
Int. J. Human—Computer Studies (1998) 48, 31—49
Learning cases to resolve conflicts and improve group
behavior

THOMAS HAYNES AND SANDIP SEN-

Department of Mathematical & Computer Sciences, 600 South College Ave., The University
of Tulsa, Tulsa, OK 74104-3189, USA. email: [haynes,sandip]@euler.mcs.utulsa. edu.

Groups of agents following fixed behavioral rules can be limited in performance and
efficiency. Adaptability and flexibility are key components of intelligent behavior which
allow agent groups to improve performance in a given domain using prior problem-
solving experience. We motivate the utility of individual learning by group members in
the context of overall group behavior. In particular, we propose a framework in which
individual group members learn cases from problem-solving experiences to improve their
model of other group members. We use a testbed problem from the Distributed Artificial
Intelligence literature to show that simultaneous learning by group members can lead to
significant improvement in group performance and efficiency over agent groups follow-
ing static behavioral rules. (1998 Academic Press Limited
1. Introduction

Research in multiagent systems have focused on the problem of co-ordinating groups of
co-operative as well as self-interested agents (Bond & Gasser, 1988). Whereas achieving
co-ordination in non-co-operative situations poses a more challenging problem in
general, co-operative agent groups must also be responsive to environmental demands
and the problem-solving state of individual group members to achieve effective group
performance. A critical problem in multiagent systems is that the optimal action for an
individual agent from its local view of a problem-solving scenario might not be the
optimal action for the entire group from the global view of the same problem-solving
scenario (Ordeshook, 1995). Thus, an agent can evaluate the utility of its actions both at
the individual and the group levels. The group-level calculations require more informa-
tion and impose greater cognitive load, whereas the individual-level calculations may not
always yield desirable results. If agents in a group are likely to interact, utility calcu-
lations from even the individual perspective requires reasoning about the possible
actions of some or all of the group members. To reason accurately, each individual in
a closely coupled group should model the behavior of other group members, and use
these models to derive expectations of the actions of other group members that can
possibly infringe on its own plan of actions. This analysis holds irrespective of whether
agents are co-operative, antagonistic or indifferent to other agents.
-Address for correspondence: Sandip Sen, Department of Mathematical & Computer Sciences, 600 South
College Ave., The University of Tulsa, Tulsa, OK 74104-3189 USA. email: sandip@euler.mcs.utulsa.edu.

1071-5819/98/010031#19$25.00/0/hc970159 (1998 Academic Press Limited

32 T. HAYNES AND S. SEN
If an agent’s interactions with other agents are fairly infrequent and the environment is
stationary, then a static set of behavioral rules may be sufficient in effectively fulfilling
local goals. For a large number of practical and interesting scenarios, however, either
agents interact with other agents of unknown composition or all possible agent interac-
tions cannot be foreseen. Adaptation and learning are key mechanisms by which agents
can modify their behavior on-line to maintain a viable performance profile in such
scenarios (Sen, 1996; Wei{ & Sen, 1996).

If agents have accurate and consistent models of other group members, reasoning can
be expedient and this helps in achieving group co-ordination. But often, even in
co-operative groups, an individual may not have an up-to-date model of fellow
workers. This may be because of either different agent designers are not willing to
share the internal details of their agent constitutions or agent behaviors change as the
agent learns new abilities. In either case, a desirable characteristic of such agent groups
is that these agents learn to adapt to each other over time. This is often witnessed
in human groups where a collection of individuals go through a phase of adjust-
ments before they can effectively perform as a team. The research question to focus
on in this context is: what are the mechanisms available by which individual group
members can, over time, better adjust to others and more effectively contribute to the
group cause?

One approach for adaptation in a group can be for an agent to start with a very
coarse or approximate model of other group members. For example, it can start with
the default assumption that every one else is like itself, and modify this model based on
experience. Since, in most realistic multiagent system, agents are likely to interact
in unforeseen ways, a dynamic model of the group must be maintained by an individual.
Problems of modeling another agent based on passive observation are many: discrep-
ancy between the expected and actual capabilities, goals, relationships, etc., of
the observed agent may lead to an inferred model which is inaccurate and misleading;
different agents may perceive different views of the environment and, hence, the observ-
ing agent may not be able to correctly infer the motivations for a given action taken
by another agent; actions can take different intervals of time and agents can be
acting asynchronously. Even if agents are allowed to communicate, communication
delays, improper use of language, different underlying assumptions, etc., can
prevent agents from developing a shared common body of knowledge (Halpern
& Moses, 1990).

Given the above assumption about the initial model of other agents, an adaptive agent
can possibly use various different learning methods to incrementally improve its model
of other group members. It would be preferable to use an incremental, rather than
batch-learning model, and for most multiagent systems, an anytime learning algorithm
that is computationally cheap in both the knowledge acquisition and application phases
is desirable. Our goal in this research is to show that given some generic behavioral rules
that are effective in achieving local goals in the absence of other agents, but are ineffective
when they have to share resources with other group members, agents can adapt their
behavior to achieve their goals in the presence of other agents. Some of the assumptions
in our work are: (1) agents are provided with a default set of behavioral rules to follow;
(2) repeated interaction with other group members allow agents to modify these behav-
ioral rules in some but not necessarily in all cases; (3) agents are motivated to achieve

MULTIAGENT CASE BASED LEARNING 33
local goals but are cognizant of global goals; (4) agents are autonomous; (5) agent
perceptions are accurate; (6) agents do not communicate explicitly; and (7) all agents act
and adapt concurrently.

The elimination of communication between agents further limits the use of existent
mechanisms in multiagent systems literature that are used to achieve group co-
ordination (Lesser, 1995). Though we value the wealth of information that can be
shared and utilized by agents to improve group performance, our goal is to push the
limits of group performance that can be achieved when agents are intelligently build-
ing and using models of others without any explicit help from them. The reason for
our choice is to investigate how far we can go without using explicit communica-
tion. After having leveraged as much as possible from this mode of group problem
solving, we believe we will be better equipped to add and exploit communication skills
in agents.

