
Urban Traffic Control Based on Learning Agents

Pierre-Luc Grégoire, Charles Desjardins, Julien Laumônier and Brahim Chaib-draa

DAMAS Laboratory, Computer Science and Software Engineering Department, Laval University

Abstract— The optimization of traffic light control systems
is at the heart of work in traffic management. Many of the
solutions considered to design efficient traffic signal patterns
rely on controllers that use pre-timed stages. Such systems are
unable to identify dynamic changes in the local traffic flow and
thus cannot adapt to new traffic conditions. An alternative,
novel approach proposed by computer scientists in order to
design adaptive traffic light controllers relies on the use of
intelligents agents. The idea is to let autonomous entities, named
agents, learn an optimal behavior by interacting directly in the
system. By using machine learning algorithms based on the
attribution of rewards according to the results of the actions
selected by the agents, we can obtain a control policy that tries
to optimize the urban traffic flow. In this paper, we will explain
how we designed an intelligent agent that learns a traffic light
control policy. We will also compare this policy with results
from an optimal pre-timed controller.

I. INTRODUCTION

With the increase of vehicular traffic observed in recent

years in urban areas, there has been a significant degradation

of the efficiency of the traffic flow. This degradation is

particularly important in areas where many roads connect.

Intersections play a major role in decreasing the flow as

controllers managing their traffic lights must cope with

irregular traffic flow and with numerous external events

that can possibly decrease the efficiency of the flow. This

often renders impossible the use of pre-timed controllers for

efficient control of the system.

One of the solutions to this problem would be to design

controllers that use adaptive policies. Such adaptive systems

could react to current perceptions of traffic conditions and

select the best actions in order to optimize the traffic flow at

the intersection. Moreover, these adaptive systems could even

be equipped with communication networks that could enable

adaptive coordination between different intersections in order

to improve the traffic flow globally. Such coordination could

help minimize the overall delay caused by traffic signals that

vehicles get by navigating through the urban road network.

Researchers from different fields of study have focused on

finding solutions to optimize the efficiency of the traffic flow.

Among them, computer scientists were particularly interested

in these solutions based on adaptive policies. To design such

systems, they have turned to the abstraction of intelligent

software agents since this model naturally adapts itself to

This research is funded by the AUTO21 Network of Centers of Ex-
cellence, an automotive research and development program focusing on
issues relating to the automobile in the 21st century. AUTO21 is a member
of the Networks of Centers of Excellence of Canada program. Web site:
www.auto21.ca

traffic control systems. With this abstraction, traffic lights

can be viewed as entities that act autonomously in order

to reach a certain goal. Moreover, these adaptive systems

could display social capabilities as they could be extended

to controllers that promote coordination and collaboration

between intersections in order to manage traffic signals in

the most efficient way possible. This could optimize the flow

through the network at a larger scale than only locally, at

single intersections.

Since most control tasks are often too complex to be

modeled and solved exactly by humans, we are interested in

letting agents learn their own adaptive behavior by reinforce-

ment learning. Using this approach, agents receive reward

signals in response to taking actions in their environment.

Learning algorithms then proceed to associate the current

state of the agent to the action it should take to maximize

its expected reward.

In this paper, we will focus on a single adaptive agent

traffic light controller. We will detail the design of this

agent and we will illustrate how we use machine learning

algorithms to let it learn an adaptive behavior that selects

actions according to current observations of local traffic

conditions. Finally, we will compare the learned controller

with an optimal pre-timed controller.

II. RELATED WORK

In this section, we will briefly survey some of the work

related to traffic signal control and some of the work related

to the application of intelligent agents to traffic signal control.

First, single-junction traffic signal controllers fall into two

categories: fixed-time controllers and traffic-response con-

trollers. Fixed-time controllers generally use various traffic

patterns repeated in cycles every day. For example, in this

category, [1] have proposed to optimize a single-junction

controller using integer and linear programming in order

to minimize delay. As for traffic-response control, [2] have

proposed a controller that makes dynamical adjustments of

cycle time and stage split.

