
Intelligent Agents for Intrusion Detection

Guy G. Helmer,† Johnny S. K. Wong, Vasant Honavar, and Les Miller
Iowa State University, Ames, Iowa 50011

† This work supported in part by the Applied Mathematical Sciences Program of the Ames Laboratory, U. S. Department of Energy under
contract number W-7405-ENG-82.

Abstract

This paper focuses on intrusion detection and
countermeasures with respect to widely-used
operating systems and networks. The design and
architecture of an intrusion detection system built
from distributed agents is proposed to implement an
intelli gent system on which data mining can be
performed to provide global, temporal views of an
entire networked system.

A starting point for agent intelli gence in our
system is the research into the use of machine
learning over system call traces from the privileged
sendmail program on UNIX. We use a rule
learning algorithm to classify the system call traces
for intrusion detection purposes and show the results.

INTRODUCTION

Our experience in managing networks of
computer systems with known vulnerabiliti es has
resulted in the investigation of the problem of
detecting misuse of computer systems [4]. Because
of the effort required to monitor systems and
networks manually, we could not easily detect either
attempts at misuse or successful attacks without the
help of intelligent intrusion detection systems.

We propose an artificially intelli gent system for
intrusion detection and countermeasures on computer
systems in a network environment using data mining
technology. The system would be built using
distributed intelli gent agents to apply a data mining
approach to intrusion detection. Data gathering
agents will render system logs and activity data into
common formats while low-level agents classify
recent activities and provide data and current
classification states to each other and to a higher
level of agents that implement data mining over the
entire knowledge and data sources of the system.

RELATED WORK

Projects related to our intrusion detection project
include DIDS, Computer Immunology, JAM, and
EMERALD.

The Distributed Intrusion Detection System
(DIDS) [8] uses a combination of host monitors and
local area network monitors to monitor system &
network activities with a centralized director
aggregating information from the monitors to detect
intrusions. It is similar to our agent system for
intrusion detection and countermeasures in that it
uses multiple monitors and artificial intelli gence
algorithms to determine the severity of events. DIDS
differs from our system in that the intelli gence is
purely centralized, and it does not make use of any
agent technology.

The Computer Immunology project [6] explored
designs of intrusion detection systems that can
effectively detect and defend intrusions in a
networked computer system in a manner similar to
the immune system in animals. One portion of the
project [5] researched a method that could provide a
component of an immune system for computers.
They developed a sense of “self” for privileged
programs by creating a database of normal and
abnormal system call traces for instances of
execution of the programs.

The Java Agents for Meta-Learning (JAM)
Project [11] is the most similar to our proposed agent
system for intrusion detection and countermeasures
in that it used intelli gent, distributed Java agents to
learn models of fraud and intrusive behavior. The
knowledge learned by the distributed Java agents can
be exchanged and used to help train other agents that
can identify attacks based on the combined
knowledge. The JAM project built on the work done
by Forrest et. al [5] in the area of identifying attacks
against privileged programs. A portion of our work
derives from this idea of detecting intrusions based
on system call traces of privileged programs [7].

The SRI EMERALD project addresses the
problems of network intrusions via TCP/IP data
streams [10]. EMERALD’s design is similar to
DIDS’s in that network surveill ance monitors
observe local area network traff ic and submit
analysis reports to an enterprise monitor, which
correlates the reports. Like DIDS, EMERALD

appears to concentrate the intelligence in a central
system and does not incorporate any agent
technology.

DESIGN AND IMPLEMENTATION OF THE
AGENT-BASED SYSTEM

A system of intelligent agents using collaborative
information and mobile agent technologies [1] [9] is
developed to implement a prototype intrusion
detection system [3].