We now introduce our proposed model of adaptation with which agents can use
problem-solving experience to both update the model they have of other agents, and to
some extent predict what others are going to do in a specific situation. This predictive
abilities allow agents to choose actions that are less likely to be mutually conflicting or
disruptive. We propose a learning framework in which agents learn cases to override
default behavioral rules. When the actual outcome of the action of an agent using its
behavioral rules is not consistent with the expected outcome based on the model the
agent has of other agents, the agent recognizes that a conflict has occurred and that its
behavior is not appropriate in that situation. For those situations, the agent learns
exceptions to its behavioral rules that are likely to prevent future conflicts. Agents follow
their behavioral rules except when a learned case suggests alternative actions. Through
this process, the agents dynamically evolve a behavior that is suited for the group in
which it is placed. The multiagent case-based learning (MCBL) algorithm thus utilizes
exceptions to a default ruleset, which describes the behavior of an agent. These excep-
tions form a case library. The agent does not reason with these cases, as in CBR
(Kolodner, 1988), but rather adapts an inaccurate individual model to improve perfor-
mance. Though researchers have used CBR in multiagent systems (Sycara, 1987), little
work has been done in learning cases in multiagent systems (Garland & Alterman, 1995;
Prasad, Lesser & Lander, 1995).

A typical multiagent situation in which case learning can be effectively used to adapt
local behavior can be seen in the interactions of Adam and his cat Buster: Buster is
diabetic, and must receive insulin shots every morning; he must also be given some
food with his shot. Adam decides to administer the shot when he wakes up to go to
work. He discovered that Buster would react to the sound of the alarm, and go to his
food dish. As the alarm clock does not go off on weekends, the cat learned it has to
wake up Adam to get its food. The latter is an exception to the routine behavior, and
is learned when the cat’s expectation of the alarm clock going off in the morning is
not met.

The rest of this paper is organized as follows. Section 2 discusses briefly case-based
reasoning and defines multiagent case-based learning within multiagent systems. Section
3 discusses the predator—prey domain and why it is a suitable testbed for our research
into MCBL. Section 4 describes the case windows considered for indexing into the case
library. Section 5 presents our results from applying MCBL to the multiagent domain.

34 T. HAYNES AND S. SEN
Section 6 illustrates the applicability of MCBL in other multiagent domains. Section
7 discusses the implications of our findings in both the testbed domain and in multiagent
systems in general.

2. Case-Based Learning

Case-based reasoning (CBR) (Hammond, Converse & Marks, 1990; Golding & Rosen-
bloom, 1991; Kolodner, 1993) is a reasoning process for information retrieval and
modification of solutions to problems. A case is typically comprised of a representation
of a state of a domain and a corresponding set of actions to take to lead from that state to
another desired state. These actions could be either a plan, an algorithm or a modifica-
tion of another case’s actions. A case library is a collection of cases. A CBR algorithm
contains a module to determine if there is a case that matches the current state of
a domain; if such a case exists, it is retrieved and used. If there is no such match, then
cases that are similar to the current state are retrieved from the case library. The set of
actions corresponding to the most relevant case is then adapted to fit the current
situation. Cardie (1993) defined case-based learning (CBL) as a machine-learning tech-
nique used to extend instance-based learning (IBL) (Aha, Kibler & Albert, 1991). The
IBL algorithm retrieves the nearest instance (for our purposes, an instance can be
thought of to be a case) to a state, and performs the suggested actions. There is no case
adaptation if the retrieved instance is not a direct match to the current state. With CBL,
adaptation may be required.

We view cases as generalizations of sets of instances, and in the context of multi-
agent systems, we define MCBL as a learning system by which an agent can extend its
default behavioral strategy to allow it to respond to exceptions to those rules. The
adaptation lies in translating the general case to specific instances. In our framework,
the cases in the MCBL system are used by agents to preferentially order their actions.
In a single-agent system, the state represents the environment, and in multiagent systems,
it represents the environment and the agent’s expectations of the actions of other agents.
In the following, we present our formalization of a CBL system tailored for use in
multiagent systems.

What do cases represent? The behavioral rules that an agent has can be thought of as
a function which maps the state (s) and the applicable action set (A) of an agent to
a preference ordering of those actions:

BH(s, A)NA@"Sa
x1

, a
x2
2a

xk
T,

The cases an agent learns allow it to modify this preference ordering:

CB(s, A@)NAA"Sa@
x1

, a@
x2
2a@

xj
T, j4k.

A case need not fire every time the agent is to perform an action, i.e. AA can be the
same as A@. Cases can be positive or negative (Hammond et al., 1990; Golding & Rosen-
bloom, 1991). A positive case informs the agent what to do, i.e. it reorders the set
of actions. A negative case can reorder the actions and/or delete actions from the set.

MULTIAGENT CASE BASED LEARNING 35
The cases used in the system we are presenting in this paper are negative in the sense
that they eliminate one or more of the most preferred actions as suggested by behavioral
rules.

When do agents learn cases? An agent learns a case when its expectations are not met.
If either the behavioral rules or a case predict that given a state s

n
and the application of

an action a
x
, the agent should expect to be in state s@

n
, and the agent does not end up in

that state, a case is learned by the corresponding agent. This case will then cause the
action a

x
not to be considered the next time the agent is in state s

n
. In multiagent systems,

we expect cases will be learned primarily from unexpected interactions with other agents.
Cases can be generalized by eliminating irrelevant features from the representation of the
state. For example, if another agent is too far away to influence the state of an agent, A

i
,

then the expectations of its behavior should not be included by A
i
when it either indexes

or creates a new case.

What happens as models change? If agent A
i
learns an exception to its default behavior

based on an interaction with agent A
j
, and agent A

j
does not modify its behavior, then A

i
does not have to check to see if that exception has to be modified at some later time. In
a system where both agents are modifying their behavioral rules, A

i
must check to see if

A
j
took the action corresponding to the case. If it has not, then A

j
’s behavioral rules have

changed, and A
i
must update its model of A

j
.

