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Abstract

Work to date on computational models of negotiation has focused almost exclusively on defining contracts con-
sisting of one or a few independent issues and tractable contract spaces. Many real-world contracts, by contrast,
are much more complex, consisting of multiple inter-dependent issues and intractably large contract spaces. This
paper describes a simulated annealing based approach appropriate for negotiating such complex contracts that
achieves near-optimal social welfares for negotiations with binary issue dependencies.
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1. Introduction

Work to date on computational models of negotiation has focused almost exclusively on
defining contracts consisting of one or a few independent issues (Ehtamo, Ketteunen, and
Hamalainen 2001; Faratin, Sierra, and Jennings 2000). We can frame what these techniques
do (Figure 1).

Each point on the X-axis represents a candidate contract.! The Y-axis represents the util-
ity of each contract to each agent, where higher is better. Each agent will only accept con-
tracts whose utility is above that agent’s reservation value. The utility functions for each
issue are typically linear (e.g., as in price), monotonic, or single optimum. Since relative
few issues are involved, the space of all possible contracts can be explored exhaustively,
and since the issues are independent, the utility functions for each issue are superimposed
linearly. The result is that the overall utility function for different possible is linear, with a
single optimum in the utility function for each agent, and therefore easy to optimize. In
such a context, the reasonable strategy is for each agent to start at its own ideal contract,
and concede, through iterative proposal exchange, just enough to get the other party to accept
the contract. Since the utility functions are simple, it is feasible for one agent to infer enough
about the opponent’s utility function through observation to make concessions likely to
increase the opponent’s utility.

Real-world contracts, by contrast, are generally much more complex, consisting of a
large number of inter-dependent issues. A typical contract may have tens to hundreds of
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Figure 1. The standard view of negotiation.

distinct issues. Even with only 50 issues and two alternatives per issue, we encounter a
search space of roughly 10715 possible contracts, too large to be explored exhaustively.
The value of one issue selection to an agent, moreover, will often depend on the selection
made for another issue. The value to me of a given couch, for example, depends on whether
it is a good match with the chair I plan to purchase with it. Such issue interdependencies
lead to nonlinear utility functions with multiple local optima (Bar-Yam 1997).

In such contexts, an agent finding its own ideal contract becomes a nonlinear optimiza-
tion problem, difficult in its own right. Simply conceding as slowly as possible from one’s
ideal can result in the agents missing contracts that would be superior from both agent’s
perspectives. In Figure 2, for example, if both agents simply concede slowly from their
own ideal towards the opponents’ ideal, they will miss the better contracts on the right.
Exhaustive search for “win-win” contracts, however, is impractical due to the size of the
search spaces involved. Finally, since the utility functions are quite complex, it is no longer
practical for one agent to learn the other’s utility function.

Imagine, for example, that we have a mediated single text negotiation with hill-climb-
ing agents (these terms are defined in the next section). We find that a “single mutation”
mediator (one that successively proposes contracts where a single issue value has been
changed) does quite well for independent issues (the social welfare averages 98% of opti-
mal) but relatively poorly when the issues have binary dependencies (87% of optimal).

Complex contracts therefore require different negotiation techniques, which allow agents
to find “win-win” contracts in intractable multi-optima search spaces in a reasonable amount
of time. In the following sections we describe a negotiation approach that make substan-



NEGOTIATING COMPLEX CONTRACTS 113

éiﬂvﬂ\

me\

Possible contracts

Utility for agent A

Utility for agent B

Figure 2. Complex negotiation.

tial progress towards achieving these goals. Our paper is structured as follows. We first
describe the negotiation protocol we selected — mediated single text negotiation — and point
out how a straightforward application of a well-known nonlinear optimization technique
leads to a prisoner’s dilemma game wherein the agents are individually incented to use
strategies that produce inferior contracts. We then describe several apparently reasonable
remedies that don’t work, as well as a novel approach — what we call the parity-preserving
annealing mediator — which does.