The goals of the system design are to:
• Learn to detect intrusions on hosts and via

networks using individual agents targeted at
particular subsystems;

• Use agent technologies to intelligently process
audit data at the sources by using mobile agents;

• Have agents collaborate to share information on
suspicious events and determine when to be more
vigilant or more relaxed;

• Apply data mining techniques to the
heterogeneous data and knowledge sources to
identify and react to coordinated attacks on multiple
subsystems.

A notable feature of the intrusion detection
system based on data mining is the support it offers
for gathering and operating on data and knowledge
sources from the entire observed system. The system
could identify sources of concerted or multistage
attacks, initiate countermeasures in response to the
attack, and provide supporting documentation for
system administrators that would help in procedural
or legal action taken against the attacker.

An example of an attack involving more than one
subsystem would be a combined NFS and rlogin
attack. In the first step, an attacker would determine
an NFS filehandle for an .rhosts file or
/etc/hosts.equiv (assuming the appropriate
filesystems are exported by the UNIX system) [12].
Using the NFS filehandle, the attacker would re-write
the file to give himself login privileges to the
attacked host. Then, using rlogin from the formerly
untrusted host, the attacker would be able to login to
an account on the attacked host, since the attacked
host now mistakenly trusts the attacker. At this
point, the attacker may be able to further compromise
the system. The intrusion detection system based on
data mining would be able to correlate these attacks,
help identify the origin of the attack, and support
system management in responding to the attack.

System Design

The components of the agent-based intrusion
detection system are shown in Figure 1. Distributed
data cleaning agents process data obtained from log
files, network protocol monitors, and system activity
monitors on heterogeneous systems. A lower-level
layer of agents, just above the data cleaning agents in
the system architecture, form the first level of
intrusion detection. Using mobile agent technology,
these agents travel to each of their associated data
cleaning agents, gather recent information, and
classify the data to determine whether suspicious
activity is occurring. Like the JAM system [11], the
agents will be able to use a variety of classification
algorithms, the choice of which will depend on the
data. Unlike the JAM system, though, the agents at
this level will collaborate to cooperatively set their
suspicion level so as to determine whether a
suspicious action is more severe in the presence of
other suspicious activity.

At the top level, intelligent agents maintain the
data warehouse by combining knowledge and data
from the lower layer of agents and applying data
mining algorithms to discover associations,
suspicious events that occur together with some
frequency, and patterns. Because the data warehouse
would provide a global, temporal view of the
knowledge and activity of the monitored distributed
system, we believe this system could help train
system administrators to spot & defend attacks as
well as assist system administrators in developing
better protections and countermeasures for their
systems and identifying new attacks.

The user interface to the agent-based intrusion
detection system directs the operation of the agents in
the system and shows the status reported by the low-
level agents. When the data warehouse portion of the
system is developed, the user interface will provide

User
Interface

Data
Warehouse

Low-Level
Agent:

System Calls

Low-Level
Agent:

Network

Low-Level
Agent:

Authentication

Low-Level
Agents: Other

Functions

Data Cleaner:
System Calls

Data Cleaner:
Network

Data Cleaner:
Authentication

Events

Data Cleaners:
Other

Functions

Figure 1: Architecture of the Intrusion Detection
System

access to its features, including managing the
knowledge in the warehouse and applying mining
functions to discover associations and correlations
from the stored knowledge.

SYSTEM CALL TRACES

To develop a prototype intelli gent agent for our
intrusion detection system, we used data made
available by the University of New Mexico
containing system call traces for normal and abusive
use of the sendmail program as run on SunOS 4.

It has been shown that system call traces can be
used to identify anomalous use of privileged
programs and thus determine whether this class of
attacks are being mounted against a system. Forrest
et. al [5] developed databases of system calls from
normal and anomalous uses of two privileged
programs, sendmail and lpr. They showed that a
database of known good sequences can be developed
from a reasonably sized set of sendmail
executions, and then they showed that intrusive
behavior can be determined by comparing system
call sequences against the database of known good
sequences. [7] used the data from Forrest’s project to
show that a rule learning algorithm can learn to
classify normal and abnormal system call sequences.

