
Industry Report

JXTA: A Network
Programming
Environment

JXTA technology is a network programming
and computing platform that is designed to
solve a number of problems in modern distrib-

uted computing, especially in the area broadly
referred to as peer-to-peer computing, or peer-to-
peer networking, or simply P2P.

P2P is the latest buzzword sweeping through
the computing industry. It brings a lot of hype
with it, no doubt—but there is also a lot of sub-
stance in P2P. In this report, the term refers to a
wide range of technologies that greatly increase
the utilization of three valuable and fundamen-
tal Internet assets: information, bandwidth, and
computing resources. All of these are vastly
underutilized at this time, partly due to the tradi-
tional client-server computing model.

� First, no single search engine or portal can
locate and catalog the ever-increasing
amount of information on the Web in a time-
ly way. Moreover, a huge amount of infor-
mation is transient and not subject to capture
by techniques such as Web crawling. For
example, research has shown that two
exabytes or about 2 × 1018 bytes of informa-
tion are produced every year, but only about
300 terabytes or about 3 × 1012 bytes are pub-
lished. Moreover, Google claims that it
searches about only 1.3 × 108 Web pages.
Thus, finding useful information in real time
is increasingly difficult.

� Second, although miles of new fiber have been
installed, the new bandwidth gets little use if
everyone goes to Yahoo for content and to
eBay for auctions. Instead, hot spots just get
hotter while cold pipes remain cold. This is
partly why most people still feel the congestion
over the Internet while a single fiber’s band-

width has increased by a factor of 106 since
1975, doubling every 16 months.

� Finally, new processors and storage devices
continue to break records in speed and capaci-
ty, supporting more powerful end devices
throughout the network. However, computation
continues to accumulate around data centers,
which have to increase their workloads at a
crippling pace, thus putting immense pressure
on space and power consumption.

P2P technologies can adopt a network-based com-
puting style that neither excludes nor inherently
depends on centralized control points. Apart from
improving the performance of information discov-
ery, content delivery, and information processing,
this style can also enhance the overall reliability and
fault tolerance of computing systems.

Project JXTA Objectives
Project JXTA was originally conceived by Sun
Microsystems and designed with the participa-
tion of a small number of experts from academ-
ic institutions and industry. The project defined
a set of objectives based on what we perceived as
shortcomings in many peer-to-peer systems,
existing or under development.

Interoperability
Many peer-to-peer systems are built for delivering
a single type of services. For example, Napster pro-
vides music file sharing, Gnutella provides gener-
ic file sharing, and AIM provides instant messag-
ing. Given the diverse characteristics of these
services and the lack of a common underlying P2P
infrastructure, each P2P software vendor tends to
create incompatible systems. This means each ven-
dor creates its own P2P user community, duplicat-

88 MAY • JUNE 2001 http://computer.org/internet/ 1089-7801/01/$10.00©2001 IEEE IEEE INTERNET COMPUTING

Li Gong • Sun Microsystems Inc.

ing efforts in creating software and system primi-
tives commonly used by all P2P systems. More-
over, for a peer to participate in multiple commu-
nities organized by different P2P implementations,
the peer must support multiple implementations,
each for a distinct P2P system or community, and
serve as the aggregation point.

This situation resembles the prebrowser Internet,
where to have Internet access often meant a sub-
scription with AOL, Prodigy, or CompuServe. The
result was that a user was locked into one commu-
nity, and service providers had to offer their services
or content in ways that were specific to how each
community operated.

Project JXTA aims to bring to the P2P world what
HTTP and the browser brought to the Internet.

Platform Independence
Many P2P systems today offer their features or
services through a set of APIs that are delivered on
a particular operating system using a specific net-
working protocol. For example, one system might
offer a set of C++ APIs, with the system initially
running only on Windows, over TCP/IP, while
another system offers a combination and C and
Java APIs, running on a variety of Unix systems,
over TCP/IP but also requiring HTTP. A P2P devel-
oper is then forced to choose which set of APIs to
program to, and consequently, which set of P2P
customers to target.

