
Backtracking in Distributed Constraint Networks
Youssef Hamadi

�
and Christian Bessière

�
and Joël Quinqueton

�����

Abstract. The adaptation of software technology to distributed en-
vironments will be an important challenge in the next few years. In
the scope of constraint reasoning, few works have been published on
the adaptation of algorithms searching for a solution in a constraint
network to distributed constraint networks. This paper presents a new
search procedure for finding a solution in a distributed constraint net-
work. Although based on the principle of backtracking to ensure the
completeness of search, this procedure allows a high level of asyn-
chronism, i.e., simultaneous search on independent parts of the net-
work. Furthermore, it fits its behavior to the structure of the con-
straint graph in order to minimize message passing and to avoid
useless restorations when a dead-end is reached. We also present
a generic distributed method for computing any variable ordering
heuristic.

1 INTRODUCTION

The constraint satisfaction problem (CSP) is a powerful framework
for general problem solving. It involves finding a solution to a con-
straint network, i.e., finding values for problem variables subject to
constraints that are restrictions on which combinations of values are
acceptable. It is widely used in artificial intelligence, its applications
ranging from machine vision to crew scheduling and many other
fields (see [8] for a survey). The basic method to search for solu-
tion in a constraint network is backtrack search, which performs a
systematic exploration of the search tree until it finds an instantiation
of values to variables that satisfies all the constraints. In a distributed
framework, this process needs the definition of interaction protocols
between the different processing units. If we except some theoreti-
cal works which use a shared memory communication model, these
protocols usually interact by the way of message passing operations.

At that point, we have to distinguish between parallel based work,
and distributed work. In parallel backtracking algorithms [7], � pro-
cessors concurrently perform a local backtracking algorithm in dis-
joint parts of the search tree. Distributed implementations of back-
tracking are different. A processor (agent) does not implement a local
backtracking. Agent interactions participate to the search. The search
algorithm is obtained as the result of an emergence in the whole in-
teraction of agents in the agents society. A classification of different
types of multi-processor search in CSPs can be found in [5].

In this paper, we deal only with the search for solutions in con-
straint networks distributed among several agents, with no restriction
on the location of each agent. This means that our goal is not to
distribute search algorithms among several agents to speed up the
running time of central algorithms. We distribute search algorithms
among several agents to solve problems that are distributed among
�

LIRMM (UMR 5506 CNRS) - UMII, 161 rue Ada, 34392 Montpellier
Cedex 5 France, {hamadi, bessiere, jq}@lirmm.fr�
INRIA, BP105, 78153 Le Chesnay France

these agents, and for which a loading of the whole problem on a sin-
gle site is impossible. (It can be impossible because of the time/cost
of the loading, because the whole data does not fit to the size of one
machine, or because of security protections on some data that can-
not be brought from one site to another.) We think that this approach
is an important challenge for the next few years because of the in-
creasing number of environments distributed on several sites linked
by internet facilities.

The more related work on search for solution in a distributed con-
straint network was presented in [9]. The authors present a distributed
realization of the backtracking algorithm: asynchronous backtrack-
ing. Their method performs a distributed search with a learning tech-
nique, nogood recording. This non-bounded recording of previous
local failures ensures the completeness of their algorithm.

The basis of our distributed backtracking (DIBT) is the backtrack-
ing algorithm (BT) [2]. We ensure the completeness of the algorithm
by an exhaustive domain exploration. We avoid learning schemes,
such as nogood recording, and we present severals ways of improve-
ment of BT search process according to the distributed context. For
example, since agents are connected only according to the constraint
network structure, we obtain for free a graph-based backjumping
(GBJ [1]) behavior during failure phases. Instantiation information
is also transmitted between connected agents, so it also benefits from
the constraint network topology. DIBT uses a conservative strategy
for saving benefits of previous search in independent parts of the net-
work. Furthermore, it is known from studies on central CSPs that the
size of the search space greatly depends on variable ordering heuris-
tics. We give a generic distributed method for computing any static
variable ordering.

In the following, we first give a basic definition of the CSP/DCSP
paradigm, completed by a brief description of our communication
model. Then, we present our distributed variable ordering method,
and we describe and analyze DIBT. Afterwards, we give an experi-
mentation with random DCSPs, followed by a general conclusion.

