in the contract space.

ter proposal based on these responses. This
process continues, generating successively
better contracts, until some agreed-on stop-
ping point (for example, the reservation util-
ity value is met or exceeded for both parties).

Figure 5 illustrates this process. The ver-
tical line represents the contract currently
proposed by the mediator. Each new contract
moves the line to a different point on the
x-axis. The goal is to find a contract that’s
sufficiently good for both parties.

We defined a simple simulation experiment
to help us explore how well this approach
actually works. In this experiment, two agents
negotiated to find a mutually acceptable con-
tract consisting of a vector S of 100 Boolean-
valued issues. We assigned each issue the
value O or 1 corresponding to a given contract
clause’s absence or presence. This defined a

space of 2'%, or roughly 10%°, possible con-
tracts. Each agent had a utility function cal-
culated using its own 100 X 100 influence
matrix H, wherein each cell represents the util-
ity increment or decrement caused by the pres-
ence of a given pair of issues, and a contract’s
total utility is the sum of the cell values for
every issue pair in the contract:

100 100

U= Y HySS; .

i=1j=1

The influence matrix therefore captures
the bilateral dependencies between issues, in
addition to any individual contract clause’s
value. For our experiments, we initialized the
utility matrix to have random values between
—1 and +1 in each cell. We used a different
influence matrix for each simulation run to
ensure that our results weren’t idiosyncratic
to a particular configuration of issue inter-
dependencies.

The mediator proposes a contract that’s
initially generated randomly. Each agent then
votes to accept or reject the contract. If both
vote to accept, the mediator mutates the con-
tract (by randomly flipping one of the issue
values) and the process repeats. If one or both
agents vote to reject, the mediator proposes
a mutation of the most recent mutually
accepted contract instead. The process con-
tinues for a fixed number of proposals. We
can extend this approach straightforwardly
to an N-party (multilateral) negotiation,
because we can have any number of parties
voting on the contracts.

We defined two kinds of agents: hill-
climbers and annealers. Hill-climbers use a
simple decision function: they accept a
mutated contract only if its utility to them is
greater than that of the last contract both
agents accepted. Annealers are more com-
plicated. Each annealer has a virtual “tem-
perature” 7, such that it will accept contracts
worse than the last accepted one with the

Table 1. The optimality of the negotiation outcomes for different pairings of
annealing and hill-climbing agents. The top value in each cell represents how close the
final contract’s social-welfare value is to optimal. The pair of values below it represent
how close the final contract is to optimal for Agents 1 and 2, respectively.

Agent 2 hill-climbs

Agent 1 hill-climbs .86
73174

Agent 1 anneals .86
51/.99

Agent 2 anneals

.86
.99/.51

.98
.84/.84
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probability
P(accept) = min(1, e-AurT),

where AU is the utility change between the
contracts. In other words, the higher the virtual
temperature and the smaller the utility decre-
ment, the greater the probability that the infe-
rior contract will be accepted. An annealer’s
virtual temperature gradually declines over
time so eventually its behavior becomes in-
distinguishable from that of a hill-climber.
Annealing has proven effective in single-agent
optimization because it can travel through util-
ity valleys on the way to higher optima.! This
suggests that annealers can be more success-
ful than hill-climbers in finding good negoti-
ation outcomes.

The Prisoner’s Dilemma

Negotiations with annealing agents did
indeed result in substantially superior final
contract utilities, but as Table 1 shows, there’s
a catch.

As expected, paired hill-climbers do rela-
tively poorly while paired annealers do very
well. If both agents are hill-climbers, they both
get a poor payoff, because finding many con-
tracts that represent an improvement for both
parties is difficult. Figure 6a shows the utilities
for the accepted proposals in a typical negoti-
ation with two hill-climbers. In this case the
mediator could find only a handful of contracts
that increased the utility for both hill-climbers
and ended up with a poor final social welfare
(sum of the utilities a contract provides for the
agents involved) far short of the Pareto frontier.

Near-optimal social welfare can be
achieved, in contrast, when both agents are
annealers, willing to initially accept individ-
ually worse contracts so that they can find
win-win contracts later on. Figure 6b shows
an example of this, in which the agents enter-

Figure 6. The utilities for the accepted
proposals in a typical single-text complex
contract negotiation (a) With two hill-
climbers: the mediator’s initial proposal is
at the lower left, and the subsequent
accepted proposals move toward higher
utilities for both agents. (b) With two
annealers: some accepted proposals
actually cause utility decrements for one
or both agents, but the final result is a
near-optimal contract. (c) With an
annealer and a hill-climber: the hill-
climber achieves a near-optimal contract
at the annealer’s expense.
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Table 2. The optimality of the negotiation outcomes for truthful versus
exaggerating agents with a simple annealing mediator. An exaggeration strategy
is individually rational, even though it results in outcomes with lower social welfare.
The top value in each cell represents how close the final contract’s social-welfare
value is to optimal; the two values in each cell represent how close the final
contract is to optimal for Agents 1 and 2, respectively.

