
Distributed Partial Constraint Satisfaction

Problem

Katsutoshi Hirayama1 and Makoto Yokoo2

1 Kobe University of Mercantile Marine
5-1-1 Fukae-minami-machi, Higashinada-ku, Kobe 658, JAPAN

E-mail: hirayama@ti.kshosen.ac.jp
2 NTT Communication Science Laboratories

2-2 Hikaridai, Seika-cho, Soraku-gun, Kyoto 619-02, JAPAN

E-mail: yokoo@cslab.kecl.ntt.co.jp

Abstract. Many problems in multi-agent systems can be described as
Distributed Constraint Satisfaction Problems (Distributed CSPs), where

the goal is to �nd a set of assignments to variables that satis�es all

constraints among agents. However, when real-life application problems
are formalized as Distributed CSPs, they are often over-constrained and

have no solution that satis�es all constraints. This paper provides the

Distributed Partial Constraint Satisfaction Problem (DPCSP) as a new
framework for dealing with over-constrained situations. We also present

new algorithms for solving Distributed Maximal Constraint Satisfaction

Problems (DMCSPs), which is an important subset of DPCSPs. The

algorithms are called the Synchronous Branch and Bound (SBB) and

the Iterative Distributed Breakout (IDB). Both algorithms were tested

on hard classes of over-constrained random binary Distributed CSPs.
The results can be summarized as SBB is preferable when we are mainly

concerned with the optimality of a solution, while IDB is preferable when

we want to get a nearly optimal solution quickly.

1 Introduction

Many problems in AI can be formalized as a Constraint Satisfaction Problem

(CSP), and many researchers have investigated the problem and its algorithm

for many years. However, as AI has begun to encounter more realistic problems

in the real world, we have found that certain kind of problems in the real world

cannot be treated in the conventional CSP framework, and several studies have

been made in order to extend the traditional CSP framework.

In [14], Yokoo et al. presented Distributed Constraint Satisfaction Problems

(Distributed CSPs) as the general framework for dealing with problems in multi-

agent systems. A Distributed CSP can be considered a CSP in which variables

and constraints are distributed among multiple agents and the agents are re-

quired to satisfy all constraints by communicating with each other. Many prob-

lems in multi-agent systems, such as distributed interpretation problems[9], dis-

tributed resource allocation problems[3], distributed scheduling problems[11],

and multi-agent truth maintenance systems[7], can be formalized as Distributed

CSPs.

On the other hand, when a problem designer tries to describe a real-life prob-

lem as a CSP, the resulting CSP is often over-constrained and has no solutions.

For such an over-constrained CSP, almost all conventional CSP algorithms just

produce a result that says there is no solution. If we are interested in solutions

for practical use, the designer has to go back to the design phase and to �nd

another design so that the CSP is not over-constrained. Freuder extended the

CSP framework and provided Partial Constraint Satisfaction Problems (PCSPs),

which is one of the approaches to over-constrained CSPs[4]. In PCSPs, we are

required to �nd consistent assignments to an allowable relaxed problem.

Although Distributed CSPs and PCSPs extend the traditional CSP frame-

work in di�erent directions, they are not mutually exclusive. It is not only pos-

sible to combine these extensions, but also bene�cial because the problems in

multi-agent systems can also be over-constrained. This paper provides a formal

framework for over-constrained Distributed CSPs, the Distributed Partial Con-

straint Satisfaction Problem (DPCSP), and presents two algorithms for solving

Distributed Maximal Constraint Satisfaction Problems (DMCSPs), which is a

very important subset of DPCSPs. These algorithms are called the Synchronous

Branch and Bound (SBB) and the Iterative Distributed Breakout (IDB).

This paper is organized as follows. Section 2 introduces the de�nition of a Dis-

tributed CSP, and Section 3 de�nes a DPCSP. Algorithms for solving a DMCSP

are presented in Section 4, and Section 5 presents an experimental evaluation on

randomly generated over-constrained Distributed CSPs. Conclusions are given

in Section 6.

2 Distributed Constraint Satisfaction Problem

A CSP consists of a pair (V , C), where V is a set of variables, each with a �nite

and discrete domain, and C is a set of constraints. The domain of a variable is

a set of values, each of which can be assigned to the variable. Each constraint

is de�ned over some subset of variables and limits the allowed combinations of

variable values in the subset. Solving a CSP involves �nding one set of assign-

ments to variables that satis�es all constraints. In some cases, the goal is to �nd

all sets of such assignments.