Because there is little hope that the two systems
will interoperate, if the developer wants to offer
the same service to both communities, they have
to develop the same service twice for two P2P plat-
forms or develop a bridge system between them.
Both approaches are inefficient and impractical
considering the dozens of P2P platforms in exis-
tence. JXTA technology is designed to be
embraced by all developers, independent of pre-
ferred programming languages, development envi-
ronments, or deployment platforms.

Ubiquity
JXTA technology is designed to be implementable
on every device with a digital heartbeat, including
sensors, consumer electronics, PDAs, appliances,
network routers, desktop computers, data-center
servers, and storage systems.

Many P2P systems, especially those being
offered by start-up companies, tend to choose
Microsoft Windows as their target deployment
platform. The reason cited is to target the largest
installed base and the fastest path to profit. The
inevitable result is that many dependencies on

Wintel-specific features are designed into (or just
creep into) the system—often the consequence not
of technical desire but just engineering realities of
tight schedules and limited resources.

This approach is clearly shortsighted, as P2P
does not stand for PC-to-PC. Even though the
earliest demonstration of P2P capabilities are on
Wintel machines (the middle of the computing
hardware spectrum), it is very likely that the
greatest proliferation of P2P technology will
occur at the two ends of the spectrum—large sys-
tems in the enterprise and consumer-oriented
small systems. In fact, betting on any particular
segment of the hardware or software system is
not future proof.

Project JXTA Technology
JXTA technology has just been open sourced and,
as such, is still evolving. This report highlights the
technical concepts and attributes that are currently
most significant. The up-to-date JXTA Technology
Specification is available on the Web at
http://www.jxta.org.

At the start of Project JXTA, we analyzed many
P2P software architectures and found a common
layering structure at the conceptual level depicted
in Figure 1. A typical P2P software stack breaks
down roughly into three layers. At the bottom, the
core layer deals with peer establishment, commu-
nication management such as routing, and other
low-level “plumbing.” In the middle, a service layer
handles higher-level concepts, such as indexing,
searching, and file sharing. These services, which
make heavy use of the plumbing features provided
by the core, are useful by themselves but also are
commonly included as components in an overall
P2P system. At the top is the layer of applications,

IEEE INTERNET COMPUTING http://computer.org/internet/ MAY • JUNE 2001 89

JXTA

Peer
shell

Peer
commands

JXTA community applicationsJXTA
applications

JXTA
services

JXTA
core

Sun
JXTA
applications

JXTA community services
Sun
JXTA
services

• Indexing
• Searching
• File sharing

Peer groups Peer pipes

Security

Any peer on the extended Web

Peer monitoring

Figure 1. P2P software architecture. JXTA technology provides a
layer on top of which services and applications are built.

©
 2

00
1

Su
n

M
ic

ro
sy

st
em

s
In

c.
U

se
d

w
ith

 p
er

m
is

si
on

.

such as e-mail, auctions, and storage systems.
Some features, such as security, manifest in all

three layers and throughout a P2P system, albeit in
different forms according to the location in the soft-
ware architecture.

JXTA technology is designed to provide a layer
on top of which services and applications are built.
We designed this layer to be thin and small, while
still offering powerful primitives for use by the ser-
vices and applications. We envision this layer to
stay thin and small as this is the best approach
both to maintaining interoperability among com-
petitive offerings from various P2P contributors
and to providing maximum room for innovation
(and profit) by these contributors.

JXTA Technology Concepts
At the highest abstraction level, JXTA technology
is a set of protocols. Each protocol is defined by
one or more messages exchanged among partici-
pants in the protocol; each message has a pre-
defined format, and may include various data
fields. In this regard, it is akin to TCP/IP. TCP/IP
links Internet nodes together, while JXTA technol-
ogy connects peer nodes with each other. TCP/IP is
platform-independent by virtue of being a set of
protocols. So is JXTA. Moreover, JXTA technology
is transport-independent and can utilize TCP/IP as
well as other transport standards.

