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Rules for the Semantic Web
Ian Horrocks, University of Manchester

Adding rules to the Semantic Web is certainly a contro-
versial trend. Even establishing a consensus as to what
should be understood (in this context) by rules has, in my
experience, proven extremely difficult. The answer seems
to range somewhere between “a subset of first-order
predicate calculus” and “a knowledge-based application-
development paradigm.” Here I’ll explain why I subscribe

to the former view and what benefits I believe would
accrue from this approach.

Using semantic markup
The Semantic Web rests on the fundamental idea that

Web resources should be annotated with semantic markup
that captures information about their meaning. Establish-
ing standards for semantic markup languages will be cru-
cial in developing the Semantic Web, just as establishing
the HTML standard for rendering markup was crucial for
developing the current “syntactic Web.” W3C standard-
ization efforts addressing this requirement have already
produced RDF, RDFS, and OWL—a family of ontology
languages designed to represent knowledge and add ontol-
ogy-based markup to Web resources. (See the sidebar for
acronym definitions.)

These languages say nothing, however, about how
semantic markup should be used. There does not seem to
be any good reason to agree on how applications should
exploit the information available on the Web—or even to
agree on a common application development environment.
Rather, there are good reasons to encourage heterogeneity,
as more and varied Semantic Web applications would
surely be a “good thing.” It therefore seems sensible, at
least in the context of the Semantic Web, to focus on using
rules as a knowledge representation language or paradigm
rather than in application development.

Having established that (Semantic Web) rules should be
viewed as a KR language, we can consider whether we
need them and, if so, what they should look like and what
their relationship to existing Semantic Web KR languages
(such as RDFS and OWL) should be. 

Let’s first consider their relationship to existing lan-
guages. Current proposals for a Semantic Web architec-
ture envisage a layering of languages. Great effort has
gone into maximizing interoperability (both syntactic and
semantic) between the various language layers—in par-
ticular, between RDFS and OWL. To maximize both the
utility and relevance of rules languages, as well as to avoid
fragmenting the Semantic Web, any rules language layer
should also integrate well with these existing ontology

Where Are the Rules?

Web Ontology Language is now the W3C’s candidate recommen-
dation,1 which makes me think that the promises of the Semantic
Web will come closer to being realities.2 Right? A close reading of
the famous Scientific American article and comparison with OWL
reveals, however, that OWL cannot account for rules such as “If a
city code is associated with a state code, and an address uses that
city code, then that address has the associated state code.” OWL
doesn’t even respond to trivial conversion between measures in
different systems (say meters versus feet).

At this point, the famous Semantic Web layer cake Tim Berners-
Lee developed comes in handy (www.w3.org/2001/09/06-ecdl/
slide17-0.html). Beyond a solid foundation of RDF, RDFS, and OWL,
we are missing rule standardization. This, in turn, triggers the ques-
tion that seems to be paralyzing further standardization—namely,
“Which type of rules do we actually need?” Some favorite types
include event-condition-action rules (such as triggers in databases),
first-order Horn logic axioms, semantic translation rules, and so on.

In this issue, you’ll find a range of answers, from “Do we really
need rules?” (Ian Horrocks) to “We need all different type of rules
at once!” (Gerd Wagner). Because no canonical answer seems to
exist, I guess the promises of the Semantic Web will have to wait.
But, let’s think about what the next step should be.

—Steffen Staab
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languages. We can best achieve this by giv-
ing it a first-order style semantics compati-
ble with those of RDF and OWL (and not
the minimal Herbrand model semantics
often employed by rules languages). That
is, a rule of the form A(x) ← B(x) should be
interpreted as equivalent to the first-order
predicate calculus (FOPC) sentence ∀x
B(x) → A(x). Not only would this maxi-
mize compatibility with existing ontology
languages, but it would also facilitate fur-
ther compatible extensions up to and
including full FOPC.

