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Abstract. We address the issue of rational communicative behavior among autonomous self-interested
agents that have to make decisions as to what to communicate, to whom, and how. Following decision
theory, we postulate that a rational speaker should design a speech act so as to optimize the benefit
it obtains as the result of the interaction. We quantify the gain in the quality of interaction in terms
of the expected utility, and we present a framework that allows an agent to compute the expected
utilities of various communicative actions. Our framework uses the Recursive Modeling Method as the
specialized representation used for decision-making in a multi-agent environment. This representation
includes information about the agent’s state of knowledge, including the agent’s preferences, abilities
and beliefs about the world, as well as the beliefs the agent has about the other agents, the beliefs it has
about the other agents’ beliefs, and so on. Decision-theoretic pragmatics of a communicative act can be
then defined as the transformation the act induces on the agent’s state of knowledge about its decision-
making situation. This transformation leads to a change in the quality of interaction, expressed in terms
of the expected utilities of the agent’s best actions before and after the communicative act. We analyze
decision-theoretic pragmatics of a number of important kinds of communicative acts and investigate
their expected utilities using examples. Finally, we report on the agreement between our method of
message selection and messages that human subjects choose in various circumstances, and show an
implementation and experimental validation of our framework in a simulated multi-agent environment.
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1. Introduction

This paper follows the tradition of cognitive science and related fields [5, 11, 30],
according to which the fundamental function of communication is to confer some
advantage to the speaker by influencing what the hearer(s) knows and intends to
do. The contribution of this paper is to propose a well-defined mechanism that
realizes this function in autonomous, self-interested artificial agents that have to
decide what to communicate, to whom, and how. We treat decisions about commu-
nication just like decisions about any other action, and employ decision-theoretic
techniques to select the action with the highest expected utility. As in the case of
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any action, the expected utility is determined by the desirability of the expected out-
come. However, unlike a physical action that changes the physical state of the world,
a communicative action changes the state of knowledge of the agents involved. Our
framework is aimed at representing the changes in the state of knowledge about
the decision-making situation the agents are involved in, quantifying the benefits of
communicative actions that bring them about, and allowing rational communicative
behavior that executes the communicative actions with the highest expected utility.
Our approach is knowledge-based and relies on a general purpose knowledge

base (KB), in our case implemented as a system of classes of objects and their
instantiations. To facilitate effective communication, the agent’s KB has to include
information about the possible states of knowledge, abilities and preferences of the
other agent(s) present in the environment [10, 19, 47]. For the purpose of decision-
theoretic calculations we use the formalism of the Recursive Modeling Method
(RMM) [16, 17]. The advantage of RMM, when used for expected utility calculation,
is that it is able to succinctly represent the content of the agent’s KB, including its
preferences, abilities, and beliefs about the physical world, as well as the agent’s
beliefs about the other agents, their preferences and abilities, their beliefs about
the world and about other agents, their beliefs about others’ beliefs, and so on. The
need for considering the nestedness of the agents’ beliefs for communication has
been widely recognized in the linguistics and AI literatures before [2, 4, 6, 8, 18, 19,
31, 35, 38, 39], while research in cognitive science [11, 47] yielded evidence of nested
mental models used by humans for purpose of communication. Clearly, without a
model of the other agents’ mental states it would be impossible to properly assess
the impact of a communicative act.
We should note that the RMM representation is not intended as a general knowl-

edge representation formalism to be used for multi-agent interactions; this is left
to a general purpose knowledge base. Rather, the RMM representation (the payoff
matrices and the probabilities) are assembled from the information contained in the
KB, and used for the specific purpose of computing expected utilities of alternative
courses of action. The alternative actions (physical or communicative) are generated
by a symbolic planning module that may be domain specific and that uses informa-
tion in the KB. The computation of expected utility of alternative physical actions is
detailed in [16, 17], while this paper addresses the computation of expected utility
of alternative communicative acts.
With each communicative act we identify its decision-theoretic (DT) pragmatics,

defined as the transformation of the state of knowledge about the decision-making
situation the act brings about. We model DT pragmatics using the RMM repre-
sentation to compute the utility of the communicative act.1 The transformation in
the speaker’s decision-making situation, as represented by RMM’s recursive model
structure, may change the intentions of the other agents, and thus change the
expected utilities of the original agent’s alternative actions. We define the change
of the expected utility brought about by a communicative action as the expected
utility of this action itself. By evaluating the alternative communicative acts in this
way, the speaker can select and send the highest utility message—the message that
causes the greatest gain in the expected utility of the speaker’s action.2 The agent
should not communicate if there is no message that results in an increase of the
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agent’s expected utility. We should further note that, in this paper, our approach to
computing the values of communicative acts is myopic, i.e., we simplify the analysis
by considering only the immediate effects and benefits of such acts.
DT pragmatics of a communicative act differs from its pragmatic meaning, usually

defined [6, 18, 39] as the change of the state of knowledge brought about by the act.
Imagine two agents engaged together in assembling a bicycle from parts scattered
about a garage. A communicative act “The front wheel is in the southwest corner of
the garage,” uttered by one of the agents, has the pragmatic meaning of changing
the other agent’s beliefs about the location of the front wheel, if it did not know the
location before. This act also changes the decision-making situation the agents are
in: The other agent is now in the better position to get the front wheel and com-
plete the bicycle assembly, and the time saved could be of benefit to both agents.
The above communicative act, therefore, is endowed with both decision-theoretic
pragmatics, as well as pragmatic meaning. But a communicative act “The tempera-
ture in the center of Alpha Centauri is 5800 K,” uttered in the same situation, with
its pragmatic meaning of changing the hearer’s state of knowledge about the tem-
perature of the neighboring star, does nothing to the decision-making situation the
agents are facing. Therefore, the DT pragmatics of the second communicative act
is the identity transformation, and its expected utility is zero.3

Clearly, DT pragmatics of a communicative act is uniquely determined by its
pragmatic meaning. However, our purpose for defining it separately is that the
decision-theoretic calculation of the value of an alternative, but not yet executed,
communicative act is substantially simpler if it is performed using the compiled rep-
resentation of the KB and DT pragmatics. In other words, instead of projecting the
effects of a candidate communicative act using the full-blown representation of the
KB, it is simpler for the speaker to use compiled representation of this information
(in RMM, payoff matrices and selected probabilities). Once the expected utilities
of alternative acts have been computed and the best one has been executed, the
speaker updates its KB according to how it expects the executed act to change the
state of knowledge of the hearer(s), i.e., according to the act’s pragmatic meaning.
Thus, the decision-theoretic computations take place before a communicative act is
executed, and are performed by the speaker, from the perspective of the speaker’s
state of knowledge.
Our approach builds on, and also complements, related work on meaning of

speech acts [2, 8, 20, 29, 35, 40, 41]. While the above work has concentrated on the
communicative acts from the perspective of the agents’ declarative knowledge base,
usually in the form a set of sentences in predicate calculus (with some additions), we
look at the decision-making level instead. Our decision-theoretic approach leads to
important differences, however. First, our agents are selfish utility maximizers that
autonomously make decisions in the absence of pre-existing protocols. Thus, we do
not assume that the agents are cooperatively disposed towards each other, although
we certainly do not forbid it. The consequence of not making this assumption reveals
itself when we discuss, for example, requests and questions. It turns out that, if
exchanged among self-interested (and, in this paper, myopic) agents, these acts
seem to lose much of the function we are accustomed to ascribing to them. For
example, agents cannot be assumed to automatically answer the questions posed to
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Figure 1. Example scenario of interacting agents.

them; they may not want to reveal information only because another agent wants to
know it. Similarly, requests do not impact on the decision-making process of selfish
agents and are not guaranteed to invoke a response.4 Second, while our present
implementation uses KQML [29], we are not forced to make the assumption that
the agents know and understand KQML. In fact, the speaker is free to implement
the acts in any language without a guarantee that the hearer will decode them
properly: Our framework can accommodate the probability that the hearer does
not understand the messages received, in which case they simply are devoid of
value. We give examples of this later in the paper.
In the following sections we first formalize the notions of DT pragmatics and

value of communicative acts mentioned above, and then consider examples of vari-
ous types of communicative acts. Our strongest results address the communicative
acts that agents can use to share information about their environment (we call
these modeling messages), acts used to express the current intention of the speaker
(intentional messages), and acknowledging messages. Other types of communica-
tive acts follow, but are treated in a preliminary form and are intended to present a
point of departure for further investigation. We then present results on the agree-
ment between our method of message selection and messages that humans choose,
and show an experimental validation of our framework in a simulated multi-agent
environment. We close with a brief review of related work and plans for future
research.

