
Alphabet Soup: A Testbed for Studying Resource Allocation in Multi-vehicle
Systems

Christopher J. Hazard
cjhazard@ncsu.edu

North Carolina State University
Raleigh, NC 27695

Peter R. Wurman
wurman@ncsu.edu

North Carolina State University
Raleigh, NC 27695

Raffaello D’Andrea
rd28@cornell.edu
Cornell University
Ithaca, NY 14853

Abstract
We present ALPHABET SOUP, a Java-based model of a multi-
vehicle warehouse that frames control and coordination is-
sues. By presenting this abstract model of an actual system,
we hope to expose the research community to the commer-
cially consequential issues of resource allocation and robot
motion planning. In ALPHABET SOUP, robots must be used
to move buckets of letters from letter receiving stations to
word-assembly stations. We discuss potential research prob-
lems, and in particular how the resource management prob-
lems are particularly well suited for auction-based resource
management.

Introduction
The energy directed towards research on autonomous agents
and multi-agent systems is fueled by the expectation that,
in the near future, environments will be populated with
hundreds or thousands of autonomous agents. The multi-
agent programming paradigm has been shown to be an ef-
fective way to build and control complex systems (Jennings
& Bussmann 2003). Combined with recent advances in
robotic components, this approach makes it feasible to build
large, complex systems of autonomous vehicles. Although
systems with as many as 100 robots have been demon-
strated, like the experimental CentiBot project (Konolige et
al. 2004), the applications—disaster recovery or terrorist
events—are not daily occurrences. Real, everyday applica-
tions with more than a few vehicles have been lacking.

Recently, the authors1 have been involved with a company
called Kiva Systems that is building low cost robots for pick-
pack-and-ship warehouses. The key innovation in the Kiva
system is the combination of inexpensive robots capable of
lifting and carrying shelving units to and from pick stations.
Workers stay at the stations, pick items off the shelves the
robots present, and put the items into shipping cartons. By
moving the inventory to the worker, rather than the other
way around, the Kiva system provides a dramatic increase
in worker productivity over competing approaches. The ap-
proach is also well suited for manufacturing or assembly op-
erations. One thing that makes the Kiva system interesting

Copyright c© 2006, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

1The second and third author on sabbaticals, and the first author
as a summer intern.

to the research community is its size: a typical installation
of a Kiva system in a large warehouse will involve several
hundred robots and tens of thousands of movable shelving
units.

Many engineering and computational challenges are as-
sociated with bringing a reliable, cost effective, massively
multi-vehicle system (MMVS) to market. There is also the
potential to apply various techniques developed by the re-
search community to the problem domain. However, al-
though there has been much research on the topics of multi-
agent coordination, a great deal of it has been presented in
the context of contrived problems. We believe the field can
benefit from the availability of detailed yet high-level simu-
lation environments that capture and focus on key elements
of real multi-vehicle applications. By decoupling low-level
physical and positional robot problems, which can be mini-
mized in an aptly engineered and controlled warehouse en-
vironment, we can focus on the high-level algorithms.

Thus, we developed an abstraction of an MMVS approach
to pick-pack-and-ship warehouses. We call it ALPHABET
SOUP because the underlying task involves moving buckets
of letters around a warehouse in order to assemble words.
We have developed a Java-based simulation of ALPHABET
SOUP2 that is designed to provide a platform on which to
study some of the key research questions entailed by a real
MVS. The platform is designed to support two key research
areas: 1) the coordination of multi-vehicle systems, and 2)
resource allocation. This paper focuses more on the resource
allocation problems entailed in the platform. Among the rich
research resource allocation questions that can be studied in
ALPHABET SOUP are:

• Where to store the buckets in the warehouse

• Which buckets to bring to which stations

• Which buckets to store new letters

• Which stations to assign words to

• Which stations to assign incoming letters

In the rest of the paper we present ALPHABET SOUP and
the details of the testbed. We then discuss the above research
questions in greater depth.

2Available at research.csc.ncsu.edu/alphabetsoup

Figure 1: Conceptual drawing of ALPHABET SOUP

The Alphabet Soup Testbed
ALPHABET SOUP is analogous to the real-world problem of
order fulfillment in a warehouse environment, or assembly
in a manufacturing environment. The objective of the AL-
PHABET SOUP warehouse is to assemble specific words out
of component letters. The inventory of the system are the
letter tiles, which are stored in moveable buckets with fixed
capacity. The buckets can be picked up and driven around
the warehouse by bucketbots. The bucketbots are used to
move buckets to and from stations to accomplish the overall
system objectives. The letter station is used to put letter tiles
into buckets, while the word station is used to take letters out
of buckets and compose words. Stations can interact with
the letter tiles in a bucket when the bucketbot has centered
the bucket on the location of the station (within a tolerance).
Stations are typically located on the borders of the map.