The following six protocols are currently
defined (for brief descriptions of each, see the side-
bar, “JXTA Technology Protocols”):

� Peer Discovery Protocol
� Peer Eesolver Protocol
� Peer Information Protocol
� Peer Membership Protocol
� Pipe Binding Protocol
� Endpoint Routing Protocol

The naming of these protocols may not be obvious
to some readers. For example, the Peer Discovery
Protocol is used by a peer to perform discovery. The
name might suggest that the protocol is used for
discovering only peers, while in effect it can be used
to discover peers, peer groups, and any other adver-
tisements. The first word, peer, is the subject, and
not necessarily the object, of discovery.

To underpin this set of protocols, JXTA technol-
ogy defines a number of concepts—identifiers,
advertisements, peers, and others. JXTA technolo-
gy concepts may appear very simplistic. This is
deliberate. Obviously, we want to keep the specifi-
cation simple and small. More importantly, in many

areas there is no one correct way to do something,
and what should be done depends on the nature and
context of the overriding application. This phe-
nomenon is especially acute in security, where every
P2P application may choose a different authentica-
tion scheme, a different way to ensure communica-
tion security, a different encryption algorithm for
data security, a different signature scheme for
authenticity, and a different access control policy.

For these areas, we tend to underspecify, focus-
ing on mechanisms instead of policy, so that
application developers can have the maximum
freedom to innovate and offer competitive solu-
tions. Because of the underspecification, it is
important to distinguish between what is defined
for JXTA technology and what the first imple-
mentation (version 1.0) does. Often the imple-
mentation chooses to do something in a particular
way, but this does not mean that JXTA is defined
to behave in this fashion.

Identifiers
JXTA uses UUID, a 128-bit datum to refer to an
entity (a peer, an advertisement, a service, and so
on). It is easy to guarantee that each entity has a
unique UUID within a local runtime environment;
but because we do not assume any global state,
there is no absolute way to guarantee uniqueness
across an entire community that may consist of
millions of peers. Because the UUID is an internal
identifier, it is significant only after it is securely
bound to other information such as a name and a
network address. We expect that sophisticated
naming and binding services will be developed for
the JXTA platform.

Advertisements
An advertisement is an XML-structured document
that names, describes, and publishes the existence
of a resource, such as a peer, a peer group, a pipe, or
a service. JXTA technology defines a basic set of
advertisements (see JXTA Technology Specification
for details). More advertisement subtypes can be
formed from these basic types using XML schemas.

Peers
A peer is any entity that can speak the protocols
required of a peer. This is akin to the Internet, where
an Internet node is any entity that can speak the
suite of IP protocols. As such, a peer can manifest
in the form of a processor, process, machine, or user.

Importantly, a peer does not need to understand
all six defined JXTA protocols. It can still perform at
a reduced level if it does not support a protocol.

90 MAY • JUNE 2001 http://computer.org/internet/ IEEE INTERNET COMPUTING

Industry Report

Messages
Messages are designed to be usable on top of asyn-
chronous, unreliable, and unidirectional transport.
Therefore, a message is designed as a datagram,
containing an envelope and a stack of protocol
headers with bodies. The envelope contains a head-
er, a message digest, (optionally) the source end-
point, and the destination endpoint. An endpoint is
a logical destination, given in the form of a URI, on
any networking transport capable of sending and
receiving datagram-style messages. Endpoints are
typically mapped to physical addresses by a mes-
saging layer. Such a message format is designed to
support multiple transport standards.

Each protocol body contains a variable number
of bytes and one or more credentials to identify
the sender to the receiver. The exact format and
content of the credentials are not specified. For
example, a credential can be a signature that pro-
vides proof of message integrity and/or origin. As
another example, a message body may be encrypt-
ed, with the credential providing further informa-
tion on how to decrypt the content.

Peer Groups
A peer group is a virtual entity that speaks the set
of peer group protocols. Typically, a peer group is
a collection of cooperating peers providing a com-
mon set of services.

