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Abstract

Computer viruses are the first and only form of artificial
life to have had a measurable impact on society. Cur-
rently, they are a relatively manageable nuisance. How-
ever, two alarming trends are likely to make computer
viruses ¢ much greater threat. First, the rate at which
new viruses are being written is high, and accelerating.
Second, the trend towards increasing interconnectivity
and interoperability among computers will enable com-
puter viruses and worms to spread much more rapidly
than they do today.

To address these problems, we have destgned an im-
mune system for computers and computer networks that
takes much of its inspiration from nature. Like the ver-
tebrate immune system, our system develops antibodies
to previously unencountered computer viruses or worms
and remembers them so as to recognize and respond to
them more quickly in the future. We are careful to min-
imaize the risk of an auto-tmmune response, in which the
immune system mistakenly identifies legitimate software
as being undesirable. We also employ nature’s technique
of fighting self-replication with self-replication, which our
theoretical studies have shown to be highly effective.

Many components of the proposed immune system are
already being used to automate computer virus analysis
in our laboratory, and we anticipate that this technol-
ogy will gradually be incorporated into IBM’s commercial
anti-virus product during the next year or two.

1 Introduction

Unique among all forms of artificial life, computer viruses
have escaped their playpens and established themselves
pervasively throughout the world’s computing environ-
ment. Of the roughly 100 to 200 million PC and Mac-
intosh users in the world, at least several hundred thou-
sand, and perhaps over a million, have been afflicted at
one time or another. Computer viruses have found a
niche on all of the world’s continents, including Antarc-
tica [1]}, and most of its countries.

!The “Barrote” virus was discovered at Spanish and Ar-
gentinian scientific bases in Antarctica when it triggered on
January 5th, 1994. Machines booted on or after that date dis-
played a pattern of jail-like bars with the legend “Virus Bar-
rote” (Spanish for “Virus Jail”), and would halt the PC (and

A sufficiently amoral artificial life enthusiast might
view the success of these artificial creatures in the real
world as amazing, amusing, and admirable, but most
responsible citizens regard computer viruses (and those
who write them) with abhorrence. Even though just
a small minority of viruses are intentionally harmful,
the vast majority of them are poorly-written, poorly-
tested, buggy pieces of software that create problems
that are often time-consuming to diagnose. According
to a Dataquest survey [2] and spokesmen for several dif-
ferent insurance companies [3], a virus spreading among
several PC’s in a company costs (on average) several
thousands of dollars in down-time and data lossage; one
company interviewed by Dataquest reported a $2 mil-
lion dollar loss due to a single incident. At least one
insurer offers a $100,000/year policy for damage due to
computer virus infection [3].

Computer viruses are serious business. They have en-
gendered an entire anti-virus industry, consisting of hun-
dreds of researchers and developers who are employed by
dozens of companies around the world. At least one such
company, devoted almost exclusively to anti-virus soft-
ware, 1s traded on the Nasdaq stock exchange.

Currently, the arms race between virus authors and
anti-virus developers is roughly even. During any par-
ticular moment, it is typical for a few viruses to be in-
creasing in prevalence, and other formerly prevalent ones
to be on the decline [4]. However, two alarming trends
threaten to turn the balance in favor of virus authors:

1. The rate at which new viruses are being written is
quite high, and appears to be accelerating. Human
experts who analyze and find cures for viruses are al-
ready swamped, and their ability to keep pace with
the large influx of new viruses is being questioned.

2. The continuing increase in interconnectivity and
interoperability among the world’s computers en-
hances the ability of any particular virus to spread,
and the rapidity with which it does so. The current
strategy of periodically distributing updates to anti-
virus software from a central source will be orders
of magnitude too slow to keep up with the spread
of a new virus.

thus any scientific experiments that were being conducted).



In the near future, computers will somehow need to
automatically recognize and remove previously unknown
viruses on the spot soon after they are discovered. For-
tunately for us, Nature has already invented a remark-
ably effective mechanism for recognizing and responding
rapidly to viruses and other undesired intruders, even
in cases where the intruder has never been seen before:
the vertebrate immune system. The success of the verte-
brate immune system in protecting its host from a wide
array of viruses and other undesirables that are contin-
ually mutating and evolving has inspired us to design
and implement an immune system for computers that
1s founded on similar principles. Various components of
the immune system are already being used to automate
the task of computer virus analysis in the laboratory.
Over the next year or two, the immune system will be
phased gradually into IBM’s anti-virus software.