A letter tile is a combination of an English letter and a tile
color, and a word is a sequence of letter tiles. The letters in
a word do not need to have the same tile color. The testbed
takes a word file–any text file of English words will do–and a
color profile, and constructs a set of words. These words can
then be distributed to the word stations as jobs that have to
be completed. Each word station has a finite number of jobs
it may be actively working on at any one time. Note that a
station cannot take a letter out of a bucket that is not required
for any of its active words. The act of taking a letter tile out
of a bucket and putting it into position in a word takes a fixed
amount of time. When a word is completed, the station puts
it into the completed list and can accept a new word. The
policy that is used to assign word jobs to stations is one area
that can be studied in ALPHABET SOUP.

In order to build words, there must be an adequate in-
ventory of letter tiles. New letters are received at the letter
stations in homogeneous bundles of a fixed size. To get the
letter tiles into inventory, one or more bucketbots must bring
one or more buckets to the letter station. Obviously, the
bucket must have enough free capacity to accept the num-

ber of letters the station attempts to store in it. Like the limit
on the number of active words in a word station, each let-
ter stations has a limit on the maximum number of bundles
which may be simultaneously staged. The act of putting a
letter into a bucket takes a fixed amount of time. The policy
to assign letter bundles to letter stations, and to select which
buckets in which to store the letters, are also areas that can
be studied in ALPHABET SOUP.

In order to start a simulation run with enough inventory to
immediately build words, the testbed includes an option to
seed the buckets with letters. The initial inventory level is set
as a fraction of the total warehouse capacity, and the profile
of letter tiles in the buckets is drawn from the distribution of
letters in the word file and colors in the color profile.

The final component of the system is the bucketbots, as
conceptually illustrated in Figure 1. Each bucketbot has lim-
ited capabilities; it can grab a bucket, release a bucket, ac-
celerate, decelerate, and tell a station to take a letter from, or
put a letter into, the bucket it is carrying. A robot can pick
up only one bucket at a time, and likewise a bucket may
be attached only to one robot at a time. Robots may pass
over/under buckets freely when they are not carrying an-
other bucket. However, robots should not collide with other
robots, and buckets should not collide with other buckets.
When a collision occurs, all robots involved are completely
stopped and penalized.

Figure 2 depicts the ALPHABET SOUP user interface. In
the center of the figure is the graphic representation of the
map, containing the letter stations on the left, word sta-
tions on the right, both as shaded circles. Bucketbots are
shown as circles with lines indicating their orientation, and
buckets are depicted as thicker, empty circles. Bucketbots
which are straying from their desired path to evade a colli-
sion with another bucketbot—or another bucket if they car-
rying a bucket—are rendered with a thicker outline.

The mouse can be used to inspect the objects on the screen
by selecting them. The left column of Figure 2 shows the
contents of a selected letter station and a selected bucket.
The selected letter station is highlighted on the center of the
left side of the map, and the selected bucket is highlighted
near the middle on the right side. The right column shows
the list of completed words on the top, the open words in the
selected word station in the middle, and the next words in
the open word list in the bottom.

By releasing ALPHABET SOUP, we hope to make it easy
for researchers to study algorithms and techniques that max-
imize sustainable word completion rate while minimizing
the number of bucketbots, stations, and the total distance
traveled.

Simulation Parameters and Metrics
ALPHABET SOUP has a number of configurable parameters
to create a wide variety of problem scenarios. We expect that
researchers focused on different subproblems will choose
different combinations of parameters.

A warehouse has a configurable number of buckets, buck-
etbots, letter and word stations, all of which affect through-
put. Additionally, the capacity of buckets and the size of
letter bundles (placed into buckets by letter stations) are

Figure 2: Screenshot of ALPHABET SOUP Testbed

also configurable. The choice of word dictionary and let-
ter color distribution affects the number and profile of let-
ters that must be stored as inventory in the warehouse. For
instance, with a uniform distribution of colors and letters,
each letter in every bucket is equally likely to be used. How-
ever, most sets of words will make more use of some letters
(e.g., the letter ‘e’) than others (e.g. the letter ‘z’). Fur-
ther, a non-uniform color distribution will create even more
variety in the frequency with which certain letter-color com-
binations are required. A profile with five hundred colors
in a Pareto distribution would create 13,000 different letter
tiles—on the order of the number of unique products in a
large warehouse—with a letter tile profile something like the
classic 80/20 curve.