Contrary to single-junction controllers are the central-

ized traffic control methods. Among these methods are

the TRANSYT, SCATS and SCOOT methods [3]. [4] has

studied and evaluated the SCOOT method, which controls

and optimizes traffic lights. More precisely, the performance

of this method is calculated using the bandwidth, the average

queue length and the number of stopped vehicles. Data is

collected in real time from sensors and, from the updated

traffic model, SCOOT makes some modifications on the

previous coordination plans. This method has been shown to

reduce delay compared to fixed-time traffic lights in England.

A few researchers in computer science have also studied

the use of intelligent agents and learning for traffic light

control. For example, our work is quite similar to that

of [5]. One difference is that Wiering used model-based

reinforcement learning to learn traffic light control strategies.

His approach was based on a highly simplified model of

traffic flow. The author also experimented with co-learning,

where cars would share the same value functions as the traffic

lights and try to learn the optimal path to their destination.

[6] has tackled the problem differently and has suggested

the use of a reservation system for collision avoidance at

an intersection. In this system, vehicles make a request to a

central agent, the intersection. If the request is accepted, the

vehicle needs to follow the prescribed path, and is guaranteed

to be safe while crossing the intersection. Conflicts are

solved by the intersection, and vehicles that cannot fulfill

a suggested plan must stop at the intersection. The idea

is interesting, yet is not quite scalable to the presence

of human-driven vehicles. It also lacks some coordination

aspects between multiple traffic lights, which is one of the

most important problem that plagues the design of such

controllers.

Coordination of multiple traffic light agents has also

been explored by [7], where evolutionary game theory has

been applied to let agents learn how to cooperate. This

approach needs the presence of a communication system

for agents to share their local actions. With the help of [8]

the author also focused on the non-stationary aspects of the

problem. In order to detect changes in the traffic flow, the

authors designed a context detection algorithm that learns

and triggers different control policies according to the traffic

flow detected. This technique seems particularly useful in

order to deal with the fact that different traffic flows are

often observed according to certain periods, for example,

rush hours both in the morning and at the end of the day.

The algorithm was able to detect those changing phases and

adapt to currently observed conditions.

Thorpe, through several reports ([9], [10]) has focused on

applying learning on a number of traffic lights placed on a

grid, much like the approach we suggested here. Through

his work, he has illustrated the different issues that are faced

(and that we have observed in our experimentations) in the

development of such an adaptive traffic control system based

on reinforcement learning and autonomous agents.

Finally, other artificial intelligence techniques, such as

dynamic programming, have also been used to optimize the

coordination of traffic lights. [11] has shown a reduced delay

using this technique, particularly when demand reaches the

junction’s capacity.

III. TRAFFIC LIGHT CONTROL

The present section will describe the inner workings of

traffic light signal control. These definitions were used and

implemented in our simulator in order to test our learning

agent. The exact implementation of traffic light control sig-

nals we have considered for our simulations will be described

in section V-A.

The first aspect to consider in traffic light control is the

description of the possible actions that vehicles can legally

make at an intersection. Traffic light controllers possess a

traffic signal plan, which gives the different traffic stages

available. A traffic stage consists of the description, for every

lane of an intersection, of the possible transitions that can

be done by vehicles [3]. Traffic stages also give explicitly

how lights are displayed for vehicles on the intersection,

indicating if they can turn left and/or right when a light

is green or stop when it is red. Obviously, the transitions

allowed in each stage must be designed without any conflicts.

For large junctions, this design task is normally done by a

traffic expert assisted by software.

There are two different ways to control the switching

between the stages of a signal plan. Fixed-timed controllers

are intuitively simple and work on a ’time-of-the-day’ basis.

This is the most affordable control technique and is the most

logical choice for networks with stable or predictable traffic.

The counterpart is that their efficiency can be extremely poor

when the traffic flow is not stable. The traffic flow may

becomes unstable for many reasons like accidents, weather

condition, etc. In these cases, other actuated controllers

can make use of buried detectors on waiting lanes of an

intersection. These controllers are often necessary in these

conditions or when the traffic flow does not have predictable

patterns.