2 DEFINITIONS

2.1 Constraint satisfaction problems

A binary constraint network involves a set of � variables 	�
��
 �����������
���� , a set of domains ��
 ��� ����������� ����� where
���

is the finite set of possible values for variable

��

, a set ��
��� � ! � �#"�$ ������� � of the couples of variables (arcs) that are linked by a
constraint, and a set %&
 �(' � ! � ')"�$ ������� � of the constraints (or rela-
tions) between the pairs of variables specified in � . A relation

'*� !
on

the couple of variables
�#� !
,+
-� �
*!�. is a subset of the Cartesian

product
� �#/ � !

that specifies the allowed combinations of values
for the variables

 �
and

 !
.
' � !

can be any Boolean function de-
fined on

��� / �)!
, such that

'0� ! +21 �43 . returns true if and only if the

c5 1998 Y. Hamadi, C. Bessière and J. Quinqueton
ECAI 98. 13th European Conference on Artificial Intelligence
Edited by Henri Prade
Published in 1998 by John Wiley & Sons, Ltd.

pair +21 �43 . is allowed for +
 � �
 ! . . Asking for the value of
' � ! +21 �43 .

is called a constraint check.�
 + 	 � � . is called the constraint graph associated to the net-
work + 	 � � � � � % . .

A solution to a constraint network is an instantiation of the vari-
ables such that all the constraints are satisfied.

The constraint satisfaction problem (CSP) involves finding a solu-
tion in a constraint network.

2.2 Distributed constraint satisfaction problems

A distributed constraint network + 	 � � � � � % ��� . is a constraint net-
work (binary in our case), in which variables and constraints are dis-
tributed among a set

������� �
	 � ��������� ����� �
	�� � of
 autonomous pro-
cesses called agents. Each agent

����� �
	 " “owns” a subset
�)"

of the
variables in 	 in such a way that �
 ��� ����������� � � � is a parti-
tion of 	 . The domain

� �
(resp.

� !
), the arc

� � !
(resp.

� ! �
) and

its associated relation
' � !

(resp.
' ! �

) belong to the agent owning

 �

(resp.

*!

)3. In the present work, we limit our attention to the ex-
treme case, where there are � agents, each only owning one variable,
so that �
 	 . Thus, in the following,

����� �
	 � will refer to the agent
owning variable

 �
. The graph of acquaintances in the multi-agents

society matches the constraint graph. So, for an agent
����� �
	 � , � is

the set of its acquaintances, namely the set of all the agents
����� �
	 !

such that

 !

shares a constraint with

 �

.
The distributed CSP (DCSP) involves finding a solution in a dis-

tributed constraint network.
For a DCSP, we assume the following communication model [10].

Agents communicate by sending messages. An agent can send mes-
sages to other agents if and only if it knows their address in the net-
work (i.e., they belong to its acquaintances). . The delay in delivering
messages is finite. For the transmission between any pair of agents,
messages are received in the order in which they are sent. Agents use
the following primitives to achieve message passing operations:
��� � ����� � � +�� � � 	 � “m”

.
sends message
 to the agents in � � � 	 .� ��� 	�� � � + . returns the first unread message available.

3 DISTRIBUTED BACKTRACKING

BT is a general complete resolution technique. Given a variable and
value ordering, it generates successive instantiations of the problem
variables. It tries to extend a partial instantiation by taking the next
variable in the ordering and by assigning it a value consistent with
previously assigned variables. If no value can be found for the con-
sidered variable, the algorithm backtracks. In the basic BT scheme,
it goes back to the previous variable in the ordering and changes its
value. In some refined backtracking schemes, the algorithm jumps
back to the origin of the failure.

Our framework is totally asynchronous but we need an order-
ing between the agents to apply the backtracking scheme which en-
sures completeness. Hence, we must find a partial ordering between
agents, which will be followed by variable instantiations, and we
must complete this partial ordering to a total one for guiding the
backtrack steps. Since we have no restriction on the ordering which
can be used, it will be worthwhile to use an ordering that fits the
constraint graph topology. As in central constraint satisfaction it can
reduce the search space, and more, it can significantly reduce mes-
sage passing. Asynchronous backtracking [9] uses the lexicographic
�

We suppose that the constraint network is such that ��� ����� is a symmetric
graph.

ordering of agent tags to avoid infinite processing loops. This order-
ing does not take advantage of the initial features of the problem.