This paper is organized as follows. Section 2 briefly
discusses the two trends mentioned above, and why
they threaten to overwhelm current anti-virus technol-
ogy. Appealing to biological analogy, section 3 motivates
and presents a biologically inspired design for an immune
system for computers and computer networks. Section
4 concludes with a brief discussion of important issues
that remain to be resolved.

2  Why current anti-virus techniques
are doomed

There are a variety of complementary anti-virus tech-
niques in common usage [5, 6]. Activity monitors alert
users to system activity that is commonly associated
with viruses, but only rarely associated with the behav-
lor of normal, legitimate programs. Integrity manage-
ment systems warn the user of suspicious changes that
have been made to files. These two methods are quite
generic, and can be used to detect the presence of hith-
erto unknown viruses in the system. However, they are
not often able to pinpoint the nature or even the location
of the infecting agent, and they often flag or prevent le-
gitimate activity, and so can disrupt normal work or lead
the user to ignore their warnings altogether.

Virus scanners search files, boot records, memory, and
other locations where executable code can be stored for
characteristic byte patterns that occur in one or more
known viruses. They tend to be substantially less prone
to false positives than activity monitors and integrity
management systems. Scanners are essential for estab-
lishing the identity and location of a virus. Armed with
this very specific knowledge, repairers, which restore in-
fected programs to their original uninfected state, can be
brought into play. The drawback of scanning and repair
mechanisms is that they can only be applied to known
viruses, or variants of them; this requires that scanners
and repairers be updated frequently.

Debates over the relative merits of the various anti-
virus techniques have largely subsided, and many of the
major anti-virus vendors now offer packages that usefully
integrate scanners and repairers with activity monitors
and integrity management systems.

In the remainder of this section, I shall describe the
typical method by which scanners and repairers are
updated, and demonstrate why it can be expected to
become untenable in the near future, given projected
trends in viral influx and increased interconnectivity
among computers.

2.1 Virus scan/repair updates

Whenever a new virus is discovered, it is very quickly
distributed among an informal, international group of
virus collectors who exchange samples among them-
selves. Many such collectors are in the anti-virus soft-
ware business, and they set out to obtain information
about the virus which enables:

1. detection of the virus whenever it is present in a
host program, and

2. restoration of an infected host program to its orig-
inal uninfected state (which is usually possible.)

Typically, a human expert obtains this information by
disassembling the virus and then analyzing the assembler
code to determine the virus’s behavior and the method
that it uses to attach itself to host programs. Then, the
expert selects a “signature” (a sequence of perhaps 16 to
32 bytes) that represents a sequence of instructions that
1s guaranteed to be found in each instance of the virus,
and which (in the expert’s estimation) is unlikely to be
found in legitimate programs. This “signature” can then
be encoded into the scanner, and the knowledge of the
attachment method can be encoded into the repairer.

Such an analysis is tedious and time-consuming, some-
times taking several hours or days, and even the best
experts have been known to select poor signatures —
ones that cause the scanner to report false positives on
legitimate programs.

2.2 Viral influx and its consequences

One reason why current anti-virus techniques can be ex-
pected to fail within the next few years is the rapid, ac-
celerating influx of new computer viruses. The number
of different known DOS viruses over the last several years
can be fit remarkably well by an exponential curve. 2
Currently, it is approximately 2000, with two or three
new ones appearing each day — a rate which already
taxes to the limit the ability of anti-virus vendors to de-
velop detectors and cures for them. Were this trend to
hold up (Fig. 1), there would be approximately 10 million
different DOS viruses by January, 2000 — about 100,000
new ones per day! Of course, curve extrapolation of a
phenomenon that depends largely on human sociology
and psychology should be regarded very skeptically, but
it is not impossible that virus writers could be so prolific.
To do so, they would have to automate both the writing
and the distribution of viruses. Already, the beginnings
of a trend towards automated virus-writing is evinced