Intersections also need to have structures that manage and

automatizes the control of the lights. The first generation

of control structure uses non-computerized systems that are

based on hard-wired logic to control the shifting between

signal plans. Second generation structures use a centralized

computer to control the set of traffic lights at an intersection.

By this mean, a single computer can be used to control many

intersections[4]. Finally, the third generation of controllers

use distributed computers. In that case, individual intersec-

tions provide by their own processing unit [7].

Another aspect of traffic light simulation is the synchro-

nisation in arterials. The goal of coordinated systems is to

synchronize the traffic signals along an arterial in order

to allow vehicles, traveling at a given constant speed, to

cross the arterial without stopping at red lights [4]. This is

known as a green wave and is normally used at rush hours.

To achieve its goal, the designer sets parameters such as

the offset between lights and the desired speed of vehicles.

The offset is the time between the beginning of the green

stage of consecutive traffic lights. To optimize the green

wave, the problem is to find the largest time period during

which a vehicle is able to continue without stopping at any

intersection if it maintains the wanted fixed speed. This time

period is known as the bandwidth.

Finally, many metrics exist in order to evaluate the perfor-

mance of a traffic light controller. One of the most important

metric to optimize, as it impacts directly on drivers is called

the delay. The delay is defined by the amount of additional

time a vehicle takes to complete its journey through the

network because of traffic lights [3]. Another interesting

metric is the throughput which gives the number of vehicles

that cross the intersection in a specified amount of time.

Clearly, the general optimization goal for traffic network

designers is to lower the delay and to increase the throughput

of vehicles.

The adaptive controllers we propose are actuated con-

trollers that have a certain perception of their local envi-

ronment. Through sensors, we suppose they can have a basic

perception of the number of vehicles that are present near the

intersection. This assumption is critical for our control agents

to display reactive behavior. The agent metaphor also implies

that we focus on decentralized controllers each having their

own computational unit. Finally, the assumptions on the

signal plans we use will be described later since the signal

plans are closely related to the experiments we make.

IV. AGENTS AND REINFORCEMENT LEARNING

A. Autonomous Agents

The autonomous agents abstraction is a modern approach

in artificial intelligence research that has been developped

as an efficient alternative for the resolution of complex

problems in many domains of application. By definition,

agents are autonomous entities that can act independently in

their environment in order to reach a defined goal. Moreover,

agents are defined by their ability for social interaction,

which enables collaboration and coordination with other

agents. Further information about the agent abstraction can

be found in [12].

Recently, research in artificial intelligence has focused

on using agents for machine learning and thus on formal

mathematical aspects of complex decision-making. More

precisely, the focus is now on finding optimal policies to

solve hard problems where agents might have to act in com-

plex environments that might only be partially observable or

even to interact and coordinate with other agents.

The present paper will focus on the use of intelligents

agents acting as traffic light controllers. Their task will be

to optimize the traffic flow by learning a control policy

that chooses when to change signal stages according to

their local perception of the environment, which is, in this

case, a measure of the quantity of vehicles waiting at the

intersection.

B. Reinforcement Learning

To enable deliberation, intelligent agents need a formal

framework for decision-making. The past few years have

seen the prevalence of the use of the Markov Decision

Processes in the field of reinforcement learning. MDPs are

efficient at representing sequential decision problems where

the goal is to find the best actions to take to maximize utility

an agent can receive [13]. Many reinforcement learning

algorithms use this framework as a computational model.

Formally, a MDP is defined by:

• A a finite set of actions,

• S a finite set of states,

• R : S × A → R an immediate reward function,

• P : S×A×S → [0, 1] the transition probabilities from

a state to another when taking an action.