3.1 A generic method for distributed variable
ordering

The size of the search space is highly dependent on user’s specific
heuristic choices such as variable ordering. Usually these heuristics
take advantage of knowledge about the variable (domain size) and/or
about the variable neighborhood (degree). In this section, we present
a generic method for a distributed computation of any static variable
ordering in our DCSP framework.

In our system, each agent locally computes its position in the or-
dering according to the chosen heuristic. Concretely, each agent de-
termines the sets � � and �"! , respectively #%$'&�()�+* � � and � 1,* � �
	 ac-
quaintances, w.r.t. an evaluation function - and a comparison opera-
tor . � which totally define the heuristic chosen. This is done in the
lines 1 to 2 of Algorithm 1. Notice that the evaluation function - can
involve some communication between the agents. To avoid a com-
plex communication behavior, it is better to use heuristics for which
the associated function - involves only local communications be-
tween neighbor agents. This is the case for the max-degree heuristic.

Algorithm 1: Distributed variable ordering
% executed by each agent (self);
in: / defined on 0 , 132 a comparison operator;
out: split of 0 into 0 � and 0 ! , ordering of 0 ! ;
begin

% 0 split;
1 0 �5476 ; 0 !8476 ;

for each 9;:�<>=�? !A@ 0 do
if (/��B9;:�<C='? ! � 1D2E/�� self

�
) then 0 � 4 0 �GFIH 9;:�<>=�? ! };

2 else 0 ! 4 0 ! FJH 9;:�<C='? ! };

% 0 ! ordering;
3 KML�N 47O ;

for (P�Q OSR PUTWV 0 � V R P�X5X � doK 4 :Y<>?[Z]\>:+� � ;
if (K^Q value: _ ; from:̀) then

if (KMLaNGT8_) then KML�N 4 _ ;

KML�NbXcX ;
sendMsg(0 ! , “value: KJLaN ; from:self”);
sendMsg(0 � , “position: KML�N ; from:self”);
for (P�Q OSR PUTWV 0 ! V R P�XcX � doK 4 :Y<>?[Z]\>:+� � ;

if (K^Q position:2 ; from:̀) then de<C_�<gfih `aj 4 2 ;
4 Rearrange 0 ! according to de<C_�<gfih j ;

end

After performing this phase, agents know their children (�k!) and
parents (� �) acquaintances. During the search, they will send instan-
tiation value to children, and in case of dead-end, they will backtrack
to the first agent in �;! . So, we need an ordering on �l! . This is
the second part of Algorithm 1 (lines 3 to 4). Agents without chil-
dren state that they are at level one, and they communicate this infor-
mation to their acquaintances. Other agents take the maximum level
value received from children, add one to this value, and send this in-
formation to their acquaintances. Now, with this new environmental
information, each agent rearranges the agents in its local � ! set by
increasing level. Ties are broken with agent tags.

Figure 1 gives an illustration of this distributed processing for the
max-degree variable ordering heuristic. On the left side of the fig-
ure a constraint graph is represented. For achieving the max-degree
heuristic, Algorithm 1 must be called by each agent with the func-
tion - + ����� ��	 � .
nm � � m (where � � is the set of acquaintances of

Constraint-Based Reasoning 220 Y. Hamadi, C. Bessière and J. Quinqueton

X1

X2

X3 X4 X6

X5X2

X1

X2

X3 X4 X6

X5X2

DCSP: max-degree ordering:

X2

X3

X4

X6

X1
X5

level 1

level 2

level 3

Figure 1. Distributed variable ordering

����� �
	 �) and the comparison operator . �
�� � � . In case of ties, this
operator can break them with agent tags. (For a dom/deg ordering,
- + ����� �
	 � .
 m ��� m ��m � � m , . �
������ .) Once Algorithm 1 has been ap-
plied, the static variable ordering obtained is the one presented on the
right side of Fig. 1. Arrows follow the ordering relation, which rep-
resents the instantiation transmission order of the search procedure.
The ordering of the sets � ! , which will be used after each dead-end,
is as follows:

� ����� ��	 ��� � !
��� ����� ��	 �(� ����� �
	
	 � � !
 �a����� �
	 � �� ����� ��	 � � ����� �
	�� � �l!
 �a����� �
	 � � ����� �
	 � �� ����� ��	�
 � �l!
 ������� ��	 	 � ����� �
	 � �

Several observations can be made on this new ordering technique.
If the evaluation function is well chosen, each agent can perform
the ordering algorithm locally, with a constant number of messages
with each of its acquaintances. In the resulting ordering, agents at
the same level are independent. They do not share any constraint,
so they can perform parallel computations at the same time. This
point is very important since it leads to a good parallelization feature.
Agents in the highest level (top of the hierarchy) are local optima in
the constraint graph according to the heuristic.

