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An Approximate Nonmyopic 
Computation for Value of Information 

David Heckerman, Eric Horvitz, and Blackford Middleton 

Abstruct-Value-of-information analyses provide a means for selecting 
the next best observation to make and for determining whether it is better 
to gather additional information or to act immediately. Determining the 
next best test to perform, given uncertainty about the state of the world, 
requires a consideration of the value of making all possible sequences of 
observations. In practice, decision analysts and expert-system designers 
have avoided the intractability of exact computation of the value of 
information by relying on a myopic assumption that only one additional 
test will be performed, even when there is an opportunity to make a 
large number of observations. We present an alternative to the myopic 
analysis. In particular, we present an approximate method for computing 
the value of information of a set of tests, which exploits the statistical 
properties of large samples. The approximation is linear in the number 
of tests, in contrast with the exact computation, which is exponential in 
the number of tests. The approach is not as general as is a complete 
nonmyopic analysis, in which all possible sequences of observations are 
considered. In addition, the approximation is limited to specific classes 
of dependencies among evidence and to binary hypothesis and decision 
variables. Nonetheless, as we demonstrate with a simple application, the 
approach can offer an improvement over the myopic analysis. 

Zndex Terms-Belief networks, decision theory, nonmyopic, probability, 
value of information. 

I. INTRODUCTION 

When performing diagnosis, a person usually has the opportunity 
to gather additional information about the state of the world before 
making a final diagnosis. Such information gathering typically is 
associated with costs and benefits. These costs and benefits can be bal- 
anced with decision-theoretic techniques-in particular, procedures 
for computing value of information. These techniques form an integral 
part of many decision-theoretic expert systems for diagnosis, such as 
Gorry and Barnett’s program for the diagnosis of congestive heart 
failure [ 11. 

In most diagnosis contexts, a decisionmaker has the option to 
perform several tests and can decide which test to perform after seeing 
the results of all previous tests. Thus, a person or expert system should 
consider the value of all possible sequences of tests. Such an analysis 
is intractable because the number of sequences grows exponentially 
with the number of tests. Builders of expert systems have avoided 
the intractability of exact value-of-information computations by im- 
plementing myopic or greedy value-of-information analyses. In such 
analyses, a system determines the next best test by computing the 
value of information based on the assumption that the decisionmaker 
will act immediately after seeing the results of the single test [2]. 
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The work presented in this correspondence is motivated by 
Pathfinder, which is a decision-theoretic expert system that assists 
physicians with the diagnosis of lymph-node diseases [3]-[S]. The 
Pathfinder project began in 1983 as a joint project among researchers 
(D. Heckerman, E. Horvitz, J. Suermondt, M. Fischinger, and 
L. Fagan) in the Medical Computer Science Group at Stanford 
University and researchers at the University of Southern California 
(B. Nathwani-the primary pathology expert-and K. Ng). Currently, 
a commercial derivative of Pathfinder, which is known as Intellipath, 
is being used by several hundred practicing pathologists and by 
pathologists in training as an educational tool [6]. The program 
reasons about over 60 diseases (25 benign diseases, nine Hodgkin’s 
lymphomas, 18 nonHodgkin’s lymphomas, and 10 metastatic 
diseases) and over 140 features of disease, including clinical, 
microscopic, laboratory, immunologic, and molecular biological 
findings. 

In some instances of Pathfinder’s use, a myopic value-of- 
information analysis is inappropriate. For example, suppose that a 
patient’s primary physician has clinical information suggesting that 
the patient may have a serious lymph-node disease. At this point, 
one alternative available to the patient is a tissue biopsy: the surgical 
removal of one or more lymph nodes. If the biopsy is performed, 
a surgical pathologist examines the tissue using a microscope and 
provides additional evidence for or against each possible disease. 
The tissue biopsy can provide a large amount of information but is 
costly and subjects the patient to the r isks of general anesthesia. 

Pathfinder can assist the patient and physician with the decision 
of whether or not to perform a biopsy. Because the program uses 
a myopic value-of-information analysis, however, it can balance the 
cost of the biopsy with the value of only one of approximately 100 
microscopic features. Thus, when a biopsy is cost effective, Pathfinder 
will not likely recommend one. 