3. The pursuit problem

We use a concrete problem from the distributed artificial intelligence (DAI) literature to
illustrate our approach of MCBL in multiagent systems. The predator—prey, or pursuit,
domain has been widely used in DAI research as a testbed for investigating co-operation
and conflict resolution (Stephens & Merx, 1990; Korf, 1992; Haynes, Sen, Schoenefeld
& Wainwright, 1995; Haynes & Sen, 1996), In this section, we provide an overview of the
prior research into the domain and motivate why we utilize learning in aiding the
predator agents in capturing the prey.

The earliest research allowed the agents to communicate their intentions to each other.
Korf proved that simple greedy agents could always capture the prey without any form
of communication (Korf, 1992). This effectively stopped any further research into this
domain. In our earlier research, we have shown that some of the assumptions made by
Korf facilitate capture and if these assumptions are made more ‘‘realistic’’, then either
communication between the predators or more complex agents, employing memory, are
needed to effectively capture the prey (Haynes et al., 1995). We disallow communication
and investigate the adaptation of the individual to the group. Through on-line interac-
tion, the agents learn co-ordination and co-operation.

3.1. HISTORY

The original version of the predator—prey pursuit problem was introduced by Benda,
Jagannathan and Dodhiawala (1986) and consisted of four blue (predator) agents

36 T. HAYNES AND S. SEN
trying to capture a red (prey) agent by surrounding it from four directions on
a grid world. The movement of the prey agent was random. No two agents were
allowed to occupy the same location. Agent movements were limited to either a hori-
zontal or a vertical step per time unit. The goal of this problem was to show the
effectiveness of nine organizational structures, with varying degrees of agent co-
operation and control, on the efficiency with which the predator agents could capture
the prey.

The approach undertaken by Gasser, Rouquette, Hill and Lieb (1989) postulated that
the predators could occupy and maintain a ¸ieb configuration (each predator occupying
a different quadrant, where a quadrant is defined by diagonals intersecting at the
location of the prey) while homing in on the prey. This study, as well as the study by
Singh (1990) on using group intentions for agent co-ordination, lacks any experimental
results that allow comparison with other work on this problem.

Stephens and Merx (1989, 1990) performed a series of experiments to demonstrate the
relative effectiveness of three different control strategies. They defined the local control
strategy where a predator broadcasts its position to other predators when it occupies
a neighboring location to the prey. Other predator agents then concentrate on occupying
the other locations neighboring the prey. In the distributed control strategy, the pred-
ators broadcast their positions at each step. The predators farther from the prey have
priority in choosing their target location from the preys neighboring location. In the
centralized-control strategy, a single predator directs the other predators into subregions
of the Lieb configuration. Stephens and Merx experimented with 30 random initial
positions of the predators and prey problem, and discovered that the centralized-
control mechanism resulted in capture in all configurations. The distributed-control
mechanism also worked well and was more robust. They also discovered that the
performance of the local control mechanism was considerably worse. In their research,
the predator and prey agents took turns in making their moves. We believe this is not
very realistic. A more realistic scenario is for all agents to choose their actions con-
currently. This will introduce significant uncertainty and complexity into the
problem.

The earlier research into the predator—prey domain involved explicit communication
between the predator agents. Korf (1992) claimed that such expensive communication
was unnecessary, as simple greedy algorithms always leads to capture. In his research,
Korf further claims that the orthogonal game, a discretization of the continuous world
which allows only horizontal and vertical movements, is a poor approximation. In
a diagonal version of the game, Korf developed several greedy solutions to problems
where eight predators are allowed to move orthogonally as well as diagonally. In Korf’s
solutions, each agent chooses a step that brings it nearest to the predator. A max-norm
distance metric (maximum of x and y distance between two locations) is used by agents
to choose their steps. The predator was captured in each of a thousand random
configurations in these games. But the max-norm metric does not produce stable captures
in the orthogonal game; the predators circle the prey, allowing it to escape. Korf replaces
the previously used randomly moving prey with a prey that chooses a move that places it
at the maximum distance from the nearest predator. Any ties are broken randomly. He
claims that this addition to the prey movements makes the problem considerably more
difficult.

MULTIAGENT CASE BASED LEARNING 37
3.2. MOTIVATION FOR LEARNING CASES

In spite of the apparent simplicity of the predator—prey, it has been shown that the
domain provides for complex interactions between agents and no known hand-coded
co-ordination strategy is very effective (Haynes et al., 1995). Simple greedy strategies for
the predators have long been postulated to efficiently capture the prey (Korf, 1992). The
underlying assumption that the prey moves first, then the predators move in order
simplifies the domain such that efficient capture is possible. Relaxing the assumption
leads to a more natural model in which all agents move at once. This model has been
shown to create deadlock situations for simple prey algorithms of moving in a straight
line (Linear) or even not moving at all (Still) (Haynes et al., 1995)! Two possible solutions
have been identified: allowing communication and adding state information. We
investigate a learning system that utilizes past expectations to reduce deadlock
situations.

The predator agents have to capture the prey agent by blocking its orthogonal
movement. The game is typically played on a 30]30 grid world, which is toroidal
(Stephens & Merx, 1990). The behavioral strategies of the predators use one of two
distance metrics: Manhattan distance (MD) and max-norm (MN). The MD metric is the
sum of the differences of the x and y co-ordinates between two agents. The MN metric is
the maximum of the differences of the x and y co-ordinates between two agents. Both
algorithms examine the metrics for the set of possible moves, i.e. moving in one of the
four orthogonal directions or staying still, and select a move corresponding to the
minimal distance metric. All ties are randomly broken.

The MN algorithm, as described by Korf (1992), does not allow the predators to move
to the cell occupied by the prey. (In his research, the prey moves first, followed by the
predators in order. Thus, conflicts are resolved between predators and prey by serializ-
ation.) Figure 1 illustrates a problem with this restriction. The cells to the North and
South of predator 4 are as equally distant from prey P as the cell currently occupied by
predator 4. Since all ties are non-deterministically broken, with each movement of the
agents, there is a 0.66 probability that predator 4 will allow prey P to escape.
FIGURE 1. A possible sequence of movements in which a MN-metric-based predator tries to block prey P.
(a) Predator 4 manages to block P. Note that 4 is just as likely to stay still as move North or South.
(b) Predators 1 and 3 have moved into a capture position, and predator 2 is about to do so. Note that 4 is just as
likely to stay still as move North or South. (c) Predator 4 opts to move to the North, allowing prey P to escape.