Under such semantics, we can view rules
simply as another subset of FOPC—in fact,
one closely corresponding with Horn logic.
We can easily show that such a language
has a substantial overlap with OWL-DL1

and that it includes the whole “first-order
subset” of RDFS.1,2 Classes and properties
would then be equivalent to unary and
binary predicates, respectively, and a rule of
the form A(x) ← B(x) would obviously be
equivalent to the RDFS/OWL-DL axiom
SubClassOf(A B).3 We can also transform
more complex rules containing conjunc-
tions and negations of unary predicates, as
well as some rules containing binary predi-
cates, into equivalent OWL-DL axioms. For
example, the rule D(y) ← C(x) ∧ R(x, y) is
equivalent to the OWL-DL axiom 

SubClassOf(C restriction
(R allValuesFrom(D))).

What rules should look like is clearly of far
less importance than their meaning. An XML-
based syntax as specified in RuleML would
be a perfectly reasonable choice. An RDF-
based syntax would also be possible, although
as with OWL this would no doubt prove
rather cumbersome and lead to similar prob-
lems if we sought correspondence between
the semantics of the rules themselves and of
the RDF triples used to encode their syntax.4

Do we need a rules language?
Having established that the semantics of

rules should be that of Horn logic and that
their syntax is relatively unimportant, let’s
now look at the first question I raised: Does
the Semantic Web need a rules language at
all? As we have seen, we can easily transform
many rules into OWL-DL axioms, so perhaps
we should simply view rules as an alternative
syntax for OWL-DL—one that we could
easily implement in suitable user interfaces.
While this approach would be useful in help-

ing those familiar with rules to use languages
like OWL-DL, rules clearly capture informa-
tion that we cannot represent in OWL-DL. 

Even apart from their obvious ability to
deal with higher arity predicates, rules pro-
vide more expressive power with respect to
binary predicates (properties)—for example,
allowing one property to be inferred from
a composition of others. A well-known
example is the assertion that the composi-
tion of “parent” and “brother” should imply
“uncle”—that is, uncle(x, z) ← parent(x,y) ∧
brother(y, z), a relationship that can’t be cap-
tured using OWL. This kind of relationship
between properties (binary predicates) is
quite common and would certainly be useful
in applications as varied as medical termi-
nologies and Web service descriptions.
Unfortunately, adding this kind of rule to
OWL-DL would lead to the undecidability
of key inference problems, such as consis-
tency (although recent research has shown
how we can extend DL in this direction
while still retaining decidability5).

To sum up, if the Semantic Web needs
rules at all, it needs them as a KR language
that is semantically compatible with exist-
ing ontology languages. Although OWL-
DL can already capture many kinds of 
rule (and vice versa), a full Horn clause
rules language would add useful expressive
power. The combination of Horn rules and
OWL-DL leads to undecidability, but we
might be willing to pay this price in some
applications. Although undecidable, the
combined language might still exhibit bet-
ter computational behavior than full FOPC.
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It Rules!
Jürgen Angele, Ontoprise GmbH

The World Wide Web is the largest know-
ledge base ever built; you can find all kinds
of information on it. Making even parts of
the Web interpretable by computers would
drastically revolutionize current business
processes and even create new business mod-
els. This is the goal of the next-generation
Web: the Semantic Web.

To make information interpretable by
computers, an appropriate KR formalism
must represent it. (See the sidebar for a defi-
nition of this and other acronyms.) For this
purpose, so-called ontologies represent a
special domain’s knowledge. Emerging
standards for ontology languages are RDF
and OWL. RDFS is a simple, conceptual
language that supports classes with binary
relationships to other classes, hierarchies of
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classes and relationships with attribute
inheritance, and instances of classes. OWL
adds DL primitives to RDFS.1

In all our ontology projects, numerous
instances play a crucial role. In contrast to
the schema information ontologies provide,
instances represent the real content of infor-
mation. This is similar to databases where
the schema only provides information about
the data’s structure and constraints, but the
content of tables in the relational case gives
the important information. Most domains
require relations between objects that are
much more complex than simple binary
relations can express. In the Halo project
(www.projecthalo.com), my colleagues
and I recently developed an ontology for
chemistry that represents information such
as “If, in an aqueous solution, ion A and ion
B recombine to a new substance C, and C
isn’t soluble in water, then the chemical
reaction looks like A + B → “C.” The basis
for this complex relation between A, B, and C
is numerous different chemical substances
and ions and their properties. So far, it’s impos-
sible to represent such complex relations in
OWL, and we don’t foresee being able to infer
such complex relations using OWL exten-
sions with a reasonable performance. On the
other hand, rules might easily express com-
plex relations such as the example just given.
For example, our Halo ontology contains
some 400 rules about such chemical interac-
tions, and there are evaluation engines such as
XSB (http://xsb.sourceforge.net) or Onto-
Broker2 that very efficiently evaluate rules.