2. Mediated single text negotiation

A standard approach to dealing with complex negotiations in human settings is the medi-
ated single text negotiation (Raiffa 1982). In this process, a mediator proposes a contract
that is then critiqued by the parties in the negotiation. A new, hopefully better proposal is
then generated by the mediator based on these responses. This process continues, generat-
ing successively better contracts, until the reservation utility value is met or exceeded for
both parties. We can visualize this process (Figure 3).

Here, the vertical line represents the contract currently proposed by the mediator. Each
new contract moves the line to a different point on the X-axis. The goal is to find a contract
that is sufficiently good for both parties.

We defined a simple experiment to help us explore how this approach could be instan-
tiated in a computational framework. In this experiment, there were two agents negotiat-
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Figure 3. Single text negotiation.

ing to find a mutually acceptable contract consisting of a vector S of 100 boolean-valued
issues, each issue assigned the value O or 1, corresponding to the presence or absence of a
given contract clause. This defined a space of 2”100, or roughly 1030, possible contracts.
Each agent had a utility function calculated using its own 100 x 100 influences matrix H,
wherein each cell represents the utility increment or decrement caused by the presence of
a given pair of issues, and the total utility of a contract is the sum of the cell values for
every issue pair present in the contract:

100 100
U=X X HS,S,
i=1 =1

The influence matrix therefore captures the dependencies between issues, in addition to
the value of any individual contract clause. For our experiments, the utility matrix was
initialized to have random values between —1 and +1 in each cell. A different influences
matrix was used for each simulation run, in order to ensure our results were not idiosyn-
cratic to a particular configuration of issue inter-dependencies.

The mediator proposes a contract that is initially generated randomly. Each agent then
votes to accept or reject the contract. If both vote to accept, the mediator mutates the con-
tract (by randomly flipping one of the issue values) and the process is repeated. If one or
both agents vote to reject, a mutation of the most recent mutually acceptable contract is
proposed instead. The process is continued for a fixed number of proposals. Note that this
approach can straightforwardly be extended to a N-party (i.e., multi-lateral) negotiation,
since we can have any number of parties voting on the contracts.
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We defined two kinds of agents: “hill-climbers” and “annealers”. The hill-climbers use a
very simple decision function: they accept a mutated contract only if its utility to them is
greater than that of the last contract both agents accepted. Annealers are more complicated,
implementing a Monte Carlo machine [5]. Each annealer haw a virtual “temperature” T,
such that it will accept contracts worse than last accepted one with the probability:

P(accept) = max(1,e2UT),

where AU is the utility change between the contracts. In other words, the higher the virtual
temperature, and the smaller the utility decrement, the greater the probability that the infe-
rior contract will be accepted. The virtual temperature of an annealer gradually declines
over time so eventually it becomes indistinguishable from a hill-climber. Annealing has
proven effective in single-agent optimization, because it can travel through utility valleys
on the way to higher optima (Bar-Yam 1997). This suggests that annealers will be more
successful than hill-climbers in finding good contracts through the negotiation process.

3. The prisoner’s dilemma

Negotiations with annealing agents did indeed result in substantially superior final con-
tract utilities, but as the payoff table below shows, there is a catch (Table 1).

As expected, paired hill-climbers do relatively poorly while paired annealers do very
well. If both agents are hill-climbers they both get a poor payoff, since it is difficult to find
many contracts that represent an improvement for both parties. A typical negotiation with
two hill-climbers looks like Figure 4.

Figure 4 shows the normalized utilities of the accepted contracts for each agent, plotted
next to the pareto-efficient line (estimated by applying an annealing optimizer to different
weighted sums of the two agents’ utility functions). As we can see, in this case the media-
tor was able to find only two contracts that increased the utility for both hill-climbers, and
ended up with a poor final social welfare.

Near-optimal social welfares are achieved, by contrast, when both agents are annealers,
both willing to initially accept individually worse contracts to help find win-win contracts
later on (Figure 5).

Table 1. Annealing vs. hill-climbing agents

Agent 2 hill-climbs Agent 2 aneals
Agent 1 hill-climbs [0.86] [0.86]

0.73/0.74 0.99/0.51
Agent 1 anneals [0.86] [0.98]

0.51/0.99 0.84/0.84

In the table, the cell values are laid out as follows:
[<social welfare optimality.]
<agent 1 optimality >/<agent 2 optimality>
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Figure 4. A typical negotiation with two hill-climbers.