The variations create some interesting opportunities. For
instance, when using English words, buckets with the letter
‘q’ would benefit from also from having the letter ‘u’. These
associations between letters is analogous to associations be-
tween products which are frequently ordered together in a
warehouse, such as cameras and camera cases. Addition-
ally, one may want to store the popular colors together, and
the unpopular colors together, so that more than one letter
can be picked out of a bucket during most station visits.

The size of the physical objects, namely the warehouse,
bucketbots and buckets, can be set in the configuration file.
The latter directly affects how many are needed to store the
inventory. These relative sizes affect bottlenecks of the sys-
tem. Larger bucketbots and buckets, relative to the map

size, restrict the available space to maneuver. With less
available space, path planning, congestion avoidance, and
spatial resource allocation are emphasized. On the other
hand, smaller bucketbots and buckets emphasize bucketbot,
bucket, and letter allocation strategies. Similarly, the config-
uration file also specifies how close a bucketbot must be to a
bucket to pick it up, and how close it must be to a station to
be considered present.

With regard to the numbers and capacities of physical ob-
jects, ALPHABET SOUP exhibits some basic relations. To
achieve steady-state behavior utilizing available capacity,
the throughput of the set of word stations should be bal-
anced to the throughput of the letter stations. The number
of bucketbots should be great enough such that stations do
not sit idle, but also small enough such that bucketbot idle
time is kept low and bucketbots are not continuously getting
in the way of each other. The optimal number of buckets
is obviously dependent on the size of the warehouse. For a
large number of letter tile colors, more buckets are needed to
make sure all letter tiles are represented, such that the letter
stations do not become the bottleneck. As the bundle size in-
creases, more total bucket capacity is needed to ensure that
the system does not run out of storage space for new letters
entering the system.

The temporal costs of various actions are also config-
urable. Key temporal actions include the amount of time
that a bucketbot requires to pick up or set down a bucket,
the amount of time that it takes to remove a letter tile, or

add one, to a bucket, and the amount of time it takes to
move a finished word out of a word station and prepare for
the next word. Bucketbot motion is described by its veloc-
ity and acceleration, both of which are configurable. These
parameters, in turn, affect the bucket allocations for tasks,
bucket storage, and letter placement strategies. The tempo-
ral penalty for bucketbot collisions is also configurable.

The testbed can run with or without a graphic display. En-
abling graphics helps a developer visually test and debug
algorithms, as well as gain intuition as to how algorithms
are behaving. For running batch simulations, disabling the
graphics reduces the overhead of real-time rendering and al-
lows the testbed to run on remote terminals without requir-
ing graphic support.

To easily support extensions, ALPHABET SOUP loads
modules specified in its configuration file at runtime. These
modules, which must inherit core classes and interfaces, al-
low the ALPHABET SOUP researcher to supply advanced be-
havior without modifying or needing to recompile any of the
core modules.

To determine the effectiveness of a technique, ALPHABET
SOUP tracks and reports of a number of statistics, includ-
ing: the number of words completed, total number of letters
in words completed, number of letters dispensed by letter
stations, total and average distances driven by bucketbots,
number of bucket grabs and releases, number of bucketbot
and bucket collisions, bucketbot idle time, average bucket
capacity utilization, average number of letter transfers per
word/letter station visit, and station idle time.

Depending on the policies being studied, various compo-
nents may become the bottleneck. If buckets can be deliv-
ered faster than stations can add or remove letters, then the
maximum throughput is a function of the add/remove time
and the number of letters per word. In such a case, the sys-
tem is evaluated by how effectively it uses its bucketbots.
However, if there are not enough bucketbots, they may not
be able to deliver enough buckets to the stations to keep them
busy. In that case, the throughput is the metric that measures
overall system performance.

A potentially realistic scenario can be expressed with the
following example parameters. Using the units of distance
to mean meters and time to mean seconds, our modest-sized
example warehouse is 250 meters by 350 meters. Bucket-
bots and buckets are each 2 meters in diameter. Bucketbots
can accelerate at 20m/s2 up to a maximum speed of 4m/s.
This example warehouse contains 25 word stations, 25 letter
stations, 250 bucketbots, and 850 buckets. With a bucket ca-
pacity of 40 letters, bundle size of 4, station time to move let-
ters at 5.0 seconds, and bucket grab/release time at 1

2 second,
4 colors with a distribution of (4

5 , 1
10 , 1

20 , 1
20), a dictionary of

jargon with an average of 9.2 letters per word, and the ex-
ample minimal coordination, we see throughputs of around
one word per 20 seconds (based on elapsed time within the
simulation). The minimal coordination simply assigns tasks
first in, first out, requires buckets to be returned to storage
between every task, and each task only involves one letter at
a time. Bucketbot congestion and non-optimal task alloca-
tions are very obvious when watching the simulation. Based
on observations and our experience in an industrial setting,

coordination algorithms should be able to offer at least one
to two orders of magnitude of improvement.