2. Value of communication—basic approach

The value of communication stems from the changes in the beliefs of the agents, and
from the improved coordination and overall quality of the interaction that results.
We now briefly describe a simple interaction between two agent, and present a
compiled representation of a state of knowledge of one of them that we will use
during further discussion of communication.
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2.1. Simple example of interacting agents

Consider the example of interaction depicted in Figure 1 (described in detail in
[17]). It involves two agents, R1 and R2, engaged in a common mission of gathering
information. We take the perspective of R1 (R1 will be the speaker in later exam-
ples), who can detect two possible observation points, P1 and P2, allowing obser-
vations worth 2 and 4, respectively.5 Point P1 is closer to R1 and P2 is closer to
R2, and the costs of getting to the points are assumed to be 1 or 2, as indicated in
Figure 1. As we mentioned, this information resides in the agent’s general purpose
KB. R1 has to make a decision as to whether to pursue the observation from P1
(we’ll label this option a11), from P2 (a12), or do neither and just sit still (a13), and
would like to do so in a way the maximizes the total value of information obtained
by both agents, since it’s a joint mission, reduced by its own cost. We assume that
these two factors are the only ones that determine R1 expected utility in this case.
Note that the expected utilities of R1’s actions depend what it expects R2 to do.
If R2 observes from P2 then R1 is best off observing from P1 for the total payoff
of 2 + 4 − 1 = 5, i.e, total value of observations minus R1’s own cost. But if R2
decides to observe from P2 or do nothing at all, then it’s best for R1 to observe
from P2. The expected payoffs of alternative behaviors of R1 can be assembled into
a payoff matrix, on top of the structure in Figure 2. Note that, as we mentioned ear-
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Figure 2. Recursive model structure depicting R1’s decision-making situation in example 1.
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lier, the information contained in the payoff matrix is a compilation of information
contained in R1’s KB.
Given the situation, it is clear that R1 should try to coordinate its actions with

R2. To coordinate, R1 needs to predict what R2 will do.6 The difficulty in predicting
R2 action, in this case, is two-fold. First, there are trees located between R2 and
point P2, so it’s likely that R2 is not even aware of P2. Second, it seems that to
predict R2’s behavior R1 may need to figure out what R2 expects of R1, which in
turn may depend on what R2 thinks R1 expects of R2, and so on. A solution to
the first problem we suggest is for R1 to maintain two models of R2, one for each
possibility of its knowing about P2 or not. These two models, again represented as
payoff matrices, are depicted on the second level of structure in Figure 2, which we
call a recursive model structure. The predictions of R2’s behavior generated by each
of these models can be combined with weights equal to probabilities associated with
the models to yield the overall prediction of R2’s behavior. This is called Bayesian
model averaging; see [17, 23] for further details.
To handle the issue of predicting the other agent’s action, while the other agent

attempting to do the same, we suggest a knowledge-based approach. Intuitively,
instead of attempting to guess what the other agent will do, based on what its guess
is as to what the original agent will do, etc., the agent should simply represent all
of the information is has about the other agent, about what the other agent knows
about the original agent, and so on. We argue (see discussion in [17] and references
therein) that in realistic situations the information the agent has is finite and has to
terminate at some finite level of nesting. Thus, the representation of this information
is a finitely nested hierarchy of models that can be processed bottom-up.7

For the purpose of the current example we assumed that the agent R1 knows that
R2 has no information it can use to model R1. That means that the recursive model
structure representing R1’s decision-making situation in this scenario, depicted in
Figure 2, terminates at the leaves with, what we call, no-information models.8 Thus,
R2’s lack of any information about R1 is represented as uniform probability distri-
butions on the third level of the structure. They precisely correspond to R2’s lack
of knowledge about R1, since they contain no information about R1’s action. The
two models that R1 has of R2’s decision-making situation, on the second level in
Figure 2, reflect R1’s uncertainty as to R2’s being able to see point P2. In this case
we assumed that R1, given the density of the foliage between R2 and P2, assigns
a probability 0.1 to R2’s being able to see through the trees, and a probability of
0.9 to it not being able to see P2. We call them modeling probabilities. In general,
modeling probabilities are associated with alternative models, or branches, on any
level of the recursive model structure.
The bottom-up solution of the structure in Figure 2 amounts to computing the

expected behaviors of agents given what they, in turn, expect of other agents. In
the right branch, for example, given that R2 assigns equal probabilities of 1

3 , the
expected utilities of R2’s actions can be computed as: 1

3�0 + 4 + 0� = 4
3 ,

1
3�5+

3 + 3� = 11
3 , and

1
3�2 + 4 + 0� = 6

3 , for the consecutive alternatives. Thus, if R2
can see P2, its best alternative is a22, i.e., to pursue the observation from P2. Anal-
ogous analysis of the other model shows that if R2 cannot see P2 then its a23 is
best and it will remain stationary. These two predictions can be probabilistically
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mixed with weights equal to 0.9 and 0.1 yielding an overall estimate of what actions
R1 can expect R2 to perform, which will be called the intentional probability dis-
tribution, or the conjecture. In this case, the intentional probability distribution is:
p
R1
R2

= �0� 0�1� 0�9�, i.e., R1 is certain R2 will not pursue observation from P1, esti-
mates that there is 10% probability that R2 will observe from P2, and that there is
90% probability that R2 will stay put. The best choice for R1 is then to pursue its
option a12, that is to move toward point P2 and make an observation from there,
with its expected utility of 2.

2.2. Defining the value of communication

We now define the notions needed to compute the expected utilities of alternative
messages in a general setting. As we mentioned, the expected utilities are computed
by the speaker agent before the best communicative act is executed. We will use
the example scenario when we describe examples of various types of communica-
tive acts.
We first define the space, RMSRi

, of the recursive model structures, RMSRi
, rep-

resenting the decision-making situation of the speaker agent, Ri. An example is
depicted in Figure 2. Further, we define the set, M, as the set of the communica-
tive acts agent Ri can perform. We will assume for simplicity that this set is finite
and it consists of alternatives generated, for example, by a communication plan-
ning module. The elements of the set M are communicative acts that differ in the
content of the communicated information, but also differ in the way this content
is encoded (the language used), and in the communication medium used for its
transmission. Thus, a message in English over a phone constitutes a different com-
municative act from a message in German transmitted over email, even if the two
messages translate into the same content.9

We now formally define the decision-theoretic pragmatics.

Definition 1. DT pragmatics is a function PragDT � RMSRi
× M → RMSRi

.

