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Abstract

We examine the marriage of recent probabilistic generatiglels
for social networks with classical frameworks from math&oz eco-
nomics. We are particularly interested in how the sta@s$titructure of
such networks influences global economic quantities sugdries vari-
ation. Our findings are a mixture of formal analysis, simolat and
experiments on an international trade data set from theedmiiations.

Track: Cognitive Science and Atrtificial Intelligence. Prefer oral presentation.

1 Introduction

Thereis a long history of research in economics on matheaiatiodels for exchange mar-
kets, and the existence and properties of their equilibriee work of Arrow and Debreu
[1954], who established equilibrium existence in a veryegahcommodities exchange
model, was certainly one of the high points of this contiguine of inquiry. The origins
of the field go back at least to Fisher [1891].

While there has been relatively recent interest in netwoddets for interaction in eco-
nomics (see Jackson [2003] for a good review), it was onltequeicently that a network or
graph-theoretic model that generalizes the classicalwhDebreu and Fisher models was
introduced (Kakade et al. [2004]). In this model, the edgea network over individual
consumers (for example) represent those pairs of consuhadisan engage in direct trade.
As such, the model captures the many real-world settings#megive rise to limitations on
the trading partners of individuals (regulatory restans, social connections, embargoes,
and so on). In addition, variations in the price of a good aésealue to the topology of
the network: certain individuals may be relatively favooedursed by their position in the
graph.

In a parallel development over the last decade or so, therbdwn an explosion of interest
in what is broadly calledsocial network theory — the study of apparently “universal”
properties of natural networks (such as small diametea) ldastering of edges, and heavy-
tailed distribution of degree), and statistical generathodels that explain such properties.
When viewed as economic networks, the assumptions of mha@irationality in these
works are usually either non-existent, or quite weak, caeghao the Arrow-Debreu or
Fisher models.

In this paper we examine classical economic exchange mudibls modern light of social
network theory. We are particularly interested in the iat¢ion between the statistical
structure of the underlying network and the variation ircesi at equilibrium. We quantify



the intuition that increased levels of connectivity in thegwork result in the equalization of
prices, and establish that certain generative models @sitine thereferential attachment
model of network formation (Barabasi and Albert [1999]) aepable of explaining the
heavy-tailed distribution of wealth first observed by Paret

Many of our results are based on a powerful deeal approximation method for global
equilibrium prices: we show that in the preferential atraeimt model, prices computed
from only local regions of a network yield strikingly goodtiesates of the global prices.
We exploit this method theoretically and computationalBur study concludes with an
application of our model to United Nations internationalke data.

2 Market Economies on Networks

We first describe the standaftsher model, which consists of a set @bnsumersand a set
of goods. We assume that there ayeunits of goodj in the market, and that each gopts
be sold at some prige;. Each consumerhas a caskndowment e;, to be used to purchase
goods in a manner that maximizes the consumers’ utilityhis paper we make the well-
studied assumption that the utility function of each consuislinear in the amount of
goods consumed (see Gale [1960]), and leave the more geasealo future research. Let
u;; > 0 denote the utility derived by on obtaining a single unit of good If ¢ consumes
z;; amount of good, then the utility; derives iszj Ui Tij-

A set ofprices {p; } andconsumption plans {z;; } constitutes awquilibriumif the follow-
ing two conditions hold:

1. The marketlears, i.e. supply equals demand. More formally, for egchy ", z;; = g;.

2. For each consumey their consumption platz;;}; is optimal. By this we mean that
the consumption plan maximizes the linear utility functmfi, subject to the constraint
that the total cost of the goods purchased /not more than the endowment

It turns out that such an equilibrium always exists if eacbdyp has a consumer which
derives nonzero utility for goog — that is,u;; > 0 for somei (see Gale [1960]). Further-
more, the equilibrium prices are unique.

We now consider thgraphical Fisher model, so named because of the introduction of a
graph-theoretic or network structure to exchange. In thsictisher model, we implicitly
assume that all goods are available in a centralized exehang all consumers have equal
access to these goods. In the graphical Fisher model, weedesiapture the fact that each
good may have multiple vendors egllers, and that individual buyers may have access
only to some, but not all, of these sellers. There are innableisettings where such asym-
metries arise. Examples include the fact that consumersrghiyipurchase their groceries
from local markets, that social connections play a maja molbusiness transactions, and
that securities regulations prevent certain pairs of eaftom engaging in stock trades.