Bucketbot Movement
In the idealized ALPHABET SOUP environment, bucketbots
have perfect traction, meaning that they cannot skid or slide.
Besides collisions, the only movement constraints bucket-
bots have are maximum speed, V , and maximum acceler-
ation, A. Given the bucketbot position (x, y), these con-
straints may be represented as,

ẋ2 + ẏ2 ≤ V 2, and (1)
ẍ2 + ÿ2 ≤ A2. (2)

To control bucketbot motion, bucketbot controls set a tar-
get velocity. The target velocity is comprised of components
vx and vy . If the magnitude of the target velocity exceeds the
maximum speed via equation 1, the target velocity vector is
normalized to the maximum speed. Once this normaliza-
tion has been performed, the acceleration constraint (equa-
tion 2) must be checked. As ALPHABET SOUP uses discrete
time intervals, we will denote the time between updates as t.
Given the current velocity, (ẋ0, ẏ0), we can find the acceler-
ation constrained velocity after the time interval, (ẋt, ẏt), by
first finding the actual magnitude of acceleration undertaken,
at, to be

at =

√(
vx − ẋ0

t

)2

+
(

vy − ẏ0

t

)2

. (3)

If this magnitude of acceleration, at, does not exceed the
maximal acceleration, A, then (vx, vy) will be used as the
velocity of this timestep. However, if at > A, then the
velocity of the this time step should be constrained to the
maximal acceleration as

ẋt = ẋ0 +
A

at
(vx − ẋ0) , and (4)

ẏt = ẏ0 +
A

at
(vy − ẏ0) . (5)

To minimize the simulation time required, the testbed
only recomputes new positions and state transitions when
an event occurs that could alter a bucketbot’s acceleration or
direction, or change the state of a letter, bucket, or station.
The testbed is thus able to skip uneventful times of the sim-
ulation. The time to the next event is taken as the minimum
possible time to the next event. To avoid situations similar
to Zeno’s Paradox3, the time to next event is clamped with
a lower bound of the time it would take any bucketbot to
move the distance of its radius. Time until the next event
is the minimum amount of time for any bucketbot to poten-
tially collide, finish accelerating or decelerating, complete a

3If two bucketbots are about to collide, but continually change
their directions and accelerations such that they will collide at a
marginally later time, the next event will be a very short amount of
time later. These increasingly small intervals of time prior to a col-
lision increase the simulation time dramatically. With a minimum
time to next event, the worst case is still reasonable.

turn, grab or release a bucket, finish transferring a letter, fin-
ish a specified amount of cruising time, or get close enough
to another object such that the bucketbot may wish to change
its plans.

When two or more bucketbots collide, their velocities and
accelerations are immediately set to 0, and are given a time-
out penalty. While the testbed could be extended to simu-
late elastic or inelastic collisions, we feel it is reasonable to
assume, based on the coordinated and engineered environ-
ment, that bucketbots should not normally collide. Thus, we
model collisions as extremely costly, negative events.

Bucketbot Sensing and Control
In ALPHABET SOUP a bucketbot potentially has perfect
sensing capabilities; it can obtain all information about all
other bucketbots and buckets within a specified distance.
These sensing capabilities are due to the nature of the en-
vironment. Bucketbots can communicate with any other en-
tity, and the entire system is engineered to maximize avail-
able information and precision. In many foreseeable practi-
cal applications of ALPHABET SOUP , the system is a con-
trolled warehouse environment. To aid in sensing precision
and information sharing, environments may be built with
features such as wireless communication facilities, specially
designed markings in the environment, and indoor position-
ing systems. Additionally, when any component exhibits an
error or failure, the system can be paused for repair.

When the bucketbot “sees” another object, it can retrieve
any information the system has about it, including direc-
tion, velocity, and bucket contents. The bucketbot also has
full information about any bucket, bucketbot, or station that
a separate managing process may provide. The bucketbot
also knows its exact location, direction, and velocity. While
bucketbots in ALPHABET SOUP are error-free, perfect sens-
ing, and locally omniscient, these capabilities may be con-
strained for experimental applications by disregarding cer-
tain information.

