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Econometrica, Vol. 43, No. 3 (May, 1975)
OTHER SOLUTIONS TO NASH’S BARGAINING PROBLEM

By EHUD KALAI AND MEIR SMORODINSKY

A two-person bargaining problem is considered. It is shown that under four axioms that
describe the behavior of players there is a unique solution to such a problem. The axioms
and the solution presented are different from those suggested by Nash. Also, families of
solutions which satisfy a more limited set of axioms and which are continuous are discus-
sed.

1. INTRODUCTION

WE CONSIDER a two-person bargaining problem mathematically formulated as
follows. To every two-person game we associate a pair (a, S), where a is a point in
the plane and S is a subset of the plane. The pair (a, S) has the following intuitive
interpretation: a = (a,, a,) where a; is the level of utility that player i receives if the
two players do not cooperate with each other. Every point x = (x;,x,)€S
represents levels of utility for players 1 and 2 that can be reached by an outcome
of the game which is feasible for the two players when they do cooperate. We are
interested in finding an outcome in S which will be agreeable to both players.

This problem was considered by Nash [3] and his classical result was that under
certain axioms there is a unique solution. However, one of his axioms of indepen-
dence of irrelevant alternatives came under criticism (see [2, p. 128]). In this paper
we suggest an alternative axiom which leads to another unique solution. Also, it
was called to our attention by the referee that experiments conducted by H. W.
Crott [1] led to the solution implied by our axioms rather than to Nash’s solution.

We also consider the class of continuous solutions which are required to satisfy
only the axioms of Nash which are usually accepted. We give examples of families
of such solutions.

2. THE AXIOMS

We shall assume that the pair (a, S) satisfies the following, usual conditions:

ASSUMPTION 1: There is at least one point x€ S such that x' > a; for i = 1, 2.
In other words, bargaining may prove worthwhile to both players.

ASSUMPTION 2: S is convex. This is justified under the assumption that if two
outcomes of the game give rise to points x and y in S, then randomizations of these
two outcomes give rise to all convex combinations of x and y.

ASSUMPTION 3: S is compact.
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ASSUMPTION 4: a < x for every x € S. If this is not the case, we can disregard all
the points of S that fail to satisfy this condition because it is impossible that both
players will agree to such a solution.

We let U denote the set of pairs (a, S) satisfying these four conditions, and we call
an element in U a bargaining pair.

A solution to the bargaining problem is a function f:U — R? such that f(a,
S) € S. We shall confine ourselves to functions satisfying the following three axioms
and we will call these functions solutions.

Axiom 1—Pareto Optimality: For every (a,S)e U there is no ye S such that
y 2 /f(a.S)and y # f(a,$).

Axiom 2—Symmetry: We let T:R*> — R? be defined by T((x,, x,)) = (X5, x,)
and we require that for every (a, S)e U, f(T(a), T(S)) = T(f(a, S)).

AxioM 3—Invariance with Respect to Affine Transformations of Utility: A4 is
an affine transformation of utility if A = (A,, Ay):R* - R%, A((x,,x,)) = (A,(x,),
A(x,)), and the maps A{x) are of the form c;x + d; for some positive constant c,
and some constant d;. We require that for such a transformation A, f(A(a), A(S)) =

A(f(a,S)).

In addition to the above three axioms, Nash introduced the following:

AXIOM OF INDEPENDENCE OF IRRELEVANT ALTERNATIVES: If (a, S) and (a, T) are
bargaining pairs such that S < T and f(a, T)€ S, then f(a, T) = f(a, S).

He proved the surprising result that there is one and only one solution # which
satisfies the axiom of independence of irrelevant alternatives. Nash’s unique solu-
tion has the following very simple geometric interpretation: Given a bargaining
pair (a, S), for every point x = (x,, x,) € S, consider the product (area of a rectangle)
(x; — a,)-(x, — a,). Then n(a, S) is the unique point in S that maximizes this
product.