To find the optimal solution of an MDP, the Markov

property must be satisfied. This property indicates that the

transition probability of reaching the next state s′ only

depends on the current state s. With this property, the current

state of the system encapsulates all knowledge required to

make a decision. To solve an MDP, the value of a state,

V ∗(s), must be calculated. This value represents the expected

reward that the agent can obtain if it executes an optimal

policy π∗ from state s. To compute the optimal policy, we

need to know the values of the states under this optimal

policy. This is given by the Bellman optimality equation 1:

V ∗(s) = max
a

∑

s′

P
a

ss′ [Ra

s
+ γV ∗(s′)] (1)

This equation can only be used when the dynamics of

the system, represented by its transition probabilities Pa

ss′ ,

are known. When the agent does not have knowledge of the

these probabilities, it must act and observe the outcome of its

actions directly in the environment. In that case, the agent has

to use state-action values, Q(s, a), that represent the expected

utility of taking action a in the state s. Using this definition,

it becomes possible to learn the success or failure of actions

in a specific state. The Q-Learning algorithm, as seen in the

update equation 2, is often used to update the state-action

values:

Q(st, at) = Q(st, at) + α

[

rt+1 +

γ max
at+1

Q(st+1, at+1) − Q(st, at)

]

(2)

This equation is used by the Q-Learning algorithm [14]

and updates the current Q-value using the immediate reward,

rt+1 and the Q-value of the next state, Q(s′, a). The Q-

values are guaranteed to converge to the optimal values if

this update is done infinitely often for each state action pair.

Convergence also depends on α, the learning rate [13].

The downside of this algorithm is that it faces what is

called the ‘curse of dimensionality’. This curse refers to

the fact that the size of the state space (the number of

Q(s, a) pairs) can grow exponentially with the number of

variables contained in the states and with the number of

possible actions. This renders convergence nearly impossible

for complex problems. Moreover, the use of a Q-values table

means that continuous environments cannot be treated and

need to be discretized.

Policy gradient algorithms can address some of these

issues. Instead of updating the value function in order to

obtain the optimal function, policy gradient algorithms work

by keeping an estimated value function. These algorithms

use this function estimator to compute a stochastic policy.

They modify this estimated function directly in the direction

of the gradient of the policy value. The problem becomes

one of estimating the gradient of the policy. The advantages

of these learning algorithms is that they can treat continuous

states using their estimated value function and that there is

no growth of the state space possible since the values of all

state-action pairs is given by the function estimator.

We refer the reader to the following papers, [15] and

[16], as they describe in further detail this family of learning

algorithms.

V. SIMULATION

We present in this section the simulation environment and

the agent learning algorithms that we implement in order to

learn a single road junction traffic light signal control policy.

A. Urban Traffic Control Simulator

To design our controllers, we implement in a home-made

vehicle simulator a traffic light simulation module. This

module features a road network that is made of one long

segment crossed by four roads, thus giving a total of four

intersections in the system. Each road segment between

intersections is 280 meters long. Horizontal roads have two

lanes while the vertical road have four lanes.

Vehicles are generated according to a uniform distribution,

with a given probability at each step that is fixed for the

duration of a simulation. When created, vehicles receive

a path to follow. Possible paths are to travel on a road

from its beginning to its end. Hence, vehicles on vertical

road have to cross four intersections before arriving at their

destination while vehicles on horizontal roads have to cross

one intersection. On each road, vehicles can go in both

direction. Vehicles are created to reach a cruising velocity of

14 m/s. Their acceleration is 2 m/s2 which means that they

reach their cruising speed in 7 seconds. Their deceleration

is 4 m/s2. Each vehicle is driven by a basic controller that

keeps a safe distance of two seconds between other vehicles.

This controller also reacts automatically to changing traffic

lights. For roads where vehicles can choose between two

lanes, the controller chooses a lane randomly at the begining

of its course and keeps it until the end.

Traffic lights are located at the four road intersections.

They each possess a controller that shifts through the dif-

ferent stages of the light in order to direct the traffic flow.

The signal plans we use are composed of two stages. As

seen in Figure 1, the first signal plan lets vehicles travel

in the North/South direction, while the other plan enables

traveling in the East/West direction. Each stage is followed

by a mandatory 10 timesteps for a yellow light. Timesteps

correspond to 0.250 seconds. This light gives enough time for

vehicles that are engaged in the intersection to get to the next

segment, while letting enough time for incoming vehicles to

stop in order to respect the following red light. The only

simplification of the system we made was to disallow left or

right turns at the intersections.