A bucketbot must determine the length of time to accel-
erate and decelerate in to arrive at a specified location. Per-
haps the simplest movement paradigm is for the bucketbot to
stop between direction changes, maximally accelerating and
decelerating when changing velocities. Our example mini-
malistic model uses this logic and only turns while in tran-
sit when evading another bucketbot or bucket. Because the
bucketbot must decelerate back to a speed of 0 after mov-
ing, the speed reached during the acceleration phase must
equal the speed at which the bucketbot can decelerate back
to the speed of 0 during the deceleration time. From this,
we can find the total acceleration time, taccel, in terms of the
maximum acceleration, A, distance to the goal, g, and initial
velocity, v0. For simplicity, taccel need only be calculated
on the axis with maximal acceleration as

taccel =
√

2
2a

√
2ag + v2

0 −
√

2v0. (6)

If the bucketbot will reach maximum velocity en route, it
will need to cruise before beginning its deceleration. This
maximum-velocity cruise time may be easily found after

Map

Objects

Simulation World

Word Stations

Letter Stations

Managers

Render
Window

Word List
Buckets

Robots

Quadtree

Figure 3: Architecture of ALPHABET SOUP Testbed

subtracting the acceleration and deceleration distances from
the distance to the goal.

Architecture
ALPHABET SOUP has been designed to be easily extend-
able and useable by a wide audience. We chose Java and
LWJGL4 because they meet the following criteria: easy to
build and run on most major platforms, fast execution and
rendering, and the have wide acceptance and strong com-
munities. The ALPHABET SOUP testbed itself is released
under the GPL.5

To allow ALPHABET SOUP to run in batch mode and on
machines without graphical rendering (such as many super-
computers), we have implemented a way to run the testbed
in a “headless” mode. When running in headless mode, none
of the classes that utilize the LWJGL library are loaded. The
classes that perform rendering inherit from the base classes
that perform the actual ALPHABET SOUP simulation. This
inheritance scheme not only allows the rendering classes to
display information based on the classes they extend, but
also allows the rendering functionality to be distinctly sepa-
rate from the simulation functionality.

Alphabet Soup Architecture
The basic ALPHABET SOUP Testbed architecture is summa-
rized in Figure 3. SimulationWorld contains and constructs
the rest of the framework. If ALPHABET SOUP is run with a
graphic display, SimulationWorld loads RenderWindow and
also loads all of the corresponding renderable classes for ev-
ery object. SimulationWorld constructs everything accord-
ing to the configuration parameters.

The map functions as a container for all of the physical
objects and manages their interactions. The bucketbots and
buckets are stored in a quadtree to optimize simulation per-
formance. Quadtrees are a method of recursively dividing a
space into regions based on the number of objects in each
region. Our implementation uses a point-region quadtree;
when the number of objects in a region exceed a maximum
threshold, it divides the region into four equal areas with two

4Lightweight Java Game Library: www.lwjgl.org
5GNU General Public License: www.gnu.org/copyleft/gpl.html

implements
Renderable

implements
Updateable,
extends Circle

Robot
Base

Robot
Render

Bucket
Base

Bucket
Render

Custom
Robot

WordStation
Base

WordStation
Render

LetterStation
Base

LetterStation
Render

Custom
WordStation

Custom
LetterStation

Figure 4: An example of extending ALPHABET SOUP.

cuts, and remerges subdivided regions when a minimal num-
ber of objects is reached. The quadtree greatly reduces algo-
rithmic complexity of both detecting collisions and report-
ing bucketbots and buckets within a vicinity. To make sure
adjacent regions are not discounted when searching for po-
tential collisions or viewable objects, regions are expanded
such that they have sufficient overlap.

The three major managers in the example ALPHABET
SOUP controller implementation are the word manager, let-
ter manager, and bucketbot manager. While the framework
does not impose this manager architecture on implementa-
tions, we feel that this is a sensible approach. The word
manager takes care of allocating words to stations, and com-
municates with the bucketbot manager about the allocations.
The letter manager is similar to the word manager in that it
controls which letters the letter stations produce, as well as
communicates letter allocations to the bucketbot manager.
The bucketbot manager coordinates all of the bucketbots, by
manufacturing, prioritizing, and assigning tasks to bucket-
bots, buckets, letter stations, and word stations. In our de-
fault testbed, the bucketbots only keep track of one task at
a time, and all planning other than avoiding obstacles and
navigating to destinations is done in the bucketbot manager.

All of the managers can communicate with each other and
also with the bucketbots, word stations, and letter stations
using defined and extendable interfaces. If an object per-
forms an action, other entities must ask the object to perform
the action, rather than make the object perform the action it-
self. ALPHABET SOUP comes with some default example
managers, which are intended to be extended or replaced.
In terms of execution, all of the managers and objects have
methods that are called when either their environment has
changed or their timers have expired.

Extendable Interfaces
While any component of ALPHABET SOUP may be ex-
tended or modified, those best suited for studying control
and allocation algorithms are the bucketbot behavior, word
station policy, letter station policy, bucketbot manager, word
manager, and letter manager. These particular entities may
be changed by simply changing the configuration file.