Note that 4 is just as likely to stay still as move East or ¼est.

38 T. HAYNES AND S. SEN
Assuming a ¸inear prey moving East, Figure 1 also illustrates the failure of the MN
metric algorithms to capture a Linear prey. It is possible that a predator can manage to
block the prey, but it is not very likely that it can keep the prey blocked long enough for
a capture to take place. It is also possible that once captured, the prey may escape the
MN metric algorithms. The MD metric algorithms do not suffer from this inability to
make stable captures. They do however have a drawback which both the Linear and Still
prey algorithms expose. Our original hypothesis was that the Linear prey moved in such
a manner so as to always keep the predators ‘‘behind’’ it. Thus, the inability to capture it
was due to not stopping its forward motion. We started keeping track of blocks, i.e.
a situation in which a predator blocks the motion of the prey, and discovered that the
MD metric algorithms were very good at blocking the Linear prey.

The MD strategy is more successful than the MN in capturing a Linear prey
(22% vs. 0%) (Haynes et al., 1995). Despite the fact that it can often block the forward
motion of the prey, its success is still very low. The MD metric algorithms are very
susceptible to deadlock situations, such as in Figure 2. If, as in Figure 2(a), a predator
manages to block a Linear prey, it is typical for the other predators to be strung out
behind the prey. The basic nature of the algorithm ensures that positions orthogonal to
the prey are closer than positions off the axis. Thus, as shown in Figure 2(b) and (c), the
remaining predators manage to close in on the prey, with the exception being any agents
who are blocked from further advancement by other agents. The greedy nature of this
algorithm ensures that in situations similar to Figure 2(c), neither will predator 2 yield
to predator 3 nor will predator 3 go around predator 2. While the MN metric algorithms
can perform either of these two actions, predator agents employing it are not able to
keep the Linear prey from advancing. It is also evident that once the Linear prey has
been blocked by a MD metric algorithm, the prey algorithm degenerates into the Still
algorithm. This explains the surprising lack of captures for a prey which does not
move.

The question that arises from these findings is how should the agents manage conflict
resolution? A plausible answer can be found in the ways humans manage conflict
resolution, using past history stored as typical cases (Kolodner, 1993). If predator 1 senses
FIGURE 2. A possible scenario in which a MD-metric-based predator, enter deadlock. (a) Predator 4 manages
to block P. Predators 1–3 move in for the capture. (b) Predator 2 has moved into a capture position.
(c) Predator 1 has moved into a capture position. Predator 2 will not yield to predator 3. They are in deadlock,

and the prey P will never be captured.

MULTIAGENT CASE BASED LEARNING 39
that predator 2 is in its Northeast cell, and it has determined to move North, then it
realizes that if predator 2 moves ¼est there will be a conflict. Predator 1 should then
learn not to move North in the above situation, but rather move to its next most
preferred direction.

In this research, we examine multiagent case-based learning of potential conflicts. The
default rule employed by predators is to move closer to the prey, unless an overriding
case is present. If a case fires, the next best move is considered. This process continues
until a move is found without a corresponding negative case. If all moves fire a negative
case, then the best move according to the default behavior should be taken. If the
suggested move, either by the default rule or a case firing, does not succeed, then a new
case is learned.

For the majority of moves in the predator—prey domain, either the max-norm or MD
metric algorithms suffice in at least keeping the predator agents the same distance away
from the prey. As discussed later, the prey effectively moves 10% slower than the
predators, the grid world is toroidal and the prey must occasionally move towards some
predators to move away from others. Therefore, the predators will eventually catch up
with it. Contention for desirable cells begins when the predators either get close to the
prey or are bunched up on one of the orthogonal axes. What the predators need to learn
is cohesive behavior. Under certain conditions, i.e. when two or more predator agents vie
for a cell, the greedy nature of the above algorithms must be overridden. We could simply
order the movements of the predators, allowing predator 1 to always go first. But it might
not always be the fastest way to capture the prey. No ordering is likely to be more
economical than others under all circumstances.

Also, if we consider real-world predator—prey situations, the artificial ordering cannot
always be adhered to. Consider, for example, a combat engagement between fighter
aircraft and a bomber. If there are only two fighters, the ordering rule suggests that
fighter 1 always moves before fighter 2. If they are in the situation depicted in Figure 3(a),
then fighter 1 cannot fire on the bomber B, because doing so will hit fighter 2. Clearly,
fighter 2 should first move North or South, allowing both it and the other fighter to have
clear fire lanes. But under the proposed ordering of the movements, it cannot move in
such a manner. So, the default rules is that fighter 1 moves before fighter 2, with an
exception if fighter 2 is in front of fighter 1. The rule can be modified such that agent in
FIGURE 3. Conflicts in firing lanes for fighter planes strafing a bomber: (a) fighter 1 is blocked from firing by
fighter 2, and (b) not only is fighter 1 blocked, but so is fighter 3 by fighter 4.

40 T. HAYNES AND S. SEN
front gets to move first. However, if we add more fighters, then the situation in Figure
3(b) does not get handled very well. How do fighters 2 and 4 decide who shall go first?
What if they both move to the same cell North of fighter 2? These are the very problems
we have been discussing with the MD metric algorithm.

What is needed is a dynamic learning mechanism to model the actions of other agents.
Until the potential for conflicts exist, agents can follow their default behaviors. It is only
when a conflict occurs that an agent learns that another agent will act a certain way in
a specific situation S

j
. Thus, agent A

i
learns not to employ its default rule in situation S

j
;

instead, it considers its next best action. As these specific situations are encountered by
an agent, it is actually forming a case-base library of conflicts to avoid. As an agent learns
cases, it begins to model the actions of the group. Each agent starts with a rough model of
the group, and improves it by incrementally refining the individual models of other
agents in the group.