At each decision step, controllers choose whether they

need to shift the light or not for the next stage. The yellow

light stage cannot be bypassed, as security would degrade

and some collisions could not be avoided. The set of actions

Fig. 1. North/South Stage and East/West Stage

is thus limited to two: a shift action and an action that

keeps the current plan. Since decision steps occur at every

50 timesteps, the minimal stage time of a green light is 40

timesteps (if the controller choose the shift action, the first

10 timesteps are for the yellow light). During their travel,

vehicles are delayed if they encounter red lights. As soon

as a vehicle starts to brake due to a traffic light, it start

to compute delay. At each timestep, it updates its delay

according its current speed relatively to its desired speed,

as seen in equation 3 and 4.

Dt+1(v) = Dt(v) + d(v) (3)

where

d(v) = 0.250 ∗ (1 − (Sct
/Sdt

)); (4)

Since our simulation timestep is fixed to 250 milliseconds

per timestep, this equation gives the delay in seconds. By

weighting the update of each step with the current speed

(Sct
) and the desired speed (Sdt

), we take into consideration

the acceleration and deceleration of the vehicle in its delay.

At each timestep, we can compute the total delay by

adding all the vehicles’ delays. We get a good performance

metric of the overall traffic light network’s delay by taking

the average delay for all vehicles that are created in a

simulation.

As seen in Figure 2, we have used a viewer to directly

observe the results of our simulation on the traffic flow.

Fig. 2. Urban Traffic Control Simulator

B. Agent Learning

For our agent to learn a control policy, we first have to

define the variables that describe the state of the agent that

will be used by the learning algorithm. The variables we

consider are the number of horizontal vehicles waiting, the

number of vertical vehicles waiting, the current state of the

light (if it is green horizontally or vertically) and the number

of decision steps since a shift occurred.

The reward function we use gives negative rewards for

delayed vehicles. The value of the reward is given by the

following function:

R(st, at) = −

∑

((d(v)/50)2) ∗ 1.5 (5)

where d(v) is the delay of vehicle v in seconds. The

constant (50) is used to represent an acceptable delay for

a vehicle at a junction while the square function and 1.5
constant decreases the reward given when a vehicle waits

past the acceptable delay.

In order to let the light learn a behavior that does not shift

at each decision step, we added to this reward function a

cost for changing the green light’s direction. Thus, the agent

had to learn to optimize the cost of shifting the light against

the cost of vehicle delay.

To learn the policy, our agent uses a policy gradient

reinforcement learning algorithm, OLPOMDP, as detailed

in section IV-B. In our implementation, we have used a

neural network comprised of 4 inputs (corresponding to

the 4 state variables), 2 layers of 20 hidden nodes and 2

outputs (corresponding to the possible actions), with inputs

being normalized to [0, 1]. Since the policy obtained using

OLPOMDP is a stochastic policy, the action chosen when

executing the policy is the action that has the highest

probability.

VI. RESULTS

First, to learn a control policy, we put the traffic light con-

trol agent in the simulator, using the reinforcement learning

framework described in the previous section. Learning took

place in a scenario where there was only one traffic light to

optimize. There was a 14 percent probability of generating

a vehicle at each step for the North/South direction and a 3
percent probability for the East/West direction. The learning

results for this situation are shown in Figure 3. It illustrates

the decrease in vehicle delay with the number of episodes

of the policy gradient algorithm. These results were obtained

from a single run of the algorithm.