What properties does such a rule
language require? It must have a clear and
declarative semantics. Experience in expert
systems shows that production rule systems
have obscure behavior and so are hard to
maintain. Predicate logics provide a good
basis for such a rule language. While Prolog
is an often-cited basis for predicate logics,
primitives such as assert, cut, fail, and so
forth make Prolog more like a production
rule system than a declarative KR language.

The rule language’s expressive power
must be sufficient. The language has to sup-
port function symbols and negation. For an
object-oriented representation function in
particular, symbols are mandatory because
of their ability to give object identities a
logical semantics.

A rule language must seamlessly inte-
grate into the OO paradigm provided by
RDFS or OWL. This means that there must
be an OO syntax to access the concepts and

their relationships and instances and their
relations. The syntax of pure predicate logic
syntax is inadequate because flat predicates
alone represent all relations. 

For a rule language, constructing high-
performance reasoning engines must be
feasible given the state-of-the-art knowl-
edge about evaluating ontologies with rules.
So, reasoning’s performance on numerous
instances is really crucial because, as I
already mentioned, it’s the most frequent
necessity in enterprise-scale, ontology-
based applications such as Web services. 

Some languages and systems that satisfy
these requirements are already available.
The first system to integrate RDFS and
rules was SILRI (Simple Logic-based RDF
Interpreter). The SILRI engine adds F-logic
rules3 to RDFS ontologies. F-logic has an
OO syntax and is based on a declarative
semantics. OntoBroker and FLORA4 are
examples of efficient F-logic implementa-
tions. TRIPLE is a recent variant of F-logic
that has simpler syntax but still satisfies the
mentioned requirements.5

A combination of OWL and rules is in
discussion. Most primitives of OWL are
translatable to a Horn rule-based represen-
tation.6 In ontologies translated from OWL
to Horn, logic reasoners based on Horn
logics are much faster than OWL reasoners
on the original model.6 On the other hand,
some primitives remain based on subsump-
tion in OWL that might be important for
tasks—such as ontology aligning and ontol-
ogy integration—that can’t easily be trans-
lated into Horn logics. The challenge for
standardizing an ontology language is to
combine the advantages of both paradigms
with a common understandable syntax and
a clear declarative semantics.
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Semantic Rules
Stefan Decker, Information Sciences
Institute

Motivations
Not surprisingly, everyone perceives the

Semantic Web in a different way. One view
is that it’s about semantics, and semantics is
about KR. (See the sidebar for a definition of
this and other acronyms.) So, you could
believe that all that’s required to make the
Semantic Web a reality is rehashing the
existing work on KR and providing it with a
fashionable syntax (XML suits it just fine),
and—voilà—the Semantic Web is born. The
problem with this view is that it’s hard to see
why everybody should suddenly start doing
KR.

Another view—maybe a more practical
one—is that the Semantic Web is about over-
coming the syntax of data so that users and
developers can concentrate on the semantics
of information. This means that languages
and tools for the Semantic Web must be
oriented on practical problems rather than
generic KR tasks. That is, they should make
it easier and cheaper to publish, understand,
use, and reuse data and services on the Web
in an interoperable, scalable way. Languages
that help define how different data sets and
vocabularies relate to each other are neces-
sary; they provide the glue between (dis-
tributed) information systems and data sets.

This view also has consequences for
designing rule languages for the Semantic
Web: no magic bullet exists for driving
down cost to establish interoperability. Cur-
rently it’s still an art that usually involves a
programmer and a lot of time. Although
establishing interoperability by writing
code works fine on a small scale (for example,
to establish interoperability between two
companies), it doesn’t scale to the Semantic
Web, which requires dynamic interopera-
tion among many information providers.

To attack that problem, writing rules to
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establish interoperation is usually faster and
cheaper than writing program code (for
example, in Java) because rules aren’t bur-
dened with the details of general program-
ming languages. Rules provide benefits over
a software product’s life cycle; they are sim-
pler to write than code, more concise, and
easier to understand, share, and maintain. 