Without loss of generality, we assume that each sellsells only one of the available
goods. (Each good may have multiple competing sellers.) A-&e a bipartite graph,
where buyers and sellers are represented as vertices, laedbak are between a buyer-
seller pair. The semantics of the graph are as follows: ifethe an edge from buyérto
sellerj, then buyei is permitted to purchase from sellgrNote that if buyei is connected
to two sellers of the same good, he will always choose to @selfrom the cheaper source,
since his utility is identical for both sellers (they selétbame good).

The graphical Fisher model is a special case of a more geaedatecently introduced
framework (Kakade et al. [2004]). One of the most interggteatures of this model is the
fact that at equilibrium, significant price variations caupaar solely due to structural prop-
erties of the underlying network. We now describe some gaivermodels of economies.



3 Generative Models for Social Networks

For simplicity, in the sequel we will without loss of genetatonsider economies in which
the numbers of buyers and sellers are equal. We will alsoickattention to the case in
which all sellers sell theame good-.

The simplest generative model for the bipartite grépmight be therandom graph, in
which each edge between a buyand a selley is included independently with probability
p. Thisis simply the bipartite version of the classical ErRenyi model (Bollobas [2001]).

Many researchers have sought more realistic models oflsueti@ork formation, in order
to explain observed phenomena such as heavy-tailed deigtebudions. \We now describe
a slight variant of thereferential attachment model (Mitzenmacher [2003]) for the case of
a bipartite graph. We start with a graph in which one buyepisnected to one seller. At
eachtime step, we add one buyer and one seller as follows. With probakiljtthe buyer
is connected to a seller in the existing graph uniformly adam; and with probability
1 — a, the buyer is connected to a seller choseproportion to the degree of the seller
(preferential attachment). Simultaneously, a sellertechied in a symmetric manner: with
probability « the seller is connected to a buyer chosen uniformly at randord with
probabilityl — « the seller is connected under preferential attachmentp@remeterty in
this model thus allows us to move between a pure preferaitethment modeh( = 0),
and a model closer to classical random graph theary=(1), in which new parties are
connected to random extant parfies

Note that the above model always produces trees, since ¢fnealef a new party is always

1 upon its introduction to the graph. We thus will also cossid variant of this model in
which at each time step, a new seller is still attached totgxaoe extant buyer, while
each new buyer is connectedug> 1 extant sellers. The procedure for edge selection is as
outlined above, with the modification that thenew edges of the buyer are added without
replacement — meaning that we resample so that each buyeatjathed to exactly
distinct sellers.

The main purpose of the introduction mis to have a model capable of generating highly
cyclical (non-tree) networks, while having just a singlegraeter that can “tune” the asym-
metry between the (number of) opportunities for buyers aliérs. There are also eco-
nomic motivations: it is natural to imagine that new sellefghe good arise only upon
obtaining their first customer, but that new buyers arriveady aware of several alterna-
tive sellers.

In the sequel, we shall refer to the generative model justri®e=d as theipartite (a, v)-
model. We will usen to denote the number of buyers and the number of sellers,eso th
network ha®n vertices. Figure 1 and its caption provide an example of wordtgener-
ated by this model, along with a discussion of its equilibriproperties.

4 Economics of the Network: Theory

We now summarize our theoretical findings. For space reasensmit all proofs. We
first present a rather intuitive “frontier” theorem, whichplies a scheme in which we can
find upper and lower bounds on the equilibrium prices usirlg tatal computations. To
state the theorem we require some definitions. First, naeahy subseV’’ of buyers
and sellers defines a naturafluced economy, where the induced grapi’ consists of all
edges between buyers and sellerd/inthat are also inG. We say thatz' has abuyer

'From a mathematical and computational standpoint, thisicten is rather weak: when con-
sidered in the graphical setting, it already contains thigngeof multiple goods with binary utility
values, since additional goods can be encoded in the nestiriture.

2\We note thaty = 1 still does not exactly produce the Erdos-Renyi model duédricremental
nature of the network generation: early buyers and selterstél more likely to have higher degree.