DT pragmatics of a communicative act M , PragDT �RMSRi
�M� = RMSMRi

, is
the transformation M induces on the recursive model structure, RMSRi

, of the
speaker agent Ri. We write RMSRi

−→
M

RMSMRi
as an intuitive notation for M ’s

decision-theoretic pragmatics. We will call RMSRi
the prior structure, and RMSMRi

the projected structure, in the context of M .
We should remark that the set of the communicative acts can, in principle, encom-

pass all of the courses of action as generated by a planning module. Some of these
actions can be physical in nature, which means that physical actions may be treated
as communicative actions. Also, as we mentioned, we have not made any commit-
ments as to the agents sharing a communication language, and we will not attempt
to define a language in this paper. While our implementation uses KQML [29, 41],
our framework is general and we will consider communicative acts as changing the
decision-making situation of the agents, but without detailing how these acts are
actually executed.
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As we described in the preceding section, Ri can analyze its recursive model struc-
ture and use dynamic programming to solve it to yield the intentional probability
distributions, or conjectures, of the agents that it interacts with. In what follows,
we define p�−Ri� as a shorthand for Ri’s prior conjecture, i.e., the expected behav-
iors of all agents except Ri, obtained by solving the prior structure RMSRi

. Let us
denote as X the rational choice of the agent Ri based on the prior conjecture, and
its expected utility as Up�−Ri�

�X� (in the example interaction above, the R1’s prior
conjecture is �0� 0�1� 0�9�, while its best action, X, is to observe from P2, with its
utility of 2.) Similarly, pM

�−Ri� will stand for Ri’s projected conjecture, obtained by
solving the projected structure RMSMRi

. Further, denote the rational choice of the
agent Ri based on the projected conjecture as Y (which may or may not be the
same as X), with its expected utility of UpM

�−Ri�
�Y �. We can now define the (myopic)

expected utility of a communicative act.

Definition 2. Expected utility10 of the communicative act M is the difference
between the payoff the agent expects before and after executing the act:

U�M� = UpM
�−Ri�

�Y � −Up�−Ri�
�X�� (1)

Definition 3. A trivial message is a message, M , whose DT pragmatics is
PragDT �RMSRi

�M� = RMSRi
, i.e., for which the prior structure and the projected

structure are identical.

Thus, trivial messages are ones that do not change the decision-making situation
of the speaker. An example of a trivial message is one in a communication language
that the speaker knows the hearer cannot understand.11

Corollary 1. The expected utility of a trivial message is zero.

This corollary follows directly from Definitions 2 and 3. We have UpM
�−Ri�

�Y � =
Up�−Ri�

�X� for any trivial message M since the utilities are calculated based on the
prior and projected structures which are identical.
The uselessness of trivial messages is intuitive, but there may be examples of

nontrivial messages that are useless as well. Further, some nontrivial messages may
have expected utilities that are negative, in contrast to the usual decision-theoretic
notion of the value of information, which is never negative [38]. We give examples
of these in the following sections.
It may be useful to classify communicative acts into types. Some of the types we

consider have close correspondents in speech act theory [2, 46], and in various kinds
of performatives considered in KQML [29].

3. Modeling messages

Our modeling communicative acts update the hearer’s and the speaker’s model of
the multi-agent world. The close correspondents of these type of communicative
acts in speech act theory are the inform, assert, and tell acts.
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Definition 4. Modeling communicative acts are ones that contain information
about the modeling probabilities, which represent Ri’s beliefs about the other agents
in the environment.

The modeling probabilities in the above definition are the probabilities associ-
ated with different models, or branches, in the recursive model structure. They are
rigorously defined in [17].
Consider again the example of interaction depicted in Figure 1, and the recur-

sive model structure representing R1’s decision-making situation in this scenario in
Figure 2, also depicted on the left in Figure 3. Assume, for the time being, that
both agents can understand and generate communicative acts in English. Consider
what would happen if R1 were to send a message, M1, stating “There is an obser-
vation point P2, twice as high as P1, behind the trees.” Assuming that R1 estimates
that the M1 is certain to reach R2, the decision-theoretic pragmatics of M1 is as
depicted in Figure 3.
The DT pragmatics of M1 illustrates the changes in modeling probabilities: the

probability of the first model, pR1
1 , according to which R2 does not know about point

P2, changed from 0.9 to zero (it is, therefore, not included in Figure 3), and the
probability of the second model, pR1

2 , increased to 1, since R1 can be sure that R2
will know about the point P2 as a result of the message having been sent. Accord-
ing to Definition 4, therefore, message M1 is, under the assumed circumstances, a
modeling message.
The projected structure, on the right in Figure 3, can be easily solved, showing

that R1 would be sure that R2 would observe from point P2, taking action a22.
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Figure 3. Decision-theoretic pragmatics of modeling message M1.
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Thus, the projected conjecture that R1 ascribes to R2 is p
M1R1
R2

= �0� 1� 0�. The
best alternative for R1 according to projected structure is to make an observation
from P1, but the expected payoff has increased to 5. Thus, by sending the message
M1 to R2, R1 was able to increase the expected utility it gets from the interaction
from 2 to 5. As defined in Equation 1, the utility of sending the message M1 is
U�M1� = 5− 2 = 3. This illustrates how our approach implements the fundamental
function of communication, which is to confer some advantage to the speaker by
influencing what the hearer knows and intends to do.
The above analysis assumes that R2 is guaranteed to receive and properly decode

the content of R1’s communicative act. However, it may be that R2 does not under-
stand English, or that R1 used an unreliable communication channel. As we men-
tioned, R1’s attempt to transmit the content above would then, formally, constitute
a different communicative act, M1�1. M1�1 also has a different, although still well
defined, DT pragmatics. Let us represent the imperfections in M1�1’s transmission by
assigning a probability, pc (0 ≤ pc ≤ 1), to R2’s properly receiving and understand-
ing the content of M1�1.12 Then, DT pragmatics of M1�1 is as depicted in Figure 4.
Solving the projected structure in Figure 4 reveals that the intentional probabil-

ity distribution describing R2’s action is �0� 0�1+ 0�9pc� 0�9− 0�9pc�. The expected
utilities of R1’s alternatives can now be computed as:

u
R1

a11
= 1�4+ 3�6pc

u
R1

a12
= 2

u
R1

a13
= 0�4+ 3�6pc

From the above we can see that, if pc > 1/6, the value of the message M1�1
depends on pc as: U�M1�1� = 3�6pc − 0�6. If pc < 1/6, R1 would prefer to choose
a12 and observe from P2, with its payoff of 2. This is the same as without communi-
cation, so, if pc < 1/6, the expected utility of M1�1 is zero.

4. Intentional communicative acts

The purpose of intentional communicative acts is to inform other agents about
the speaker’s current intentions.13�14 These acts loosely correspond to promise acts
in the speech act theory, but they do not imply the notion of commitment. For
example, an agent may inform another agent of its current intention to perform
some action, but, say in view of newly acquired information, it is free to change its
intention. Note, however, that it would be in this agent’s best interest to inform the
other agent about the change of plans by sending another intentional message.