Standardizing such a rule language has
several benefits. The standardization makes
it feasible for consumers as well as vendors
of rule engines to invest into the infrastruc-
ture. It also enables competition to drive
innovation because you can compare dif-
ferent rule engines implementing the same
standard. And last but not least, it simpli-
fies interoperation by rule sharing. Because
rule engine users can now exchange the rules
on how to achieve interoperability, they can
also share in the development (and thus cost)
of interoperation rules.

Implications
I can derive several requirements and

implications from the scenario that a rule
language should serve as a data transforma-
tion and glue language.

A rule language for mission-critical tasks
needs a defined semantics (as a basis for
implementation) and efficient evaluation
mechanisms. Deductive databases and logic
programming provide a solid, application-
driven, performance-oriented background
and numerous techniques and mechanisms.

A data transformation rule language must
be based on the lowest common denomina-
tor. In the Semantic Web’s case it’s RDF,
which means a rule language has to support
RDF querying, derivation, transformation,
and generation. Support for RDF implies
more requirements, such as support for
namespaces, XML querying, and the ability
to reason with distributed data and thus
contexts in which the data appears.

Expressing declarative statements about
how data must be transformed requires KR
mechanisms, because defining these rules is
essentially capturing knowledge about how
to achieve interoperability. The logic pro-
gramming community has investigated these
mechanisms. Applicable mechanisms in-
clude nonmonotonic negation,1 explicit
negation,2 Lloyd-Topor transformation,3

object orientation (F-logic,4 for example),
and preference mechanisms. The need to
apply KR principles also implies that SQL
isn’t an ideal basis for such a query and rule
language: a KR language must be under-

standable to not only computers but also
humans. It should be have a concise, appeal-
ing syntax. Any SQL-based syntax for RDF
rules makes it cumbersome to express all but
the most trivial relationships and dependen-
cies between data items.

Different modeling languages are already
or will be defined on top of RDF, such as
OWL, RDF-S, UML, and Topic Maps. A
rule language must be able to query and rea-
son not only with plain RDF but also with the
semantics of modeling languages. Because
a fixed set of modeling languages doesn’t
exist (and new modeling languages are
invented every day), a rule language must be
able to cope flexibly with the semantics of
modeling languages. An RDF query and
rule language lacking this ability needs a
language-specific query and inference sys-
tem for each modeling, shifting the effort
from integrating data to integrating query
and inference systems. 

Realization
Realizing the rule language I’ve outlined

requires different efforts. A working group
must define the language’s syntax and se-
mantics in such a way that convinces open-
source and commercial developers to invest
their time and money. My colleagues and I
have worked toward such a language by
developing TRIPLE (an RDF query, interface,
and transformation language),5 which ful-
fills many of the requirements mentioned
earlier. More developments are necessary,
and efforts such as FORUM (http://forum.
semanticweb.org) can be the next step and
deliver a crucial piece of infrastructure for
the Semantic Web.

Usage
The existence of a fairly easy, deployable,

and usable rule language implementation will
likely have an effect comparable to the first
Web browser. It offered immediate gratifica-
tion by delivering nicely formatted HTML
pages created for the Web, providing an
incentive to create pages others could view.
By creating and exploiting a network effect,
the rule language could potentially get peo-
ple to use and integrate Web data in their
applications, which in turn provides an
incentive for information providers to cre-
ate and publish data.
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The Semantic Web Needs a
Logic for Rules and Objects
Michael Kifer, Stony Brook University

OWL specifies basic semantic informa-
tion in a standardized, machine-processible
way. (See the sidebar for a definition of this
and other acronyms.) However, the key here
is the word “basic.” OWL is mainly the
language of facts and constraints, and the
main type of inference it supports is what is
provided by DL—namely, subsumption. If
the Semantic Web were all about subsump-
tion, then I would say that it is much ado
about nothing. For the Web to exhibit intel-
ligence that draws on the semantic informa-
tion encoded in ontologies, more powerful
declarative languages are needed. Other-
wise, most of the so-called knowledge will
stay encoded in Java or C programs, and the
would-be promise of the Semantic Web will
be wasted.