A Distributed CSP can be considered a CSP in which variables and con-

straints are distributed among multiple agents. To put it formally,

{ there exists a set of agents, 1; 2; : : : ;m;

{ for each variable xj , an agent i is de�ned such that xj belongs to i. We mean

xj belongs to i by belongs(xj; i);

{ a constraint Cl is known by an agent i. The predicate known(Cl; i) is used

to express that.

We assume, in general, that an agent knows only those constraints relevant to

the variables that belong to it. Note that some constraints known by an agent

may include other agents' variables, not just its own variables. We refer to such

a constraint as an inter-agent constraint. A Distributed CSP is solved when the

following conditions are satis�ed for all agents. For each agent i,

Q

Q

Q

Q

X1

X2

X3

X4

Fig. 1. Example of CSPs (4-queens problem)

{ a variable xj has a value dj as its assignment for 8xj belongs(xj; i);

{ a constraint Cl is true under the above assignments for 8Cl known(Cl; i).

Figure 1 illustrates a 4-queens problem, which is a typical CSP. When we

view this as a problem where each of four agents tries to determine each queen's

position independently, this problem can be described as a Distributed CSP.

The algorithms for a Distributed CSP must �nd a solution as quickly as

possible. An agent in a Distributed CSP has only limited knowledge of the

entire problem, and thus important things for the algorithms include how agents

communicate with each other and what information is transferred.

3 Partial Constraint Satisfaction Problem

A PCSP is formally described as the following three components[4]:

h(P;U); (PS;�); (M; (N;S))i;

where P is a CSP, U is a set of 'universes', i.e., a set of potential values for each

variable in P , (PS;�) is a problem space with PS a set of CSPs and � a partial

order over PS, M is a distance function over the problem space, and (N;S) are

necessary and su�cient bounds on the distance between P and some solvable

member of PS. We leave the details of each component to [4] due to space

limitations. A solution of a PCSP is a solvable problem P 0 from the problem

space and its solution, where the distance between P and P 0 is less than N . Any

solution will su�ce if the distance between P and P 0 is not more than S, and

all search can terminate when such a solution is found. An optimal solution to a

PCSP is de�ned as a solution with a minimal distance between P and P 0, and

the minimal distance is called an optimal distance.

4 Distributed Partial Constraint Satisfaction Problem

4.1 Motivation

It is likely that various application problems in multi-agent systems are over-

constrained.

In a distributed interpretation problem[9], each agent is assigned the task to

interpret a part of the sensor data, produce possible interpretations, and help

build a globally consistent interpretation through communicating possible inter-

pretations among all of the agents. If an agent makes incorrect interpretations

because of errors in the process|for example, noise on the sensor data| there

may be a situation where no globally consistent interpretation exists.

Multi-stage negotiation[3] is a kind of distributed resource allocation prob-

lem. Each agent in this problem has a goal (variable) and possible plans to

achieve the goal (domain of the variable), and there can be resource conicts

between plan executions by di�erent agents (constraints). The goal of this prob-

lem is to �nd a combination of plans that achieve the goals of all agents at a

certain time. It is likely that all the goals cannot be achieved without violating

some constraints if not enough resources are available.

While the ordinary Distributed CSP framework does require satisfaction of

all constraints among agents, it does not give any indication of how we should

handle over-constrained Distributed CSPs. Thus it makes sense to extend the

Distributed CSP framework to enable handling of over-constrained Distributed

CSPs. In [13], Yokoo proposed a method for over-constrained Distributed CSPs

by introducing constraint hierarchy[1] and relaxing the less important constraints

if there exists no solution. This method can be applied to problems where con-

straints are hierarchically structured. However, we recognize that constraints

are not always hierarchically structured, and this method is thus unsatisfactory

for covering all problems. This research provides a new framework, called the

DPCSP, for handling over-constrained Distributed CSPs.

4.2 De�nition

A DPCSP is formalized as:

{ a set of agents, 1; 2; : : : ;m;

{ a PCSP for each agent i, h(Pi; Ui); (PSi;�); (Mi; (Ni; Si))i;

{ a global distance function, G,

where Pi is agent i's original CSP that consists of variables belonging to i and

constraints that are known by i, Ui is a set of 'universes', i.e., a set of potential

values for each variable in Pi, (PSi;�) is a problem space for agent i with PSi
a set of CSPs and � a partial order over PSi, Mi is i's distance function over

the problem space, and (Ni; Si) are i's necessary and su�cient bounds on the

distance between Pi and some solvable member of PSi. The purpose of agent

i is to �nd a solvable CSP, P 0

i
, from the problem space PSi and its solution,

where the distance between Pi and P 0

i
is less than Ni. Any solution will su�ce

for agent i if the distance between Pi and P 0

i
is not more than Si.