Agent 2 exaggerates Agent 2 tells the truth
Agent 1 exaggerates .92 .93

.81/.81 .93/.66
Agent 1 tells the truth .93 .99

.66/.93 .84/.84

tain a much wider range of contracts, even-
tually ending very near the Pareto frontier.

If one agent is a hill-climber and the other
is an annealer, however, the hill-climber does
extremely well but the annealer fares corre-
spondingly poorly (see Figure 6¢). Why?
When an annealer is at a high virtual tem-
perature, it becomes a chronic conceder,
accepting almost anything, and thereby pays
a “conceder’s penalty.” The hill-climber
“drags” the annealer toward its own local
optimum, which is unlikely to also be opti-
mal for the annealer.

This reveals a dilemma. In negotiation
contexts, we typically can’t assume that
agents will be altruistic, so we must design
protocols such that the individually most
beneficial negotiation strategies also produce
the greatest social welfare.? In our case, how-
ever, even though annealing is a socially
dominant strategy (that is, it increases social
welfare), it isn’t an individually dominant
strategy. Hill-climbing is dominant because
no matter what strategy the other agent uses,
it’s better to be a hill-climber (see Table 1).
If all agents do this, however, they forego the
higher individual utilities they would get if
they both annealed. Individual rationality
thus drives the agents toward the strategy
pairing with the lowest individual and social
welfare. This is thus an instance of the Pris-
oner’s Dilemma.

Researchers have shown that we can avoid
this dilemma if we assume repeated interac-
tion between agents,* but we would prefer to
have a negotiation protocol that makes it indi-
vidually rational to engage in socially bene-
ficial behavior without that difficult-to-
enforce constraint. Several straightforward
approaches to this problem, however, prove
unsuccessful. One possibility is to simply
reduce the annealer’s willingness to make
concessions. This can indeed eliminate the
conceder’s penalty, but at the cost of achiev-

ing social-welfare values only slightly better
than that achieved by two hill-climbers.
Another option is to have agents switch from
being annealers to hill-climbers if they deter-
mine, by observing their opponents’ proposal
acceptance rates, that their opponents are
being hill-climbers. We found, however, that
it takes too long to determine the other agent’s
type. By the time it has become clear, much
of the contract utility has been committed,
and it’s too late to recover from the conse-
quences of having started out as an annealer.’

The annealing mediator

We were able to define a negotiation pro-
tocol that avoids the Prisoner’s Dilemma
entirely in mediated single-text negotiation
of complex contracts. The trick is simple:
rather than requiring that the negotiating
agents anneal, and thereby expose them-
selves to the risk of being dragged into bad
contracts, we moved the annealing into the
mediator itself. In our original protocol, the
mediator would simply propose modifica-
tions of the last contract that both negotiating
agents accepted. Our refined protocol en-
dows the mediator with a time-decreasing
willingness to follow up on contracts that one
or both agents rejected (following the same
inverse exponential regime as the annealing
agents). Agents are free to remain hill-
climbers and thus avoid the potential of mak-
ing harmful concessions. The mediator, by
virtue of being willing to provisionally pur-
sue utility-decreasing contracts, can traverse
valleys in the agents’ utility functions and
thereby lead the agents to win-win solutions.

In our initial implementations, each agent
gave a simple accept or reject vote for each
proposal from the mediator, but this resulted
in final social-welfare values significantly
lower than what we earlier achieved using
annealing agents. In the next round of exper-
iments, we modified the agents so that they

provide additional information to the media-
tor in the form of vote strengths: each agent
annotates their accept or reject vote as being
strong or weak. The agents are designed so
that there are roughly an equal number of
weak and strong votes of each type. This max-
imizes the informational content of the vote
strength annotations. When the mediator
receives these votes, it maps them into
numeric values (strong accept = 1, weak
accept =0, weak reject =—1, strong reject =—
2) and adds them together to produce an
aggregate score. The mediator accepts a pro-
posal if the score is non-negative—that is, if
both agents vote to accept it or if a strong
accept by one agent overrides a weak reject
from the other. The mediator can also accept
rejected contracts (those with a negative
aggregate score) using the annealing scheme
described earlier. This approach works sur-
prisingly well, achieving final social-welfare
values that average roughly 99 percent of opti-
mal even though the agents give the mediator
only two bits of information. We found, in
fact, that increasing the number of possible
vote weights doesn’t increase final social wel-
fare. This is because the strong and weak vote
annotations are sufficient to allow the system
to pursue social-welfare-increasing contracts
that cause a utility decrement for one agent.