As we can see in Figure 5, the agents entertain a much wider range of possible contracts,
eventually ending very near the pareto frontier.

If one agent is a hill-climber and the other is an annealer, however, the hill-climber does
extremely well but the annealer fares correspondingly poorly (Figure 6). This pattern can
be understood as follows. When an annealer is at a high virtual temperature, it becomes a

Figure 5. A typical negotiation with two annealers.
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chronic conceder, accepting almost anything beneficial or not, and thereby pays a “con-
ceder’s penalty”. The hill-climber “drags” the annealer towards its own local optimum,
which is not very likely to also be optimal for the annealer.

This reveals a dilemma. In many negotiation contexts we can not assume agents will be
altruistic, and we must as a result design negotiation protocols such that the individually
most beneficial negotiation strategies also produce the greatest social welfare (Rosenschein
and Zlotkin 1994; Sandholm 1998). In our case, however, even though annealing is a so-
cially dominant strategy (i.e., annealing increases social welfare), annealing is not an indi-
vidually dominant strategy. Hill-climbing is dominant, because no matter what strategy the
other agent uses, it is better to be a hill-climber (Table 1). If all agents do this, however,
then they forego the higher individual utilities they would get if they both annealed. The
individual strategic considerations thus drive the system towards the strategy pairing with
the lowest social welfare. This is thus an instance of the prisoner’s dilemma. It has been
shown that this dilemma can be avoided if we assume repeated interactions between agents
(Axelrod 1984), but ideally we would prefer to have a negotiation protocol that incents so-
cially beneficial behavior without that difficult-to-enforce constraint.

4. Partial solutions: adaptive and cold annealers
If both agents could know ahead of time what strategy the other agent is going to use, then

all agents would select annealing. In an open system environment we can not rely on self-
reports for this, however, since agents are incented to lie, i.e. claim they will use annealing

—e— Pareto
—=— Accepteq

Figure 6. A typical negotiation with an annealer and hill climber.
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but actually hill-climb. An agent must thus be able to determine the type of its opponent
based purely on observing its behavior. It turns out this is relatively easy to do. An annealer
will tend to accept a much higher percentage of proposed contracts that a hill-climber,
especially at higher virtual temperatures (Figure 7).

The problem with this “adaptive” approach is that determining the type of an agent in
this way takes time. Agents must start with a guess concerning the other agent’s strategy
and then observe its voting behavior to see what it actually uses. As we can see above, the
divergence in acceptance rates between annealers and hill-climbers only becomes clear after
several hundred proposals have been exchanged. By this time, however, much of the con-
tract utility has already been committed, so it is too late to fully recover from the conse-
quences of having guessed wrong (Figure 8).

In our experiments, for example, between 40 and 60% of the final social welfare had
already been committed in the first 100 proposal exchanges. The early commitment of utility
is a result of the topology of nonlinear utility functions. These functions tend to be fractal
(i.e., self-similar at different scales) with the highest optima also tending to be the widest,
so the steepest slope tends to occur earlier, and the slope reduces as one gets closer to the
summit (Bar-Yam 1997).

Adaptive strategies therefore can not eliminate the prisoner’s dilemma, just reduce its
magnitude. Let us consider a specific example of an adaptive strategy we can call “tit-for-
tat” (T4T). In this strategy, an agent starts as an annealer, and then switches to hill-climb-
ing if the other agent proves to be a hill-climber. One could argue that it is more rational to

70
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-SA -1sd.
*— HC Accept Ratg
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——HC-15d.
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Figure 7. Proposal acceptance percentages for hill-climbers and annealers + 1 standard deviation.
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Figure 8. Social welfare values over time, averaged over 100 simulation runs.

start with the individually dominant strategy (hill-climbing), thereby avoiding the conced-
er’s penalty, and then switch to annealing if the other agent is an annealer. But if everyone
does this everyone will stay stuck in hill-climbing so we still get poor social welfare val-
ues. If we test the annealing-first T4T strategy we get the payoffs in Table 2.