A DPCSP is solved when each of the agents, say i, �nds a solvable CSP

from the problem space and its solution, such that the distance di between the

solvable CSP and the original CSP is less than Ni. We refer to such solvable

CSPs and their solutions as a solution to the DPCSP. Any solution to a DPCSP

will su�ce if every solution to an individual PCSP su�ces. For each solution to

a DPCSP, we de�ne a global distance function G(d1; d2; : : : ; dm), which returns

the distance of the solution. Using this function, an optimal solution is de�ned

as the solution with a minimum distance, and we call the minimum distance an

optimal distance.

In this paper, we specify the above setting for a DPCSP as follows:

{ for each agent i, CSPs in PSi are produced by removing possible combina-

tions of constraints from Pi;

{ the distance between Pi and P 0

i
(a solvable CSP in PSi) is measured as the

number of constraints removed from Pi;

{ a global distance function, G(d1; d2; : : : ; dm), is speci�ed by maxi di.

We call this class of DPCSPs Distributed Maximal Constraint Satisfaction Prob-

lems (DMCSPs). The goal of agent i for a DMCSP is to �nd a solvable CSP

and its solution with the number of removed constraints less than Ni. To put

it another way, the goal is to �nd assignments to the variables in Pi with the

number of violated constraints in Pi less than Ni.

A DMCSP is solved when each agent, say i, �nds assignments with the num-

ber of violated constraints less than Ni. We refer to the set of assignments as

a solution to the DMCSP. Among solutions to the DMCSP, it is the optimal

solution that minimizes maxi di, where di is the number of violated constraints

on Pi. We call such minimal value of maxi di an optimal distance for the DM-

CSP. An optimal solution to a DMCSP ensures that we cannot �nd a solution

to the DMCSP, where each agent has assignments with the number of violated

constraints less than the optimal distance.

DMCSPs seem to be a reasonable and important class of DPCSPs, but we

could de�ne other classes of DPCSPs. Those classes may include the one that

consists of the same de�nitions as DMCSPs except for G, for example, usingP
m

i=1
di instead of maxi di for G. This class is designed to get an optimal solution

with the total number of violated constraints over agents minimized. However, it

allows an optimal solution in which the number of violated constraints is globally

minimized while the violated constraints are concentrated on speci�c agents. We

suppose that might not be a preferable feature for multi-agents systems in terms

of equality among agents.

1 2 3

4 5 6

a b

c d e f g

h i

Fig. 2. Distributed 2-coloring problem

4.3 Example

Figure 2 shows a distributed 2-coloring problem to illustrate a DMCSP. A node

represents a variable and an agent that has the variable. An edge represents a

constraint, which means the two connected nodes must be painted in di�erent

colors (black or white). An agent knows only the constraints that are relevant

to its variable. For example, Agent 1 knows only fa; c; dg. The original CSP for

agent 1 (i.e., P1) consists of a variable: f1g with a domain of fwhite, blackg

and constraints: fa; c; dg. The current distance of agent 1 is one because it just

violates the constraint d, and for other agents: one for agent 2, agent 5 and

agent 6, and zero for agent 3 and agent 4. Suppose Ni = 2(i = 1; 2; : : : ; 6), the

DMCSP is already solved since the current distances for all agents are less than

Ni. The DMCSP with Ni = 1(i = 1; 2; : : : ; 6), however, is not solved in this

�gure because the distances for agent 1, agent 2, agent 5, and agent 6 are not

less than Ni. Note that there is no set of assignments that makes the maximal

number of constraint violations over agents less than one, and thus the set of

assignments in �gure 2 is the optimal solution to the DMCSP where the optimal

distance is one.

5 Algorithms for Distributed Maximal Constraint

Satisfaction Problem

In this paper, we develop algorithms that �nd the optimal solution of a DMCSP,

which is one of the most important classes in DPCSPs.