Figure 1: Sample network generated by the biparfite = 0,7 = 2)-model. Buyers and sellers
are labeled by ‘B’ or ‘S’ respectively, followed by an indexdicating the time step at which they
were introduced to the network. The solid edges in the fighosvgheexchange subgraph — those
pairs of buyers and sellers who actually exchange currendygaods at equilibrium. The dotted
edges are edges of the network that are unused at equililmécause they represent inferior prices
for the buyers, while the dashed edges are edges of the hetfaairhave competitive prices, but are
unused at equilibrium due to the specific consumption plguaired for market clearance. Each seller
is labeled with the price they charge at equilibrium. Thenegke exhibits non-trivial price variation
(from 2.00 down to 0.33 per unit good). Note that while thegppears to be a correlation between
seller degree and price, it is far from a deterministic iefata topic we shall examine later.

(respectively, seller) frontier if on every (simple) path i from a node inV”’ to a node
outside ofl”’, the last node iV’ on this path is a buyer (respectively, seller).

Theorem 1 (Frontier Bound) If V' has a subgraph G’ with a seller (respectively, buyer)
frontier, then the equilibrium price of any good j in the induced economy on V' is a lower
bound (respectively, upper bound) on the equilibriumpriceof j in G.

Theorem 1 implies a simple price upper bound: the price conti®é by any sellej is
bounded by its degra& Although the same upper bound can be seen from first presipl
itis instructive to apply Theorem 1. L&' be the immediate neighborhoodjofwhich isj
and itsd buyers); then the equilibrium price & is justd, since alld buyers are forced to
buy from sellerj. This provides an upper bound sinG&has a buyer frontier. Since it can
be shown that the degree distribution obeys a power law imifheertite (a, v)-model, we
have an upper bound on the cumulative price distributionugé? = (1 — a)v/(1 + v).

Theorem 2 In the bipartite («, »)-model, the proportion of sellers with price greater than
w is O(w—1/8). For example, if & = 0 (pure preferential attachment) and v = 1, the
proportion falls off as 1 /w?.

We do not yet have such a closed-form lower bound on the cuivelfarice distribution.
However, as we shall see in Section 5, the price distribsts@en in large simulation results
do indeed show power-law behavior. Interestingly, thisups@espite the fact that degree
is apoor predictor ofindividual seller price.
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Figure 2:See text for descriptions.
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Another quantity of interest is what we might call price aion — the ratio of the price
of the richest seller to the poorest seller. The followingatem addresses this.

Theorem 3 In the bipartite (a, v)-model, if a(r? + 1) < 1, then the ratio of the maximum
2—a (241

price to the minimum price scales with number of buyers n as Q(n~— 1+ )). For the
simplest casein whicha = 0 and v = 1, thislower boundisjust 2(n).

We conclude our theoretical results with a remark on priagéatian in the Erdos-Renyi
(random graph) model. It can be shown that a necessary aficientf condition for there
to beno price variation is that for any set of vertic&s |[N(S)| > |S|, whereN(S) is
the set of vertices connected by an edge to some vertéx iihis can be viewed as an
extremely weak version of standasxpansion properties well-studied in graph theory and
theoretical computer science — rather than demanding #ighhor sets be strictly larger,
we simply ask that they not be smaller. One can further shatfth largen, the probability
that a random graph (for any edge probabitity- 0) obeys this weak expansion property
approaches 1. In other words, in the Erdos-Renyi modeletisano variation in price — a
stark contrast to the preferential attachment results.

5 Economics of the Network: Simulations

We now present a number of studies on simulated networks(gtd according to the
bipartite(a, v)-model). Equilibrium computations were done using the algm of Deva-
nur et al. [2002] (or via the application of this algorithmlé@al subgraphs). We note that
it was only the recent development of this algorithm andteelanes that made possible
the simulations described here (involving hundreds of baigad sellers in highly cyclical
graphs). However, even the speed of this algorithm limitssaperiments to networks with
n = 250 if we wish to run repeated trials to reduce variance. Manyuwfresults suggest
that the local approximation schemes discussed below méayr Ineore effective.