ZNote that is not the same as the growth in prevalence of
any particular viral strain. Even for the minority of viruses
that are successful in any degree, the growth in prevalence is
strongly sub-exponential, perhaps even roughly linear.



by the Virus Creation Laboratory, a menu-driven virus
toolkit circulating among virus writers’ bulletin boards.
Even if the rate at which new viruses appear were to sud-
denly plateau at a level not much higher than what it is
today, the number of different DOS viruses could easily
reach the tens of thousands by the year 2000, and the
burden on current anti-virus techniques to detect and
eradicate so many viruses would be severe.

Number of Different PC-DOS Viruses
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Figure 1: Number of different known DOS viruses vs. time (logarith-
mic scale). Straight line is the best exponential fit of the data through
mid-1993. Warning: Extrapolation of the exponential trend beyond
1993 should be regarded very skeptically.

2.3 Interconnectivity and its consequences

It is unfortunate, but hardly surprising, that increased
interconnectivity and interoperability among computers
— designed to facilitate the flow of desirable information
— also facilitates the flow of computer viruses. Biologi-
cal diseases have always taken advantage of technological
advances which enhance man’s mobility [8]; it is natural
that computer diseases should make opportunistic use of
advances in the mobility of information.

One can expect increased networking to be reflected
in increases in two important epidemiological parame-
ters: the overall rate at which a given infected individ-
ual computer spreads a virus and the number of part-
ners with which that individual has potentially infec-
tious contacts. The first factor is related to one of the
most fundamental results of classical mathematical epi-
demiology [10]. If the average rate at which infection
can spread from one individual to another is sufficiently
low, widespread infection is impossible. Above a well-
defined critical threshold, however, epidemics can occur.
As a simple way of explaining the existence of a sharp
threshold, imagine that an individual has the flu. If,
during that individual’s period of contagion, he or she
can be expected to infect 0.9 other people, the strain of
flu will sooner or later die out. However, if that individ-
ual can be expected to infect 1.1 other people, there is
likely to be a flu epidemic. The second factor, increased
promiscuity, has apparently been given little attention
by theoretical epidemiologists until our own study of it
[7, 11]. We have found that a topology in which each in-
dividual has several “neighbors” to which it can spread

infection is more conducive to epidemics than one which
is sparsely connected — even when the infection rate
along each link is adjusted so as to keep the total the
same in the two cases.

Thus, to the extent that technological advances will in-
crease the contact rate and promiscuity among comput-
ers, we can expect computer virus epidemics to become
more likely, to spread faster, and to affect more comput-
ers. Experience with the Internet worm, which spread to
hundreds or perhaps thousands of machines across the
world in less than one day in 1988 [9], shows that even
today’s computing environment is vulnerable to a spread
rate that is about two orders of magnitude faster than
the typical timescale of monthly updates. While it is true
that updates might be made somewhat more frequently,
this would not solve the problem. The updates must be
distributed to customers, and the customers must install
them. Given the time, money, and effort involved, it is
not surprising that many customers blissfully continue
to use anti-virus software that is more than a year out
of date.

3 An immune system for computers

Imagine that, every time a new strain of the common
cold began to make its rounds, researchers at the Cen-
ter for Disease Control had to race to find a cure for
it. They would have to make sure that the cure worked
properly for all sorts of people, and did not cause any
allergic or other adverse reactions. The problem of dis-
tributing the cure to billions of people worldwide would
be overwhelming.

This scenario is clearly ludicrous — we could not have
survived as a species if we relied on a central agency
to defend us against every disease. Yet this is precisely
how we defend ourselves against computer viruses today!
Time is running out on this approach, and a different
alternative is sought.

Rather than relying on a central authority to protect
them from all ills, humans and other vertebrates carry
around their own individual immune systems. The ver-
tebrate immune system exhibits some remarkable prop-
erties, including [12]:

1. Recognition of known intruders.
2. Elimination/neutralization of intruders.

3. Ability to learn about previously unknown intruders.

e Determine that the intruder doesn’t belong.
e Figure out how to recognize it.
e Remember how to recognize it.