Many objections were raised to Nash’s axiom of independence of irrelevant
alternatives (see, for example [2]). We shall raise another objection after introducing
some additional notation. For a pair (a, S) € U, let b(S) = (b,(S), b,(S)) be defined in
the following way:

bi(S) = sup {xe R: for some ye R (x, y)e S},
b,(S) = sup {ye R: for some xe R (x, y)e S}.
Let gs(x) be a function defined for x £ b,(S) in the following way :
gs(x) =y if(x, y)is the Pareto of (a, S),
= b,(S) if there is no such y.
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Then gg(x) is the maximum player 2 can get if player 1 gets at least x. By Assump-
tion 1 in the definition of a bargaining pair b{(S) > a; for i = 1,2. Also by the
compactness of S, b,(S) and b,(S) are finite and are attained by points inS. A
pair (a, S) will be called normalized if a = 0 = (0,0) and b(S) = (1, 1). Clearly every
game can be normalized by a unique affine transformation of the utilities. We can
restrict our attention to the values that a solution takes on the normalized pairs,
and Axiom 3 gives us a unique way to find the value of the solution for any non-
normalized pair.
Consider the two normalized pairs (0, S,) and (0, S,) where

S, = convex hull {(0, 1),(1,0),(3/4,3/4)} and
S, = convex hull {(0, 1), (1, 0).(1,0.7)}.

For any fixed value of x(0 < x < 1) there is a value of y for which (i) (x, y) € S,
and (i) if z € R such that (x, z) € S, then y > z. That is, gg,(x) < gs,(x).

Based on these facts, player 2 has a good reason to demand that he get more
in the bargaining pair (0, S,) than he does in (0, S,;). Nash’s solution of (0, ;) is
(2,2) and his solution of (0, S,) is (1, 0.7). These solutions do not satisfy player 2’s
demand.

In order to overcome this difficulty we suggest an alternative axiom.

AXIOM OF MONOTONICITY : If (a.S,) and (a, S;) are bargaining pairs such that
b,(S;) = by(S,) and gg, < gs,. then f5(a.S,) S fr(a,S,) (where f(a,S) = (f1(a,S),
fila, ).

This axiom states that if, for every utility level that player 1 may demand, the
maximum feasible utility level that player 2 can simultaneously reach is increased,
then the utility level assigned to player 2 according to the solution should also be
increased.

FIGURE 1
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3. THE UNIQUE MONOTONIC SOLUTION

THEOREM : There is one and only one solution, u, satisfying the axiom of mono-
tonicity. The function u has the following simple representation. For a pair (a, S)e U
consider the line joining a to b(S), L(a, b(S)). The maximal element (with the partial
order of R?) of S on this line is p(a. S).

This solution was discussed in 1953 by Raiffa as a possible solution for the case
when interpersonal comparison of utilities is allowed, and was arrived at experi-
mentally by Crott [1].

PROOF OF THE THEOREM : We first show that u is well defined. We let (a, S) be a
fixed bargaining pair. L(a, b(S)) has a positive slope so that the partial order of R?
induces a total order on L(a, b(S)). This implies that if L(a, b(S)) intersects S, then
there is a unique maximal element of S on it, and u(S) is well defined. The fact that
L(a, b(S)) intersects S follows from the facts that there is a point (b,(S), y) € S such
that y = a,: there is a point (x, b,(S)) € S such that x = a,, a < b(S); and S is
convex.

2“

FIGURE 2

Next we have to show that u is a solution and that it satisfies the axiom of mono-
tonicity. It is easy to see that u is symmetric. The fact that u satisfies the axiom of
Pareto optimality follows from the compactness and convexity of S. To see that u
is invariant under affine transformations of the utilities, we assume that A4 is
such a transformation and that (a, S) is a bargaining pair. The following facts are
true: (i) A preserves the partial ordering of R?; (ii) 4 maps straight lines into straight
lines : and (iii) A maps b(S) into b(A(S)). These facts and the definition of u imply
that p is invariant under affine transformations of the utilities.