Definition 5. Intentional communicative acts contain information about the
intentional probabilities p

Ri�Rj

Rk
, that represent Ri’s belief about an agent Rj expec-

tation as to another agent’s, Rk, actions.
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In the simplest and most intuitive case, the speaker declares its own intentions
and, in the above definition, Ri and Rk are the same speaker agent. In general,
the intentional probabilities are conjectures the agents use to describe the expected
actions of other agents. They are rigorously defined in [16, 17].
For the purpose of the present discussion we assume that the truthfulness of

these messages is guaranteed (as we mentioned the agents’ intentions may change,
but it is in their best interest to inform others of such changes: See also [15] for
cases involving lying). Thus, a hearer can use an intentional message to predict what
the speaker will do. In modeling the hearer, therefore, the speaker can truncate the
projected recursive structure, because it knows that the hearer’s conjecture of the
speaker’s actions correspond exactly to the content of the intentional message.
Let us take again the interaction in Figure 1, and suppose that R1 considers using

a perfect communication channel to transmit a message “I will observe from point
P2” to R2. Let us denote this communicative act as M2. DT pragmatics of M2 is as
depicted in Figure 5.
If R2 is not aware of the point P2 and receives M2, it models R1 as pursuing its a

1
3

option, i.e., doing something other than observing from P1 (labeled a11),
15 and so,

for R2, the options a21 and a23 are equally good and equally likely. If R2 can see the
point P2 and receives M2, its options a

2
1 and a23 are also equally good. Thus, the new

overall intentional probability distribution over R2’s options is p
M2 R1
R2

= �0�5� 0� 0�5�.
Now, the expected utility of R1’s action a12 increased to 3. According to Equation 1,
the utility of M2 is U�M2� = 3− 2 = 1.
The above analysis assumes that R2 is guaranteed to receive and properly decode

M2. If the reliability of the communication used is characterized by the probability
pc instead, the intentional probabilities R1 ascribes to R2 will be:

pc�0�5� 0� 0�5� + �1− pc��0� 0�1� 0�9� = �0�5pc� 0�1− 0�1pc� 0�9− 0�4pc��

The expected utilities of R1’s alternatives can now be computed as:

u
R1

a11
= 1�4− 0�4pc

u
R1

a12
= 2 + pc

u
R1

a13
= 0�4+ 0�6pc

Thus, the expected utility of sending this message over an unreliable channel is
equal to the probability pc .

5. Modeling vs. intentional acts—discussion

Note that, assuming reliable communication, the intentional message M2 from
the preceding section was less valuable than the modeling message considered in
Section 3. That is an intuitive result; in the situation in which an agent is quite
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P2, observation 

      worth 4    

 P1, observation worth 2 to

       R   and 2 or 4 to R1 2

Cost = 1

Cost = 2

Cost = 2
Cost = 1

R R1 2

(Camouflaged as a
        bush)

Figure 6. Another scenario of interacting agents.

unlikely (with only a 10% chance) to be aware of an important feature of the envi-
ronment, in our example point P2, human speakers would also tend to favor the
message telling the agent about this feature.
But let us now look at a different situation, depicted in Figure 6, in which there is

no uncertainty about how R2 sees the environment—R2 is sure to see P2. However,
now there is uncertainty about the agents’ properties. Assume that R1 knows that
observation point P1 also provides a sunny spot where a vehicle with a solar array
can re-charge its batteries. While R1 has no solar array on board, it believes that
R2 might, and that re-charging is worth 2 to it. Thus, if R2 has a solar array, it will
value going to P1 as 4 (2 for observing plus 2 for re-charging), but, if it has no array,
then R2 will value P1 the same as R1 does (at 2).
Moreover, R1 is camouflaged to resemble a bush (R2 is clearly an agent), and R1

estimates that it is equally likely that its disguise will fool R2 as it is that R2 will
correctly recognize R1 as a robotic vehicle without a solar array. In the case where
the disguise fools R2, it will assume that R1 will stay still.
The recursive model structure representing R1’s state of knowledge is depicted

on the left in Figure 7. It can be solved using dynamic programming and results in
R1’s expected utility equal to 3. Since R1 knows that R2 can see both observation
points, a modeling message that tells R2 about any of the observation points is
bound to be useless. Now, however, an intentional communicative act may be more
appropriate; say that R1 considers the content “I will observe from P1” sent over a
perfect channel, which we will call M3. M3’s DT pragmatics is the transformation
in Figure 7, and it is similar to DT pragmatics of M2 before.
It is easy to see that R1 would conclude that, after receiving M3, R2 would choose

to make an observation from point P2, resulting in the expected utility of observing
from P1 for R1 as 5. The value of M3 is the difference between 5, expected after
sending the message, and 3 expected before, i.e., 2.
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Interestingly, there is a modeling message that R1 could also consider in this case.
It is M4 with content “I am not a bush.” DT pragmatics of M4 is simple: R2 would
have just one correct model of R1’s decision-making situation. The expected utility
of this message turns out to be 0.5 (we invite the reader to check this result); thus,
as we would expect, M4 is viable and beneficial in this case, although not the best.
This example illustrates how, using our approach, rational communicative agents

can tailor the types of messages they send to each other based on the particular
situation at hand. In some situations it’s best to talk about the features of the
environment, but in other cases it’s best to talk about the agents’ intentions.

6. Acknowledging acts

We now turn to acknowledging messages. We assume that acknowledging messages
can be sent to confirm the reception of other messages. Consider the recursive
model structure depicted in Figure 8. It represents information similar to what R1
had in the example before, on the left in Figure 3, but now R1 knows more: it knows
that, if R2 can see point P2, it will know that R1 sees it also, and it will model R1’s
payoff matrix correctly. Further, R1 knows that, if R2 can see P2, it will be aware
that R1 is uncertain whether R2 can see P2, and that results in the branching on
the third level of nesting.
Now let us imagine that R1 has received a modeling message,M5, from R2 inform-

ing it that R2 can see point P2, sent over an imperfect communication channel, and
can acknowledge having received it. After having received M5, R1 can update its
recursive model structure by eliminating the left first-level branch, resulting in the
structure depicted on the left in Figure 9. Let us note that the branching on the
third level remains, as it corresponds to R2’s thinking that R1 may still not know
that R2 can see P2. The probability of this branching has been updated to include
the probability that R1 thinks R2 assigns to the reliability of the communication
channel used: pR1�R2

c .
The solution to this structure depends on the value of pR1� R2

c . If pR1� R2
c < 1/6

then the intentional probability R1 would think R2 ascribes to R1 would be
p
R1� R2
R1

= �0� 1� 0�; if pR1� R2
c = 1/6 then p

R1� R2
R1

= �0�5� 0�5� 0�; and if pR1� R2
c > 1/6,

we have p
R1� R2
R1

= �1� 0� 0�. The first of these cases, propagated upward, gives
p
R1
R2

= �0�5� 0� 0�5�, and the last two result in p
R1�
R2

= �0� 1� 0�. The first of these, in
turn, points to a12 as R1’s best choice with the utility of 3, while the second makes
a11 rational with an expected payoff of 5.
The pragmatic meaning of acknowledging the receipt of M5, called M6, sent over

a reliable communication channel, is depicted in Figure 9. The effect of this mes-
sage, if received, would be to eliminate the possibility for R2 that R1 does not know
that R2 can see point P2, i.e., to modify the modeling probabilities on the third level
of nesting. In general, one can consider further acknowledgments, that is, acknowl-
edgments that previously sent acknowledgments have been received, and so on. All
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Figure 8. R1’s recursive model structure before it received message M5.

of them modify the modeling probabilities on deeper levels of the recursive model
structure. These considerations lead to the following observation:

Observation 1. The communicative acts acknowledging the receipt of previously
sent messages are modeling messages, as previously defined.
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Figure 9. DT pragmatics of acknowledging message M6.

The projected structure of M6, on the right in Figure 9, can be easily solved and
results in R1’s anticipating that R2 will observe from P2: pR1�

R2
= �0� 1� 0�, which

makes a11 R1’s best option with the expected utility of 5.
We can now see that the value of the acknowledging message M6 depends on

how R1 thinks R2 evaluates the reliability of the communication channel pR1�R2
c . If

p
R1�R2
c < 1/6, then the value of M6 is 2, otherwise M6 turns out to be useless.