The simplest algorithms for DMCSPs belong to the class called centralized

algorithms. One of the the centralized algorithms follows this procedure: agents

run some leader election algorithm to elect one leader; send all distributed PC-

SPs to the leader; the leader solves those gathered PCSPs using some maximal

constraint satisfaction algorithm[5], while others are idle. If we were interested

only in e�ciency and not in other aspects, the centralized algorithms might

outperform other algorithms because they can make better use of the global

knowledge of the entire problem. However, we believe such algorithms are not

suitable for a distributed environment from a privacy and security standpoint

(who on earth wants to expose an individual's schedule or private information to

others?). We therefore develop algorithms on the assumption that each agent's

knowledge of the entire problem should remain limited throughout the execu-

tion of the algorithms. The algorithms we present in this paper are Synchronous

Branch and Bound (SBB) and Iterative Distributed Breakout (IDB).

5.1 Assumption

First of all, we assume the following conditions on the communication model.

These assumptions are quite reasonable for asynchronous communication sys-

tems.

{ One agent sends messages to the others directly if it knows their addresses.

At �rst an agent knows only the addresses of neighbors, a set of agents which

share the same inter-agent constraints.

{ Although the delay in delivering a message is �nite, an upper bound is un-

known.

{ Between any two agents, messages are received in the order in which they

were sent.

Next we introduce the following restrictions on the problem. These are just

for simplicity, and we can easily generalize our method for larger contexts.

{ Each agent has exactly one variable.

{ All constraints are binary, i.e. de�ned over two variables.

5.2 Synchronous Branch and Bound

Synchronous Branch and Bound (SBB) is a simple algorithm that simulates the

branch and bound method for Max-CSPs[5] in a distributed environment. In

SBB, variable/agent and value ordering are �xed in advance, and a path, partial

assignments for all variables, is exchanged vamong agents to be extended to a

complete path. This extension process runs sequentially. To be concrete:

{ the �rst agent in the ordering initiates the algorithm by sending a path that

contains only its �rst value to the second agent;

{ when receiving a path from the previous agent in the agent ordering, an

agent evaluates the path and the �rst value of its domain in value ordering,

and then sends the path plus the value as a new path to the next agent if

its evaluation value is less than the current upper bound, or continues to try

next values if the evaluation value is not less than the bound. If values are

exhausted, it backtracks to the previous agent by returning the path;

{ when receiving a path from the next agent in the agent ordering, an agent

changes its assignment to the next value in its value ordering, reevaluates

the new path, and sends it to the next if its evaluation value is less than the

bound, or if not, continues to try next values. Another backtrack takes place

if values are exhausted.

An element of a path actually consists of a variable, a value for the variable,

and the number of constraint violations caused by the value. We measure the

evaluation value of a path as the maximal number of constraint violations over

the variables on the path, and the upper bound as the minimum evaluation value

over those of complete paths found so far. Details of SBB are shown in Figure

3.

Since SBB just simulates the branch and bound method in a distributed

environment, it appears obvious that SBB is correct. Soundness is guaranteed

since SBB terminates i� �nding a complete path whose evaluation value is not

more than a uniform initial value of Si or �nding no such complete path exists.

With sequential control over agents and �xed variable/value orderings, SBB

enables agents to do an exhaustive search in distributed search spaces. This

ensures that SBB is complete, i.e., it eventually �nds a su�cient solution or

�nds that there exists no such solution and terminates.

On the other hand, SBB does not allow agents to assign or change their

variable values in parallel, and thus SBB cannot take advantage of parallelism.

5.3 Iterative Distributed Breakout

Outline Distributed Breakout[15] was developed for solving Distributed CSPs.

This method is characterized by hill-climbing in parallel while excluding neigh-

bors' simultaneous action[6] and the breakout method[10] as a strategy for escap-

ing from quasi-local-minima. In Distributed Breakout, each agent �rst initializes

its assignment arbitrarily, sends its assignment to neighbors with ok? messages,

and then repeats the following:

{ when knowing the current assignments of neighbors by receiving ok? mes-

sages, an agent evaluates its current assignment by counting the number of

violated constraints and also measures the degree of improvement with an

evaluation value (called improve) if the agent changed the assignment to

another. The value of improve is sent to neighbors with improve messages;