Then, we test this learned policy against pre-timed con-

trollers. The first scenario uses a distribution of 14 percent

probability of generating a vehicle at each step for the

North/South direction and 3 percent probability for the

East/West direction. These values are the same as for the

learning scenario and give respectively a flow of 1008 and

432 vehicles per hour per lane. Since the capacity of each

intersection is of 1400 vehicles per hour per lane, the

scenario values are just above the maximum capacity of an

intersection.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 100 200 300 400 500 600 700 800 900 1000

A
v
e
ra

g
e
 d

e
la

y
 p

e
r

v
e
h
ic

le

Episodes

Fig. 3. Policy gradient algorithm learning

Pre-timed controllers are constrained to the same stage

time as the learning controller which means that their cycle

length must be a multiple of 50 timesteps. The best choice

that fits the vehicles generation flow is a cycle length of 150

timesteps with a North-South green stage of 100 timesteps.

This give 66% of green time in North/South direction and

33% in East-West direction while the vehicle flow repartition

is of 70%/30%.

We first run the simulation on a single road junction

signalization, the same that was used to learn the traffic light

policy. We compute the average delay per vehicle for the

pre-timed controller and the learned policy controller. For

each controller, we run 50 episodes to get a representative

average result. For comparison, we also run the simulation

with a pre-timed sub-optimal controller which allow 50% of

green light in both direction.

System Avg delay ST DEV

Pre-timed near-optimal 22.10 3.86
Pre-timed sub-optimal 61.59 5.33
Learned 19.96 4.54

TABLE I

AVERAGE AND STANDARD DEVIATION FOR VEHICLE DELAY FOR ONE

INTERSECTION SCENARIO (CALCULATED OVER 50 SIMULATIONS)

As we can see in Table I, the traffic light agent controller

learns a near-optimal policy. The slightly lower performance

of the optimal pre-timed controller can be explained by the

choice of stage length which in this case is not completely

adjusted (but really close) to the generated vehicle flow.

We then run simulations on the four intersections scenario

described in section V-A. We use the same flow generation as

in the single junction simulation but we generate less vehicles

in the South-North direction that in the North-South direction

(504 vehicles per hour per lane compare to 1008 vehicles).

The pre-timed controllers have been adjusted for a green

wave effect, with an offset of 80 timestep. This offset is the

required time for a vehicle running at 14 m/s to reach a

junction from an other junction (280 meters between each

junction). In Table II, we can see that the controller running

the learned policy obtains similar results that the pre-timed

synchronized controller.

System Avg delay ST DEV

Pre-timed near-optimal 34.86 4.82
Learned 38.45 4.74

TABLE II

AVERAGE AND STANDARD DEVIATION FOR VEHICLE DELAY FOR A FOUR

INTERSECTIONS (CALCULATED OVER 50 SIMULATIONS)

The last scenario was to test controllers behavior in

presence of changes in traffic flow. We supposed that an

external event modified the traffic flow as we inverse the

generation distribution of vehicles. Hence, to simulate this

perturbation, we generated for this simulation more vehicles

per lane in horizontal direction than in the vertical direction.

More precisely, we generated 864 vehicles per hour per lane

in the horizontal direction and 432 in the vertical direction.

Results in Table III show that the learned policy is better

to adapt to changes in traffic flow. However, results are not

very good because the learned policy has only been learned

in a vertical congestion situation.

System Avg delay ST DEV

Pre-timed near-optimal for vertical 77.21 4.17
Learned 62.92 4.50

TABLE III

AVERAGE AND STANDARD DEVIATION FOR VEHICLE DELAY FOR A FOUR

INTERSECTIONS WITH MORE HORIZONTAL TRAFFIC (CALCULATED

OVER 50 SIMULATIONS)

VII. DISCUSSION AND FUTURE WORK

The work described here illustrates our first efforts towards

the optimization of the traffic light controllers on a road

network. Through our work in this domain of application

of agents, we were able to observe the complexity and some

issues related to this problem. Many ideas have come to

our mind while working and trying to obtain good control

policies. We fully understand why authors of work cited

earlier simplified the problem and often noted its complexity.

Indeed, many details about vehicle speeds, signal stage times

and the definition of the metrics to optimize make learning

in this environment a difficult task. To make good decisions,

states would need to include many subtle details about the

environment that do change and modify the efficiency of an

action.