3.2 Algorithm

The global scheme of the search process is the following (see algo-
rithm 2). Each agent instantiates its variable with respect to its parent
constraints. After instantiation, the agent informs its children of its
chosen value (message content starting by “infoVal”). If no value
satisfies the constraints with the agents in �k! , a backtrack message
is sent to the nearest parent (message content starting by “btSet”).
Since backtrack occurs between connected variables, it is a graph
based backtrack. This message (line 4) includes the local ordered set
�l! of parent acquaintances, their level positions and agent beliefs
about their values. The receiver of the backtrack message, first checks
the validity of the message by comparing its current value with the
one reported for it in the message (line 6). In case of different values,
this means that the sender has not yet received information about the
receiver last value, so backtrack decision could be obsolete. If the
comparison matches, and if the agent cannot take a different value,
it backtracks. It sends a backtrack message to the nearest agent in
the ordered set union of �l! and the sender set (line 9). This new set
is attached to the message with related values and level positions of
agents for ensuring continuity of graph based backjumping.

Termination occurs when agents are instantiated and wait for a
message or when a source agent finds an empty backtrack set (line 8).
In the last case, the problem has no solution. A message ��.�� .S(��'	D&i.��
is sent to a system agent. This agent stops the distributed computa-
tion by broadcasting a stop message in the whole multi-agent sys-
tem. This system agent executes a global state detection algorithm
[4]. Global satisfaction occurs when agents instantiated according to
parent constraints are waiting for a message (line 2) and when no
message transits in the communication network.

DIBT uses the following structures and methods:
� self is the agent running the algorithm,

����� $��
is its domain, and

����)1�(�� � its current value.��� 1�(�� ��� stores parent acquaintances values.� first +�� . returns the first element of an ordered set � . With our
application, returns the nearest agent in � .� ��� 	
�)1�(�� � + type

.
,

– if 	!��� � =’info’, returns the first value in
� ��� $��

compatible with
agents in � ! , starting at
"�#�*1�(�� � 4.

– if 	���� � =’bt’, returns the first value after
����)1'($� � in
� ��� $��

compatible with agents in � ! .
�
 � * ��� + s1 � s2

.
takes two ordered sets and returns their ordered

union.

Algorithm 2: Distributed backtracking
begin

compute 0 � , 0 ! , and rearrange 0 ! with Alg. 1;=�<gL&% <%\�? 4 first(0 !);
1 K('*)�LYf�+�< 4 getValue(info);

sendMsg(0 � , “infoVal: K,'�)AL�f-+�< ; from:self”);<>=/. 4 /+LYf)\C< ;
while (!end) do

2 K 4 getMsg();
if (K^Q stop) then <C=/. 4 ?0%1+'< ;

3 if (K^Q infoVal: L ; from:̀) then_�LYf�+�<Yh ` j 4 L ;K('*)�LYf�+�< 4 getValue(info);
if (K('�)EL�f-+�<) then

sendMsg(0 � , “infoVal: K('�)ALYf�+�< ; from:self”);
else

4 sendMsg(= <gL&% <g\>? , “btSet: 0 ! ; Values: _�L�f-+�<�h 0 ! j ”);

5 if (K^Q btSet: \><C? ; Values: _�LYf�+�<%\) then
6 if (values[i]= K,'�)AL�f-+�<) then
7 K,'�)�LYf�+�< 4 getValue(bt);

if (K('*)�L�f-+�<) then
sendMsg(0 � , “infoVal: K('�)ALYf�+�< ; from:self”);

else
8 if (0 ! Q 6 and \><C?�Q 6) then

sendMsg(\
' \�?i<CK , “noSolution”);<C=/. 4 ?0%1+'< ;
else/,1gf)f 11243�<C? 4 merge(0 ! , \C<>?);/,1gf)f 112 4 first(/+1%f f 11243�<C?);

9 sendMsg(/+1%f f 112 , “btSet: /+1%f f)11253 <>? ; Val-
ues: _YL�f�+'<�h 0 ! j F _�LYf�+�<%\ ”)

10 if (/+1%f f)16287@ 0 !) thenK,'�)�L�f�+'< 4 getValue(info);

end

� The search for a new compatible value starts from the current value for
keeping the maximum of previous work. For ensuring completeness, the
values that are before K('*)�LYf�+�< in 9 ��� $�� are put at the end of 9 ��� $�� .