3.3. ENHANCED BEHAVIORAL RULES

In order to facilitate efficient capture, i.e. provide the agents with the best set of default
rules, we enhanced the basic MD algorithm. This will also provide a better challenge for
the learning algorithm to improve on. If we consider human agents playing a pred-
ator—prey game, we would see more sophisticated reasoning than simple greedy behav-
ioral rules. When faced with two or more equally attractive actions, a human will spend
extra computational effort to break the tie. Let us introduce some human agents: Alex,
Bob, Cathy and Debbie. Bob and Debbie have had a fight, and Bob wants to make up
with her. He asks Alex what he should do. Alex replies that in similar situations he takes
Cathy out to dinner. Bob decides that either Burger King or Denny’s will do the trick (he
is a college student, and hence broke most of the time). In trying to decide which of his
two choices is better, he predicts how Debbie will react to both restaurants. Denny’s is
a step up from Burgery King, and she will probably appreciate the more congenial
atmosphere.

In the predator—prey domain, such a situation is shown in Figure 4(a). Predator 1 has
a dilemma: both of the cells denoted by x and y are two cells away Prey P, using the MD
FIGURE 4. In both (a) and (b), the cells marked x and y are equal distant via the MD metric from the prey P for
predator 1: (a) x is chosen because the sum of the possible moves from it to prey P is less than the y’s sum of
moves, and in (b) y is chosen because while the look ahead is equal, there is a potential for conflict with

predator 2 at x.

MULTIAGENT CASE BASED LEARNING 41
metric. The sum of the distances between all the possible moves from x and Prey P is 8
and the sum from y to the Prey P is 10. Therefore, using this algorithm, which we call the
look ahead tie-breaker, predator 1 should choose x over y.

A second refinement comes from what happens if the look ahead tie-breaker
yields equal distances for x and y? Such a scenario is shown in Figure 4(b). Then
predator 1 should determine which of the two cells is less likely to be in contention
with another agent. Predators do not mind contending for cells with the prey, but they
do not want to waste a move bouncing off of another predator. By the least con-
flict tie-breaking algorithm, predator 1 should pick y over x (y has 0 contentions,
while x has 1).

Suppose that Bob and Debbie have had another fight, but this time Alex and Cathy
also have fought. Furthermore, a new restaurant, the Kettle, has opened up in town.
Since the Kettle is on par with Denny’s, Bob is again faced with a need to break a tie. As
he knows that Alex and Cathy have fought, he believes that Alex will be taking her out to
make up with her. Bob does not want to end up at the same restaurant, as he and Debbie
will have to join the other couple, which is hardly conducive to a romantic atmosphere.
He decides to model Alex’s behavior. Like Bob, Alex is a student and has never eaten at
the Kettle. Since Cathy is placated by being taken to Denny’s and Alex does not like
changing his routine, then Alex will most likely take her there. Thus, Bob decides to take
Debbie to the Kettle. Notice that if Bob had not accounted for a change in the
environment, then his case would have caused a conflict with his goal.

4. Case representation and indexing

The ideal case representation for the predator—prey domain is to store the entire
grid and to have each case inform all predators where to move. There are two
problems with this setup: the number of cases is too large, and the agents do not act
independently. Each agent could store this case library independently, but the problem
size explodes. An effective ‘‘case window’’ for each predator is to represent all cells that
could directly cause conflicts with any move taken by the agent, as shown in Figure 5.
A drawback to this approach is that agents can be present in the case window,
but not actually be part of the case. For example, predator 2’s location does not
impact the desired move of East for predator 4 in Figure 5. Another problem with this
window is that predator 2 could be just North of predator 1, and cause either predator 1 or
FIGURE 5. Representative of a simple case window for predator 4.

FIGURE 6. Representation of cases for predator 1 in the example: (a) moving (note predator 2 is outside the case
window), and (b) staying still. X denotes which of the three areas the prey is occupying.

42 T. HAYNES AND S. SEN
prey P to move differently than in the scenario presented. Finally, the search space is still
too large.

Unless the entire world is used as a case, any narrowing of the case window is going to
suffer from the above points of the ‘‘effective’’ case window presented above. This is
symptomatic of an ‘‘open’’ and ‘‘noisy’’ domain: the same case can represent several
actual configurations of the domain being modeled. The price to pay to have a clean case
base is in the size of the search space. If we accept that the case windows are going to map
to more than one physical situation, then clearly the issue is how to make the search
space manageable. The case window in Figure 5 encompasses the potential conflicts
when the agent can move in any of the allowable directions. If we limit the case window
to simply represent the potential conflicts that can occur ‘‘after’’ the agent selects a move
based on the default rules or learned case, then we can utilize the case windows shown in
Figure 6. The case window in Figure 6(a) is rotationally symmetric for the directions the
agent can choose, and the case window in Figure 6(b) is applied for when the agent
remains stationary.

Our cases are negative in the sense they tell the agents what not to do [A positive case
would tell the agent what to do in a certain situation (Golding & Rosenbloom, 1991).]
A crucial piece of information in deciding local action is where does the agent believe the
other agents are going to move? This is modeled by storing the orientation of the prey’s
position with respect to the desired direction of movement of the agent. Specifically, we
store whether the prey lies on the agent’s line of advance or if it is to the left or right of the
line. In the case window of Figure 9, the prey’s relation to the line of advance is makred
with a ‘‘X’’.

An agent has to combine its behavioral rules and learned cases to choose its actions.
This is shown algorithmically in Figure 7. When an agent prepares to move, it orders its
possible actions by the default rules (the MD distance metric with the additional
tie-breaking mechanisms). It then iterates down the ranked list, and checks to see if
1. Preferentially order actions by behavioral rules.
2. Choose the first action which does not cause a negative case to fire, i.e. one containing

a conflict.
3. If the state corresponding to the selected action is not reached, then the agent must learn

a case.

FIGURE 7. Algorithm for selecting actions based on negative cases.