The University of New Mexico system call data is
simply a set of f iles consisting of lines giving a
process ID number (PID) and system call number. [7]
shows the use of a window of length k+1 with a step
size of 1 across the system call trace sequence, where
k is varied in different experiments to determine the
best window length. When used on training data,
each window is classified “normal” if it matches a
window obtained from proper operations of
sendmail, else the window is classified
“abnormal” . An example of system call windows
and training labels are shown below in Table 1.

System Call Sequences (k=6) Label

4, 2, 66, 66, 4, 138, 66 Normal

2, 66, 66, 4, 138, 66, 5 Normal

66, 66, 4, 138, 66, 5, 5 Normal

66, 4, 138, 66, 5, 5, 4 Abnormal

4, 138, 66, 5, 5, 4, 39 Abnormal

Table 1: Sample System Call Windows With
Training Labels

We duplicated the JAM approach [7] of grouping
system calls into sequences and using the RIPPER
[2] learning algorithm to classify system call
windows.

In the JAM approach, the quality of the learned
classification rules is determined by the gap between

the normal sendmail testing traces and the
abnormal trace with the lowest “% abnormal regions”
score. In our first experiment, we computed a gap of
0.47%, which is disturbingly smaller than the 1.9%
seen in [7] Experiment B. However, the more
dangerous attacks, such as sscp, syslog-local, and
syslog-remote, were clearly identified using this
approach, as their percentage of abnormal regions are
at least an order of magnitude larger than the percent
of abnormal regions seen from the normal
sendmail.

In our second experiment, where we used a
different technique to assemble the training data, the
computed gap was 0.71%, which again was smaller
than the 1.9% seen in Lee’s Experiment B. We
attribute the discrepancies in our results as due to the
differences in selection of the training data, which [7]
does not explain in detail.

EXTENDING THE SYSTEM CALL EXPERIMENT

A feature vector technique was proposed for
application to the system call traces, using a single bit
to indicate whether a particular sequence appeared in
a sequence of system calls. This feature vector can
then be used with any number of learning algorithms,
allowing us to easily compare the performance of
other algorithms to RIPPER. With the sequence
window set to 7, 1112 normal sequences and 704
abnormal sequences were seen in the sendmail
system call data. Thus, a bit vector of length 1816
was used as the feature vector for the sendmail
traces. Feature vectors were computed on a per-PID
basis from the sendmail system call traces.

The same training data selection technique was
used for the feature vector technique as was used for
the previous two experiments. 80% of the PID files
for normal traces and all of the PID files for the four
selected anomalous traces were used as training data.
Since the set of abnormal training data was quite
small (15 records) in proportion to the set of normal
training data (520 records), the set of abnormal
training data was duplicated 36 times so that 540
abnormal records were present in the training data as
opposed to the 520 normal records. RIPPER quickly
learned a very simple rule set, consisting of 4 fairly
simple rules, as opposed to the 208 rules RIPPER
learned in one of the previous experiments.

The rule set learned by RIPPER from this data
produced the results shown in Table 2, where the
total number of feature vectors, number of vectors
predicted abnormal by RIPPER, and percentage of
predicted-abnormal feature vectors is shown. Since

only one feature vector is computed for each process,
each trace tends to have few feature vectors.

Trace Name Total

Feature

Vectors

Feature

Vectors

Predicted

Abnormal

% Feature

Vectors

Predicted

Abnormal

chasin 6 2 33.33

decode1 6 1 16.67

decode2 6 1 16.67

fwd-loops-1 2 1 50.00

fwd-loops-2 1 0 0.00

fwd-loops-3 2 1 50.00

fwd-loops-4 2 1 50.00

fwd-loops-5 3 1 33.33

recursive 25 3 12.00

sm565a 3 1 33.33

sm5x 8 2 25.00

smdhole 3 2 66.67

sscp-1 1 1 100.00

sscp-2 1 1 100.00

sscp-3 1 1 100.00

syslog-local-1 6 6 100.00

syslog-local-2 6 5 83.33

syslog-remote-1 7 7 100.00

syslog-remote-2 4 4 100.00

Normal sendmail 120 1 0.83

Table 2: Results of Learning Rules for Feature
Vectors

The idea behind the feature vector approach is to
predict at least one of the processes involved in an
intrusion as abnormal. From this experiment we see
that this is not only possible but tends to have more
clearly defined results than the previous experiments.