Each of the physical objects held in the map extend a class
called Circle which implements basic location and collision
functionality. The object base classes also implement an in-
terface named Updateable, which allows them to operate in
the event driven model. Figure 4 illustrates this relation-

ship, how the objects are extended to render themselves to
the screen, and also one way a user of the testbed could ex-
tend these objects. The base functionality can be replaced or
extended. Likewise, users may also override the way objects
are rendered, or even leave out the rendering altogether.

With regard to resource management, such as bucket and
letter selection and bucketbot coordination, the managers
are the primary entities to modify. Several implementation
schemes are possible. The bucketbot manager, letter man-
ager, and word manager could each share equally prominent
roles. A different solution would be to have one manager,
such as the bucketbot manager, contain the majority of the
logic and drive the other two lighter-weight managers. A
further alternative would be to have all managers employ
minimal logic and only function to keep track of resource
utilization, while using the bucketbots (and potentially buck-
ets) to perform distributed resource management.

All of the physical entities offer interfaces to operate with
the world. The word and letter stations have controls to
move letters and will block further actions until the current
actions are complete. As the bucketbots have richer inter-
actions with the environment, the bucketbot base class has
more functionality. The bucketbot base interfaces include
functionality to accelerate and stop at a specified point, ac-
celerate until maximum speed is reached, turn to a specific
angle and notify when the turning is complete, grab and
release a bucket, and find bucketbots and buckets within a
vicinity. The bucketbot base class also contains a base task
system.

ALPHABET SOUP also has a waypoint implementation
which may be utilized and extended to constrain bucketbot
motions and bucket storage to an arbitrary graph. It is partic-
ularly useful as the number of buckets and bucketbots scale
up, as it aids in managing navigation and defining coordi-
nated paths or highways.

Research Challenges in Alphabet Soup
ALPHABET SOUP contains many challenging topics for fur-
ther study. While all of the problems are interrelated, most
of them can be abstracted to either architectural or resource
management issues. Among the architectural issues is the
dichotomy between a system with centralized or decentral-
ized control. ALPHABET SOUP is an excellent environment
in which one can study the tradeoffs between the two ap-
proaches. In this section, we highlight some of the research
problems, and follow it with a discussion of how decentral-
ized market-based solutions could be employed to address
the research problems.

Among the first questions to address is how many buck-
ets are needed and how they should be arranged on the
floor. One can imagine neat, orderly rows of buckets, with
pathways for the bucketbots to travel when burdened with
a bucket. One can also imagine dense blocks of storage
that entail a tile problem in order to extract the inner buck-
ets (Gue 2006). It is easy to imagine the warehouse laid out
on a grid, but because the buckets in ALPHABET SOUP are
round, non-linear packing choices are also an option. Fur-
ther, the layout need not be fixed; instead, it could adapt to
the patterns of word creation and bucketbot motion.

The lowest level of coordination is among the bucketbots
moving on the warehouse floor. Although the bucketbots
are entirely predictable, coordinating their motion to prevent
collisions and congestion is a challenge. Controlling the mo-
tion of the bucketbots could be done by a central planner, or
it could be done through peer-to-peer communication.

As we move into higher levels of abstraction, we find sev-
eral key resource allocation issues. Foremost, is the prob-
lem of task assignment. On the receiving side, when do let-
ters need to be put into inventory, and which bucketbot(s),
bucket(s), and station will be chosen to accomplish the task?
Similarly, when a word needs to be built, the bucketbot(s)
and bucket(s) need to be scheduled for deliveries to a sta-
tion. The dynamic nature of the system leads to challeng-
ing research questions in the areas of queueing theory and
scheduling, and the large number of degrees of freedom ad-
mit a wide variety of solutions.

To illustrate the complexities of these issues, consider
bucketbot A, which may be close to half-empty bucket B
and to station S. When letter L needs to be stored, it could
be put into bucket B. A may be the closest free bucketbot,
but, bucketbot D is setting down a bucket right next to B, and
will be free to grab B in a moment. Which bucketbot should
be assigned the task? Now consider the case where the letter
to be put away is a ‘u’, and bucket C has a ’q’. Although C
is farther away than B, it may be worth the effort to bring it
to station S because of the increased likelihood that ‘q’ and
‘u’ will be pickable at the same time.

Similarly, when building words, bucket E may have two
letter tiles needed, while buckets F and G may have only
one, but may be much closer. Which is the better allocation?
Further, when it is time to assign the word, there may be
more than one station that could do the job, and the best
choice of station may be dependent on the proximity of the
letter tiles needed for that word. One’s ability to optimize
these types of decisions will depend upon how dynamic the
environment is. In some real-world situations, all of the jobs
are known the night before, while in companies with same-
day delivery, the jobs are dropping on the warehouse in real
time.