FIGURE 8. Predator 1 learns the wrong case. (a) predator 1’s best action is to move towards prey P. (b) Predator
1 bounces back from prey P. It has now stored the incorrect fact that it has stayed still and not moved East.
(c) Predator 2 pushes out predator 1, and predator 1 learns the incorrect case that if its best action is to stay still

in the configuration shown in (a), then it should select its next best action.

FIGURE 9. Case window for predator 1.

MULTIAGENT CASE BASED LEARNING 43
a negative case advises against that move. To index a case, the agent first determines
whether the possible action is for movement or staying still, which determines the four
cells whose contents it will examine for potential conflicts. The contents can be summed
to form an unique integer index in a base number system reflecting the range of contents.
The first possible action which does not have a negative case is chosen as the move for
that turn.

We used case windows as shown in Figure 6 while learning to capture the Still prey.
The results were promising, but we found that the predators would falsely learn cases,
which hindered the efficient capture of the prey. Such an erroneous scenario is shown in
Figure 8. The problem lies in predator 1’s interpretation of the scenario. It tried to move
to the location of prey P and failed. It does not learn in situations involving prey P. Now
predator 2 pushes predator 1, and predator 1 should learn to yield to predator 2 if it is
again faced with the situation shown in Figure 8(a). The case it learns is the stationary
case window shown in Figure 6(b). This case informs predator 1 that if its current
best action is to stay still, then it should consider the next best action. However, this
case will never fire because predator 1’s best action is to move into prey P’s cell, and
since the predators do not learn cases against the prey, there is no case that will
cause it to consider its remaining actions. Thus, exactly the same conflict will occur, and
predator 1 will re-learn the same case without ever applying it.

The case that should be learned is that when predator 1 is in the situation depicted in
Figure 8(a), then it should consider its next best action. However, as can be seen in Figure
6(a), such a situation cannot be learned with the current case windows. In order to
capture the necessary information, we decided to merge the two case windows of

44 T. HAYNES AND S. SEN
Figure 6 into one, which is shown in Figure 9. Now agents can store cases in which there
is a potential for conflict for both the resource it desires and the resource it currently
possess. The learned case is shown in Figure 9. If the same situation, as in Figure 8(a), is
encountered, the case will fire and predator 1 will consider its next best action. With the
enhanced rules, this will be to move North.

The same case can represent several actual configurations of the domain being
modeled. If the case windows are going to map to more than one physical situation, then
clearly the issue is how to find the most relevant general case. If we limit the case window
to represent potential conflicts that can occur ‘‘after’’ the agent selects a move based on
the default rules or learned case, then we can utilize the case windows shown in Figure 9.
Since the agent decides where to move first, we can utilize rotational symmetry to map
four potential cases into one.

5. Experimental setup and results

The initial configuration consists of the prey in the center of a 30]30 grid and the
predators placed in random non-overlapping positions. All agents choose their actions
simultaneously. The environment is accordingly updated and the agents choose their
next action based on the updated environment state. If two agents try to move into
the same location simultaneously, then randomly one is ‘‘bumped back’’ to its prior
position and learns a case (this corresponds to the physical analogue of one of the
contenders randomly being assigned the physical resource). One predator can push
another predator (but not the prey) if the latter decided not to move. The prey does not
move 10% of the time, effectively making the predators travel faster than the prey. The
grid is toroidal in nature, and only orthogonal moves are allowed. All agents can sense
the positions of all other agents. Furthermore, the predators do not possess any explicit
communication skills: two predators cannot communicate to resolve conflicts or negoti-
ate a capture strategy. The case window employed is that depicted in Figure 9. We have
also identified two enhancements to break ties caused by the default rules employed in
the MD metric: look ahead and least conflict (Haynes, Lau & Sen, 1996). Look ahead
breaks ties in which two moves are equidistant via MD, the one which is potentially
closer to the prey in two moves is selected. If look ahead also results in a tie, then the
move which conflicts with the least number of possible moves by other predators is
selected to break the tie.

Initially, we were interested in the ability of predator behavioral rules to effectively
capture the Still prey. We tested three behavioral strategies: MD—the basic MD
algorithm, MD-EDR—the MD modified with the enhancements discussed in Section
3.3, and MD-CBL—which is MD-EDR utilizing a case base learned from training on
100 random simulations. The results of applying these strategies on 100 test cases are
shown in Table 1. It should be noted that the MD algorithm is the best hand-coded
behavioral strategy to-date in the predator—prey domain, in the absence of explicit
communication between the agents. While the enhancement of the behavioral rules does
increase capture, the addition of learning via negative cases leads to capture in almost
every simulation.

We also conducted a set of experiments in which the prey used the Linear algorithm
as its behavioral rule. Again we tested the three predator behavioral strategies of

TABLE 1
Number of captures (out of a 100 test cases) and average

number of steps to capture for the Still prey

Algorithm Captures Average number of steps

MD 3 19.00
MD-EDR 46 21.02
MD-CBL 97 23.23

TABLE 2
Number of captures (out of a 100 test cases) and average
number of steps to capture for the Linear prey. MD-CBL*
denotes a test of the MD-CBL when trained on a Linear prey

Algorithm Captures Average number of steps

MD 2 26.00
MD-EDR 20 24.10
MD-CBL 54 27.89
MD-CBL* 66 26.45

TABLE 3
Number of cases learned while trianed on the Still and Linear
preys. (Of 100 random trials, the Still prey was caught 100
times, and the Linear prey 63 times.) And the number of times

the learned cases were utilized in the test trials

Predator Cases learned Utilization of cases

Still Linear Still Linear

1 27 51 80 118
2 27 40 78 76
3 29 47 80 78
4 33 53 82 92

MULTIAGENT CASE BASED LEARNING 45
MD, MD-EDR and MD-CBL. The MD-CBL algorithm was trained on the Still prey.
We trained on a Still prey because, as shown in Section 3, the Linear prey typically
degrades to a Still prey. We have also presented the results of training the MD-CBL
on the Linear prey (MD-CBL*). The results for the Linear prey are presented in
Table 2.