This confirms our intuitions about acknowledging messages: If R1 thinks that R2
thinks that the original message had a good chance of getting though, then the
acknowledgment is not needed; otherwise it is in R1’s best interest to acknowledge.
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An interesting situation arises if the acknowledgment is sent over an unreliable
communication channel or encoded in a language that may be unknown to R2,
characterized together by the probability pc , as before. The result is that for
p
R1�R2
c < 1/6, the value of such acknowledgment is actually negative for pc < 0�5

(the intentional distribution that R1 would ascribe to R2 becomes then p
R1�
R2

=
�0�5�1 − pc�� pc� 0�5�1 − pc��). This illustrates the point mentioned before: There
is no guarantee that the communicative acts considered will have nonnegative
expected utilities. This is in contrast to the theory of value of information [38], and
it exemplifies a counterintuitive fact that communicating truthful messages among
agents engaged in a cooperative interaction may be ill advised, if the reliabilities of
transmission are low.

7. Questions

The ability to ask questions features prominently in human communicative behav-
ior, and they correspond to the ask act in the speech act theory. In our approach,
however, the following issue arises: Why should a fully autonomous and myopi-
cally selfish agent pay any attention to other agents’ requests for information? As
we have shown above, the computation of the utilities of messages and actions is
performed exclusively from the point of view of a given agent, and the fact that
another agent would like to receive some information does not enter into these cal-
culations. Therefore, there is no guarantee that questions will be answered among
myopic selfish agents.
One way to explain cooperative communicative behavior is to view it as dictated

by some interaction protocol. One such protocol may be a social convention, say,
humans use to answer truthfully a question about the current time asked by a
stranger on a street. Such protocols may be useful to rational individuals since
they could save time needed for deliberation. However, since our approach in this
paper in orthogonal to the issue of protocol design, we will not pursue this avenue
here.
Another approach is to relax the assumption that agents are myopic and allow

them to consider long-term effects of their interactions. As related research in
game theory shows [1, 3], a key to cooperative behavior among selfish agents is
the agents’ anticipation that they will interact repeatedly. When the agents look
at the long-range repercussions of their behavior during repetitious interactions it
is rational for them to be cooperative in order to elicit cooperative behaviors from
others during future encounters. While we have studied repeated interactions within
the RMM framework before [14], we will leave a further formal study for future
work.
Below, we provide an informal analysis from the point of view of non-myopic

agents to give a flavor of what extensions this could allow. We also found it useful
to view questions not as requests (or demands) for information, but as declarations
of lack of knowledge.
Let us consider the scenario depicted in Figure 1 again, but let us modify it slightly

such that now the stand of trees between R2 and P2 consists of only a single tree.
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Assume that R1 now expects R2 to be very likely to see P2 (say, with probability
0.99). Repeating the solution process we went through in Section 2.1, in this case R1
would compute that R2 will stand still with probability 0.01 (if it does not see P2),
and will observe from P2 with probability 0.99. This gives R1 expected utilities of
4.96 for observing from P1 (a11), 2 for observing from P2 (a12), and 3.96 for staying
still (a13).
As detailed in Section 3, if R1 were to send R2 a modeling message M1 to ensure

that R2 knew about P2, then R1 could increase its expected utility to 5 (assuming
correct message transmission). Thus, in this case, the message would increase the
expected utility by 5�0 − 4�96 = 0�04. Assuming that it costs nothing to send a
message, sending M1 would be beneficial. But let us assume that sending a message
costs something, say 0�1. Now the utility of the message minus the cost of the
communicative action is 0�04− 0�1 = −0�06, so sending M1 would not pay for R1.
Intuitively, R1 is sufficiently sure that R2 has the relevant information it needs, so
it does not pay to transmit information that is very likely to be redundant.
However, now imagine that R1 receives from R2 a message, M7, declaring R2’s

ignorance: “I cannot see through the tree.” The immediate pragmatics of M7, which
plays a role similar to that of a question, is to cause R1 to transform its recursive
model structure leading it now to believe that R2 only knows about P1 (formally,
therefore,M7 is a modeling message). Based on this, R1 conjectures that R2’s behav-
ior is described by the intentional probability distribution of [0, 0, 1], meaning that
R2 will sit still. In turn, now R1 expects utilities of 1 for a

1
1, 2 for a

1
2, and 0 for a13. Its

best action now is a12, with an expected payoff of 2; the message it received caused
it to revise its expected utility downward, from 4.96 to 2.
But now R1 should reconsider sending the message M1, informing R2 about P2,

providing the information and, in effect, answering the question. As before, suc-
cessfully sending the message leads R1 to expect a payoff of 5, which is much better
than its current expectation of 2. The utility of the message minus the cost of send-
ing it is 3− 0�1 = 2�9, and R1, being rational, will respond to R2’s M7 with M1, and
inform it about point P2. That means that M7, while declaring ignorance, would
elicit an informative response from R1, living up to our interpretation of it as an
effective question that R2 asked R1.
The above establishes that declarations of lack of information can elicit an infor-

mative response from an autonomous self-interested agent, in effect functioning as
questions. Now, let us turn to asking the question in the first place. Looking at the
situation from R2’s perspective, all it sees in its environment are R1, P1, and a tree.
Based on prior knowledge (for example, that observation points commonly come
in pairs), R2 might hypothesize that with probability of, say 0�4, there is another
observation point hidden behind the tree. If it assumes that this observation point
will be worth 2 like P1,16 and that it will cost 1 to get there, the expected utility for
R2 to go toward the hoped-for observation point is the probability the point is there
times the worth of the point, minus the cost of going there: �0�4× 2� − 1 = −0�2.
This negative expected utility means that it would be irrational for R2 to act on the
hunch that another observation point might be behind the tree.
But here is when asking a question, stated as a declaration of ignorance, can help.

To compute the value of the question R2 has to look not only at immediate effects,
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but also at possible responses. Say that R2 believes that there is a 0�4 probability
that it will receive an affirmative answer (using the prior knowledge above), and in
that case it goes to the point to gain a payoff of 1 (since the expected worth is 2
and the expected cost of going to the point is 1). With 0�6 probability, it will receive
a negative answer, and will stay still, gaining no additional payoff from its actions.
Since it is currently expecting to gain nothing from its actions, the expected utility
of asking the question is the expected improvement to its payoff (0�4 × 1) minus
the cost of sending the message (0�1). Asking the question thus has a utility of 0�3.
Let us note that the value of asking the question computed above coincides with
the expected value of information obtained as a result, which is the usual notion of
information value [34, 38], as we would expect.
We can summarize the above in the following:

Observation 2. Among selfish agents communicative acts corresponding to
questions are acts declaring ignorance on the part of the speaker. Their value is
closely related to the expected value of information considered in decision theory.