In this correspondence, we present a tractable solution to this 
problem. In particular, we develop an approach that takes advantage 
of the statistical properties of large samples to compute approximately 
the value of information for sets of tests. The approximation is linear 
in the number of tests, in contrast with the exact computation, which 
is exponential in the number of tests. The approach is not as general as 
is a complete nonmyopic analysis in which all possible sequences of 
observations are considered. In addition, the approximation is limited 
to specific classes of dependencies among evidence and to binary 
hypothesis and decision variables. Nonetheless, as we demonstrate 
with the biopsy example, the approach can be an improvement over 
the myopic analysis. 

II. A DECISION-THEORETIC MODEL FOR DIAGNOSIS 

The diagnostic model for Pathfinder, as well as other decision- 
theoretic expert systems, is represented by the influence diagram 
in Fig. 1. In this model, the chance node H represents a mutually 
exclusive and exhaustive set of possible hypotheses, and the decision 
node D represents a mutually exclusive and exhaustive set of possible 
actions or alternatives. The value node I7 represents the utility of the 
decisionmaker, which depends on the outcome of H and the decision 
D. The chance nodes E 1.. . . . E,, are observable pieces of evidence 
or tests about the true state of H. Pieces of evidence in Pathfinder 
are called features. 

In the first part of this correspondence, we make several simplifying 
assumptions. First, we assume that H is a binary chance variable 
and that D is a binary decision variable. We use H and 1H to 
denote the two instances of H and D and 7D to denote the two 
alternatives associated with D. For definiteness, we assume that 
the decisionmaker chooses D (as opposed to ‘D) when H occurs. 
Second, we assume that each piece of evidence El. . . E,, is binary. 

Fig. 1. Pathfinder influence diagram for diagnosis. The decisionmaker’s 
utility (diamond node I*) depends on a hypothesis (oval node H) and a 
decision (square node D). The variables E, are pieces of evidence or tests 
about the true state of H. 

Finally, we assume that each piece of evidence is conditionally 
independent of all other evidence, given H and -H. In Section V, 
we relax several of these assumptions. 

Using Bayes’ theorem and the assumption of conditional inde- 
pendence of evidence, we can calculate the ratio of the posterior 
probability of H to that of -H: 

p(HIE,. . . . . Em) 14El IH) 
P(yHIE,... . . E,,,) = -.” 

14E,nlH) P(H) 
14 EI I-H) p(E,,, 143) ~(+-f). 

We can write this equation more compactly in odds-likelihood form as 
111 

O(H/E,.....E,,,)=O(H)n& (1) 
,=I 

where O(H(E,..... E,,, ) is the posterior odds of H, A, is the 
likelihood ratio m, and O(H) is the prior odds of H. 

Because D and H are binary, it follows from the axioms of 
decision theory that there exists a threshold probability p* such that 
we should take action D if and only if the probability of H exceeds 
y*. This threshold is the probability of H at which the decisionmaker 
is indifferent between acting and not acting, that is, p* is the point 
where acting and not acting have equal utility, or 

p*L-(H. D) + (1 -p*)L-(-H. D) 
=p*L-(H.lD)+(l-y*)I-(~H.TD). (2) 

In (2), I*( H. D) is the decisionmaker’s utility for the situation where 
H occurs and action D is taken, I-( H. -D) is the utility when H 
occurs and action D is not taken, and so on. Solving (2) for p*, we 
obtain 

c p* = - 
C+B 

where C is the cost of the decision 

(3) 

C E I-(TH. 1D) - I-(1H. D) (4) 

and B is the benefit of the decision 

B = I*(H. D) - IT(H.lD). (5) 

If the decisionmaker has observed pieces of evidence El. . . E,,, , 
then he/she should choose action D if and only if 

~(HIEI.....E,,,) >p*. (6) 
In terms of the odds formulation, (6) becomes 

O(HIEI.....E,,,) > L. 
1 -p* 
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Equations (1) and (7) imply 

63) 

Taking the logarithm of both sides of (8), we see that the decision- 
maker should choose action D if and only if 

where ttjI = ln 
the definitions 

,,I 
c  U’L > 111 -fI- - lnO(H) 
,=, 1 -p* 

A, is called the weight of evidence E, for H. With 

(9) 

we have the simple prescription that the decisionmaker should choose 
action D if and only if 

IiT > II-*. (11) 

III. MYOPIC ANALYSIS 

Let us assume that the user of a diagnostic system has instantiated 
zero or more pieces of evidence in the influence diagram shown 
in Fig. 1. We can propagate the effects of these instantiations to 
the uninstantiated nodes and remove the instantiated nodes from the 
influence diagram. This removal leaves an influence diagram of the 
same form as that shown in Fig. 1. To simplify our notation, we 
continue to refer to the remaining pieces of evidence as El. . . E,, . 
In addition, we use p(H) to refer to the probability of the hypothesis 
H, given the instantiated evidence. 