4. Use of selective proliferation and self-replication for
quick recognition and response.

Phrased in this way, it is evident that these fundamen-
tal properties are desirable for computers as well. The
remainder of this section describes how each of these
functions are being implemented in our design of the
computer immune system, and compares our implemen-
tation with Nature’s implementation of the vertebrate



immune system. At the end of the section, the various
elements will be assembled into a complete sketch of the
proposed computer immune system.

3.1 Recognizing Known Intruders

The vertebrate immune system recognizes particular
antigens (viruses and other undesirable foreign sub-
stances) by means of antibodies and immune cell re-
ceptors which bind to epitopes (small portions of the
antigen, consisting of at least 4 to 6 amino acids).

It is interesting to note that an ezact match to the
entire antigen is not attempted; in fact, it is almost cer-
tainly a physical impossibility. No antibody molecule
or immune-cell receptor could be perfectly specific to a
given antigen because matching occurs at surfaces, not
throughout volumes. T cell receptors can see the inner
portions of antigen, but only after the antigen has been
consumed by a macrophage or other cell, which then
presents pieces of the antigen on it surface, where they
can be seen by other cells.

Similarly, in the computer immune system, a partic-
ular virus is not recognized via an exact match; rather,
it is recognized via an exact or fuzzy match to a rela-
tively short sequence of bytes occurring in the virus (a
“signature”, as described in section 2). Although match-
ing to a small portion of the virus is not necessitated in
this case by the laws of chemistry, it has some important
advantages. In particular,

1. it is more efficient in time and memory, and

2. it enables the system to recognize variants.

The issues of efficiency and variant recognition are rele-
vant for biology as well.

For both biological and computer immune systems, an
ability to recognize variants is essential because viruses
tend to mutate frequently. If an exact match were re-
quired, immunity to one variant of a virus would confer
no protection against a slightly different variant. Simi-
larly, vaccines would not work, because they rely on the
biological immune system’s ability to synthesize antibod-
les to tamed or killed viruses that are similar in form to
the more virulent one that the individual is being immu-
nized against.

3.2 Eliminating Intruders

In the biological immune system, if an antibody meets up
with an antigen, the two bind together, and the antigen
1s effectively neutralized. Thus recognition and neutral-
ization of the intruder occur simultaneously. Alterna-
tively, a killer T cell may encounter a cell that exhibits
signs of being infected with a particular infecting agent,
whereupon it kills the host cell. This is a perfectly sen-
sible course of action. A biological virus co-opts its host
cell’s machinery, matter and energy into synthesizing vi-
ral proteins that are assembled into copies of the virus.
Eventually, the host’s cell wall is ruptured, resulting in
the death of the host and the release of hundreds or thou-
sands of viruses into the intercellular medium. By killing
an infected host cell, a killer T cell is merely hastening
the execution of a cell that was slated to die anyway ,

and it prevents the virus from completing the replication
process.

If the computer immune system were to find an exact
or fuzzy match to a signature for a known virus, it could
take the analogous step of erasing or otherwise inacti-
vating the executable file containing the virus. This is
a valid approach. However, an important difference be-
tween computer viruses and biological viruses raises the
possibility of a much gentler alternative.

From the body’s point of view, cells are an easily-
replenished resource. Even if biological viruses didn’t de-
stroy infected cells, an infected host cell would hardly be
worth the trouble of saving; there are plenty of other cells
around that can serve the same function. In contrast,
each of the applications run by a typical computer user
are unique in function and irreplaceable (unless backups
have been kept, of course). A user would be likely to no-
tice any malfunction. Consequently, it would be suicidal
for a computer virus to destroy its host program, because
the ensuing investigation would surely lead to its discov-
ery and eradication. For this reason, all but the most
ill-conceived computer viruses attach themselves to their
host in such a way that they do not destroy its function.
The fact that host information is merely rearranged, not
destroyed, allows one to construct repair algorithms for
a large class of non-destructive viruses for which one has
a precise knowledge of the attachment method.