Potential Auction-Based Solutions
Because the primary problems in ALPHABET SOUP are
based on resource management, it is a prime ground for
testing auction-based resource allocation strategies in real-
world warehouse management problems. Although the AL-
PHABET SOUP warehouse is a cooperative environment,
there may be benefits to decentralizing aspects of the deci-
sion making, particularly if the bucketbots are relatively au-
tonomous. A suitable “currency” would need to be created
for the market economy, with either energy or time being a
natural first step.

One market-based approach would be for stations to bid
on jobs while subcontracting the letter tile delivery to buck-
etbots who contract with buckets. This approach would cre-
ate interesting task dependency networks (Walsh & Well-
man 1998). The ContractNet protocol (Davis & Smith 1983;
Sandholm 1993) is a natural approach to attempt.

Alternatively, word stations could employ combinatorial
auctions as a means of obtaining letters. The nature of the
allocation problem is combinatorial because a word consists
of a certain number of letter tiles, and the system prefers the
cheapest solution to the entire word. A closer bucket may be
passed up if the only free bucketbot in the area is needed for
a different bucket.

A different approach would be to assign tasks in an ar-
bitrary or round-robin manner and let a market re-allocate
the assignments. Based on this initial allocation, bucket-
bots, stations, and buckets could auction off their tasks, and
choose to perform a task when it is most profitable. Bucket-
bots, buckets, and stations could gain compensation for both
the completion of tasks and from selling tasks, evaluating
the utility of having each task based on how much utility it
would gain versus expend from completing the task.

Determining when to hold task assignment auctions and
which entities to include is also an important issue. With
hundreds of open tasks, hundreds of buckets and bucketbots
to perform those tasks, and allocation efficiency being de-
pendent on combinatorial effects, the bidding space is too
large to be tractable. To solve this problem, some heuristics
are needed to limit participation in auctions. Using physical
locality for gathering participation for an auction and propa-
gating task information might offer some usefulness. How-
ever, it will not help cases when two buckets are far apart
but one could accomplish the other’s task more efficiently.
Rather, adding some other metric of similarity would be
more useful, such as using cosine similarity on bucket con-
tents to group buckets for auctions based on their ability to
accomplish similar tasks.

An interesting research direction is evaluating how the
choice of bidders and resources affects throughput. Given
the numerous ways of applying auctions to ALPHABET
SOUP, which bidder and resource choices most improve
throughput, and are any seemingly different auction resource
management implementations functionally equivalent?

Other Potential Solutions
While centralized planning can make optimized solutions
more straightforward to obtain, many of ALPHABET SOUP’s
central optimization problems are NP-hard. This level of
computational complexity does not scale well with purely
centralized or exhaustive solutions with near-realtime de-
mands. Myopic best-first techniques, as well as traditional
planning techniques, may prove useful either in terms of task
assignment or in bucketbot motion planning.

Related Work
Large scale, multi-robot systems have been used to solve
problems such as search and surveillance (Konolige et al.
2004) and assembly (Simmons et al. 2002). To the best
of our knowledge, ALPHABET SOUP is the first testbed
for multi-robot warehouse and physical distribution/routing
problems.

ALPHABET SOUP has a higher-level focus than most
other robot simulators, as its goal is to provide a framework
for studying resource allocation in physical routing. Frame-
works such as Player/Stage (Collett, MacDonald, & Gerkey

2005) and CARMEN (Montemerlo, Roy, & Thrun 2003)
focus on robot sensing capabilities, localization, and envi-
ronment discovery, whereas ALPHABET SOUP resides in a
highly controlled environment which fosters ease of posi-
tion determination and communication. Other simulators do
not easily support a dual-layered environment where robots
can pick up buckets and freely drive above or beneath them,
without adding computationally costly 3D environments.

Market-based and auction control techniques are an
effective resource allocation method in multi-agent sys-
tems (Wellman & Wurman 1998), and have been im-
plemented in many different capacities and environ-
ments (Gerkey & Matarić 2002; Dias et al. 2004; Sim-
mons et al. 2002). As it contains resource allocation prob-
lems, ALPHABET SOUP is a particularly good candidate for
auction-based approaches.

ALPHABET SOUP is also a useful model of a practical
problem for validating robot motion planning techniques,
such as those devised by Clark (2005). Likewise, ALPHA-
BET SOUP is valuable for studying more general distributed
coordination techniques including those surveyed by Jen-
nings (1996) and that implemented by Parker (1998).