8. Statements of propositional attitudes

We take statements of propositional attitudes to be ones like “I know what is behind
the trees,” or “He knows what is in the jar.” The semantics of propositional attitude
statements have received much attention in the AI literature [21, 27]. Here, we
would like to illustrate how the utility of statements of this kind can be computed
within the framework we provide, given some straightforward postulates of what
they intend to convey.
Recall the example scenario considered before (Figure 1) in which agent R1 did

not know whether the other agent, R2, could see the observation point P2 through
the trees. Let us assume that R2 can, in fact, see the point P2 behind the trees. Is it
valuable for R2 to let R1 know, for example by sending the message “I know what is
behind the trees” over, say, a prefect communication channel? The answer can be
arrived at by considering how R2 could model the impact of such a communicative
act, call it M8, on its decision-making situation, as depicted in Figure 10.
The decision-theoretic pragmatics of M8 is that it removes R1’s uncertainty as to

whether R2 knows what is behind the trees. Thus, it is a modeling act, as defined
in Section 3. The solution of both of the recursive model structures in Figure 10
is straightforward. Before M8 is sent, R2 would expect R1 to observe from P2, and
R2 would expect a benefit of 4. If M8 is sent, on the other hand, R1 would observe
from P1, and R2 could make the observation from P2 and obtain a benefit of 5.
The value of the message to R2 is U�M8� = 5− 4 = 1.
This case illustrates the possibility that the agents’ states of knowledge are not

consistent. It may be that R1 believes that R2 does not know anything about R1,
which may be known to R2, and not true. Clearly, inconsistencies of this sort may
happen frequently, and the agents have to be able to take them into consideration
while effectively communicating.
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Figure 10. R2’s model of DT pragmatics of M8.

9. Toward the value of imperatives

The consideration of imperative messages, for instance an order for R2 issued by
R1, “Observe from P2!,” raises issues similar to those considered while analyzing
questions. Apart from non-myopic agents that interact repeatedly and agents that
follow a cooperative interaction protocol dictating that orders be followed, there
seems to be no reason why an autonomous agent should ever pay any attention
to the orders given by others. In the majority of situations this indeed is the case,
and persuasion should be more effective than issuing an order. By persuasion we
mean informative statements, like the modeling message M1 considered before.
They are valuable since they inform an agent about relevant circumstances, and
lead to desirable courses of action as a side effect.
However, there are circumstances in which a pure and unexplained order makes

sense. These are circumstances in which one accounts for the costs (time, effort)
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of decision-making. In a nutshell, it is rational for an agent to obey an order from
another agent if the default utility of obeying is greater than the utility of indepen-
dent decision-making, including the cost of that decision-making. Intuitively, when
a rational agent gets a message “Duck!” it might be better for it to rapidly follow
this instruction than to respond more slowly (too late) after assessing the situation
and deciding for itself on the proper action.
In its simplest form, an imperative can be postulated to transform an agent’s

recursive model structure from which it derives its strategy into simply a strategy
to follow. That is, the agent discards its deliberative mechanisms and immediately
obeys the command. Because the decision to do so involves a tradeoff of costs and
benefits of using the decision-theoretic reasoning, an imperative involves reasoning
at the meta-level. Since RMM has not yet addressed meta-level reasoning issues to
any great extent, the decision as to when to follow the command cannot at this time
be reduced to operational terms. Clearly, the deciding factors will involve comparing
the expected payoff of following the command (what does the command imply about
the likely decisions of others, and what kind of payoffs are likely to be received
based on these implications) against the expected payoff of deeper reasoning (what
better decisions might be made, how much better they might be, and how much it
will cost to find them). Our ongoing research is delving into meta-level issues, so as
to eventually capture such reasoning about imperatives.

10. Experiments

This section describes some of our experiments of coordination with communica-
tion in the air defense domain, in which two defense batteries have to coordinate
their actions of intercepting multiple incoming threats. First, we show that RMM’s
decision-theoretic message selection in most cases agrees with selections chosen by
human subjects in four simple defense scenarios. Then, we show results of scaled-
up defense episodes in which RMM agents perform slightly better than the human
subjects.

10.1. RMM vs. human message selection in simple scenarios

In the simple scenarios below, we will consider optimal communicative behavior of
Battery1 (triangle on the left in our scenarios) only, and assume that Battery2 is
silent but can receive messages. Further, for simplicity, in all of the anti-air defense
scenarios considered below Battery1 is assumed to have a choice of six communica-
tive behaviors, generated by a communication planning module:

No Comm�: No communication
M1: I’ll intercept Missile A.
M2: I’ll intercept Missile B.
M3: I have both long and short range interceptors.
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Figure 11. Scenario 1, and summary of results.

M4: There is a missile A, whose position and warhead size are PA and WA,
respectively.

M5: There is a missile B, whose position and warhead size are PB and WB,
respectively.

We wanted to investigate how RMM agents rank the messages in the above list,
and whether there is an agreement between the communicative behavior advocated
by RMM and human communicative behavior. As human subjects we used 32 CSE
and EE graduate students. Each of them was presented with a scenario, and was
given a description of what was known and what was uncertain in that scenario.
The students were then asked to indicate which of the six messages was the most
appropriate in each case, and which one was the second choice.17

10.1.1. Scenario 1. Consider the scenario depicted on the left in Figure 11. Here,
the defense batteries face an attack by missiles A and B. A has a larger warhead
size than B, but it is farther from the defended territory. The state of Battery1’s
knowledge before communication is summarized as a two-level recursive model
structure on the left in Figure 12. Assume that Battery1 assigns the probability of 0�9
to Battery2’s being fully operational (having both long and short range interceptors
and thus being able to target both missiles), and the probability of 0�05 to Battery2’s
being incapacitated (in which case it cannot do anything). The remaining probability
of 0�05 is assigned to the No-Information model representing all of the possible
remaining unknown cases. In this scenario Battery1 is assumed to have no more
information. In particular, Battery1 does not know what action Battery2 expects of
Battery1. This is represented by another No-Information model on the lowest level
in Figure 12 (see [17] for detailed discussion).
Figure 12 depicts DT pragmatics of message M1, “I will intercept missile A.”

It illustrates that, as a result, Battery1 expects Battery2 to know that Battery1 will
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Figure 12. DT pragmatics of message M1 in scenario 1.

select missile A, which is represented by �1� 0� 0�, probability distribution that Bat-
tery2 would use to describe Battery1’s actions.
To compute the value of communication according to Equation 1, we solve both

model structures in Figure 12 and compare results. Before communication (the left
part of Figure 12), Battery1 computes that if Battery2 is operational then the proba-
bility distribution over Battery2’s possible actionsA, B, and S is �0�85� 0�15� 0�0� (this
result was obtained using logic sampling discussed in [17]). Using dynamic program-
ming one can now easily compute that Battery1’s best option is to shoot at missile A,
with an expected utility Up�A� of 30�83�=0�78× 29�4+ 0�15× 38�9+ 0�07× 29�4�.
After sending the message M1 (the right part of Figure 12), the probability dis-

tribution over Battery1’s actions at Level 2 is �1� 0� 0�. Thus, if Battery2 is fully
operational, it will choose to shoot at missile B, i.e., the probability distribution over
Battery2’s actions becomes [0,1,0]. This probability distribution is combined with the
model of Battery2 being incapacitated and with the third No-Information model:
�0�9 × �0� 1� 0� + 0�05 × �0� 0� 1� + 0�05 × �1/3� 1/3� 1/3�� = �0�02� 0�92� 0�06�. The
resulting distribution is Battery1’s overall expectation of Battery2’s actions, given
all of the remaining uncertainty. The combined probability distribution describing
Battery2’s actions is used to compute the expected utility of Battery1’s action of
shooting A. We have: UpM1�A� = 0�02 × 29�4+ 0�92 × 38�9+ 0�06× 29�4 = 38�14�
According to Equation 1, the expected utility of the intentional communicative act
M1, U�M1�, is 7�31�=38�14− 30�83�.
The expected utilities of the other messages are computed analogously, and the

results are shown in Figure 11. As expected, some of the messages have no value in
this situation, and their computed expected utility is zero, since they do not convey
anything useful and novel. Note that message M2 has a negative expected utility;
it is a bad idea for Battery1 to announce its intention to shoot at missile B in this
scenario.
The results of human choices are also summarized in Figure 11. Twenty four,