3.3 Learning to Recognize Unknown
Intruders

When the biological immune system encounters an in-
truder that it has never seen before, it can immedi-
ately recognize the intruder as non-self, and attack it
on that basis. Over the course of days or weeks, through
a process of mutation and selective proliferation (see
the next subsection), it “learns” to fabricate antibodies
and B- and T cell receptors capable of recognizing that
particular intruder very efficiently. By some unknown
means, the immune system is able to “remember” the
antigen (4. e. it retains immune cells with the proper re-
ceptors for recognizing that antigen) for decades after the
initial encounter, and thus it is ready to respond much
more quickly the next time that antigen is encountered.

To be effective, an antibody or receptor for a particu-
lar antigen must bind to that antigen (or close variants of
that antigen) with high efficiency, and it must not bind
to self proteins — otherwise, the host would be likely
to suffer from an auto-immune disease. The biological
immune system reduces the chances of recognizing self
by subjecting immature immune cells to a training pe-
riod in the thymus, during which those possessing self-
recognizing receptors are eliminated.

Unfortunately, the notion of “self” in computers is
somewhat problematic. We can not simply regard the
“self” as the set of software that was pre-loaded when
the computer was first purchased. Computer users are
continually updating and adding new software. It would
be unacceptable if the computer immune system were to
reject all such modifications and additions out of hand
on the basis that they were different from anything else



that happened to be on the system already. While the
biological immune system can usually get away with pre-
suming the guilt of anything unfamiliar, the computer
immune system must presume that new software is in-
nocent until it can prove that it is guilty of containing a
virus.

The thorny issue of what constitutes “self” for com-
puter software, interesting as it is, can be regarded as a
side-issue. The actual problem that both the vertebrate
and the computer immune system must solve is to dis-
tinguish between harmful and benign entities. Due to
the high degree of stability of body chemistry in indi-
vidual vertebrates during their lifespans, their immune
systems can replace the difficult problem of distinguish-
ing between benign and harmful entities by the much
simpler one of distinguishing self from non-self. This is
a nice hack, because “self” is much easier to define and
recognize than “benign”. The immune system can sim-
ply implement the strategy “know thyself” (and reject
all else). Although this errs on the side of false posi-
tives (i.e. falsely rejecting benign entities), rejection of
foreign benign entities is generally not harmful (except
in cases of blood transfusion or organ transplantation,
which have been introduced much too recently to have
affected the course of evolution).

By contrast, false rejection of legitimate software is
extremely harmful. It worries users unnecessarily, and
can cause them to erase perfectly legitimate programs
— leading to hours or days of lost productivity. Af-
ter such an experience, users are often tempted to stop
using anti-virus software, leaving themselves completely
unprotected. Thus a false positive indentification of a
virus may be much more harmful than the virus itself.
For this reason, self/non-self discrimination is not by it-
self an adequate means for distinguishing between harm-
ful and unharmful software.

The process by which the proposed computer immune
system establishes whether new software contains a virus
has several stages. Integrity monitors, which use check-
sums to check for any changes to programs and data files,
have a notion of “self” that is as restrictive as that of
the vertebrate immune system: any differences between
the original and current versions of any file are flagged,
as are any new programs.®> However, evidence of a non-
self entity is not by itself enough to trigger an immune
response. Mechanisms that employ the complementary
strategy of “know thine enemy” are also brought into
play. Among these are activity monitors, which have a
sense of what dynamic behaviors are typical of viruses,
and various heuristics, which examine the static nature
of any modifications that have occurred to see if they
have a viral flavor.

In the computer immune system, integrity monitors
and generic know-thine-enemy heuristics are periodically
or continually on the lookout for any indications that

3 An interesting alternative to traditional integrity mon-
itoring via checksums, inspired by the detailed mechanisms
by which the vertebrate immune system learns to recognize
“self”, has been studied recently by Forrest, Perelson, Allen,
and Cherukuri [13].

a virus is present in the system. If one of the virus-
detection heuristics is triggered, the immune system runs
the scanner to determine whether the anomaly can be
attributed to a known virus. If so, the virus is located
and removed in the usual way. If the anomaly can not
be attributed to a known virus, either the generic virus-
detection heuristics yielded a false alarm, or a previously
unknown virus is at large in the system.