{ when knowing the current improves of neighbors by receiving improve mes-

sages, an agent compares each of them with its own improve, and transfers

the right to change an assignment by skipping its next change if the neigh-

bor's improve is greater than its own improve or does not transfer this right

procedure initiate
di ← first value in domain;
send (token, [[xi, di, 0]], ni) to the next agent;

when i received (token, current_path, ub) from the previous agent do
previous_path ← current_path;
ni ← ub;
next ← get_next(domain);
send_token; end do;

when i received (token, current_path, ub) from the next agent do
[xi, di, nvi] ← the element related to xi in current_path;
ni ← ub;
next ← get_next(domain minus all elements up to di)
send_token; end do;

procedure send_token
i f next ≠ ‘exhausted’ then

i f i = the last agent then
next_to_next ← next;
while next_to_next ≠ ‘exhausted’ do

best_path ← new_path;
ni ← max nvj in best_path;
when ni ≤ si do

terminate the algorithm; end do;
next_to_next ← get_next(domain minus all elements up to next_to_next);

end do;
send (token, previous_path, ni) to the previous agent;

e l se
send (token, new_path, ni) to the next agent; end i f;

e l se
i f i = the first agent then

terminate the algorithm;
e l se

send (token, previous_path, ni) to the previous agent; end i f; end i f;

procedure get_next(domain)
i f domain = nil then

return ‘exhausted’;
e l se

di ← first value in domain;
new_path ← nil;
counter ← 0;
i f check(previous_path) then

return di;
e l se

return get_next(domain minus di); end i f; end i f;

procedure check(path)
i f path = nil then

append [xi, di, counter] to new_path;
return true;

e l se
[xj, dj, nvj] ← first element in path;
i f [xi, di] and [xj, dj] are not consistent then

counter ← counter + 1;
i f counter ≥ ni or nvj + 1 ≥ ni then

return false
e l se

append [xj, dj, nvj + 1] to new_path;
return check(path minus first element); end i f;

e l se
append [xj, dj, nvj] to new_path;
return check(path minus first element); end i f; end i f;

Fig. 3. Synchronous Branch and Bound. Variable(agent) and value ordering are given

in advance, and both ni and si for 8i have uniform values as their initial values. The

initial value of si should be zero when searching for an optimal solution. The procedure
should be initiated only by the �rst agent in the ordering.

if it's smaller. Ties are broken by comparing agent identi�ers. Only the win-

ners for the right to change actually change their assignments, and then all

agents send the current assignments to neighbors with ok? messages.

This repeated process sometimes leads to a solution to a Distributed CSP. How-

ever, it often gets stuck when some agent falls into a quasi-local-minimum, where

it has at least one constraint violation and has no way to reduce the number of

constraint violations. Distributed Breakout provides an e�cient way to escape

from such a quasi-local-minimum. It just increases weights of violated constraints

at a quasi-local-minimum and changes an assignment by evaluating current as-

signments as a weighted sum of violated constraints.

While each agent in the Distributed Breakout synchronizes its assignment

change among neighbors, the overall assignment changes run in parallel. The

method is thus especially e�cient for critical problem instances with solutions.

Another advantage is that it incorporates a procedure to detect whether the al-

gorithm �nds a global solution, in contrast with previous distributed constraint

satisfaction algorithms that need to invoke the snapshot algorithm[2] for detec-

tion. On the other hand, one major drawback is that Distributed Breakout is

not complete, i.e., it may fail to �nd a solution even if one exists and also cannot

determine that no solution exists.

Iterative Distributed Breakout (IDB) is a method for DMCSPs in which

a variant of Distributed Breakout is repetitively applied to an instance of a

DMCSP. The operation of IDB is: set a uniform constant value ub to each agent's

necessary bound Ni and run the Distributed Breakout; if the distances of all

agents become less than Ni, the agent that detects this fact sets its Ni to ub� 1

and propagates its value to makeNi for all agents ub�1. This process is continued

until some agent detects that a solution to a DMCSP with 8i Ni = Si + 1 is

found.

Detail IDB is very similar to Distributed Breakout. It does, however, introduce

some extension for handling necessary bounds on distance. The bounds are ex-

changed by ok? and improvemessages, both of which are also used in Distributed

Breakout. This paper focuses on the part that handles the necessary bounds and

leaves details about the other parts, which are the same as in Distributed Break-

out, to [15].

{ Before starting IDB, an agent assigns a uniform value to its necessary bound.

We currently give each agent a predetermined value.

{ When receiving ok? messages from all neighbors, an agent i counts the num-

ber of violated constraints and then sets zero as the evaluation value of its

current assignment if the number is less than Ni or, if not, the agent pro-

ceeds as in Distributed Breakout. IDB thus permits an agent to have an

assignment with the number of violated constraints less than Ni.

{ For Distributed Breakout, it is guaranteed that each agent is satis�ed when

some agent's termination counter exceeds diameter (a diameter of graph).

It is also guaranteed for IDB that each agent �nds a solution to its individual

PCSP with Ni when some agent's termination counter exceeds diameter.

The agent that �nds this fact decreases its Ni by one and sends the new

value with ok? and improve messages.