A TAT agent fares just as well as an annealer when paired with an annealer or another
T4T agent, and has a reduced conceder’s penalty when paired with a hill-climber as com-
pared to an annealer. The strategic picture is thus inconclusive: if you are paired with T4T
agent, annealing is your best choice. But if you are paired with an annealer, hill climbing
is your best choice. So annealing, the socially most beneficial strategy, is still not individu-
ally dominant.

Another strategy for reducing the conceder’s penalty is for the annealer to start at a lower
temperature, so that it can not be dragged as far from its own optimum (Figure 9).

Table 2. Payoffs with tit-for-tat agents

Agent 2 hill-climbs Agent 2 anneals Agent 2 TAT
Agent 1 hill-climbs [800] [880] [840]

4007400 700/180 500/340
Agent 1 anneals [880] [1100] [1100]

180/700 550/550 550/550
Agent 1 TAT [840] [1100] [1100]

340/500 550/550 550/550
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If the annealer agent starts at a low enough temperature (TO = 3 in this case), the conced-
er’s penalty is in fact eliminated, but at the cost of achieving social welfare values only
slightly better than that achieved by two hill climbers.

5. The annealing mediator

We were able to develop a negotiation protocol that avoids the prisoner’s dilemma entirely
in mediated single-text negotiation of complex contracts. The trick is simple: rather than
requiring that the negotiating agents anneal, and thereby expose themselves to the risk of
being dragged into bad contracts, we moved the annealing into the mediator itself. In our
original protocol, the mediator would simply propose modifications of the last contract both
negotiating agents accepted. In our refined protocol, the mediator is endowed with a time-
decreasing willingness to follow up on contracts that one or both agents rejected (follow-
ing the same inverse exponential regime as the annealing agents). Agents are free to remain
hill-climbers and thus avoid the potential of making harmful concessions. The mediator,
by virtue of being willing to provisionally pursue utility-decreasing contracts, can traverse
valleys in the agents’ utility functions and thereby lead the agents to win-win solutions.
We describe the details of our protocol, and our evaluations thereof, below.

In our initial implementations each agent gave a simple accept/reject vote for each pro-
posal from the mediator, but we found that this resulted in final social welfare values sig-
nificantly lower than what we earlier achieved using annealing agents. In our next round
of experiments we accordingly modified the agents so that they provide additional infor-
mation to the mediator in the form of vote strengths: each agent annotates an accept or reject
vote as being strong or weak. The agents were designed so that there are roughly an equal
number of weak and strong votes of each type. This maximizes the informational content
of the vote strength annotations. When the mediator receives these votes, it maps them into
numeric values and adds them together according to the following simple scheme:
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Figure 9. Individual utilities as a function of annealer agent starting temperature.



NEGOTIATING COMPLEX CONTRACTS

121

Strong accept (1) | Weak accept (0) Weak reject (-1) Strong reject (—2)
Strong accept (1) | Accept (2) Accept (1) Mixed accept (0) Weak reject (—1)
Weak accept (0) Accept (1) Accept (0) Weak reject (-1) Medium reject (-2)
Weak reject (-1) Mixed accept (0) | Weak reject (—1) Medium reject (-2) | Strong reject (—3)

Strong reject (-2)

Weak reject (—1)

Medium reject (-2)

Strong reject (-3)

Very strong reject (—4)

A proposal is thus accepted by the mediator if both agents voted to accept it, or if a weak
reject by one agent is overridden by a strong accept from the other. The mediator in addi-
tion occasionally accepts rejected contracts (i.e., with a negative overall score) using the
annealing scheme described above.

This approach works surprisingly well, achieving final social welfare values that aver-
age roughly 99% of optimal despite the fact that the agents each supply the mediator with
only two bits of information. This additional bit of information is critical, however, because
it allows the system to pursue social welfare-increasing contracts that cause a utility dec-
rement for one agent.

6. Incentives for truthful voting

Any voting scheme introduces the potential for strategic non-truthful voting by the agents,
and our scheme is no exception. Imagine that one of the agents always votes truthfully,
while the other exaggerates so that its votes are always “strong”. One might expect that
this would bias negotiation outcomes to favor the exaggerator and this is in fact the case
(Table 3).