Constraint-Based Reasoning 221 Y. Hamadi, C. Bessière and J. Quinqueton

3.3 Analysis

We present here the important features of DIBT. They improve graph
based backjumping in several ways.

� We use an ’intelligent’ instantiation scheme:
Central

�����
uses the constraint graph for backtracking to the

origin of the failure. Our system naturally does the same. But the
central method successively instantiates variables even when they
are independent (i.e., not linked by a constraint). With our method,
two variables have a direct instantiation precedence order (from
parent to child) only if they are connected. Therefore, successive
instantiations are always constraint dependent.� Our system preserves previous work:
When an infoVal message occurs at

����� �
	 � , ��� 	
�01�(�� � tests if the
current value
����)1�(�� � satisfies the constraint with the sender
before trying another value in

���
. If it does, no change occurs,

and more importantly, no changes are reported to children, so the
maximum of previous work is kept.� Inherent dynamic feature:
At the beginning, agents do not know their parent values. Nev-
ertheless, they are instantiated in line 1. When an agent does
not know the instantiation of one parent, it does not consider
the related constraint (function

��� 	��*1�(�� � + .). During the search,
acquaintances values are stored in � 1�(�� � � and instantiations of
agent variables are changed according to acquaintances known
values. This point is important in our asynchronous system. In
fact, constraints ’appear’ with related values.� Repair-like technique:
Initially, the whole system gets initial parallel instantiation of vari-
ables (line 1). During concurrent resolution, agents revise their se-
lected value according to their environment. So, the system starts
with a global instantiation of the problem variables and performs
local repairs on different parts of the instantiation. Its looks like
classical repair methods [6], but here, it is parallelized and com-
plete.

Correctness of DIBT For a complete proof of the algorithm, the
following points must be considered. Whatever is the variable order-
ing heuristic, the directed graph induced by the � sets given by Al-
gorithm 1 has no circuit. Thus, a backtrack (resp. instantiation) step
from an agent cannot lead to an incoming bt (resp. infoVal) message
from one of its children (resp. parents). During a backtrack step, only
the remaining values are tested for satisfaction, and during incoming
infoVal messages, the agent reconsiders its whole initial domain. The
previous observations associated with finite time message transmis-
sion and the correctness of termination detection [4] are the keys of
the algorithm correctness.

4 EXPERIMENTATIONS

Asynchronous backtracking [9] is the more related work on search
for solution in a distributed constraint network. Nevertheless, we do
not present a comparison of DIBT with that algorithm. It has indeed
several drawbacks that prevent its use on real-world problems. In the
worst case, agents record (with duplication) the entire search space.
Furthermore, this recorded information must be checked for satis-
faction at each new instantiation of a value to a variable. Hence, the
cost of an assignment grows according to nogood recording. Finally,
even if the original problem is a binary one (i.e., involving only bi-
nary constraints), nogood storage can add higher arity constraints,

which are source of expensive communication, expensive checking,
and memory explosion [3, 1].

Our goal in this section is the evaluation of our method in a really
distributed environment, when it is implemented with and without
the distributed variable ordering algorithm of Section 3.1. We gave
a physical processor to each agent in the multi-agents system and
a variable to each agent. In real applications, an agent can store sev-
eral variables, and so, a subnetwork instead of a variable. In this case,
the agent satisfaction corresponds to the involved subnetwork consis-
tency. Since our local network has few machines, we solved uniform
random DCSPs with only 15 variables and domains of size 5. We
fixed the connectivity at 30%. We varied constraint tightness from
10% to 90%. For each tightness, we generated 10 problems. We com-
pared the execution of our distributed method with the max-degree
variable ordering heuristic to its execution without any heuristic, i.e.,
lexicographic ordering.

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

se
co

nd
(s

)

Constraint tightness

max-degree
lex.

Figure 2. DCSPs with 15 variables, 5 values per domain, and 30% of
connectivity (cpu time)

Figure 2 presents mean time results. The time considered for one
instance is the one of the last terminated agent. We see that, as in a
central framework, max-degree ordering leads to a faster resolution.
max-degree needs also less constraints checks (Figure 3), and less
communication (Figure 4).