To realize the Semantic Web’s full poten-
tial, we need another semantic layer, which,
in my mind, should be a rule language. What
kind of rule language? Triggers? Forward-
chaining systems based on the RETE algo-
rithm, such as  OPS5 or CLIPS? I don’t think
so. The logical semantics of these languages
is suspect. Even operationally, forward-
firing rules are hard to control, and this par-
adigm is not readily amenable to modular,
top-down program development. Although
these types of rules are widely used, the
reason, I believe, has more to do with their
wide availability, easy implementation, and
good integration with Java.
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My own analysis of several applications
built using forward-firing systems shows
that programmers often try to simulate Pro-
log-style top-down inference through inge-
nious techniques for controlling rule fir-
ing—unfortunately, at the expense of clarity.
I remember seeing a sample program in an
ancient (mid 80s) CLIPS manual, which con-
tained (for that particular example) the main
elements of the well-known Magic Sets
method.1 The author tried to show readers
how to efficiently solve the problem at hand.
For all I know, this example might be older
than the first incarnation of the Magic Sets
method. This imitation of the workings of
Prolog is a good example of the effort that
might be required to make productive use of
forward-firing systems.

If programmers of the forward-firing sys-
tems are trying to imitate Prolog, why not
use Prolog in the first place? “Pure” Prolog
is firmly based on FOL and provides a solid
paradigm for top-down program develop-
ment. However, several key problems were
responsible for Prolog’s lack of success,
including these:

• The control structure in Prolog programs
is only marginally better than that of
OPS5-like systems. At the same time,
Prolog’s language is more complex, and,
to take advantage of its power, you must
resort to numerous nonlogical features.

• Prolog lacks native support for complex
objects and object-oriented program-
ming. The support for metaprogramming
(an important requirement on the Web)
is powerful but ad hoc and nonlogical.

Fortunately, significant progress has been
made on both of these issues. First, cross-
pollination between the research in deduc-
tive databases and logic programming gave
birth to the Magic Sets method and, perhaps
more important, to its top-down counter-
part, the tabled evaluation techniques for
logic programs.2 I believe that the invention
of the tabling method was more important,
because it offered a way to capitalize on the
vast experience accumulated by the imple-
menters of WAM-based Prolog engines.
XSB (http://xsb.sourceforge.net) was the
first, most complete, and best-known sys-
tem of this kind. This system largely solves
the first problem, as it enables declarative
programming using logic without undue
worry about the operational semantics of
the underlying engine.

The development of F-logic solved the
second problem. F-logic extends classical
predicate logic with complex objects and
most of the typical elements of the OO para-
digm.3 F-logic is related to logic-based OO
modeling and programming in the same way
that predicate calculus is to standard logic
programming. Recent systems such as FLORA-
2 (http://flora.sourceforge. net), Triple (http://
triple.semanticweb.org), and the commercial
OntoBroker (http://www.ontoprise.de) attest
to the viability of F-logic-based languages.

These solutions make Prolog-style rule
languages more accessible to the average
user. In the future, I envision that this
access will be mediated by a variety of tools
that would target different categories of
users: naive users (who will use only simple
rules), nonprogrammer knowledge engi-
neers (who will be exposed to simple rules
as well as to F-logic’s OO features), and,
finally, programmers (who would have full
access to the rule language). Eventually,
various extensions will be added to this rule
language, such as those needed to support
contradictory and probabilistic knowledge.
This vision is consistent with the ongoing
effort around RuleML (www.ruleml.org),
which tries to develop a single, extensible
XML-based syntactic framework for cap-
turing different varieties of rules.
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Rules and RuleML in the
Semantic Web
Benjamin Grosof, MIT Sloan School of
Management

Over the last two and a half years, the
Semantic Web community has reached a
broad consensus that the Semantic Web vision
includes not only ontologies in the manner of

W3C’s OWL, but also rules. (See the sidebar
for a definition of this and other acronyms.)

The leading approach to
Semantic Web rules

RuleML, an XML markup language for
rules based on declarative logic programs,
has emerged as the leading standardization
approach to rules for the Semantic Web. I
cofounded and cochair the RuleML Initia-
tive, which aims to enable Web-based inter-
operability between heterogeneous rule
systems and applications. I also cochair the
closely related DAML Rules effort, which
is currently the main focus of the Joint
Committee that developed DAML+OIL,
OWL’s close predecessor.