The JXTA specification does not dictate when,
where, or why to create a peer group, or the type of
group, or the membership of the group. It does not
even define how to create a group. In fact, the rela-
tionship between a peer and a peer group can be
somewhat metaphysical. JXTA does not care by
what sequence of events a peer or a group comes
into existence. Moreover, it does not limit how many
groups a peer can belong to, or if nested groups can
be formed. It does define how to discover peer
groups using the Peer Discovery Protocol.

There is a special group, called the World Peer
Group, which includes all JXTA peers. This does not
mean that peers inside this special group can always
discover or communicate with each other; for exam-
ple, they may be separated by a network partition.
Participation in the World Peer Group is by default.

Pipes
Pipes are communication channels for sending and
receiving messages, and they are asynchronous.
They are also unidirectional, so there are input
pipes and output pipes. Pipes are also virtual, in
that a pipe’s endpoint can be bound to one or more
peer endpoints.

A pipe is usually dynamically bound to a peer at
runtime via the Pipe Binding Protocol. This also
implies that a pipe can be moved around and bound
to different peers at different times. This is useful,
for example, when a collection of peers together
provide a high level of fault tolerance, where a

IEEE INTERNET COMPUTING http://computer.org/internet/ MAY • JUNE 2001 91

JXTA

Project JXTA has defined six protocols so far.The developer community
might define more over time.

Peer Discovery Protocol—enables a peer to find advertisements on
other peers and can be used to find any of the peer, peer group,or adver-
tisements.This protocol is the default discovery protocol for all peer groups,
including the World Peer Group. It is conceivable that someone might want
to develop a premium discovery mechanism that might or might not choose
to leverage this default protocol, but the inclusion of this default protocol
means that all JXTA peers can understand each other at the very basic level.

Peer discovery can be done with or without specifying a name for
either the peer to be located or the group to which peers belong.When
no name is specified, all advertisements are returned.

Peer Resolver Protocol—enables a peer to send and receive gener-
ic queries to search for peers, peer groups, pipes, and other informa-
tion.Typically, this protocol is implemented only by those peers that
have access to data repositories and offer advanced search capabilities.

Peer Information Protocol—allows a peer to learn about the capabil-
ities and status of other peers. For example, a ping message can be sent to
see if a peer is alive. A query can also be sent regarding a peer’s proper-
ties where each property has a name and a value string.

Peer Membership Protocol—allows a peer to obtain group member-
ship requirements, to apply for membership and receive a membership cre-
dential along with a full group advertisement, to update an existing mem-
bership or application credential, and to cancel a membership or an
application credential. Authenticators and security credentials are used to
provide the desired level of protection.

Pipe Binding Protocol—allows a peer to bind a pipe advertisement to
a pipe endpoint, thus indicating where messages actually go over the pipe.
In some sense, a pipe can be viewed as an abstract, named message queue
that supports a number of abstract operations such as create,open, close,
delete, send, and receive. Bind occurs during the open operation,whereas
unbind occurs during the close operation.

Endpoint Routing Protocol—allows a peer to ask a peer router for available
routes for sending a message to a destination peer. For example, when two
communicating peers are not directly connected to each other, such as when
they are not using the same network transport protocol or when they are sep-
arated by firewalls or NATs, peer routers respond to queries with available
route information—that is, a list of gateways along the route.Any peer can
decide to become a peer router by implementing the Peer Endpoint Protocol.

JXTA Technology Protocols

crashed peer may be replaced by a new peer at a
different location, with the latter taking over the
existing pipe to keep the communication going.

A point-to-point pipe connects exactly two
peer endpoints together. The pipe is an output
pipe to the sender and input pipe to the receiver,
with traffic going in one direction only—from the
sender to the receiver. A propagate pipe connects
multiple peer endpoints together, from one out-
put pipe to one or more input pipes. Accordingly,
any message sent into the output pipe is sent to
all input pipes.