The monotonicity follows from the following geometric observations. If L, is a
line of slope (0 & o & n/2) passing through a and if (a,(2), 0,()) is the intersection
point of the L, with the boundary of {xe R?:x = 0 and x < y for some ye€ S},

then if § > a. 6,(f) 2 o,(a) and if (6'P(a), 0¥ ()) is the corresponding point for

(a.S,), then o) = o\ (). M

o \
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Finally, we prove that u is the only solution that satisfies the condition of
monotonicity. It is enough to prove this fact for normalized bargaining pairs.
So let (0, S) be such a pair and f any monotonic solution. Let §; = {xe R?:x = 0
and x £ y for some y € S}. Clearly (0, S,) is a normalized bargaining pair, S; > S,
and there is no point ye S, such that y = f(0,S,) and y # f(0, S,). Therefore
f(0,S,) = f(0, S). Also the points (0, 1) and (1,0) are in S,. Let S, = convex hull
{(0, 1), (1, 0), u(0, S;)}. Then (0, S,) is a normalized bargaining pair, it is symmetric
for the two players, and S, < S;. Therefore f(0, S,) = (0, S;). Also S, contains
no point y such that y # f(0, S,) and y 2 (0, S,). Therefore f(0, S) = u(0, S,) =
(0, S), and this completes the proof.

4. FURTHER DISCUSSION

There is an interesting duality relation between Nash’s solution and the solution
presented here. Let (a, S) be a bargaining pair. Let S = {x € R*:x = a and for some
y€ S, x £ y}. Consider rectangles with sides parallel to the axes that are contained
in S. Nash’s solution, #, is the maximal element on the southwest-northeast
diagonal of the maximal area rectangle among all these rectangles. Now consider
rectangles with sides parallel to the axes and which contain S. The solution presented
here, p, is the maximal element on the southwest-northeast diagonal of the minimal
area rectangle among all such rectangles.

Both Nash’s solution and the solution presented here are continuous functions
of the pairs (a, S). Since the condition that Nash imposed on his solution and the
condition of monotonicity that we presented here may not be accepted by some
people, a natural question arises: What are all the continuous solutions (in the
sense defined here)? We know that # and p presented here are not the only con-
tinuous solutions. New solutions can be obtained by taking various types of
combinations of old solutions. Also given a solution ¢ one can obtain a whole
family of new continuous solutions F(c) as follows. Because of the invariance under
affine transformations of utilities it is enough to define a solution on all bargaining
pairs normalized in a certain way. Given a solution ¢, normalize every bargain-
ing pair (a, S) to the bargaining pair (0, ) in the unique way that carries o(a, S)
to (1, 1). Let G be a symmetric (in the two coordinates) probability measure
on D, the quarter of the unit circle that lies in R3 = {#e R?:0 > 0}. For every
O0eD let x(f) =0 and y6) = 0 if the line containing 0 and 6, L(0, 6), does not
intersect S'. If the line L(0, 0) does intersect S, let

x(0) = sup {xe R: for some ye R, (x,y)€ S N L(a,0)}, and
y(0) = sup {ye R: for some x€ R, (x,y) € S N L(a, 6)}.

Let S = (X, 7) be defined by

X= LeD x(0) dG(0),
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and
v = f W0) dG(H).
beD

Define /,(0, §') to be the maximal element of S’ on the line L(0, §). Then f;; defined
this way turns out to be a continuous solution of the bargaining problem, and we
define F(o) = { f,:G is a symmetric probability distribution on D}. If G puts all its
mass on (\fl, \/%), then f; = o. It is true that n ¢ F(u) and u ¢ F(n) so that neither
F(n) nor F(u) contains all the continuous solutions.

An interesting problem is to try to classify all the possible continuous solutions.
Solving this problem may lead us to alternative solutions to the bargaining
problem as well as to better understanding of them.

Tel-Aviv University.
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