The decisionmaker now considers whether he/she should observe 
another piece of evidence before acting. A myopic procedure for 
identifying such evidence computes, for each piece of evidence, the 
expected utility of the decisionmaker under the assumption that the 
decisionmaker will act after observing only that piece of evidence. In 
addition, the procedure computes his expected utility if he/she does 
not observe any evidence before making his/her decision. If, for each 
piece of evidence, the expected utility given that evidence is less than 
the expected utility given no evidence, then the decisionmaker acts 
immediately in accordance with (11). Otherwise, the decisionmaker 
observes the piece of evidence with the highest expected utility. Then, 
the myopic procedure repeats this computation to identify additional 
evidence for observation. Because the myopic procedure allows for 
the gathering of additional evidence, the procedure is inconsistent 
with its own assumptions. We return to this observation in the next 
section. 

In the remainder of this section, we examine the computation of 
expected utilities and introduce notation. Let El-( E. CE) denote the 
expected utility of the decisionmaker who will observe E at cost 
CE and then act. Let CE( E. C’E) be the certain equivalent of this 
situation, that is 

I-(CE(E,CE)) s  EL-(E.CE) (12) 
or 

CE(E.CE) = I--‘(EC-(E.CE)) (13) 

where I-( .) is the decisionmaker’s utility function: a monotonic 
increasing function that maps the value of an outcome (e.g., in 
dollars) to the decisionmaker’s utility for that outcome. Similarly, let 
El’( 0.0) denote the expected utility of the decisionmaker if he/she 
acts immediately, and let CE(0.0) denote the certain equivalent of 
this situation. Thus, in the myopic procedure, a decisionmaker should 
observe the piece of evidence E for which the quantity 

CE(E.&) - CE(0.0) (14) 

is maximum, provided it is greater than 0. 
To simplify the discussion, we assume that the delta property 

holds.’ The delta property states that an increase in value of all 
outcomes in a lottery by an amount n increases the certain equivalent 
of that lottery by LJ [7]. Under this assumption, we obtain 

CE(E.CE) = CE(E.0) - CE (15) 

where CE( E, 0) is the certain equivalent of observing E at no cost. 
Therefore, we have 

CE(E.CE) - CE(0.0) = I-I(E) - C’E (16) 
where 

T-I(E) = CE(E.0) - CE(0,O) (17) 

is the value of information of observing E.* The quantity I -I(E) 
represents the largest amount that the decisionmaker would be willing 
to pay to observe E. When we compare (14) with (16), we see that, 
in the myopic procedure, a decisionmaker should observe the piece 
of evidence E (if any) for which the quantity 

I’I(E) - CE s  Nl’l(E) (18) 
is maximum and positive. We call NI’I(E) the net value of infor- 
mation of observing E. 

The decisionmaker usually directly specifies the cost of observing 
evidence. In contrast, we can compute I’I( E) from the decision- 
maker’s utilities and probabilities. Specifically, from (13) and (17), 
we have 

T-I(E) = I--‘(EL’(E.0)) - I’-‘(El’(0.0)). 

To simplify notation, we use the abbreviations 

EI’(E.0) = Et?(E) and EF(0.0) z  ELT(0). 

Thus, we obtain 

I-I(E) = L--‘(EL’(E)) - LT-‘(EU(0)). (19) 

The computation of EL’(0) is straightforward. We have 

E1T(0) = 1 
p(H)17(H.~D) +p(lH)IT(~H.lD). p(H) <p* 
p(H)I-(H. D) +p(~H)l-(4. D), IAH) > P* 

(20) 
by definition of p*. 

To compute EL-(E), let us assume that E is defined such that 
observing E to be true increases the probability that H is true. If 
p(HIE) > p* and p(H(lE) > I-‘*, then I-I(E) = 0 because the 
decisionmaker will not change his/her decision if he/she observes E. 
Similarly, if p(H1E) < p* and y(HI-E) < p’, then l-I(E) = 0. 
Thus, we need only to consider the case where p( HIE) > p* and 
p(HJ-E) < I-‘*. Let us consider separately the cases H and -H. 
We have 

EI-(EIH) = y(EJH)I*(H. D) +)I(-EIH)I-(H.7D) (21) 
and 

E17(EI~H) = p(ElyH)l-(1H. D) + p(-El-H)I’(lH. -D) 
(22) 

where IX(EJH) and lT(EJ-H) are the expected utilities of 
observing E, given H and -H, respectively. To obtain the expected 
utility of observing E, we average these two quantities over H: 

EL-(E) = p(H)EI-(E(H) +p(-H)K(E(lH). (23) 

To compute T-I(E), we combine (19), (20), and (23). 
‘The primary result of this research-that we can use the central-limit 

theorem to make tractable an approximate nonmyopic analysis-is unaffected 
by this assumption. 