In Table 3 we present the number of cases learned during the training and the number
of cases utilized during the testing trials. Note that the learning is evenly distributed
across the agents. The increase in learning from Still to Linear can be explained by the

46 T. HAYNES AND S. SEN
interactions caused by the agents chasing the prey: the dynamic movement of the prey
forces the predators into configurations not seen in the static case.

With both prey algorithms, the order of increasing effectiveness was MD, MD-EDR
and MD-CBL. Clearly, the addition of MCBL to this multiagent system is instrumental
in increasing the effectiveness of the behavioral rules. There is some room for improve-
ment, as the results from the Linear prey indicate. A majority of the time spent in
capturing the Linear prey is spent chasing it. Only after it is blocked do interesting
conflict situations occur.

These experiments show the remarkable effectiveness of individual learning for contri-
buting to group performance. Whereas the addition of communication and other
sophisticated reasoning mechanisms definitely improve group performance in this and
other complex domains, one can certainly make the point that individual learning can
often compensate for inadequacies in pre-fabricated behavioral strategies.

6. Discussion

Agent interactions can be represented as games (Rosenschein & Genesereth, 1985). In the
extensive representation of a game, both minmax and alpha—beta search techniques can
be used to determine which strategy to take at a decision point. Without knowing the
behavioral strategy, or utility function, employed by other agents, a common model of
others is to assume that they are rational and will take the move that maximizes their
payoff.

A problem with this assumption is that agents can have different skills and proficien-
cies in those skill. An expert plays differently against another expert than an intermediate
opponent. The expert opponent is expected to maximize its utility, making few mistakes,
and the intermediate opponent is not expected to perceive all of its options, making more
mistakes. Identifying another agent’s model is crucial in effectively playing against it
(Gmytrasiewicz & Durfee, 1995; Tambe & Gmytrasiewicz, 1996).

How does an agent determine the skill level of an unknown opponent, or how does it
determine which model applies? The agent can assume that the opponent utilizes the
same behavioral strategy as itself. As the opponent takes moves that are not ‘‘optimal’’ as
predicted by that strategy, a model of the skill level can be learned. If the opponent wins,
then it is more skilled. If it loses, then it is less skilled.

Clearly, an agent should remember those situations in which the more skilled
opponent took an action a@ different than the predicted one a. When in the same
situation, the action a@ will be preferentially ranked above a. Consider that the
opponent’s reasoning or perception is superior; it may have reacted to something
the agent either is not considering or is not able to detect or compute. The opponent
might take a better action, but a lower bound is the action already seen by the agent. An
agent should also remember both those actions and situations that the less-skilled
opponent utilized. While the alpha—beta heuristic is guaranteed to maximize its utility
against the best action selected by an opponent, the agent can do better if its utility
evaluation can detect that the opponent will not take the best action available. So,
MCBL can help an agent to improve its performance both against more- and less-skilled
opponents.

MULTIAGENT CASE BASED LEARNING 47
7. Conclusions

We have shown that case-based learning can be effectively applied to multiagent systems.
We have taken a difficult problem of group problem-solving from DAI literature and
shown how MCBL can significantly improve on the performance of agent groups
utilizing fixed behavioral rules. Our results, however, suggests interesting avenues for
future research. Some of the critical aspects of MCBL in agent groups that we plan to
further investigate are the following.

(1) Changing agent models. A potential problem with this algorithm is that as Agent
A

i
is learning to model the group behavior, the other agents in the group are likewise

refining their models of the group interactions. This learning is dynamical, and the model
Agent A

i
constructs of A

j
may be invalidated by the model of A

j
of A

i
. In the environment

state E
l
, agent A

i
learns that A

j
will select action a

y
. It might be the situation that when

the environment is again at E
l
, A

j
does not select a

y
, but instead a

z
. Is this an exception to

the exception? Or is it just a re-learning of Agent A
i
’s model of A

j
?

If we return to our cat example presented earlier, we can see a situation in which group
learning occurs when Daylight Savings Time takes effect. The time the alarm clock is
set for is pushed back an hour. No one has informed Buster of this change in his
environment. Adam’s model of the cat is that Buster will try to wake him up ‘‘early’’ on
weekday mornings. As predicted, Buster tries to wake up Adam. Adam refuses to get out
of bed until the alarm sounds. After a week of not being able to wake Adam, Buster
changes his routine by waiting until the new time before he tries to wake Adam.

(2) Diversity of experience. In order for agents to significantly improve performance
through learning, it is essential that they be exposed to a wide array of situations. In some
domains, agents can deliberately experiment to create novel interaction scenarios which
will allow them to learn more about other agents in the groups.

(3) Forgetting. We believe that in order to further improve the performance of the
presented system, it is essential to incorporate a structured mechanism for deleting or
overwriting cases that are recognized to be ineffective. This is particularly important in
multiagent systems because as multiple agents concurrently adapt their behavior, a par-
ticular agent’s model of other agents is bound to get outdated. In effect, ‘‘the person
I knew is not the same person any more!’’. To modify learned cases, we need to store
more information about which agent caused us to learn the case, and what is our
expectation of the behavior of that particular agent. We are currently working on
developing a representation for the above without exploding the search space.

This work has been supported, inpart, by the National Science Foundation under a Research
Initiation Award IRI-9410180 and a CAREER award IRI-9702672.

References

AHA, D. W., KIBLER, D. & ALBERT, M. K. (1991). Instance-based learning algorithms. Machine
¸earning, 6, 37—66.

BENDA, M., JAGANNATHAN, V. & DODHIAWALA, R. (1986). On optimal co-operation of knowledge
sources—an empirical investigation. Technical Report BCS-G2010-28, Boeing Advanced
Technology Center, Boeing Computing Services, Seattle, Washington, DC, USA.

48 T. HAYNES AND S. SEN
BOND, A. H. & GASSER, L., Ed. (1988). Readings in Distributed Artificial Intelligence. Los Altos, CA:
Morgan Kaufmann.

CARDIE, C. (1993). Using decision trees to improve case-based learning. In Proceedings of
the 10th International Conference on Machine ¸earning, pp. 25—32. Los Altos, CA: Morgan
Kaufmann.