{ When receiving the new value for necessary bounds, an agent knows that

it's time for the transition of necessary bounds and sets a variable broadcast

to true. That forces termination counter to remain at zero.

The details of IDB are shown in Figure 4.

We can prove inductively that the termination detection of each iteration

of IDB is correct by the following fact: some agent i with Ni = ub increases

its termination counter from d to d + 1 i� each of i's neighbors has ub as the

value of its necessary bound, has an assignment with the number of violated

constraints less than ub, and has a termination counter value of d or more.

IDB terminates i� detecting the iteration with Ni = Si + 1 terminates. This is

when each agent's distance becomes no more than Si. That indicates that IDB

is sound.

While SBB is sequential in terms of value assignments, IDB enables parallel

value assignments. However, IDB is not complete, i.e., it may fail to get an

optimal solution to a DMCSP; besides, it cannot decide whether a solution is

optimal or not even if it actually gets an optimal solution.

6 Evaluation

This section presents an experimental evaluation of SBB and IDB.

We tested both methods on random binary distributed CSPs, which are de-

scribed as hn;m; p
1
; p
2
i. One problem instance was generated by distributing

variables and constraints of an instance of random binary CSPs with those 4

parameters. We distributed them such that each agent has exactly one variable

and constraints relevant to the variable. The parameters of random binary CSPs

are: n is the number of variables; m is the number of values for each variable; p1
is the proportion of variable pairs that are constrained; and p

2
is the proportion

of prohibited value pairs between two constrained variables. When generating

an instance of random binary CSPs with hn;m; p1; p2i, we randomly selected

n(n� 1)p1=2 pairs of variables, and for each variable pair we set up a constraint

such that randomly selected m2p2 pairs of values are prohibited.

In the experiments, we chose classes of random binary CSPs with n = m =

10, p1 taking values from f18=45; 27=45; 36=45; 45=45g, and p2 from f0:8; 0:9g.

These classes of problems are known to be relatively hard ones for Max-CSPs[8].

Accordingly, we believe that they are suitable for the problems used to evaluate

the methods.

Both SBB and IDB are implemented on a discrete event simulator that sim-

ulates concurrent activities of multiple agents. On the simulator, there exists

a virtual agent called manager, which maintains a simulated clock and deliv-

ers messages among agents. One cycle of computation consists of: the manager

gathers all messages issued by agents, increments one time unit (called cycle),

procedure init iat e
current_value ← the value randomly chosen from domain;
send (ok?, xi, current_value, ni) to neighbors;
goto wait_ok? mode;

wait_ok? mode
when i received (ok?, xj, dj, ub) do

counter ← counter + 1; add (xj, dj) to agent_view;
when ub ≠ ni do

ni ← min(ni, ub); broadcast ← true; end do;
i f counter = number_of_neighbors then

when ni ≤ si and broadcast = false do
terminate the algorithm; end do;

send_improve;
counter ← 0; broadcast ← false;
goto wait_improve mode;

e l se
goto wait_ok? mode; end i f; end do;

procedure send_improve
i f # of currently violated constraints < ni, then

current_eval ← 0;
e l se

current_eval ← evaluation value of current_value; end i f;
my_improve ← possible maximal improvement;
new_value ← the value which gives the maximal improvement;
i f current_eval = 0 and broadcast = false then

consistent ← true;
e l se

consistent ← false; my_termination_counter ← 0; end i f;
i f my_improve > 0 then

can_move ← true; quasi_local_minimum ← false;
e l se

can_move ← false; quasi_local_minimum ← true; end i f;
send (improve, xi, my_improve, current_eval, my_termination_counter, ni) to neighbors;

wait_improve mode
when i received (improve, xj, improve, eval, termination_counter, ub) do

counter ← counter + 1;
my_termination_counter ← min(termination_counter, my_termination_counter);
when ub ≠ ni do

ni ← min(ni, ub); broadcast ← true; end do;
when improve > my_improve do

can_move ← false; quasi_local_minimum ← false; end do;
when improve = my_improve and xj precedes xi do

can_move ← false; end do;
when eval > 0 do

consistent ← false; end do;
i f counter = number_of_neighbors then

when ni ≤ si and broadcast = false do
terminate the algorithm; end do;

send_ok; counter ← 0; broadcast ← false; clear agent_view;
goto wait_ok? mode;

e l se
goto wait_improve mode; end i f; end do;

procedure send_ok
when consistent = true and broadcast = false do

increment my_termination_counter;
when my_termination_counter = diameter do

ni ← ni − 1; my_termination_counter ← 0; end do; end do;
when quasi_local_minimum = true do

increase the weights of violated constraints; end do;
when can_move = true do

current_value ← new_value; end do;