At this point, the computer immune system tries to
lure any virus that might be present in the system to
infect a diverse suite of “decoy” programs. A decoy pro-
gram’s sole purpose in life is to become infected. To
increase the chances of success in this noble, selfless en-
deavor, decoys are designed to be as attractive as pos-
sible to those types of viruses that spread most success-
fully. A good strategy for a virus to follow is to infect
programs that are touched by the operating system in
some way. Such programs are most likely to be executed
by the user, and thus serve as the most successful ve-
hicle for further spread. Therefore, the immune system
entices a putative virus to infect the decoy programs by
executing, reading, writing to, copying, or otherwise ma-
nipulating each of them. Such activity tends to attract
the attention of many viruses that remain active in mem-
ory even after they have returned control to their host.
To catch viruses that do not remain active in memory,
the decoys are placed in places where the most commonly
used programs in the system are typically located, such
as the root directory, the current directory, and other
directories in the path. The next time the infected file
is run, it is very likely to select one of the decoys as its
victim. From time to time, each of the decoy programs
1s examined to see if it has been modified. If one or
more have been modified, it is almost certain that an
unknown virus is loose in the system, and each of the
modified decoys contains a sample of that virus. These
virus samples are stored in such a way that they will not
be executed accidentally.

The capture of a virus sample by the decoy programs
1s somewhat analogous to the ingestion of antigen by
macrophages or B cells [12]. It allows the intruder to
be processed into a standard format that can be parsed
by some other component of the immune system, and
provides a standard location where information on the
intruder can be found. In the biological immune system,
the T cells that recognize the antigen are selected accord-
ing to their ability to bind to fragments of the antigen
that are presented on the surface of cells that have in-
gested (or been infected by) the antigen. Likewise, in the
computer immune system, the infected decoys are then
processed by another component of the immune system
— the signature extractor — so as to develop a recog-
nizer for the virus. The computer immune system has
an additional task that is not shared by its biological
analog: it must attempt to extract from the decoys in-
formation about how the virus attaches to its host, so
that infected hosts can be repaired (if possible).

Unfortunately, the proprietary nature of our methods
for deriving a virus’s means of attachment to its host
forbid any discussion of them here. Briefly, the algo-



rithms extract from a set of infected decoys information
on the attachment pattern of the virus, along with byte
sequences that remain constant across all of the captured
samples of the virus.

Next, the signature extractor must select a virus sig-
nature from among the byte sequences produced by the
attachment derivation step. The signature must be well-
chosen, such that it avoids both false negatives and false
positives. In other words, the signature must be found in
each instance of the virus, and it must be very unlikely
to be found in uninfected programs.

First, consider the false negative problem. The sam-
ples captured by the decoys may not represent the full
range of variable appearance of which the virus is capa-
ble. As a general rule, non-executable “data” portions of
programs, which can include representations of numeri-
cal constants, character strings, work areas for compu-
tations, etc. are inherently more likely to vary from one
instance of the virus to another than are “code” por-
tions, which represent machine instructions. The origin
of the variation may be internal to the virus (e.g. it
could depend on a date). Alternatively, a virus hacker
might deliberately change a few data bytes in an effort
to elude virus scanners. To be conservative, “data” ar-
eas are excluded from consideration as possible signa-
tures. Although the task of separating code from data is
in principle somewhat ill-defined, there are a variety of
methods, such as running the virus through a debugger
or virtual interpreter, which perform reasonably well.

The false positive problem is more interesting. In the
biological immune system, false positives that acciden-
tally recognize self cause auto-immune diseases. In both
traditional anti-virus software and the proposed com-
puter immune system, false positives are particularly
annoying to customers, and so infuriating to vendors of
falsely-accused software that it has led to at least one
lawsuit against a major anti-virus software vendor. (So
one could say that health is also an issue in this case!)