Clearly, an aspect to consider next is to learn in a more

general environment, where our controller could face most

situations. This would an interesting problem to tackle,

as non-stationarity is a major problem in traffic manage-

ment. On the other hand, the next step would also be

to consider multiagent interactions and learning between

agent controllers in order to obtain coordination between

intersections. This could help distribute the traffic flow when

facing unplanned external events.

This work gave us a good idea on how to design fixed con-

trollers for them to perform well. But even then, designing

an optimal fixed controller for this problem (which means

making the assumption of a stationary traffic flow) has taken

us a few trials by adapting the signal stage times. This is

where the agent approach shines, as it is more simple as we

just let our agents evolve in the environment to get a good

resulting policy. Our experimentations showed that our traffic

light controller did well against some fixed controllers. Our

future work will focus on integrating coordination between

intersections and try to design better controllers that can

optimize global performance metrics.

VIII. CONCLUSION

We presented a traffic light controller based on intelligents

agents that control the shifting of the traffic signal stages at

intersections. We showed that our learned policy performs

as good enough than pre-timed near-optimal controllers, and

better under different traffic loads.

REFERENCES

[1] G. Improta and G. E. Cantarella, “Control system design for an
individual signalized junction,” Transportation research. Part B :

methodological, vol. 18B, no. 2, pp. 147–168, 1984.
[2] R. Vincent and C. Young, “Self-optimising traffic signal control

using microprocessors - the TRRL ’MOVA’ strategy for isolated
intersections,” Traffic Engineering and Control, vol. 27, no. 7, pp.
385–387, 1986.

[3] K. J. Button and D. A. Hensher, Eds., Handbook of Transport Systems

and Traffic Control. Pergamon, Elsevier, 2001.
[4] D. I. Robertson and R. D. Bretherton, “Optimizing networks of traffic

signal in real time – the SCOOT method,” IEEE Transaction on

Vehicular Technology, vol. 40, no. 1, pp. 11–15, 1991.
[5] M. Wiering, “Multi-Agent Reinforcement Learning for Traffic Light

Control,” in Seventeeth International Conference on Machine Learning

and Applications, 2000, pp. 1151–1158.
[6] K. Dresner and P. Stone, “Traffic intersections of the future,” in

American Association for Artificial Intelligence (AAAI), 2006, pp.
1593–1596.

[7] A. L. C. Bazzan, “A distributed approach for coordination of traffic
signal agents,” Autonomous Agents and Multi-Agent Systems, vol. 10,
pp. 131–164, 2005.

[8] A. L. C. B. Bruno Castro da Silva, Denise de Oliveria and E. W. Basso,
“Adaptive traffic control with reinforcement learning,” in Conference

on Autonomous Agents and Multiagent Systems (AAMAS), 2006, pp.
80–86.

[9] T. L. Thorpe and C. W. Anderson, “Traffic light control using
sarsa with three state representations,” 1996. [Online]. Available:
citeseer.ist.psu.edu/thorpe96traffic.html

[10] T. Thorpe, “Vehicle traffic light control using sarsa,” 1997. [Online].
Available: citeseer.ist.psu.edu/thorpe97vehicle.html

[11] T. H. Heung, T. K. Ho, and Y. F. Fung, “Coordinated road-junction
traffic control by dynamic programming,” IEEE Transaction on Intel-

ligent Transportation Systems, vol. 6, no. 3, pp. 341–350, September
2005.

[12] M. Wooldridge, An Introduction to Multiagent Systems. John Wiley
and Sons, 2002, iSBN = 0-471-49691-X.

[13] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduc-

tion. MIT Press, 1998, iSBN = 0-262-19398-1.
[14] C. J. C. H. Watkins and P. Dayan, “Q-learning,” Machine Learning,

vol. 8, no. 3-4, pp. 279–292, 1992.
[15] J. Baxter and P. L. Bartlett, “Infinite-horizon policy-gradient estima-

tion,” Journal of Artifical Intelligence Research, pp. 319–350, 2001.
[16] R. J. Williams, “Simple statistical gradient-following algorithms for

connectionist reinforcement learning,” Machine Learning, vol. 8, pp.
229–256, 1992.