JXTA does not define how the internals of a
pipe works. Any number of unicast and multicast
protocols and algorithms, and their combina-
tions, can be used. In fact, one pipe can be
chained together with each section of the chain
using an entirely different transport protocol. We
designed pipes to be asynchronous, unidirec-
tional, and unreliable, because this is the foun-
dation of all forms of transport and carries with it
the lowest overhead.

We expect the developer community to gener-
ate enhanced pipes with additional properties
such as reliability, security, and quality of service.
Of course, when JXTA runs on top of transports
that already have such properties, it is not hard
for an implementation to optimize and utilize
them. For example, when two peers communicate
with each other and both have TCP/IP support,
then an implementation can easily create bi-
directional pipes.

Security Considerations
The security requirements of a P2P system are very
similar to those of any other computer system.
Requirements for confidentiality, integrity, and avail-
ability are dominant. They translate into require-
ments for specific functionalities that include
authentication, access control, audit, encryption,
secure communication, and nonrepudiation.

Such requirements are usually satisfied with a
suitable security model or architecture, common-
ly expressed in terms of subjects, objects, and
actions that subjects can perform on objects. For
example, the Unix operating system has a simple
security model: Users are subjects; files are objects;
a subject can read, write, or execute an object
according to its permission as expressed by the
permissions mode specified for the object. At lower
levels within the system, however, the security
model is expressed with integers, in terms of uid,
gid, and the permission mode. The low-level sys-
tem mechanisms do not (need to) understand the

concept of a user and do not (need to) be involved
in how a user is authenticated and what uid and
gid they are assigned.

Given that JXTA is defined around the concepts
of peers and peer groups, a security architecture
could be envisioned in which peer IDs and group
IDs are treated as low-level subjects (just like uid
and gid), codats (meaning code and data) are treat-
ed as objects (just like files), and actions are spec-
ified operations on peers, peer groups, and codats.
However, the reality is more complicated. For
example, given that codats can have arbitrary
forms and properties, it is unclear what sets of
actions should be defined for them. It is quite like-
ly that codats will carry along with them defini-
tions of how they should be accessed. Such codats
are analogous to objects, which define for them-
selves access methods that others can invoke.

Developing a more concrete and precise security
architecture is an ongoing project. As we gain more
experience with developing services and applica-
tions on top of JXTA, we will understand better what
particular architecture is the most suitable.

In considering a security architecture, it is impor-
tant to note that requirements for JXTA are further
affected by some unique characteristics:

� JXTA technology is a platform focused on
mechanisms and not policy. For example,
UUIDs are used throughout, but by themselves
have no external meaning. Without addition-
al naming and binding services, UUIDs are
just numbers that do not correspond to any-
thing like a user or a principal. When UUIDs
are bound to external names or entities to
form security principals, authenticity of the
binding can be ensured by placing security
attributes in the data field, for example, digi-
tal signatures that testify to the trustworthi-
ness of the binding. Once this binding is
established, we will be able to authenticate the
principal, control access based on the princi-
pal as well as the prevailing security policy,
and perform other functions such as resource
usage accounting.

� JXTA technology is neutral to cryptographic
schemes or security algorithms.

� JXTA technology can sometimes satisfy security
requirements at different levels of the system. For
example, communications security can be pro-
vided through VPNs, secured pipes, or secured
data over unsecure pipes. To allow maximum
flexibility and avoid redundancy, JXTA technol-
ogy typically does not force a particular imple-

92 MAY • JUNE 2001 http://computer.org/internet/ IEEE INTERNET COMPUTING

Industry Report

mentation on developers. Instead, we envision
that a number of enhanced platforms will emerge
that provide the appropriate security solutions to
their targeted deployment environment.

JXTA Technology Version 1.0
On 25 April 2001, the first prototype implemen-
tation was unveiled on http://www.jxta.org. It is
implemented on JDK release 1.1.4, which we
decided is the most common Java platform avail-
able on machines running Microsoft Windows
and Unix. The code should run on Windows 95,
98, 2000, ME, and NT out of the box. It also runs
on the Solaris Operating Environment and Linux
with the appropriate level of Java runtime envi-
ronment support.