Price and Degree Distributions: The first (leftmost) panel of Figure 2 shows empirical
cumulative price and degree distributions on a loglog scale, averaged 2b networks
drawn according to the bipartifee = 0.4, = 1)-model withn = 250. The cumulative
degree distribution is shown as a dotted line, where theiy@presents the fraction of
the sellers with degree greater than or equal,tand the degreé is plotted on the x-axis.
Similarly, the solid curve plots the fraction of sellers hvjirice greater than some value
where the pricev is shown on the x-axis. The thin sold line has our theordtigakdicted
slope of%1 = —3.33, which shows that degree distribution is quite consisteitt wur
expectations, at least in the tails. Though a natural ctufjedrom the plots is that the
price of a seller is essentially determined by its degrelvbave will see that the degree
is a rather poor predictor of an individual seller price, \hmore complex (but still local)
properties are extremely accurate predictors.



Perhaps the most interesting finding is that the tail ofattiee distribution looks lineari.e.

it also exhibits power law behavior. Our theory provided pper bound, which is precisely
the cumulative degree distribution. We do not yet have a &ilower bound. This plot
(and other experiments we have done) further confirm thestolegs of the power law
behavior in the tail, fonr < 1 andv = 1.

As discussed in the Introduction, Pareto’s original obaton was that the wealth (which
corresponds to seller price in our model) distribution inisties obey a power law, which
has been born out in many studies on western economies. Bame®’s original observa-
tion, there have been too many explanations of this phenarerecount here. However,
to our knowledge, all of these explanations are mayieamic in nature ég a dynamical

system of wealth exchange) and don't capture microscopipgaties of individual ratio-

nality. Here we have power law wealth distribution arisinyi the combination of certain
natural statistical properties of the network, and cladsieories of economic equilibrium.

Bounds via Local Computations: Recall that Theorem 1 suggests a scheme by which we
can do onlylocal computations to approximate tiggobal equilibrium price for any seller.
More precisely, for some sellgr consider the subgraph which contains all nodes that are
within distancek of j. In our bipartite setting, fok odd, this subgraph has a buyer frontier,
and for k even, this subgraph has a seller frontier, since we stam &cseller. Hence,
the equilibrium computation on the odd(respectively, eve&) subgraph will provide an
upper (respectively, lower) bound.

This provides an heuristic in which one can examine the #xjisim properties of small
regions of the graph, without having to do expensive glolgiilbrium computations.
The effectiveness of this heuristic will of course dependow fast the upper and lower
bounds tighten. In general, it is possible to create spegiiphs in which these bounds
are arbitrarily poor untik is large enough to encompass the entire graph. As we shall see
the performance of this heuristic is dramatically bettethie bipartite(a, v)-model.

The second panel in Figure 2 shows how rapidly the local #ajitim computations con-
verge to the true global equilibrium prices as a functiorkpfind also how this conver-
gence is influenced by. In these experiments, graphs were generated by the béparti
(e = 0, = 1) model. The value of. is given on the x-axis; the average errors (over
5 trials for each value of andn) in the local equilibrium computations are given on the
y-axis; and there is a separate plot for each of 4 valuek.ftirappears that for each value
of k, the quality of approximation obtained has either mild odependence on.

Furthermore, the regular spacing of the four plots on thaditigmic scaling of the y-axis
establishes the fact that the error of the local approxonatis decayingxponentially
with increased — indeed, by examining only neighborhoods of 3 steps fronilarda an
economy of hundreds, we are already able to compute appatiing to global equilibrium
prices with errors in the second decimal place. Since thaelier forn = 250 was often
aboutl7, this local graph is considerably smaller than the globakvEler, for the crudest
approximationk = 1, which corresponds exactly to using seller degree as a piaxy
price, we can see that this performs rather poorly. Comjmutally, we found that the time
required to do all 250 local computations fler= 3 was about 60% less than the global
computation, and would result in presumably greater savattgnuch larger values of

Parameter Dependencies:We now provide a brief examination of how price variation
depends on the parameters of the bipaftiter)-model. We first experimentally evaluate
the lower bounds provided in Theorem 3. The third panel ofifé® shows the maximum
to minimum price as function of (averaged over 25 trials) on a loglog scale. Each line is
for a fixed value o/, and the values af range forml to 4 (o = 0).