As testbeds for multi-robot control make it easier to ex-
plore high level algorithms, they have been built for many
other problems as well. One of the authors implemented a
software testbed for “Capture the Flag” style coordination
robot games (D’Andrea & Babish 2003). Hardware testbeds
are useful for investigating real-world complications that are
not always obvious in simulations, such as the Caltech multi-
vehicle wireless testbed (Cremean et al. 2002).

Conclusions and Future Work
We present ALPHABET SOUP as a model of emerging robot-
assisted warehouses. The model captures many of the key
coordination and allocation challenges faced in real systems,
but does so at a level of abstraction that facilitates study.
The ALPHABET SOUP platform includes a detailed model
of bucketbot behavior and realistic work profiles. It is also
highly configurable, which allows researchers to direct their
studies at particular aspects of warehouse management.

We hope the platform will be of use to researchers study-
ing multi-agent systems, resource allocation, vehicle coor-
dination in MMVS, and operations research.

Acknowledgments
The Kiva System is the fruit of the labor of many people.
The authors are indebted to them for creating the opportunity
to work on such an interesting project.

References
Clark, C. 2005. Probabilistic road map sampling strategies
for multi-robot motion planning. Journal of Robotics and
Autonomous Systems 53(3-4):244–264.
Collett, T. H.; MacDonald, B. A.; and Gerkey, B. P. 2005.
Player 2.0: Toward a practical robot programming frame-
work. In Proceedings of the Australasian Conference on
Robotics and Automation (ACRA 2005).

Cremean, L.; Dunbar, W. B.; van Gogh, D.; Hickey, J.;
Klavins, E.; Meltzer, J.; and Murray, R. M. 2002. The
caltech multi-vehicle wireless testbed. In Proceedings of
the 41st Conference on Decision and Control.
D’Andrea, R., and Babish, M. 2003. The RoboFlag
testbed. In American Control Conference, 656 – 660.
Davis, R., and Smith, R. G. 1983. Negotiation as a
metaphor for distributed problem solving. Artificial Intel-
ligence 20:63–109.
Dias, M. B.; Zinck, M.; Zlot, R.; and Stentz, A. T. 2004.
Robust multirobot coordination in dynamic environments.
In IEEE International Conference On Robotics And Au-
tomation, volume 4, 3435–3442.
Gerkey, B. P., and Matarić, M. J. 2002. Sold!: Auction
methods for multirobot coordination. IEEE Transactions
On Robotics And Automation 18:758–768.
Gue, K. R. 2006. Very high density storage systems. IIE
Transactions 38(1):79–90.
Jennings, N. R., and Bussmann, S. 2003. Agent-based con-
trol systems: Why are they suited to engineering complex
systems? IEEE Control Systems Magazine 61–73.
Jennings, N. R. 1996. Coordination techniques for dis-
tributed artificial intelligence. In O’Hare, G. M. P., and
Jennings, N. R., eds., Foundations of Distributed Artificial
Intelligence. Wiley. 187–210.
Konolige, K.; Fox, D.; Ortiz, C.; Agno, A.; Eriksen, M.;
Limketkai, B.; Ko, J.; Morisset, B.; Schulz, D.; Stewart,
B.; and Vincent, R. 2004. Centibots: Very large scale dis-
tributed robotic teams. In Proceedings of the International
Symposium on Experimental Robotics.
Montemerlo, M.; Roy, N.; and Thrun, S. 2003. Per-
spectives on standardization in mobile robot programming:
The Carnegie Mellon Navigation (CARMEN) toolkit. In
Proceedings of the IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS 2003), volume 3,
2436–2441.
Parker, L. E. 1998. Alliance: An architecture for fault
tolerant multirobot cooperation. IEEE Transactions On
Robotics And Automation 14(2):220–240.
Sandholm, T. 1993. An implementation of the contract net
protocol based on marginal-cost calculations. In Proceed-
ings of 11th National Conference on Artificial Intelligence
(AAAI-93), 256–262.
Simmons, R.; Smith, T.; Dias, M. B.; Goldberg, D.; Hersh-
berger, D.; Stentz, A.; and Zlot, R. 2002. A layered archi-
tecture for coordination of mobile robots. In Schultz, A.,
and Parker, L., eds., Multi-Robot Systems: From Swarms
to Intelligent Automata. Kluwer.
Walsh, W. E., and Wellman, M. P. 1998. A market pro-
tocol for decentralized task allocation. In Third Interna-
tional Conference on Multi-Agent Systems, 325–332. cite-
seer.csail.mit.edu/walsh98market.html.
Wellman, M. P., and Wurman, P. R. 1998. Market-aware
agents for a multiagent world. Robotics and Autonomous
Systems 24:115–25.