Declarative KR
Standards should be founded on tech-

niques that are well established at a research
level. The only approach to making the
Semantic Web be “semantic” that is well
understood—and well accepted—from a
substantial body of previous research is to
found it on declarative KR. RuleML, like
OWL and RDF, shares this approach. Each
of these languages starts with an underlying
declarative KR, which has an associated
semantics, then adds Webized syntax.

I mean declarative here in the sense of
(AI) KR theory. A given set of premises
entails a set of sanctioned conclusions,
independent of inferencing control strategy
or procedural aspects. For example, those
sanctioned conclusions are independent of
whether the inferencing direction is back-
ward (goal-directed query answering) or
forward (data driven). Employing declara-
tive KR greatly facilitates reuse, and multi-
ple kinds of uses, of knowledge. It lets a
knowledge-based application (that is, agent)
anticipate precisely and completely the
meaning another agent will draw from the
communicated (or shared) knowledge. In
particular, declarative rules, as compared to
general-purpose program code, provide a
relatively high level of conceptual abstrac-
tion that helps nonprogrammers understand,
specify, and dynamically modify and merge
them. They are executable, but you can
manage them as data, separate from code.

Webized here means using the Web’s
overall open spirit and its standards suite—
particularly XML, URIs (uniform resource
identifiers), and namespaces—to support
multiauthored, widely distributed knowl-
edge modules. RuleML initially empha-
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sized XML as the syntax form to facilitate
building tools for translation and inferenc-
ing. RuleML has since added an RDF syn-
tax and a human-oriented string syntax (as
well as an abstract syntax that bridges all
these). However, for rules, as for ontolo-
gies, the most crucial design choice is that
of underlying fundamental KR.

Commercially important rule
systems
Four families of rule systems are the most
currently commercially important (CCI)
ones: SQL relational databases, Prolog, pro-
duction rules—such as OPS5, CLIPS, and
JESS—and event-condition-action (ECA)
rules. You’ll often find these kinds of rules
embedded in systems built using object-
oriented programming languages (such as
C++ and Java). These rule systems are often
used for business process connectors or
workflow, and they’ve achieved growing
commercial presence since the 1980s, with
manifold diverse e-business applications
today. Hundreds of thousands of developers
and millions of IT users are familiar with
one or more of these CCI families—espe-
cially SQL and, to a lesser extent, Prolog,
including through academic training. (Like-
wise, many are familiar with Horn FOL.)

Declarative logic programs as
shared KR

RuleML takes as a prime requirement that
a Semantic Web rules language must support
interoperability among rule-using appli-
cations (agents) that use heterogeneous
members of these CCI rule systems. A key
observation underpinning RuleML’s design
rationale is that these four families all have 
a common core abstraction: the declar-
ative logic programs (LP) KR. RuleML
has, accordingly, started with this KR.

In particular, the Datalog Horn case of LP is
RuleML’s kernel expressiveness. A relatively
simple core that all four CCI families share, this
case is the most well-studied LP subset and is
logically monotonic. It’s a subset of classical
FOL (and a moderate weakening of Datalog
Horn FOL: conclusions are essentially
restricted to ground atoms). Datalog Horn LP is
also the heart of SQL—that is, of relational
algebra. It is computationally tractable (poly-
nomial-time inferencing, given a bounded
number of logical variables per rule), which
enables practical scalability and inferential
completeness. Datalog here means that logical
functions (beyond zero arity) are prohibited.

Nonmonotonicity and
procedural attachments

To this kernel, RuleML evolutionarily adds
a family of extensions for various expressive
features and restrictions—according to estab-
lished research and driven by applications
needs. Extensions that enable nonmonoto-
nicity and procedural attachments are espe-
cially important. Negation-as-failure is a
nonmonotonic feature that exists in all the
CCI families and is heavily used in all of
them except SQL. LP with NAF (“ordi-
nary” or “normal” LP) has been well stud-
ied. I have proposed the design of two other
major features, both heavily used in all the
CCI families, which the RuleML Initiative
is currently discussing. The first is the non-
monotonic feature of prioritized conflict
handling. Examples include priority between
rules in Prolog based on static rule sequence,
dynamically computed priorities among
rules in production rule and ECA rule sys-
tems, inheritance with exceptions, and
updating in databases (where more recent
assertions override previous ones).