GARLAND, A. & ALTERMAN, R. (1995). Preparation of multi-agent knowledge for reuse. In D. W.
AHA & A. RAM, Eds. ¼orking Notes for the AAAI Symposium on Adaptation of Knowledge for
Reuse. Cambridge, MA. New York: AAAI Press.

GASSER, L., ROUQUETTTE, N., HILL, R. W. & LIEB, J. (1989). Representing and using organiza-
tional knowledge in DAI systems. In L. GASSER & M. N. HUHNS, Eds. Distributed
Artificial Intelligence, Research Notes in Artificial Intelligence, Vol. 2, pp. 55—78. London:
Pitman.

GMYTRASIEWICZ, P. J. & DURFEE, E. H. (1995). A rigorous, operational formalization of recursive
modeling. In V. LESSER, Ed., Proceedings of the 1st International Conference on Multi-Agent
Systems, pp. 125—132. San Francisco, CA: Cambridge, MA: MIT Press.

GOLDING, A. R. & ROSENBLOOM, P. S. (1991). Improving rule-based systems through case-
based reasoning. In Proceedings of the 9th National Conference on Artificial Intelligence,
pp. 22—27.

HALPERN, H. & MOSES, Y. (1990). Knowledge and common knowledge in a distributed environ-
ment. Journal of the ACM, 37, 549—587. A preliminary version appeared in Proceedings of the
3rd ACM Symposium on Principles of Distributed Computing, 1984.

HAMMOND, K., CONVERSE, T. & MARKS, M. (1990). Towards a theory of agency. In Proceedings of
the ¼orkshop on Innovative Approaches to Planning, Scheduling and Control, pp. 354—365. San
Diego. Los Altos , CA: Morgan Kaufmann.

HAYNES, T., LAU, K. & SEN, S. (1996). Learning cases to compliment rules for conflict resolu-
tion in multiagent systems. In S. SEN, Ed. ¼orking Notes for the AAAI Symposium on
Adaptation, Co-evolution and ¸earning in Multiagent Systems, pp. 51—56. Stanford Univer-
sity, CA.

HAYNES, T. & SEN, S. (1996). Evolving behavioral strategies in predators and prey. In G. WEI{ & S.
SEN, Eds. Adaptation and ¸earning in Multi-Agent Systems, Lecture Notes in Artificial
Intelligence, pp. 113—126. Berlin: Springer.

HAYNES, T., SEN, S., SCHOENEFELD, D. & WAINWRIGHT, R. (1995). Evolving multiagent co-
ordination strategies with genetic programming. Technical Report UTULSA-MCS-95-04, The
University of Tulsa.

KOLODNER, J. L., Ed. (1988). Proceedings of a ¼orkshop on Case-Based Reasoning (DARPA). Los
Altos , CA: Morgan Kaufmann.

KOLODNER, J. L. (1993). Case-Based Reasoning. Los Altos, CA: Morgan Kaufmann.
KORF, R. E. (1992). A simple solution to pursuit games. In ¼orking Paper of the 11th International

¼orkshop on Distributed Artificial Intelligence, pp. 183—194.
LESSER, V. R. (1995). Multiagent systems: an emerging subdiscipline of AI. ACM Computing

Surveys, 27, 340—342.
ORDESHOOK, P. C. (1995). Game ¹heory and Political ¹heory: An Introduction. Cambridge, MA:

Cambridge University Press.
PRASAD, M. V. N., LESSER, V. R. & LANDER, S. (1995). Reasoning and retrieval in distributed case

bases. Journal of »isual Communication and Image Representation, Special Issue on Digital
¸ibraries. Also as UMASS CS Technical Report 95-27, 1995.

ROSENSCHEIN, J. S. & GENESERETH, M. R. (1985). Deals among rational agents. In Proceedings of
the 9th International Joint Conference on Artificial Intelligence, pp. 91—99, Los Angeles, CA.
(Also published In A. H. BOND & L. GASSER, Eds. (1988). Reading in Distributed Artificial
Intelligence, pp. 227—234. Los Altos, CA: Morgan Kaufmann.).

SEN, S. (1996). Adaptation, coevolution and learning in multiagent systems. Technical Report
SS-96-01. Stanford, CA: AAAI Press.

SINGH, M. P. (1990). The effect of agent control strategy on the performance of a DAI pursuit
problem. In ¼orking Papers of the 10th International ¼orkshop on Distributed Artificial
Intelligence.

MULTIAGENT CASE BASED LEARNING 49
STEPHENS, L. M. & MERX, M. B. (1989). Agent organization as an effector of DAI system
performance. In ¼orking Papers of the 9th International ¼orkshop on Distributed Artificial
Intelligence.

STEPHENS, L. M. & MERX, M. B. (1990). The effect of agent control strategy on the performance of
a DAI pursuit problem. In Proceedings of the Distributed AI ¼orkshop.

SYCARA, K. (1987). Planning for negotiation: a case-based approach. In DARPA Knowledge-Based
Planning ¼orkshop, pp. 11.1—11.10.

TAMBE, M. & GMYTRASIEWICZ, P., Eds. (1996). ¼orking Notes of the AAAI-96 ¼orkshop on
Agent Modeling, Portland, OR.

WEI{, G. & SEN, S., Eds. (1996). Adaptation and ¸earning in Multi-Agent Systems. Lecture Notes in
Artificial Intelligence. Berlin: Springer.

	TABLES
	TABLE 1
	TABLE 2
	TABLE 3

	FIGURES
	FIGURE 1
	FIGURE 2
	FIGURE 3
	FIGURE 4
	FIGURE 5
	FIGURE 6
	FIGURE 7
	FIGURE 8
	FIGURE 9

	1. Introduction
	2. Case-Based Learning
	3. The pursuit problem
	3.1. HISTORY
	3.2. MOTIVATION FOR LEARNING CASES
	3.3. ENHANCED BEHAVIORAL RULES

	4. Case representation and indexing
	5. Experimental setup and results
	6. Discussion
	7. Conclusions
	References