As we can see, even though exaggerating has substantial negative impact on social wel-
fare, agents are individually incented to exaggerate, thus re-creating the prisoner’s dilemma
game we encountered in our earlier work. The underlying problem is simple: exaggerating
agents are able to induce the mediator to accept all the proposals that are advantageous to
them (if they are weakly rejected by the other agent), while preventing the other agent from
doing the same. What we need, therefore, is an enhancement to the negotiation protocol
that incents truthful voting, preserving equity and maximizing social welfare.

How can this be done? We found that simply placing a limit on the number of strong
votes each agent can use does not work. If the limit is too low, we effectively lose the ben-

Table 3. Truth-telling vs. exaggerating agents with a simple annealing mediator

Agent 2 exaggerates Agent 2 tells truth
Agent 1 exaggerates [0.92] [0.93]

0.81/0.81 0.93/0.66
Agent 1 tells truth [0.93] [0.99]

0.66/0.93 0.84/0.84
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efit of vote weight information and get the lower social welfare values that result. If the
strong vote limit is high enough to avoid this, then all an exaggerator has to do is save all
of it’s strong votes till the end of the negotiation, at which point it can drag the mediator
towards making a series of proposals that are inequitably favorable to it.

Another possibility is to enforce overall parity in the number of “mixed wins” each agent
gets. A mixed win occurs when a contract supported by one agent (the “winner”) is accepted
by the mediator over the objections of the other agent. Mixed wins are what drags a nego-
tiation towards contracts favorable to the winner, so it makes sense to make the total number
of mixed wins equal for each agent. But this is not enough, because exaggerators always
win disproportionately more than the truth-teller.

The solution, we found, came from enforcing parity between the number of mixed ac-
cepts given to each agent throughout the negotiation, so neither agent can get more than a
given advantage in the mixed win category. This way at least rough equity is maintained
no matter when (or whether) either agent chooses to exaggerate. The results of this approach
were as follows for a mixed win gap limit of 3 (Table 4).

When we have truthful agents, we find that this approach achieves social welfare just
slightly below that achieved by a simple annealing mediator, while offering a significantly
(p < 0.01) higher payoff for truth-tellers than exaggerators. We found, moreover, that the
same pattern of results holds for a range of exaggeration strategies, including exaggerat-
ing all the time, stochastically, or lying just near the end of the negotiation. Truth-telling is
thus both the individually dominant and socially most beneficial strategy.

Why does this work? Why, in particular, does a truth-teller fare better than an exaggera-
tor with this kind of mediator? One can think of this procedure as giving agents “tokens”
that they can use to win in mixed vote situations, with the constraint that both agents spend
tokens at a roughly equal rate. Recall that in this case a truthful agent, offering a mix of
strong and weak votes, is paired with an exaggerator for whom some weak accepts and
rejects are presented as strong ones. The truthful agent can therefore only win a mixed vote
via annealing (see Table 3), and this is much more likely when its vote was a strong accept
rather than a weak one. In other words, the truthful agent spends its tokens almost exclu-
sively on contracts that truly offer it a strong utility increase. The exaggerator, on the other
hand, often spends its tokens trying to elicit a mixed win even when the utility increment
it derives is relatively small. At the end of the day, the truthful agent has spend its tokens
more wisely and to better effect.

Table 4. Truth-telling vs. exaggerating agents with parity-enforcing mediator

Agent 2 exaggerates Agent 2 tells truth
Agent 1 exaggerates [0.91] [0.92]

0.79/0.79 0.78/0.81
Agent 1 tells truth [0.92] [0.98]

0.81/0.78 0.84/0.84
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7. Contributions