The second feature is procedural attach-
ments, to perform actions triggered by draw-
ing conclusions and to perform queries when
testing rule antecedent conditions. The Situ-
ated Courteous extension of LP (SCLP),1

which I have developed, includes all three
features (NAF, prioritized conflict handling,
procedural attachments). It’s declarative and
preserves tractability. However, it’s not as
well studied as ordinary LP. RuleML also
defines several other expressive extensions
and expressive restrictions.

Classical logic is not enough
The first major attempt at standardizing

a declarative KR for knowledge interchange
was the Knowledge Interchange Format.
Used primarily for research systems, KIF
basically preceded the Web. KIF and its
close successor (Simple) CommonLogic—
an early phase standards effort—are based
on the underlying KR of FOL, which is pop-
ular among mathematicians. However, FOL
fundamentally lacks the ability to express
nonmonotonicity or procedural attachments,
and (beyond LP) has thus not become widely
deployed for commercial applications—
partly owing also to its intractability.

Supporting LP’s overlap with
classical logic

LP and FOL overlap, but not completely.
So do LP and OWL’s underlying DL KR,

which is a subset of FOL. It’s important to
support non-LP FOL (for example, material
implications between complex formulas) as
an additional direction of expressiveness
for rules. For example, this is useful in the
Description Logic Programs approach2 that
my colleagues and I have developed to
combine the semantics of LP and DL,
where RuleML LP rules refer to or import
ontological knowledge from OWL DL (for
example, class definitions or property predi-
cates). The Lloyd-Topor transformation
provides a rich expressive LP extension
that is tractably reducible to ordinary LP.3

Limited classical (“strong”) negation is
another such extension.1 CommonLogic
and LP RuleML can and should share syn-
tax as well as semantics to a great extent.
RuleML has led the development of such
Webized syntax. Indeed, it would be rea-
sonable to treat, and develop, Common-
Logic as part of the RuleML family.

Challenges and exciting
opportunities in services

Rules promise to be useful in various new
Semantic Web services applications—for
example, our work on e-contracts, financial
knowledge integration, and travel packages.
Much more than ontologies, rules can actu-
ally do stuff. However, achieving the full
vision of Semantic Web rules will require
more research. We must further understand
how LP relates to DL and FOL and how to
reconceive rule KR as essentially highly
distributed, especially when featuring non-
monotonicity, procedural attachments, and
events. We need more KRs closely related to
rules—notably, probabilistic, inductive, and
constraint-based—for the full Semantic Web
vision, yet few have addressed these in stan-
dardization efforts.
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Seven Golden Rules for a Web
Rule Language
Gerd Wagner, Eindhoven University of
Technology

Yes, we do need a Web rule language.
Rules and rule markup languages such as
RuleML will play an important role in the
Semantic Web’s success. Rule expressions
will be used in Web applications for defining
derived terms based on a taxonomy, specify-
ing validation constraints, representing orga-
nizational policies and business rules, speci-
fying a software agent’s behavior, and many
other purposes (see http://tmitwww.tm.tue.
nl/staff/gwagner/myRuleML/What_is_a_
rule.html). Rule markup languages will be
the vehicle for using rules on the Web. They
will let users deploy, execute, publish, and
communicate rules, and also serve as a lin-
gua franca for exchanging rules between
different systems and tools.

In a narrow sense, a Web rule language
is a concrete (XML-based) rule syntax. In a
broader sense, it should have an abstract
syntax as a common basis for defining vari-
ous concrete sublanguages serving differ-
ent purposes.

RuleML, in its current version 0.8, is
insufficient as a general Web rule language.
However, with some syntactic simplifica-
tions, it is a good starting point.