Overall , both types of learning experiments using
RIPPER on the system call data from sendmail traces
appeared to work well . Classifying processes by
windows over predictions and the feature vector
approach both seemed to provide the desired
capabilit y to determine whether an intrusive use of
the sendmail program had taken place.

CONCLUSION AND FUTURE WORK

The distributed intelli gent agent approach to
intrusion detection and countermeasures has been
described. The work on the sendmail system call
traces showed the use of a machine learning
approach to intrusion detection on a component of
the distributed system. A portion of the JAM
project’s work in this area has been duplicated and a
different data representation, the feature vector
approach, seemed to work well.

Future work includes the study of using the
feature subset selection approach [13], which shows
the potential of improving classification by selecting
the most influential features in a training set.

BIBLIOGRAPHY

[1] J. M. Bradshaw, “An Introduction to Software Agents” ,
in Software Agents, Bradshaw, J.M. (ed.), Cambridge,
MA: MIT Press, 1997.

[2] W. W. Cohen, “Fast Effective Rule Induction” , in
Machine Learning: The 12th International Conference,
Lake Tahoe, CA, 1995.

[3] M. Crosbie and G. Spafford. “Defending a Computer
System using Autonomous Agents” , in Proceedings of
the 18th National Information Systems Security
Conference, October 1995.

[4] Dorothy Denning, “An Intrusion-Detection Model” ,
IEEE Transactions on Software Engineering, no. 2,
page 222, February 1987.

[5] S. Forrest, S. A. Hofmeyr, A. Somayaji , and T. A.
Longstaff , “A Sense of Self for UNIX Processes” , in
Proceedings of the 1996 IEEE Symposium on Security
and Privacy, Los Alamitos, CA, 1996, pages 120-128.

[6] S. Forrest, S. Hofmeyr, and A. Somayaji , “Computer
Immunology” , Communications of the ACM, vol. 40
no. 10, pp. 88-96, November 1997.

 [7] W. Lee and S. Stolfo. “Data Mining Approaches for
Intrusion Detection” , in Proceedings 1998 7th
USENIX Security Symposium, January, 1998.

[8] Biswanath L. Mukherjee, Todd Heberlein, and Karl N.
Levitt, “Network Intrusion Detection” , IEEE Network,
vol. 8 no. 3, pp. 26-41, May/June 1994.

[9] Hyacinth S. Nwana, “Software Agents: An Overview”,
Knowledge Engineering Review, vol. 11 no. 3, pp.
205-244, October/November 1996.

[10] Philli p A. Porras and Alfonso Valdes, “Live Traff ic
Analysis of TCP/IP Gateways,” in Networks and
Distributed Systems Security Symposium, March 1998.

[11] S. Stolfo, A. Prodromidis, S. Tselepis, W. Lee, D.
Fan, and P. Chan, “JAM: Java Agents for Meta-
learning over Distributed Databases” , in AAAI97
Workshop on AI Methods in Fraud and Risk
Management.

[12] Leendert van Doorn, nfsbug.c, available online at
http://www.asmodeus.com/archive/Xnix
/nfsbug/nfsbug.c, 1994.

[13] Jihoon Yang, and Vasant Honavar, “Feature Subset
Selection Using a Genetic Algorithm”, IEEE
Intelligent Systems Special Issue: Feature
Transformation and Subset Selection, 1998.