‘Other names for T-I(E) include the value of perfect information of E 
and the value of clairvoyance on E. 



IV. A SPECIAL-CASE NONMYOPIC ANALYSIS approximation that involves the central limit theorem as follows. First, 
As we mentioned in the previous section, the myopic procedure we express the sums in terms of weights of evidence. We have 

for identifying cost-effective observations includes the incorrect as- 
sumption that the decisionmaker will act after observing only one 

c p(flH) = p(W > II’*IH) (27) 

piece of evidence. This myopic assumption can deleteriously affect 
EEfD 

the performance of an expert system, as described in the introduction. c p(+H) = p(W > W*I-H) (28) 
In a correct identification of cost-effective evidence, an expert 

system should take into account the fact that a person can observe 
more than one piece of evidence before acting. In its most general 
form, this computation should consider all possible observation 
strategies. An example of an observation strategy follows: 

EEfD 
c p(lJH)) = 1 -p(u: > W*(H) (29) 

fGr‘-, 
c p(fI-H)) = 1 -p(Il- > W*IlH) (30) 

fEf,D 
Observe ES. If ES is present, then observe E2; otherwise, make 
no further observations and make the diagnosis. If ES and E2 are where II’ and II-* are defined in (10). The term p( II’ > II’* IH), for 

present, then observe ET and make the diagnosis. If Es is present example, is the probability that the sum of the weight of evidence 

and EZ is absent, then make the diagnosis. from the observation of El,. . . , E,, exceeds II’*, that is, p( II’ > 

In this correspondence, we consider a special-case nonmyopic 
II’* I H) is the probability that the decisionmaker will take action D 

analysis that considers only two observation strategies: 1) Perform 
after observing the evidence, given that H is true. 

a set of tests and then make the diagnosis, and 2) make the 
Next, let us consider the weight of evidence for one piece of 

evidence. We have 
diagnosis immediately (the trivial observation strategy). The general 
nonmyopic analysis reduces to this special case when there is a 
specific dependency among the costs of performing tests. Namely, 
the general nonmyopic analysis reduces to this special case when 
there are a set of tests such that the cost of performing any test in the 

PI’, P(WlW p(wl-w 

set is high, and once any test in the set has been performed, the cost In P(E%IW 
P(E% I-H) 

P(aIw P(ELI+) 
of performing additional tests in the set is significantly reduced. This 
special-case analysis is appropriate for the biopsy example discussed I*, PC-E* If0 

PC-E, I-H) 
I’(+, IW P(~E&I+o 

in the introduction. 
Let us suppose that the decisionmaker has the option to observe 

a particular subset of evidence {El. . . . E,, } before acting. We 
assume that the costs of observing the pieces of evidence in this To simplify notation, we let p( E, I H) = o and y( E; ITH) = 1). 
set are dependent as described in the previous paragraph and that The expectation and variance of to, given H and -H, are then 
the decisionmaker can directly specify the initial cost of observing 
a piece of evidence in this set. There are 2” possible instantiations 

(I- 0) EI-(wIH) = oln 1 + (1 - n)ln - 
of the evidence in this set corresponding to the observation of E, or 

J (l- 1)) (31) 

-E, for every i. Let E denote an arbitrary instantiation; let ED and zn(l -/j) I-nr(wlH) = n(1 - n)ln ~ (32) 
E,D denote the set of instantiations I such that the optimal decision /j( 1 - N) 

is D and -D, respectively. CI (1-n) 
The computation of the value of information for the observation of 

El-(WITH) = iJln - + (1 - /j)ln - 
/j (1 - d) (33) 

theset{Ei..... E,, } parallels the myopic computation. In particular, 2(1(1 -d) 
we have I-r/r(wl~H) = ,j(l - $)ln p. 