A Web rule language should have a for-

mal semantics. However, there might be
language constructs, which don’t have a
formal semantics based on classical FOL
but are needed to deal with certain practical
problems. We should avoid two dangers
related to this trade-off:

• Adopting practical language constructs
(such as procedural attachments), that
seem to be important and have some intu-
itive (but not formal) semantics, even
though alternatives with formal (but
nonstandard) semantics exist

• Paying too much attention to theoretical
issues of standard FOL (see the sidebar
for a definition of this and other acro-
nyms), such as computational (asymp-
totic worst- case) complexity, decidabil-
ity, and compactness

A Web rule language standardization effort
should pay special attention to the concerns of
the users of SQL and Prolog and to produc-
tion rules (CLIPS, JESS, ILOG, and so on).
It must let these users map their language’s
most important constructs. My general advice
about such an effort is summarized in seven
golden rules (GRs).

GR 1: Relational databases are
more important than FOL

Many KR formalisms strictly (or blindly?)
follow classical FOL and ignore the 
nonclassical inference features and rule

concepts, which have proved essential in
relational databases such as three-valued
connectives, nonmonotonic queries, and
(state-changing) trigger rules. A Web rule
language cannot afford to ignore these fun-
damental information-processing concepts,
which require abandoning classical logic.

GR 2: UML is more important
than OWL

UML represents a larger body of infor-
mation, knowledge-modeling experience,
and expertise than OWL does. UML includes
an expressive language for integrity con-
straints. These constraint expressions also
form a kind of rule (an integrity rule) and
should be covered by a Web rule language.
Remarkably, UML also provides more sup-
port for advanced ontological constructs.
For example, it supports part-whole rela-
tionships (with aggregation and composi-
tion) and powertypes as classes whose
instances are subclasses of another class
(BiologicalSpecies and PassengerAircraft are exam-
ples of powertypes).

GR 3: Rules are not
implications

Although an implication is an expression
of a logical formula language, typically
possessing a truth value, a derivation rule
does not possess a truth value; instead, it
generates derived sentences. Logics exist
that don’t have an implication connective
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but do have a derivation rule concept. In
standard logics (such as classical and intu-
itionistic logic), a close relationship exists
between a derivation rule (also called a
sequent) and the corresponding implica-
tional formula—they both have the same
models. For nonmonotonic rules (for exam-
ple, with negation-as-failure), this is no
longer the case. The intended models of
such a rule are, in general, not the same as
the intended models of the corresponding
implication. 

GR 4: Web rules are not just
Horn clauses

This golden rule is a corollary of GR 3.
Because Horn clauses are a limited type 
of implication, and rules are not implica-
tions (according to GR 3), it follows that
Web rules are not just Horn clauses. Web
rules are rule expressions used in Web docu-
ments and in Web applications. They must
be much more expressive than Horn clauses
(see http://lists.w3.org/Archives/Public/
www-rdf-rules/2001Sep/0079.html). 

GR 5: Web rules should be able
to express database rules

In Web applications, we should expect

similar uses of rules as in databases. This
consideration suggests that a Web rule lan-
guage must accommodate 

• SQL assertions: integrity rules
• SQL views: nonmonotonic derivation

rules with three-valued connectives and
open and closed predicates

• SQL triggers: reaction rules, which are
limited to update events 

GR 6: A Web rule language
should let users express and
implement business rules

Business rules refer to the hundreds, if
not thousands, of policies, procedures, and
definitions that govern how a company
operates and interacts with its customers
and partners. The literature has identified
three basic types of business rules:1

• Integrity rules: assertions that must hold
in all evolving states and state transition
histories of an enterprise viewed as a
discrete, dynamic system. Example:
“The driver of a rental car must be at
least 25 years old.”

• Derivation rules: statements of knowledge

that is derived from other knowledge by an
inference or a mathematical calculation.
Example: “A gold customer is a customer
with more than $1 million on deposit.”

• Reaction rules: expressions of policies
specifying actions in response to events.
Example: “When a share price drops by
more than five percent and the investment
is exempt from profit tax, then sell it.”

GR 7: A Web rule language
should allow for multiple
purposes, multiple languages,
and multiple semantics

The Web is a pluralistic world, no matter
if it is semantic or not. There will be multi-
ple purposes, multiple languages, and mul-
tiple semantics for Web rules. The real
challenge is to dvelop an integrated meta-
model, or abstract syntax, that supports this
plurality.
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