Recall from theorem 3, our lower bound on the rati(ﬂi@w%) (usinga = 0). We
conjecture that this lower bound is tight. If this is so, thée slopes of lines (in the



loglog plot) should beli—y, which would be(1,0.67,0.5,0.4). The estimated slopes are

somewhat close(1.02,0.71,0.57,0.53). The overall message is that for small values of
price variation increases rapidly (both theoretically argerimentally) with the economy
sizen in preferential attachment.

The rightmost panel of Figure 2 is a scatter plobofs. the maximum to minimum price

in a graph (where, = 250) . Here, each point represents the maximum to minimum price
ratio in a specific network generated by our model. The drate for economies generated
with v = 1 and the x’s are for economies generated witk 3. Here we see that in general,
increasingx dramatically decreases price variation (note that theeprtio is plotted on a
log scale). This justifies the intuition that asis increased, more “economic equality” is
introduced in the form of less preferential bias in the fatiovaof new edges. Furthermore,
the data for = 1 shows much larger variation, suggesting that a larger \@lwealso has
the effect of equalizing buyer opportunities and therefoiees.

6 An Experimental lllustration on International Trade Data

We conclude with a brief experiment exemplifying some of tideas discussed
so far.  The statistics division of the United Nations makesilable exten-
sive data sets detailing the amounts of trade between majeraign nations (see
http://unstats.un.org/unsd/comtrade). We used a datimdieating, for each pair of na-
tions, the total amount of trade in U.S. dollars betweenplaatin the year 2002.

For our purposes, we would like to extract a discrete netwbucture from this numerical
data. There are many reasonable ways this could be doneywkettescribe just one. For
each of the 70 largest nations (in terms of total trade), whude connections from that
nation to each of its tog trading partners, for some integer> 1. We are thus including
the more “important” edges for each nation. Note that eatiomavill have degree at least
k, but as we shall see, some nations will have much higher degirce they frequently
occur as a togg partner of other nations.

To further cast this extracted network into the bipartitiisg we have been considering,
we ran many trials in which each nation is randomly assignedi@ as either a buyer
or seller (which are symmetric roles), and then computedethélibrium prices of the
resulting network economy. We have thus deliberately edeah experiment in whicthe
only economic asymmetries are those determined by the undirected network structure.

The leftmost panel of Figure 3 show results for 1000 trialderrthe choicé = 3. The
upper plot shows the average equilibrium price for eactonatihere the nations have been
sorted by this average price. We can immediately see thet thelramatic price variation
due to the network structure; while many nations suffer ldajiiim prices well under $1,
the most topologically favored nations command prices 04$4U.S.), $4.01 (Germany),
$3.67 (Italy), $3.16 (France), $2.27 (Japan), and $2.0¢h@tands). The lower plot of the
leftmost panel shows a scatterplot of a nation’s degreig-and its average equilibrium
price (y-axis). We see that while there is generally a momicteelationship, at smaller
degree values there can be significant price variation (@otter of $0.50).

The center panel of Figure 3 shows identical plots for thaashk = 10. As suggested
by the theory and simulations, increasing the overall cotivity of each party radically
reduces price variation, with the highest price being jds18 and the lowest just under $1.
Interestingly, the identities of the nations commandirg ighest prices (in order, U.S.,
France, Switzerland, Germany, Italy, Spain, Netherlangsylaps significantly with the
k = 3 case, suggesting a certain robustness in the relative stostatus predicted by the
model. The lower plot demonstrates that the relationshiywéen degree and price divides
the population into “have” (degree larger than about 10) ‘dade not” (degree less than
10) components.
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Figure 3:See text for descriptions.

The preponderance of European nations among the top equititprices suggests our
final experiment, in which we simply modified thike = 3 network bymerging the 15
current members of the European Union (E.U.) into a singtmemic “mega-nation”.
This merged vertex of course has much higher degree thanfatsyoviginal constituents,
and we can view this as a (extremely) idealized experimettiéneconomic power that
might be wielded by a truly unified Europe.

The rightmost panel of Figure 3 provides the results, whershkow the relative prices and
the degree-price scatterplot for the 35 largest nations.t®p prices are now commanded
by the E.U. ($7.18), U.S. ($4.50), Japan ($2.96), Turkey3daj. and Singapore ($1.22).
The scatterplot shows a clear example in which the highegegdgheld by the U.S.) does
not command the highest price.
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