Briefly, the automatic signature extractor examines
each sequence of S contiguous bytes (referred to as “can-
didate signatures”) in the set of invariant-code byte se-
quences that have presented to it, and for each it es-
timates the probability for that S-byte sequence to be
found in the collection of normal, uninfected “self” pro-
grams. Typically, S is chosen to be 16 or 24. The prob-
ability estimate is made by

1. forming a list of all n-grams (sequences of n bytes;
1 < n < Nypgy) contained in the input data (e
is typically 5 or 8),

2. calculating the frequency of each such n-gram in the
“self” collection (in the case of signatures that are
to be distributed worldwide, we use a half-gigabyte
corpus of ordinary, uninfected programs),

3. using a simple formula to combine the n-gram fre-
quencies into a probability estimate for each can-
didate signature to be found in a set of programs
similar in size and statistical character to the cor-
pus, and

4. selecting the signature with the lowest estimated
false-positive probability.

Characterizations of this method show that the proba-
bility estimates are poor on an absolute scale, due to
the fact that code tends to be correlated on a longer
scale than b or 8 bytes. However, the relative ordering
of candidate signatures is rather good, so the method
generally selects one of the best possible signatures. In
fact, judging from the relatively low false-positive rate
of the IBM AntiVirus signatures (compared with that
of other anti-virus vendors), the algorithm’s ability to
select good signatures is better than can be achieved by
typical human experts.

Having automatically developed both a recognizer and
a repair algorithm appropriate to the virus, the informa-
tion can be added to the corresponding databases. If
the virus is ever encountered again, the immune system
will recognize it immediately as a known virus. A com-
puter with an immune system could be thought of as “ill”
during its first encounter with a virus, since a consider-
able amount of time and energy (or CPU cycles) would
be expended to analyze the virus. However, on subse-
quent encounters, detection and elimination of the virus
would occur much more quickly: the computer could be
thought of as “immune” to the virus.

3.4 Self Replication and Selective
Proliferation

In the biological immune system, immune cells with re-
ceptors that happen to match a given antigen reasonably
well are stimulated to reproduce themselves. This pro-
vides a very strong selective pressure for good recogniz-
ers, and by bringing a degree of mutation into play, the
immune cell is generally able to come up with immune
cells that are extremely well-matched to the antigen in
question.

One can view this as a case in which self-replication
is being used to fight a self-replicator (the virus) in a
very effective manner. One can cite a number of other
examples in nature and medical history in which the
same principle has been used very successfully. The self-
replicator need not itself be a virus. In the case of the
worldwide campaign against smallpox, those who were
in close contact with an infected individual were all im-
munized against the disease. Thus immunization spread
as a sort of anti-disease among smallpox victims [10].

We propose to use a similar mechanism, which we call
the “kill signal”, to quell viral spread in computer net-
works. When a computer discovers that it is infected, it
can send a signal to neighboring machines. The signal
conveys to the recipient the fact that the transmitter
was infected, plus any signature or repair information
that might be of use in detecting and eradicating the
virus. If the recipient finds that it is infected, it sends
the signal to s neighbors, and so on. If the recipient
1s not infected, it does not pass along the signal, but at
least it has received the database updates — effectively
immunizing it against that virus (see Fig. 2).

Theoretical modeling has shown the kill signal to be
extremely effective, particularly in topologies that are



Kill Signals

Susceptible

Infected

Immune (+ kill signal)

O
o
@
@

Immune

t=3

Figure 2: Fighting self-replication with self-replication. When a computer detects a virus, it eliminates the infection, immunizes itself against
future infection, and sends a “kill signal” to its neighbors. Receipt of the kill signal results in the immunization of uninfected neighbors; infected
neighbors are both immunized and prompted to send kill signals to their neighbors. Thus detection of a virus by a single computer can trigger a
wave of kill signals that propagates along the path taken by the virus, destroying the virus in its wake.
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Figure 3: The main components of the proposed immune system for computers and their relationship to one another.



highly localized or sparsely connected [4, 11].

3.5 Computer Immune System: Schematic
and Implementation

Fig. 3 sketches the relationship among various compo-
nents of the proposed computer immune system. Some
are already integrated into the current version of IBM
AntiVirus. The components of the immune system that
deal with unknown viruses are currently being used in
a slightly different capacity: to extract signatures and
repair information automatically from newly-discovered
viruses. This enables us to keep pace with the influx
of new viruses with just one human virus expert who
analyzes viruses half-time, as opposed to the dozen or
more virus analysts employed by some other anti-virus
software vendors.