;j( 1 - 0) (34) 

EL-(El . . . . . E,,) = p(H)EI-(El.. . ..E.,IH) Now, we take advantage of the additive property of weights of 
+~(~H)EI-(EI.. . . E,,ITH) (24) evidence. The central-limit theorem states that the sum of independent 

random variables approaches a normal distribution when the number 
where of variables becomes large. Furthermore, the expectation and variance 

EC-(E,. . . . . E,,IH) = 
[ 1 

of the sum is just the sum of the expectations and variances of the 
c p(EIH) I-(H. D) individual random variables, respectively. Because we have assumed 

PEfD that evidence variables are independent, given H or -JH, the expected 

and 

+ c p(flH) I-(H.lD) [ 1 
value of the sum of the weights of evidence for El.. . . E,, is 

(25) ,,1 

fe-,D EI-(II~H) = C E~-(~~~,IH). (35) 
,=I 

The variance of the sum of the weights is 

[ 1 771 
EL-(El.. . En I-H) = c p(+H) I-(YH. D) iTrrr(TITIH) = c ~~nr(w,IH). (36) t-Et-D i=l 

[ c ,,+H)j I-(-H.-D). (26) 
Thus, p( II-IH ), which is the probability distribution over PC’, is given + 

sea-43 1 
by 

n1 171 
To obtain 1-1(E), we combine Equations (19) (20) and (24). p(WlH) - X(x El~(ccl,IH),CT’al(w,(H)). (37) 

When n is small, we can compute directly the sums in (25) i=l ,=l 

and (26). When n is large, we can compute these sums using an The expression for -H is similar. 
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Fig. 2. Probability that the total weight of evidence will exceed the threshold 
weight is the area under the normal curve above the threshold weight LIT* 
(shaded region). 

Finally, given the distributions for H and -H, we evaluate (27) 
through (30) using an estimate or table of the cumulative normal 
distribution. We have 

p(W > W*(H) = - (38) 

where I( = EIv(IITIH) and c  = ITnr(WjH). The probability that 
the weight will exceed II-* corresponds to the shaded area in Fig. 2. 
Again, the expression for 1H is similar. In this analysis, we assume 
that no probability (II( E, JH) or y( E, 1-H )) is equal to 0 or 1. Thus, 
all expected values and variances are finite. We relax this assumption 
in the next section. 

V. RELAXATION OF THE ASSUMPTIONS 

We can relax the assumption that evidence is two valued with 
little effort. In particular, we can easily extend the odds-likelihood 
inference rule (see (1)) and its logarithmic transform to include 
multiple-valued evidential variables. In addition, the computation of 
means and variances for multiple-valued evidential variables (see (31) 
through (34)) is straightforward. 

In addition, we can relax the assumption that no probability is 
equal to 0 or 1. For example, let us suppose that 

0 < p(E,IH) = n < 1 p(E,(7H) = J  = 1 

and, for all i # j 

0 < p(E,IH) < 1 0 < p(E,I-H) < 1. 

Using (31) through (34), we obtain 

El-(w,IH) = +x lTnr(wJ(H) = +x 

El’(w,I~H) < 0 lTnr(rc,I~H) = 0. 

Therefore, although the computation of y( II- > II-* JyH) is straight- 
forward, we cannot compute J~(TI~ > II-* IH) as described in 
the previous section. Instead, we compute p(Il- > II’* IH) by 
considering separately the cases Ej and -El. We have 

p(W > II-*IH) =y(E,lH)p(W >iV*IH. E,) 
+y(~E,IH)p(l,l~ > W*(H.TE,). (39) 

If lE, is observed, II- = +x, and ~(11~ > Uy*lH.7E,) = 1. 
Consequently, (39) becomes 

p(li- > Ii-‘IH) = p(E,(H)p(W > W*IH. E,) +p(+,IH). 

We compute ~l(Ii- > TIT*IH. E,) as described in (35) through 
(38), replacing El-( ~1~ IH) with u’, in the summation of (35) and 
I -nr( tl’J  [H) with 0 in the summation of (36). The other terms in the 
summations remain the same because we have assumed that evidence 
variables are independent, given H or 7 H. This approach generalizes 
easily to multiple-valued evidence variables and to cases where more 
than one probability is equal to 0 or 1. 

We can extend our analysis to special cases of conditional de- 
pendence among evidence variables. For example, Fig. 3 shows a 

(4 

(b) 

Fig. 3. Schematic belief network for Pathfinder: (a) Features in Pathfinder 
can be arranged into groups of evidence variables G”, G2.. . GJ. The 
variables within each group are dependent, but the groups are conditionally 
independent, given the disease variable H; (b) detailed view of the evidence 
variables E,, E,+I, and E&+2 within group G’;. 