Incentives for truthful voting

Any voting scheme introduces the poten-
tial for strategic nontruthful voting by the
agents, and our scheme is no exception.
Imagine that one agent always votes truth-
fully, while the other exaggerates so that its
votes are always “strong.” As you might
expect, this would bias negotiation outcomes
to favor the exaggerator (see Table 2).

As you can see, even though exaggerating
substantially decreases social welfare, it is
individually rational to do so, thus recreat-
ing the Prisoner’s Dilemma we encountered
earlier. The underlying problem is simple:
exaggerating agents can induce the mediator
to accept proposals that are advantageous to
them (if the other agent weakly rejects them),
while preventing the other agent from doing
the same. So, we need an enhancement to the
negotiation protocol that motivates truthful
voting, preserves equity, and maximizes
social welfare.

However, simply limiting the number of
strong votes each agent can use doesn’t work.
If the limit is too low, we effectively lose the
benefit of vote weight information, ending
up with lower social-welfare values. If the
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strong-vote limit is high enough to avoid this,
then all an exaggerator has to do is save all its
strong votes until the end of the negotiation,
at which point it can drag the mediator
toward making a series of proposals that are
inequitably favorable to it.

Another possibility is to enforce overall
parity in the number of overrides each agent
gets. An override occurs when the mediator
accepts a contract supported by one agent
(the “winner”) over the other agent’s objec-
tions. Overrides drag a negotiation toward
contracts favorable to the winner, so it makes
sense to make the total number of overrides
equal for each agent. But this isn’t enough,
because exaggerators always win dispropor-
tionately more than truth-tellers do.

The solution, we found, came from enforc-
ing a running parity between the number of
overrides given to each agent throughout the
negotiation, so that neither agent can get more
than a given advantage. This approach at least
maintains rough equity no matter when (or
whether) either agent chooses to exaggerate.
Table 3 shows the results of this approach
when the override disparity is limited to 3.
The parity-enforcing mediator makes being
truthful the individually rational strategy.

When agents are truthful, we find that this
approach achieves social welfare just
slightly below that achieved by a simple
annealing mediator, while offering a signif-
icantly (p < .01) higher payoff for truth-
tellers than exaggerators. We found, more-
over, that the same pattern of results holds
for a range of exaggeration strategies,
including exaggerating all the time, exag-
gerating randomly, or exaggerating just near
the negotiation’s end. Being truthful is thus
both the individually dominant and socially
most beneficial strategy.

Why does this work? Why, in particular,
does a truth-teller fare better than an exag-
gerator with this kind of mediator? Think of
this procedure as giving agents “tokens” that
they can use to “purchase” advantageous
overrides, with the constraint that both agents
spend tokens at a roughly equal rate. Recall
that in this case a truthful agent, offering a
mix of strong and weak votes, is paired with
an exaggerator for whom at least some weak
accepts and rejects are presented as strong
ones. The truthful agent spends its tokens
almost exclusively on contracts that truly
offer it a strong utility increase. The exag-
gerator, on the other hand, will spend tokens
to elicit an override even when the utility
increment it derives is relatively small. At the

Table 3. The optimality of the negotiation outcomes for truthful versus
exaggerating agents with a parity-enforcing mediator. The top value in each cell represents
how close the final contract’s social-welfare value is to optimal; the two values in each cell
represent how close the final contract is to optimal for Agents 1 and 2, respectively.

Agent 2 exaggerates

Agent 1 exaggerates 91
.79/.79

Agent 1 tells the truth .92
.81/.78

end of the day, the truthful agent has spent
its tokens more wisely and to better effect.

The unmediated single-text
protocol

The protocol that we’ve just considered
worked well in the contexts we studied but
has the disadvantage of requiring a mediator.
One issue concerns trust. Because the anneal-
ing mediator is empowered to selectively
ignore agent votes, it might do so in a way
that favors one agent over another (although
the parity-enforcing token mechanism does
somewhat reduce this problem’s potential
impact).