Fig. 4. Iterative Distributed Breakout. Both ni and si for 8i have uniform values
as their initial values. The initial value of si should be zero when searching for an

optimal solution. The procedure should be initialized by each agent before receiving

any message.

problem class median cycle mean optimal distance

h10; 10; 18=45; 0:8i 3500 1.0

h10; 10; 18=45; 0:9i 18262 2.0
h10; 10; 27=45; 0:8i 46247 2.4

h10; 10; 27=45; 0:9i 499841 3.4

h10; 10; 36=45; 0:8i 336416 3.6

h10; 10; 36=45; 0:9i 1985700 5.0

h10; 10; 45=45; 0:8i 3435984 4.9

h10; 10; 45=45; 0:9i 21834077 6.0

Table 1. Median cycles for Synchronous Branch and Bound for �nding an optimal

solution.

and sends the messages to corresponding agents; agents then do their local com-

putation and send messages. We evaluate the cost of algorithms in terms of

cycles.

6.1 Cost of Finding an Optimal Solution

Since it is guaranteed that SBB �nds an optimal solution, we can mea-

sure SBB's cost of �nding an optimal solution as cycles to be consumed un-

til SBB �nds it. In the experiments, we applied SBB to each of 25 instances

randomly generated for each class of problem. Note that we used conjunctive

width heuristics(width/domain-size)[12] for variable ordering and lexical order

for value ordering. Also note that the initial value of 8iNi was set to the value

of the maximum degree of a constraint graph minus one, and that of 8iSi was

zero. Table 1 illustrates the median cycle for �nding an optimal solution and the

mean optimal distance over 25 instances for each class. The cost of �nding an

optimal solution by SBB clearly seems to be very high.

On the other hand, IDB may fail to get an optimal solution, as stated above,

and thus we cannot measure the cost in terms of cycles to get it. However, we

conducted an experiment to determine how often IDB fails to get an optimal

solution. In this experiment, we ran 10 trials of IDB with randomly chosen initial

assignments for each of 25 instances for the class of n = m = 10; p1 = 27=45; p2 =

0:8 (250 trials in total). Note that the initial values of 8iNi and 8iSi for IDB

are the same as those for SBB. As a results, IDB obtained optimal solutions in

30 trials within the cycle at which SBB found optimal solutions.

6.2 Anytime Curves

Next we compared IDB with SBB in terms of anytime curves. An anytime

curve illustrates how the evaluation value of the best solution found so far is

improved as time proceeds. We show an anytime curve for each algorithm on

the x-y plane with the x axis being the number of cycles passed by and the y

2

3

4

5

6

7

8

0 1000 2000 3000 4000 5000 6000

SBB

IDB

M
ax

im
al

 d
is

ta
nc

e
ov

er
 a

ge
nt

s

Cycle

Optimal

Fig. 5. Anytime Curve for an instance of h10; 10; 27=45; 0:9i

axis being the evaluation value (maximum number of constraint violations over

agents) of the best solution found so far.

The thick line in Figure 5 shows an anytime curve using SBB for an instance

of a class of n = m = 10; p
1
= 27=45; p

2
= 0:9. For this instance, SBB �nds an

optimal solution with the minimum cycles. The dotted line shows an anytime

curve for IDB with the same instance. For IDB, an evaluation value at a certain

cycle is averaged over the results of 10 trials with the same instance.

As shown in Figure 5, while the curve of SBB eventually converges to the

optimal distance, it declines relatively slowly. IDB, on the other hand, has a rapid

drop at the beginning, and after that keeps steady at a nearly optimal distance.

That is not peculiar to this instance but can be seen in other instances of this

class or other classes. We conducted the same experiment with other classes and

measured the number of cycles IDB consumes to reach a nearly optimal distance.

We also measured the number of cycles SBB consumes to outperform the nearly

optimal distance. Table 2 shows for each class the measured number of cycles

problem class nearly-optimal (optimal) cycle for IDB cycle for SBB

h10; 10; 18=45; 0:8i 2.2 (1) 100 417
h10; 10; 18=45; 0:9i 3.6 (2) 46 585

h10; 10; 27=45; 0:8i 3.6 (2) 508 2052

h10; 10; 27=45; 0:9i 4.2 (3) 196 3716
h10; 10; 36=45; 0:8i 4.6 (3) 3416 6360

h10; 10; 36=45; 0:9i 6.0 (4) 344 200145

h10; 10; 45=45; 0:8i 5.8 (4) 438 258753
h10; 10; 45=45; 0:9i 7.3 (6) 90 45696

Table 2. Cycles to �nd nearly-optimal solutions

for the nearly optimal distance with the real optimal distance in parentheses.