Fig. 4. Conditional Markov chain. The evidence variables form a Markov 
chain conditioned on the variable H. We can extend our analysis involving 
the central-limit theorem to this case. 

schematic of the belief network for Pathfinder. In this model, there 
are groups of dependent evidence, where each group is conditjonally 
independent of all other groups. We can apply our analysis to this 
model by using a clustering technique described in pages 197-204 
of [S]. As in the previous section, suppose we want to compute the 
value of information for the set of evidence S = {El, . . , E,, }. For 
each group of dependent features G ’, we cluster those variables in 
the intersection of S and G ” into a single variable. Then, we average 
out all variables in the belief network that are not in S. We obtain 
clusters of variables, each of which are conditionally independent, 
given H and -H. We can now apply our analysis-generalized to 
multiple-valued variables-to this model. 

There are special classes of dependent distributions for which the 
central-limit theorem is valid. We can use this fact to extend our 
analysis to other cases of dependent evidence. For example, the 
central-limit theorem applies to distributions that form a Markov 
chain, provided the transition probabilities in the chain are not 
correlated [9]. Thus, we can extend our analysis to belief networks of 
the form shown in Fig. 4. We can generalize the value-of-information 
analysis even further if we use the Markov extension in combination 
with the clustering approach described in the previous paragraph. 

It is difficult for us to extend the analysis to include multiple-valued 
hypotheses and decisions. The mathematics becomes more complex 
because the simple y* model for action no longer applies. There is, 
however, the opportunity for applying our technique to more complex 
problems. In particular, we can abstract a given decision problem 
into one involving a binary hypothesis and decision variable. For 
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example, we can abstract the problem of determining which of rr 
diseases is present in a patient into one of determining whether the 
disease is malignant or benign. In doing so, we ignore details of the 
decisionmaker’s preferences, and we introduce dependencies among 
evidence variables. Nonetheless, the benefits of a nonmyopic analysis 
may outweigh these drawbacks in some domains. 

VI. A SIMPLE APPLICATION 

Let us return to the situation described in the introduction: A 
patient’s primary care physician believes, based on clinical evidence, 
that the patient may have a malignant lymph-node disease. The patient 
may receive a lymph-node biopsy, at high cost, before a treatment 
decision is made. If the biopsy is performed, a pathologist can 
inspect the tissue microscopically, thereby providing a large number 
of observations that are clues about the patient’s disease. 

As described in the previous section, we abstract the diagnostic 
problem to that of determining whether or not the patient has a 
malignant or benign disease. In addition, we assume that there are 
only two treatment alternatives: 1) Treat the patient as if he/she had 
a malignant disease-that is, treat the patient with chemotherapy, 
surgery, radiation therapy, or some combination of these proce- 
dures-or 2) do not treat the patient, but merely watch his/her 
progress carefully. 

To simplify the discussion, we consider only a fraction of clues 
made available by the pathologist. In particular, we consider only 
those features that describe follicles-spherical aggregates of multi- 
plying white cells-in a lymph-node section. In addition, we assume 
that the clinical and microscopic observations are conditionally 
independent, given the patient’s disease. Consequently, we do not 
have to consider interactions among the two information sets. 

The influence diagram for the pathologist’s diagnostic task is 
shown in Fig. 5. The hypothesis node contains the two disease 
instances: malignant (H) and benign (-H). The decision node 
contains two alternatives: treat (D) and watch (-D). The node 
I* represents the patient’s utility for the four possible outcomes: 
(malignant, treat), (malignant, watch), (benign, treat), and (benign, 
watch). The evidence variables represent microscopic observations 
about the follicles that provide clues about the disease state of the 
patient. For example, the feature “Area” represents the percent area 
of the lymph-node section occupied by follicles, and the feature 
“Polarity” represents whether one or more follicles have a uniform 
appearance or exhibit different distributions of cell types at opposite 
poles. The influence diagram was constructed from data (48 patients) 
using the K2 algorithm [10J3 

To simplify the discussion further, we express the utilities of the 
four possible outcomes in dollars. The values we use are 

I*( Malignant, Treat) = -$3001< I-( Malignant, Watch) = -%001i 

[-(Benign, Treat) = -$lOOl< IY(Benign, Watch) = $0. 

In addition, we assume that the decisionmaker is an expected-value 
decisionmaker, that is, we assume I-(S) = S so that expected 
value and expected utility are the same quantity and so that the delta 
property holds. Finally, for the cost of the biopsy, we use 

This utility model is inappropriate for most medical decisions, 
including this one. Utility models appropriate for medicine can be 
found in [ll]-[13]. 