Version 1.0 is more a starting point for the
developer community than a finished product. We
expect to see lots of tuning in the coming months.
Without any effort to optimize the code size, the
core classes packed into a jar file of about 250
Kbytes. We expect that much smaller implementa-
tions will soon emerge.

This section discusses some of the key issues
encountered during this phase of the project.

Discovery Mechanisms
JXTA does not mandate exactly how discovery is
done. It can be completely decentralized, com-
pletely centralized, or a hybrid of the two. In JXTA
version 1.0, we support the following discovery
mechanisms:

� LAN-based discovery. This is done via a local
broadcast over the subset.

� Discovery through invitation. If a peer receives
an invitation (either in-band or out-of-band),
the peer information contained in the invitation
can be used to discover a (perhaps remote) peer.

� Cascaded discovery. If a peer discovers a second
peer, the first peer can, with the second peer’s
permission, view its horizon, discovering new
peers, groups, and services.

� Discovery via rendezvous points. A rendezvous
point is a special peer that keeps information
about the peers it knows about. A peer that can
communicate via a rendezvous peer, perhaps via
a pipe, can learn of the existence of other peers.

Rendezvous points are especially helpful to an iso-
lated peer by quickly seeding it with lots of infor-
mation. It is conceivable that some Web sites or
their equivalent will be devoted to providing infor-
mation of well-known rendezvous points.

Propagation Scopes
JXTA does not mandate how messages are
propagated. For example, when a peer sends
out a peer discovery message, the Peer Discov-
ery Protocol does not dictate if the message
should be confined to the local area network
only, or if it must be propagated to every corner
of the world.

The current implementation of JXTA uses the
concept of a peer group as an implicit scope of all
messages originated within the group. In theory,
any scope can be realized with the formation of a
corresponding peer group. For example, a peer in
San Francisco looking to buy a used car is nor-
mally not interested in cars available outside the
Bay Area. In this case, the peer would like to mul-
ticast a message to a subset of the default World
Peer Group. A subgroup can be formed especially
for this purpose, but it seems more convenient and
efficient to perform the multicast without forming
a new peer group.

We can envision a number of approaches to
solving this problem. For example, all messages
can carry a special scope field that indicates the
scope for which a message is intended. Any peer
receiving this message can propagate it based
on the scope indicator. Using this approach, a
sending peer should be bootstrapped with some
well-defined scopes. Further work is needed in
this area.

XML
In theory, JXTA can be independent of any format
used to encode advertisement documents and mes-
sages. In practice, it uses XML as the encoding for-
mat, mainly for its convenience in parsing and for
its extensibility.

Three points worth noting about the use of XML:

� If the world decides to abandon XML tomor-
row and uses YML instead, JXTA can be
simply re-defined and recoded to use the
YML format.

� The use of XML does not imply that all peer
nodes must be able to parse and create XML
documents. For example, a cell phone with lim-
ited resources can be programmed to recognize
and create certain canned XML messages, and
still participate in a network of peers.

� To keep version 1.0 small, we used a light-
weight XML parser that supports a subset of
XML. We are working toward normalizing this
subset according to an existing effort called
MicroXML.

IEEE INTERNET COMPUTING http://computer.org/internet/ MAY • JUNE 2001 93

JXTA

Security
As mentioned earlier, at many places JXTA is inde-
pendent of specific security approaches. Nonetheless,
Version1.0 takes a first step toward providing a com-
prehensive set of security primitives to support the
security solutions used by JXTA services and appli-
cations. More specifically, JXTA Version 1.0 attempts
to provide the following security primitives:

� A simple crypto library supporting hash func-
tions (such as MD5), symmetric encryption
algorithms (such as RC4), and asymmetric cryp-
to algorithms (Diffie-Hellman and RSA).

� An authentication framework that is modeled
after PAM (Pluggable Authentication Module,
first defined for the Unix platform and later
adopted by the Java security architecture).

� A simple password-based login scheme that,
like other authentication modules, can be
plugged into the PAM framework.