Another issue concerns how quickly nego-
tiations converge on a result. The annealing
mediator generates new proposals by mak-
ing random mutations to the last provision-
ally accepted contract, without taking into
account any information about what con-
tracts are preferable or even sensible. So, the
mediator generates a high proportion of
rejected contracts, which is partly why our
experimental runs each involved so many
(2,500) proposals. The negotiating agents
could provide the mediator with information
about their utility functions so that the medi-
ator could propose contracts more “intelli-
gently.”” However, this is problematic for sev-
eral reasons, including the typical reluctance
of self-interested agents to reveal their utility
functions to a party that might not be worthy
of their trust.

Fortunately, we can define an effective
unmediated version of the annealing proto-
col. Agents each start with a given number
of tokens (two each, in our experiments) and
amutually agreed-on starting temperature 7.
A random contract is generated, and one
negotiating agent is randomly selected to
propose a small (single-issue) variant of the
contract—presumably the variant that most
increases the contract’s utility for that agent.
The other agent then votes on the proposed
variant. The proposals and votes indicate the

Agent 2 tells the truth

.92
.78/.81

.98
.84/.84

strength of the agents’ preference for the pro-
posed contract using the scheme described
earlier (that is, strong reject, weak reject,
weak accept, strong accept). The contract is
provisionally accepted with the probability

P(accept) = min(1, e AUT),

where the aggregate score (U) is calculated as
for the annealing mediator, and the outcome
is determined using the roll of fair, mutually
observable dice. If the decision to accept a
proposal represents the override of one
agent’s reject vote, the winning agent needs
to give one of its tokens to the overridden
agent. An override isn’t permitted if the agent
has run out of tokens. The proposer and voter
alternate roles thereafter until neither agent
can identify any improvements to make to
the last accepted contract. Proposers may
pass but may not repeat proposals. The tem-
perature 7 declines at a mutually agreed-on
rate during this process. This protocol thus
reproduces the key elements of the anneal-
ing mediator protocol—a time-dependent
annealing regime plus tokens—without
requiring a mediator. Our experiments show
that this protocol produces results just as
good as the annealing mediator (averaging
99 percent of optimal) while requiring fewer
proposal exchanges (averaging about 200
exchanges per negotiation).

Contributions

This article presents, as far as we are
aware, the first negotiation protocol specifi-
cally for complex contracts. Although some
researchers have studied multi-issue negoti-
ation,®® they treated the issue utilities as
independent, so each agent’s utility functions
were linear, with single optima. As we have
seen, however, introducing multiple optima
changes the game drastically.

Multi-attribute auctions® represent an-
other scheme for dealing with multiple
issues, wherein one party (the buyer) pub-
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lishes its utility function, and the other par-
ties (the sellers) make bids that try to maxi-
mize the utility received by the buyer. If no
bid is satisfactory, the buyer modifies its pub-
lished utility function and tries again. This
introduces a search process. This approach’s
problem is that it doesn’t provide any guid-
ance for how the parties involved should
control their search through the vast space
of possibilities.

The essence of our approach can be sum-
marized simply: conceding early and often
(as opposed to little and late, as is typical for
independent issue negotiations) is a key to
negotiating good complex contracts. Con-
ceding isn’t individually rational in the face
of agents that might choose not to concede,
but we can resolve this problem by either
introducing a mediator that stochastically
ignores agent preferences or introducing dice
into the negotiation protocol. In both cases,
we can use the exchange of tokens during an
override to encourage the truthful voting that
enables win-win outcomes.

There are many other promising ave-
nues for future work in this area. The
high social welfare achieved by our approach
partially reflects the fact that the agent’s util-
ity functions, based as they are solely on
binary dependencies, are relatively easy to
optimize. Higher-order dependencies, com-
mon in many real-world contexts, are known
to generate more challenging utility land-
scapes.'? To address this challenge, adapting
nonlinear optimization techniques such as
genetic algorithms into the negotiation con-
text might be necessary.

Another possibility involves agents pro-
viding limited information about their util-
ity functions to the mediator or to each other
in order to facilitate more intelligent search
through very large contract spaces. Agents
can, for example, tell the mediator which
issues depend heavily on each other, letting
the mediator focus attention on tightly cou-
pled issue clumps and ignore other less influ-
ential issues until later. Agents might be
encouraged to tell the truth about this to
ensure that negotiations can complete in an
acceptable amount of time.

Finally, we’d like to derive formal incen-
tive compatibility proofs (that is, concerning
when agents are encouraged to vote truth-
fully) for our protocols. New proof tech-
niques will probably be necessary, because

previous results in this area have made strong
assumptions concerning the shape of the
agent utility functions that don’t hold with
complex contracts. =
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