Let us assume that given the clinical information available to the 
patient’s primary care physician, p( Malignant) = 0.1. From (4) and 

3The full specification of the influence diagram, including probabilities, is 
available from the first author. 

1 Treat/Watch 1 

Fig. 5. Influence diagram for a subset of lymph-node diagnosis. The hypoth- 
esis node represents whether the patient has a malignant or benign disease. 
The decision node represents the two alternatives: treat and watch. The node 
L’ represents the patient’s utility for the four possible outcomes. The evidence 
variables represent follicular features that are clues about the disease state of 
the patient. 

(5), we have 

c  = $0 - (-$lOOIi) = $1001< 

B = -$3OOIi-(-$8OOIC)= $5OOIi 

where C and B are the cost and benefit of treating the patient, 
respectively. Thus, from (3), we obtain 

$lOOIi 1 
‘* = $1001i + $5001i = ci 

where p* is the probability above which 
Consequently, from (lo), we have 

the patient should be treated. 

l/G 0.1 
II-* = ln - - ln - = 0..588. 

5/G 0.9 

The patient should be treated if and only if II--the weight of 
evidence that the patient has a malignant disease-exceeds this value 
of II’*. 

Fig. 6 is a plot of p( II- > II-* IMalignant) and p( IIT > IT-* IBenign) 
as a function of II-*, assuming that all of the features in Fig. 5 
are observed. The curves labeled “exact” show the exact values; the 
curves labeled “approx” show the values obtained from the central- 
limit-theorem approximation with the generalizations for nonbinary 
and dependent features described in Section V. Note the goodness of 
the approximation with only eight observed features. With II-* = 
0.588, the approximate values for p(II- > lT~*]Malignant) and 
p(Il- > II-‘IBenign) obtained from the approximation are 

~l(li* > II’*]Malignant) = 0.923 

p(II- > II-*[Benign) = 0.028. 

The inequality ~l(lI- > II-‘IMalignant) > IJ(II~ > II-*IBenign) 
states that it is more likely for the evidence to suggest a malignancy 
when the patient has a malignancy then when the patient has a benign 
disease, which is a reasonable result. 

We can now compute the net value of information for a biopsy 
that permits the observation of all features in Fig. 6. From (25), (27) 
and (29), we have 

EL-(BiopsylMalignant) = (0.923)(-$3001i) 

+ (O.OTT)(-$8OOIi) = -$338AF 

where EL-( BiopsyIMalignant) is the expected utility of obtaining 
the biopsy, given that the patient has a malignant disease. Similarly, 
from (26), (28), and (30), we obtain 

EI-(BiopsylBenign) = (0.028)(-$1001i) + (0.972)($0) = -$31i 
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Fig. 6. Plot of p( II* > Iv*]Benign) and y( Iv > Ir*]Malignant) as a 
function of II-* showing both the the exact and approximate values. 

where EU(BiopsylBenign) is the expected utility of obtaining the 
biopsy, given that the patient has a benign disease. Thus, from (24), 
we have 

ELT(Biopsy) = (O.l)(-$3381i) + (0.9)(-$31i) = -$3GIi. 

TO obtain the patient’s expected utility without a biopsy Ecr( 0), we 
apply (20), with p < p*. 

EL’(O) = (O.l)(-$SOOS) + (0.9)($0) = -$SOIi. 

Consequently, from (19X the value of information of the biopsy 
I’I(Biopsy) is given by 

I7I(Biopsy) = -$3G1i - (-$801i) = $44Ii. 

Finally, from (18), we have 

NT’I(Biopsy) = $Q1i - $301i = $141i 

for the net value of information of the biopsy. Because this value is 
greater than 0, the biopsy should be performed. We obtain the same 
recommendation using the exact values for p(It’ > II” (Malignant) 
and p(lI’ > U’*IBenign) (ATvT(Biopsy) = $121i). 

In a myopic analysis of value of information, a biopsy would not 
be recommended. In particular, of all the features, “Polarity” has 
the greatest value of information--l’l(Polarity) = $251i-which is 
less than the cost of the biopsy. 

VII. MORE GENERAL NONMYOPIC ANALYSES 

The nonmyopic analysis described in this article is unlikely to be 
useful unless the dependencies among observation costs fit the model 
described in Section IV. Nonetheless, we can use the techniques 
developed in the article for more general nonmyopic analyses. 