� A simple access-control mechanism based on
peer groups, where a member of a group is
automatically granted access to all data offered
by another member for sharing, whereas non-
members cannot access such data.

� A transport security mechanism that is modeled
after SSL/TLS, with the exception that the unidi-
rectional pipe does not allow it to perform a
handshake, a crypto-strength negotiation, or a
two-way authentication on a single pipe.

� The demonstration services called InstantP2P
and CMS (content management service), which
also make use of additional security features
provided by the underlying Java platform.

NAT and Firewalls
The widespread use of network address translation
(NAT) and firewalls severely affects the smooth
operation of many P2P systems. It also affects the
usability of JXTA. In particular, a peer outside a
firewall or a NAT gateway cannot discover peers
inside. In the absence of getting system adminis-
trators to let JXTA traffic through (say, by open-
ing a special incoming port at the firewall or gate-
way), there are two rather obvious ideas to deal
with this problem:

� Ask peers inside firewalls to initiate connec-
tions to peers outside the firewall.

� Set up peer nodes that operate like mailbox
offices where traffic to a peer inside the fire-
wall is queued to be picked up at a designated
relay peer outside the firewall. The peer inside
the firewall can initially reach outside the fire-

94 MAY • JUNE 2001 http://computer.org/internet/ IEEE INTERNET COMPUTING

Industry Report

The JXTA Shell is an important application built on top of the JXTA plat-
form, both as a powerful demonstration of JXTA and as a useful develop-
ment environment.

Networked Command-Line Interface
Like the Unix shell, the JXTA Shell provides interactive access to the JXTA
platform via a simple command-line interface.With the Unix shell, users can
learn a lot about how Unix works by writing shell scripts.The same is true
for the JXTA Shell. However, while most of the Unix shell commands are
designed to execute on the local machine, the JXTA Shell is designed to exe-
cute in a networked environment.When a user command generates a
sequence of message exchanges between a set of peers, some computation
might occur on remote peer nodes and the answer is returned to the user.

You can use the JXTA Shell to play with the JXTA platform core build-
ing blocks such as peers, peer groups, pipes, and codats (content units that
can hold both code and data).You can publish, search, and execute codats,
discover peers or peer groups, create pipes to connect two peers, and
send and receive messages.

The interpreter in the JXTA Shell operates in a simple loop: It accepts
a command, interprets the command, executes the command, and then
waits for another command.The shell displays a “JXTA>” prompt, to noti-
fy users that it is ready to accept a new command.To the extent that
makes sense,we have deliberately chosen to name JXTA Shell commands
after the Unix shell commands, such as “ls” and “cat”, in the hope that this
makes the JXTA Shell more user friendly to Unix shell users.

JXTA Shell Commands
In our Java-based implementation, most shell commands are not built in
per se. Rather, they are just Java language programs that are dynamically
loaded and started by the shell framework when the corresponding com-
mands are typed in.Therefore, adding a new shell command is as easy as
writing a program in the Java programming language.

Pipe Operator
The “pipe” operator (“|”) for chaining commands, together with the notion
of stdin, stdout, and stderr, are fundamental to Unix shell programming.The
JXTA Shell provides a similar “pipe” capability to redirect a command out-
put pipe into another command input pipe.The JXTA shell is more pow-
erful in a number of ways.For example, in the Unix operating system, the C
Shell command ‘cat myfile | grep “jxta”’ has to complete or be killed with a
Ctrl-C.The user cannot modify the pipe re-direction when the command
is in flight. In the JXTA Shell, because pipes are more permanent than the
entirely transient ones in Unix systems, a user can dynamically disconnect
and reconnect pipes between commands.

The JXTA Shell also supports piping in both directions, not just one.A
special operator “<>” is used for creating crossing pipes between two
commands. For example, with the following command “cmd1 <> cmd2”,
the output pipe of the first command is connected to the standard input
pipe of the second command, and at the same time the output pipe of
the second command is connected to the standard input pipe of the first
command. Of course, this operator has to be used carefully to avoid infi-
nite data loops.