out of thirty two, i.e., 75% of the subjects chose message M1 as the best in this
situation, while five subjects judged it as a second best. This shows a considerable
agreement between RMM’s calculations and selections of the human subjects.
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10.1.2. Scenario 2. In this scenario, in Figure 13, the warhead of missile B is larger
than that of A. However, due to bad weather (rain or cloud), Battery1 thinks that
Battery2 is unlikely to detect Missile B, and assigns to it the probability of only 0�1.
Again, we allow for further uncertainty: Battery2 can be incapacitated by enemy
fire with probability 0�05, and all of the other possibilities about which Battery1
has no information about Battery2 are grouped into a No-Information model with
probability 0�05.
In this case, the most interesting message is a modeling message M5, “There is

a missile B, with position (16, 3) and size 400.” The result of this message would
be to eliminate the possibility that Battery2 does not know about Missile B, and its
DT pragmatics is depicted in Figure 14.
The recursive model structures in Figure 14 can be solved using dynamic pro-

gramming as before. Before communication, Battery1 would assign a distribution
of �0�82� 0�12� 0�06� to Battery2’s actions, and Battery1 could get the expected util-
ity of 23�42. After sending message M5, the probability that Battery2 will shoot
at B increases to 0�9, the new distribution is �0�04� 0�90� 0�06�, and the expected
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utility of Battery1, UpM5�A�, is: UpM5�A� = 0�04× 8�7 + 0�90× 29�1+ 0�06× 7�8 =
27�06� Therefore, the expected utility of the communicative act M5, U�M5�, is
3�64�=27�06− 23�42�.
The expected utilities of the other communicative alternatives are computed sim-

ilarly and the results are in Figure 13. The results of experiments with human sub-
jects are also summarized. This time, 22 (69%) out of 32 subjects chose message
M5 as the best one. 9 of our subjects picked message M2 as the best, which the
RMM agent rated as second best in this case. We think that high number of stu-
dents choosing message M2 is due to the subjects not thinking it would be possible
for Battery2 to shoot at missile B just based on knowing its position (without visual
contact), which we allowed for during the experiments between RMM agents.

10.1.3. Scenario 3. If we allow more uncertainty in a defense scenario, the
decision-theoretic message selection will be more complicated. For scenario 3 (see
Figure 15), we assumed that Battery1 is uncertain whether Battery2 has any short
range interceptors left. If Battery2 has only long range interceptors, it will be
unable to attack missile B, and can only attempt to shoot down missile A.
From Battery1’s point of view, therefore, Battery2’s decision making situation is

modeled as one of four cases: Battery2 has both short and long range interceptors;
Battery2 has only long range interceptors; Battery2 has been damaged or incapaci-
tated; and a No-Information model.
In this scenario DT pragmatics of M2, “I will intercept missile B,” is depicted in

Figure 16. Another viable message is message M3, with DT pragmatics as depicted
in Figure 17. This transformation shows that if Battery1 sends the message “I have
both long and short range interceptors,” Battery2 will include the fact that Battery1
has both munitions in its modeling of Battery1 on the third level of the model
structure, and will solve these models to arrive at Battery1’s target selection.
Before communication, Battery1’s best option is to shoot down missile B, with an

expected utility of 12�76. If M1 were to be sent, Battery1 could expect a utility of
11�29, which results in M1’s value being negative. After sending M2 Battery1 could
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Figure 16. DT pragmatics of M2 in scenario 3.

expect 15�39�=0�92 × 15�9+ 0�02 × 9�8+ 0�06× 9�4�, while M3 would result in an
expected utility of 14�78�=0�82 × 15�9+ 0�11× 9�8+ 0�07× 9�4�.
These results, together with selections of the human subjects, are summarized in

Figure 15. Twenty seven out of our thirty two subjects (84%) agreed with the RMM
calculation and picked M2 as the best message in this case. Further, 19 subjects
rated M3 as their second choice.

10.1.4. Scenario 4. Our fourth scenario was intended as a test of a case when
communication is not necessary, for example, because even without communica-
tion it is clear what the agents should do. In general, since communication may
be expensive, a rational agent should not communicate if there is no gain from
communication. In scenario 4 we set the warhead size of missile B as bigger than
that of missile A. The altitudes of missiles are the same, as depicted in Figure 18.
Also, Battery1 assigns the probability 0�05 to Battery2 being incapacitated by enemy
fire, with the No-Information model having the probability of 0�05. Thus, Battery1
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believes that Battery2 has both interceptors and can see Missile A and B with
probability 0�9.
For this scenario, the expected utilities of intentional messages are less than or

equal to the expected utility of no communication, as depicted in Figure 18. The
modeling messages are useless as well, since they do not change the decision-making
situation in any beneficial way. The results of experiments with the human subjects
suggests that the majority of them were indifferent between communicating and
not communicating in this case. There is, however, a slight preference the human
subjects seem to exhibit for communicating useless messages. This can be accounted
for by two factors: First it was probably difficult for our subjects to understand that
the values of messages that make perfect sense under usual conditions are useless in
this particular situation; and second, human communicative behavior may be driven
not strictly by the values of messages we have been computing here. People may
be used to talking just to stay in touch and maintain a social bond, even when the
situation does not demand it.

10.2. Experiments in scaled-up defense episodes

In the scaled-up experiments we ran, two defense units were faced with an attack by
seven incoming missiles. Therefore, the RMM agents used an 8 × 8 payoff matrix
to represent the agents’ decision-making situations. For all settings, each defense
unit was initially assumed to have the following uncertainties (beliefs) in its knowl-
edge base: the other battery is fully functional and has both long and short range
interceptors with probability 60%; the other battery is operational and has only
long range interceptors with probability 20% (in this case, it can shoot down only
distant missiles, which are higher than a specific altitude.); the other battery has
been incapacitated by enemy fire with probability 10%, and the remaining 10% was
assigned to the No-Information model. Further, each battery has no deeper nested
knowledge about the other agent’s beliefs.
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Figure 19. Defense scenario 1.

The warhead sizes of missiles were 470, 410, 350, 370, 420, 450, and 430 unit for
missiles A through G, respectively. In these experiments each of the two defense
units was assumed to be equipped with three interceptors, if they were not inca-
pacitated. Thus, they could launch one interceptor at a time, and did it three times
during a course of one defense episode.
We set up 100 scenarios for RMM team and 20 scenarios for human team. We

allowed for one-way communication between defense units before each salvo. If
both agents wanted to send messages, the speaker was randomly picked in the RMM
team, and the human team flipped a coin to determine who would be allowed to
talk. The listener was silent and could only receive messages. For uniformity, in all
of the anti-air defense scenarios, each battery was assumed to have a choice of the
following communicative behaviors: “No communication,” “I’ll intercept Missile A,”
through “I’ll intercept Missile G,” “I have both long and short range interceptors,”
“I have only long range interceptors,” or “I’m incapacitated.” As human subjects,
we used 20 CSE and EE graduate students.
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Table 1. Performance analysis for scenario 1

Scenario 1 No communication

Agent RMM Human

Targets F,A;E,B;D,C D,B;E,A;F,C
Total damage 721.8 731.2

Scenario 1 Communication

Agent RMM Human

Message 1 has(B2,both ammo) intercept(B2,A)
Message 2 intercept(B2,B) intercept(B2,C)
Message 3 intercept(B1,E) intercept(B1,G)
Targets F,A;G,B;E,C F,A;E,C;G,B
Total damage 630.0 647.2

Among the various episodes we ran we will consider two illustrative examples to
examine the coordination achieved by RMM and the human team in more detail.
In these examples, each defense unit was fully functional and has both long and
short range interceptors.
The result of interaction in scenario 1, in Figure 19 is presented in Table 1.