We have shown that negotiation with multiple inter-dependent issues has properties that
are substantially different from the independent issue case that has been studied to date in
the computational negotiation literature, and requires as a result different negotiation
schemes. This paper presents, as far as we are aware, the first computational negotiation
approach suited for multiple issues with interdependent utilities. Kowalczyk and Bui (2001)
describe a negotiation approach designed for multiple issues, but the issue utilities (as op-
posed to the viable issue values) are independent, so the utility functions for each agent are
linear, with single optima. Their work therefore does not address the challenging and im-
portant problems that appear when we deal with non-linear utility functions. Multi-attribute
auctions represent a related line of work, but while attribute interaction is recognized as
important, research to date has generally assumed independence among attributes on both
the buyer (bid value calculation) and seller (bid price calculation) sides, placing it into
the domain of simple contracts with single-optimum utility functions (Bichler and
Kalagnanam 2002; Kalagnanam and Parkes 2003). Auction protocols seem, moreover,
poorly suited for the common challenge of very large contract spaces. A typical contract
negotiation can easily include 10s to 100s of attributes, allowing trillions of possible
contracts. In such contexts it is difficult for sellers to provide buyers with the utility func-
tions that auction protocols require, simply because the contract space is too large for
them to have explored exhaustively before hand. An iterative negotiation protocol such
as ours, which only requires that parties assess the relative worth of pairs of contracts,
appears much more realistic.

The essence of our approach can be summarized simply: conceding early and often (as
opposed to little and late, as is typical for independent issue negotiations) is the key to achiev-
ing good contracts. We have also demonstrated that negotiation with inter-dependent is-
sues produces a prisoner’s dilemma game, and that introducing a mediator that stochastically
ignores agent preferences and enforces running parity in agent influence resolves this di-
lemma. These results, we believe, are potentially relevant to any collaborative decision
making task involving interdependent decisions.

8. Next steps
Higher order dependencies

The high social welfare values achieved by our approach partially reflect the fact that
the utility functions for each agent, based as they are solely on binary dependencies, are
relatively easy to optimize. Higher-order dependencies, common in many contexts, are
known to generate more challenging utility landscapes (Kauffman 1993), and will be
addressed in future work. We speculate that non-linear optimization techniques such as
genetic algorithms may represent a good starting point for handling such negotiation
challenges.
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Faster Negotiations

The simulated annealing approach produces better social welfares than hill-climbing but
involves larger numbers of proposal exchanges. Hill-climbers typically reached stability
after roughly 100 proposal exchanges, while the annealers approached stable utility val-
ues after roughly 800 proposal exchanges (Figure 8). This makes sense because hill-climb-
ers simply climb to the top of the closest utility optimum and then stop, while annealers can,
when at a high temperature at least, traverse multiple optima in the utility function. This is
a potential problem however because, in competitive negotiation contexts, agents will typi-
cally wish to reveal as little information as possible about themselves for fear of presenting
other agents with a competitive advantage. The more proposals considered, however, the
more information an agent reveals.

What can we do about this? One option is to define better contract alternative genera-
tion operators. In our experiments the contract space was explored in random walk fashion,
and all the “intelligence” was in the evaluation process. One example of a domain-independent
approach is where agents provide the mediator with information concerning which issues
are heavily dependent upon each other. Using this information, the mediator can focus its
attention within the tightly-coupled issue “clumps”, leaving the other less influential is-
sues till later.

Another option is to introduce (limited) cooperative information exchange. It is clear
that if agents cooperate they can produce higher contract utilities. Imagine for example that
two hill-climbers vote to accept a contract based on whether it increases the social welfare,
as opposed to their individual utilities. We have found that if we compare this with two
“selfish” hill-climbers, the cooperative hill-climbers both benefit individually compared
to the selfish case, thereby increasing social welfare as well. Other kinds of cooperation
are imaginable. Agents can begin by presenting a list of locally [near-]Joptimal contracts,
and then agree to explore alternatives around the closest matches in their two sets. Note
that in the previous work with independent issues, this kind of information exchange has
not been necessary because it relatively easy for agents to infer each other’s utility func-
tions from observing their negotiation behavior, but with inter-dependent issues and large
multiple-optima utility functions this becomes intractable and information exchange prob-
ably must be done explicitly. We hypothesize that agents may be incented to tell the truth
in order to ensure that negotiations can complete in an acceptable amount of time.
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Notes

1. For simplicity of exposition we show only one dimension in these figures, but there is in actuality one di-
mension for every issue negotiated over.
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