The JXTA Shell

wall, select a relay peer, and widely advertise
this fact. Later, it can periodically contact the
relay peer to retrieve messages.

These are far from ideal solutions, and this is an
active research area with lots of ongoing work.

Peer Monitoring and Metering
Peer monitoring means the capability to closely
track a (local or remote) peer’s status, control its
behavior, and respond to actions on its part. It is
very useful when a peer network wants to offer
premium services with properties such as reliabil-
ity, scalability, and guaranteed response times. For
example, a failure in the peer system must be
detected as soon as possible so that corrective
actions can be taken. It is sometimes better to shut
down an erratic peer and transfer its responsibili-
ties to another peer.

Peer metering means the capability to accurate-
ly account for a peer’s activities, in particular its
usage of valuable resources. Such a capability is
essential if the network economy is to go beyond
flat-rate services. Even providers offering flat-rate
services can benefit from being able to collect data
and analyze usage patterns.

JXTA currently approaches monitoring and
metering through the Peer Information Protocol,
where a peer can query another peer for data such
as up time and amount of data handled.

Obviously, security is central to peer monitor-
ing and metering. A peer might choose to authen-
ticate any command it receives. It might also
decide not to answer queries from suspect sources.

A new project on monitoring and metering is
set up on the Project JXTA Web site, and we
expect to see lots of activities in this area in the
very near future.

Conclusion
JXTA provides a network-programming platform
specifically designed to be the foundation for peer-
to-peer systems. As a set of protocols, the tech-
nology stays away from APIs and remains inde-
pendent of programming languages. This means
that heterogeneous devices with completely dif-
ferent software stacks can interoperate through
JXTA protocols. JXTA technology is also inde-
pendent of transport protocols. It can be imple-
mented on top of TCP/IP, HTTP, Bluetooth, Home-
PNA, and many other protocols.

We have developed a JXTA Shell, similar to the
Unix shell, for writing scripts (see the sidebar, “The
JXTA Shell”). Like the Unix shell, the JXTA Shell

helps users learn a lot about the inner workings of
JXTA during the process of writing scripts.

The open sourcing of JXTA technology through
http://www.jxta.org, on 25 April 2001, marked a
significant turning point for Project JXTA. Many
developers have already started working to
advance JXTA and related technologies. The fol-
lowing are among the areas where we expect to
see immediate activities:

� A native C/C++ implementation for systems
without Java runtime environment support;

� A KVM-based implementation so that all
KVM-capable devices such as PDAs and cell
phones can become JXTA peers;

� A testbed scaling JXTA to thousands and mil-
lions of nodes;

� Testing and modeling technologies devel-
oped for P2P systems in general and for
JXTA in particular;

� Naming and binding services;
� Mechanisms for supporting propagation scopes;
� Security services, including authentication,

access control, and secure pipes;
� Solutions to overcome the limitations of fire-

walls and NAT gateways;
� Rich definitions for peer monitoring and metering;
� An enhanced JXTA Shell, with new commands

and new implementations.

Apart from these topics, there are many issues that
need substantial research and development work.
We look forward to a productive year ahead with
JXTA technology.

Acknowledgments
I am grateful to Mike Clary and Bill Joy for their management

support and technical guidance, and to members of the JXTA

engineering team and the JXTA Technology Advisory Council

for their early contributions to Project JXTA. This report is

adapted from “Project JXTA: A Technology Overview,” 25 April

2001, available online at http://www.jxta.org.

Li Gong is director of engineering and head of the JXTA engi-

neering team at Sun Microsystems. Previously, he led

Sun’s effort in home networking technologies and prod-

ucts. He received a BS and MS from Tsinghua University,

Beijing, China, and a PhD from the University of Cam-

bridge, England. He is a member of the editorial board for

IEEE Internet Computing.

Readers can contact the author at li.gong@sun.com.

IEEE INTERNET COMPUTING http://computer.org/internet/ MAY • JUNE 2001 95

JXTA