For example, suppose that n pieces of evidence are available for 
observation and that the myopic analysis determines that no single 
piece of evidence has a positive net value of information. We may 
be able to identify evidence whose observation is cost effective by 1) 
enumerating sets of evidence whose observation are likely to be cost 
effective and 2) applying our approximate analysis to each such set. 

One heuristic for identifying sets of evidence whose observations 
are likely to be cost effective is as follows. First, arrange the pieces 
of evidence in descending order of their net values of information. 
Specifically, label the pieces of evidence El.. . . . E,, such that 
-1-l -I( E, ) > TI *I( EJ ) if i < j. Then, consider subsequences of 
E t . . . . E,, that begin with El, that is, identify for consideration the 
sets {Et . . . . . E,,,}, rn = 2 . . . . . n. 

Empirical studies are needed to determine whether this or other 
generalizations provide significant improvements over a myopic 
analysis. 

VIII. SUMMARY 

We have described an approach using the central-limit theorem to 
compute the value of information for a set of tests. Our procedure 
provides a nonmyopic, yet tractable, alternative to the traditional 
myopic analysis for determining the next best piece of evidence to 
observe. Our approach is limited to information-acquisition decisions 
for problems involving specific classes of dependencies among evi- 
dence variables, binary hypothesis, and action variables. Nonetheless, 
as we have demonstrated, the approach can offer an improvement 
over the myopic analysis. 

ACKNOWLEDGMENT 

E. Herskovits constructed the influence diagram in Fig. 5 using 
data generated by B. Nathwani and D. Heckerman. 

REFERENCES 

[l] G. A. Gerry and G. 0. Barnett, “Experience with a model of sequential 
diagnosis,” Compur. Biomed. Rex, vol. 1, pp. 490-507, 1968. 

[2] G. A. Gerry, J. P. Kassirer, A. Essig, and W. B. Schwartz, “Decision 
analysis as the basis for computer-aided management of acute renal 
failure,” Amer. J. Med., vol. 55, pp. 473-484, 1973. 

[3] D. E. Heckerman, E. J. Horvitz, and B. N. Nathwani, “Pathfinder 
research directions,” Tech. Rep. KSL-89-64, Med. Comput. Sci. Group, 
Section on Med. lnforrnatics, Stanford Univ., Stanford, CA, Oct. 1985. 

[4] D. E. Heckerman, Probabilistic Similarity Nerworks. Cambridge, MA: 
MIT Press, 1991. 

[5] D. Heckerman, E. Horvitz, and B. N. Nathwani, “Toward normative 
expert systems: Part I. The Pathfinder project,” Methods Inform. Med., 
vol. 31, pp. 90-105, 1992. 

[6] B. N. Nathwani, D. E. Heckerman, E. J. Horvitz, and T. L. Lincoln, 
“Integrated expert systems and videodisc in surgical pathology: An 
overview,” Human Pathol., vol. 21, pp. 11-27, 1990. 

[7] R. A. Howard, “Value of information lotteries,” IEEE Trans. Syst. Sci. 
Cybern., vol. SSC-3, no. 1, pp. 54-60, 1967. 

[8] J. Pearl, Probabilistic Reasoning in Intelligent Systems: Networks of 
Plausible Inference. San Mateo, CA: Morgan Kaufmann, 1988. 

[9] P. Billingsley, “Dependent variables,” in Convergence of Probability 
Measures. New York: Wiley, 1968, ch. 4. 

[lo] G. Cooper and E. Herskovits, “A Bayesian method for constructing 
Bayesian belief networks from databases,” in Proc. Seventh Conj 
Uncertain@ Artificial Intell. (Los Angeles, CA), July 1991, pp. 86-94. 

[ll] B. J. McNeil, S. G. Pauker, H. C. Sox, and A. Tversky, “On the 
elicitation of preferences for alternative therapies,” New Eng. J. Med., 
vol. 306, pp. 1259-1262, 1982. 

[12] R. A. Howard, “On making life and death decisions,” in Societal Risk 
Assessment (R. C. Schwing and W. A. Albers, Jr., Eds). New York: 
Plenum, 1980, pp. 89-113. 

[13] D. E. Heckerman and E. J. Horvitz, “Problem formulation as the reduc- 
tion of a decision model,” in Proc. Sixth Conj Uncertainty Artificial 
Intell. (Boston, MA), July 1990, pp. 82-89; also in P. Bonissone, 
M. Henrion, L. Kanal, and J. Lemmer, Eds. Uncertainty in Artificial 
Intelligence 6. New York: North-Holland, 1990, pp. 159-170. 