0

2000

4000

6000

8000

10000

12000

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

#c
ch

ec
ks

Constraint tightness

max-degree
lex.

Figure 3. DCSPs with 15 variables, 5 values per domain, and 30% of
connectivity (constraint checks)

Constraint-Based Reasoning 222 Y. Hamadi, C. Bessière and J. Quinqueton

0

500

1000

1500

2000

2500

3000

3500

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

#m
es

sa
ge

s

Constraint tightness

max-degree
lex.

Figure 4. DCSPs with 15 variables, 5 values per domain, and 30% of
connectivity (message passing)

5 CONCLUSION AND FUTURE WORK

We have presented DIBT, a fully distributed asynchronous system for
solving distributed CSPs. Our method performs a distributed back-
track search. This allows us to prove both its completeness and ter-
mination. The whole system fits the constraint network. Hence, com-
munications always occur between connected variables. We use an
’intelligent’ backtrack technique as in central backjumping schemes
since agents always backtrack to the nearest connected. Further-
more, we also use the constraint graph topology for instantiations.
So, DIBT is clever during backtrack steps, but also during instanti-
ations. Constraint checks are parallelized and the whole system op-
erates in a conservative way by keeping the maximum of previous
search effort when a change occurs. More, asynchronism features of
DIBT are in some ways close to repair methods. At the beginning,
all the agents take an instantiation. They revise their instantiations
according to incoming information. The system can be assimilated to
a whole initial assignment with local parallel perturbations. From the
previous remarks we conclude that our distributed backtracking algo-
rithm combines various ideas of central methods. We also presented a
fully distributed method to compute variable ordering heuristics. We
showed that even in distributed frameworks variable ordering affects
the efficiency of search. In the near future, we will test the effect of
adding dynamic variable ordering to DIBT. But, many other exten-
sions should be done. Particularly, including some look ahead during
search is probably one of the most important improvements to incor-
porate in our system.

ACKNOWLEDGEMENTS

We would like to thank the referees for their helpful comments, and
C. Fiorio for his Algorithm LaTeX style.

REFERENCES
[1] R. Dechter, ‘Enhancements schemes for constraint processing: back-

jumping, learning and cutset decomposition’, Artificial Intelligence,
41(3), 273–312, (1990).

[2] S.W. Golomb and L.D. Baumert, ‘Backtrack programming’, Journal of
the ACM, 12(4), 516–524, (1965).

[3] R.J. Bayardo Jr. and D.P. Miranker, ‘A complexity analysis of space-
bounded learning algorithms for the constraint satisfaction problem’, in
Proceedings AAAI, pp. 298–304, (1996).

[4] L. Lamport K. M. Chandy, ‘Distributed snapshots: Determining global
states of distributed systems’, TOCS, 3(1), 63–75, (1985).

[5] Q. Y. Luo, P. G. Hendry, and J. T. Buchanan, ‘Strategies for distributed
constraint satisfaction problems’, in Proceedings 13th Int. Workshop on
DAI, pp. 207–221, (1994).

[6] S. Minton, M. D. Johnston, A. B. Philips, and P. Laird, ‘Minimiz-
ing conflicts: a heuristic repair method for constraint satisfaction and
scheduling problems.’, Artificial Intelligence, 58, 161–205, (1992).

[7] V.N. Rao and V. Kumar, ‘On the efficiency of parallel backtracking’,
IEEE Transactions on Parallel and Distributed Systems, 4(4), 427–437,
(1993).

[8] H. Simonis, ‘A problem classification scheme for finite domain con-
straint solving’, in Proceedings of the CP’96 workshop on Constraint
Programming Applications: An Inventory and Taxonomy, pp. 1–26,
Cambridge MA, (1996).

[9] M. Yokoo, E. H. Durfee, T. Ishida, and K. Kuwabara, ‘Distributed con-
straint satisfaction for formalizing distributed problem solving’, in Pro-
ceedings 12th Int. Conf. on Distributed Computing Systems, pp. 614–
624, (1992).

[10] M. Yokoo and K. Hirayama, ‘Distributed breakout algorithm for solv-
ing distributed constraint satisfaction problems’, in Proceedings IC-
MAS, pp. 401–408, (1996).

Constraint-Based Reasoning 223 Y. Hamadi, C. Bessière and J. Quinqueton