When a raft of new viruses is received, it is presented
to an automatic “triage” machine situated in IBM’s virus
1solation laboratory. First, the triager scans the putative
viruses using the current version of IBM AntiVirus. Any
samples infected with a virus that is already detected by
IBM AntiVirus are immediately dismissed from further
consideration. The triager then executes each of the re-
maining infected samples one or more times, and (for
each infected sample) exercises a set of six decoy pro-
grams so as to entice the virus to infect them. Each of
the decoy programs is examined from time to time to
see if it has been modified. Any decoys that have been
modified are stored away in a form such that they cannot
be executed, and the triage machine is automatically re-
booted to eliminate the virus from memory. The triage
script goes through the same routine for the next puta-
tively infected sample, and so on until all the original
samples have been given a reasonable chance to infect
the decoys.

Putatively infected samples which successfully infect
decoys are placed in the archive of confirmed viruses, and
the infected decoys are placed in special directories for
further processing. Putatively infected samples which
fail to infect any decoys may contain recalcitrant viruses
that for some reason were not in the infecting mood, or
they may not contain a virus at all. On a rainy day some
weeks hence, another attempt will be made to coax them
into infecting the decoys.

Typically, a given virus sample will infect two or three
of the six decoys. During the last three years, the triager
has been used to capture samples of over 2000 different
PC/DOS viruses.

The infected decoys are then processed by the algo-
rithmic virus analyzer, which extracts information that
1s useful in repairing viruses. Still in early prototype, the
analyzer is able to supply useful information for about
90% of the viruses that it has seen. A debugger is used
to execute each infected decoy; any executed instructions
are obviously code (rather than unexecutable data), and
as such are eligible for consideration as part of a signa-
ture for the virus.

Next, the automatic signature extractor takes as input
all byte sequences which appear in each infected decoy
and which have been established as code, selects a signa-

ture, and provides an estimate of the maximum number
of mismatches between scanned data and the signature
that can be considered a match. During three years of
constant improvements, the automatic signature extrac-
tor has been used to extract signatures for roughly 1500
different PC/DOS viruses. In addition, it has been used
to evaluate several hundred signatures that had been ex-
tracted by expert humans.

The automatically-extracted signatures and repair in-
formation are then subjected to a variety of independent
tests. The signatures are run against a half-gigabyte cor-
pus of legitimate programs to make sure that they do
not cause false positives, and the repair information is
checked out by testing on samples of the virus, and fur-
ther checked by a human expert. Finally, the detection
and repair databases used by IBM AntiVirus are up-
dated, and the new version is distributed to customers
worldwide.

The remaining component of the immune system, the
kill signal, is the only one that has not yet been imple-
mented; it is currently being evaluated via theoretical
modeling.

4 Conclusion

An immune system for computers is desirable and fea-
sible. As suggested in Fig. 3, most of the necessary
components are already in use in one form or another.
Some already exist in IBM AntiVirus itself. Others are
presently in use in the virus laboratory, for the purpose
of updating the databases employed by IBM AntiVirus
to recognize viruses and repair infected files.

One of the technical issues that remains to be explored
further is the kill signal. Further simulation will help to
establish the exact circumstances under which a node
should send signals to its neighbors, and for what length
of time these signals should be sent. Further analysis and
simulation must be conducted to assess the effectiveness
of various fail-safe mechanisms that have been proposed
to deal with the propagation of erroneous kill signals,
which could result from false positives, software bugs,
or intentional subversion by malicious users. The bio-
logical immune system has invented various inhibitory
mechanisms which may turn out to be of use to us.

We anticipate that, as the design for our computer
immune system evolves, it will be influenced, not just
by what Mother Nature has invented, but also by theo-
ries invented by immunologists to explain the observed
function of the immune system [14, 15, 16]. In fact, we
may offer new employment opportunities for theoreti-
cal immunologists, because our criteria for success are
different: a proposed mechanism need not be a correct
description of biology; it only has to work!
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