We can see that IDB reaches the nearly optimal distance much sooner than does

SBB for all classes.

7 Conclusions

We have presented Distributed Partial Constraint Satisfaction Problems as a

new framework for dealing with over-constrained Distributed CSPs. Since many

problems in multi-agent systems can be described as Distributed CSPs that are

possibly over-constrained, we expect DPCSPs to have great potential in various

applications.

We have also presented Synchronous Branch and Bound and Iterative Dis-

tributed Breakout for solving Distributed Maximal Constraint Satisfaction Prob-

lems, which are a very important subset of DPCSPs. Our experimental results

on random binary Distributed CSPs show that SBB is preferable when we are

concerned with the optimality of a solution, while IDB is preferable when we

want to get a nearly optimal solution quickly. Our future work will include de-

veloping more e�cient algorithms for DMCSPs and applying this framework to

real-life application problems.

References

1. A. Borning, B. Freeman-Benson and M. Wilson. Constraint hierarchies. In Lisp

and Symbolic Computation, Vol. 5, pp. 223{270, 1992.

2. K. Chandy and L. Lamport. Distributed snapshots: Determining global states of

distributed systems. ACM Transaction on Computer Systems, Vol. 3, No. 1, pp.
63{75, 1985.

3. S. E. Conry, K. Kuwabara, V. R. Lesser and R. A. Meyer. Multistage negotiation

for distributed constraint satisfaction. IEEE Transactions on Systems, Man and

Cybernetics, Vol. 21, No. 6, pp. 1462{1477, 1991.

4. E. C. Freuder. Partial constraint satisfaction. In Proceedings of the Eleventh In-

ternational Joint Conference on Arti�cial Intelligence, pp. 278{283, 1989.

5. E. C. Freuder and R. J. Wallace. Partial constraint satisfaction. Arti�cial Intelli-
gence, Vol. 58, No. 1{3, pp. 21{70, 1992.

6. K. Hirayama and J. Toyoda. Forming coalitions for breaking deadlocks. In Pro-

ceedings of First International Conference on Multi-Agent Systems, pp. 155{162,
1995.

7. M. N. Huhns and D. M. Bridgeland. Multiagent truth maintenance. IEEE Trans-

actions on Systems, Man and Cybernetics, Vol. 21, No. 6, pp. 1437{1445, 1991.
8. J. Larrosa and P. Meseguer. Phase transition in max-csp. In Proceedings of the

Twelfth European Conference on Arti�cial Intelligence, pp. 190{194, 1996.

9. V. R. Lesser and D. D. Corkill. The distributed vehicle monitoring testbed: A tool
for investigating distributed problem solving networks. AI Magazine, Vol. 4, No. 3,

pp. 15{33, 1983.

10. P. Morris. The breakout method for escaping from local minima. In Proceedings

of the Eleventh National Conference on Arti�cial Intelligence, pp. 40{45, 1993.

11. K. P. Sycara, S. Roth, N. Sadeh and M. Fox. Distributed constrained heuristic

search. IEEE Transactions on Systems, Man and Cybernetics, Vol. 21, No. 6, pp.

1446{1461, 1991.

12. R. J. Wallace and E. C. Freuder. Conjunctive width heuristics for maximal con-

straint satisfaction. In Proceedings of the Eleventh National Conference on Arti�-

cial Intelligence, pp. 762{768, 1993.

13. M. Yokoo. Constraint relaxation in distributed constraint satisfaction problem. In

5th International Conference on Tools with Arti�cial Intelligence, pp. 56{63, 1993.

14. M. Yokoo, E. H. Durfee, T. Ishida and K. Kuwabara. Distributed constraint sat-

isfaction for formalizing distributed problem solving. In Proceedings of the Twelfth

IEEE International Conference on Distributed Computing Systems, pp. 614{621,
1992.

15. M. Yokoo and K. Hirayama. Distributed breakout algorithm for solving dis-

tributed constraint satisfaction problems. In Proceedings of Second International

Conference on Multi-Agent Systems, pp. 401{408, 1996.

This article was processed using the LaTEX macro package with LLNCS style