Without communication, the RMM batteries 1 and 2 shot at threat F and A,
respectively, during the first salvo; at E and B, respectively, during the second
salvo; and at D and C, respectively, during the third and final salvo, as depicted
in Table 1. The total damage sustained by the RMM team in this encounter was
721�8. The choices made by a human team without communication is similarly dis-
played in the upper right corner of Table 1; the damage suffered by the human team
was 731�2.
The lower portion of Table 1 illustrates what happened when the agents could

exchange messages. Before the first salvo Battery2 was allowed to talk. The RMM
agent in charge of Battery2 sent the message was “I have both long and short
range interceptors,” and shot at target A. Upon receiving the message, Battery1
controlled by RMM intercepted F. In case of the human team, Battery2’s initial
message was “I will intercept target A,” and the human team also shot at targets
F and A during the first salvo. The messages exchanged and the firings in the fol-
lowing two salvos are also shown in the lower portion of Table 1. As expected,
the performance with communication was better than one without communica-
tion for both teams; the RMM suffered damages of 630�0, while the human team
scored 647�2.
The difference of total damage in RMM and human teams with and with-

out communication shows the benefit of communication. In this scenario, the
expected utilities of communicative acts executed by the RMM team were
U�has�B2� both ammo�� = 18�04, U�intercept�B2� B�� = 41�05, and U�intercept�B1�
E�� = 32�49, which sums up to 92�03. This amount is closely related to the benefit
of the communication, i.e., 91�8�=721�8− 630�0�. This shows that, in this scenario,
the expected utilities of the messages transmitted were an adequate estimate of the



264 gmytrasiewicz and durfee

Figure 20. Defense scenario 2.

benefits of communication actually realized. As the results show, the human team’s
score was very similar to that of the RMM team, but humans chose different com-
municative acts. For example, the message chosen by the human player before the
first salvo “I will intercept target A” has the expected utility of 12.17. This message
is, therefore, useful, although slightly suboptimal from the decision-theoretic point
of view.
In scenario 2, in Figure 20, the targets are clustered in front of Battery1, unlike

in scenario 1, in which targets are scattered. In this case, communication is more
important and the utilities of the messages are greater because it is more likely
that targets could be intercepted redundantly without communication, resulting in
greater overall damage incurred. Intuitively, as most targets head toward Battery1,
the target that Battery2 selects as the biggest threat is likely to be also the most
threatening to Battery1. As shown in Table 2, when communication is available,
redundant target selection was prevented and the total expected damages were
drastically reduced. In this scenario the sum of the the expected utilities of the three
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Table 2. Performance analysis for scenario 2

Scenario 2 No communication

Agent RMM Human

Targets F,E;B,D;G,G A,E;F,F;G,D
Total damage 1020.3 1001.8

Scenario 2 Communication

Agent RMM Human

Message 1 intercept(B2,E) has(B2,both ammo)
Message 2 intercept(B1,G) intercept(B1,B)
Message 3 intercept(B1,B) intercept(B1,G)
Targets A,E;G,F;B,D A,E;B,F;G,D
Total damage 663.9 708.4

messages sent by the RMM team is 246.57, while the benefits of communication
actually obtained is 356.4.
The summary of all of the experimental runs we performed is shown in Table 3.

Table 3 presents the average number of selected targets and the average total
expected damage by RMM agents after 100 trials and by human agents after 20
trials. We focus on the performances of three different teams: RMM-RMM, RMM-

Table 3. The performances of RMM and human team

No of selected Total expected
Cases Team (B1-B2) targets damage ANOVA

Case I RMM-RMM 5.95± 0.21 717.01± 110.71
(B2:both ammo, RMM-Human 5.70± 0.47 797.39± 188.35 f = 3�45
w/o comm.) Human-Human 5.75± 0.44 800.45± 147.69

Case II RMM-RMM 6.00± 0.00 652.33± 58.97
(B2:both ammo, RMM-Human 6.00± 0.00 717.93± 94.45 f = 3�43
w/ comm.) Human-Human 6.00± 0.00 710.20± 100.92

RMM-RMM 5.83± 0.37 852.01± 160.79
Case III RMM-Human 5.75± 0.44 862.70± 120.19 f = 6�96
(B2:only long, Human-RMM 5.40± 0.50 895.92± 127.32
w/o comm.) Human-Human 5.30± 0.47 997.32± 145.15

RMM-RMM 5.88± 0.32 787.42± 110.26
Case IV RMM-Human 5.85± 0.36 842.50± 131.26 f = 4�58
(B2:only long, Human-RMM 5.75± 0.44 815.67± 133.60
w/ comm.) Human-Human 5.80± 0.41 908.08± 103.25

RMM-Incap. 3.00± 0.00 1742.22± 64.45
Case V Human-Incap. 3.00± 0.00 1786.86± 87.94 f = 122�01
(B2:incap. or RMM-Random 4.86± 0.58 1079.52 ± 210.64
random) Human-Random 4.85± 0.59 1115.57± 228.94

Note: For all of cases, Battery1 is fully functional. f�05�2�57 = 3�15, f�01�3�76 = 4�13�
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human, and human-human team. To see whether the differences in results obtained
by the teams are not due to chance, we performed an analysis of variance (ANOVA)
on the basis of total expected damage. For this purpose we randomly chose 20 trials
of the RMM team among the 100 trials available.
In Case I of Table 3, both defense units are fully functional and there is no com-

munication. Since the computed value f = 3�45 in ANOVA exceeds 3�15�=f�05�2�57�,
we know that the three teams are not all equally effective at the 0�05 level of
significance, i.e., the differences in their performance are not due to chance with
probability 0�95. Results in Case II include communication between fully functional
defense units. ANOVA test shows that the differences in performance are not due
to chance with probability 0�95 again. When the communication was available, the
performances achieved by three teams were improved, with the RMM team per-
forming slightly better than the other teams.
The experiments in Case III and IV intended to examine how fully functional

battery can cope with the situation in which the other battery has only long range
interceptors. Like Case I and II, the experimental results of Case III and IV proved
the effectiveness of communication. The ANOVA test indicates that the observed
differences in the performance of four teams for the target selection are significant
at the 0�01 level of significance, and are not due to chance with probability 99%.
In Case V, the battery controlled by human or RMM cannot take advantage of
communication, because the other battery is incapacitated or behaves randomly.
The huge value of f = 122�01 tells that the performances of four different teams
are clearly distinct.

11. Related work

As we mentioned, our approach follows the tradition of cognitive science [5, 11, 30],
which postulates that the function of communication is to confer some advantage to
the speaker by influencing what the hearer knows and intends to do. For instance,
MacLennan ([30], p. 636) states that “If we want genuine meaning and original
intentionality, then communication must have real relevance to the communicators.”
Further, cognitive scientists were able to confirm the role and importance of models,
including nested models, of other agents used for effective communication, and how
the ability to form and process these models sets humans apart from other primates
(see [11] and references therein). For example, adult humans can reliably (with
5–15% error rates) reason about models of others nested up to four levels deep.
Monkeys (and some autistics) lack these abilities, which manifests itself in much
poorer communicative abilities.
The issue of modeling agents for the purpose of communication has also received

considerable attention in the field of human-computer interaction [43]. Fischer
[12], for example, stresses the importance of a system’s model of the user and
the user’s model of the system during man-machine communication. This leads to
the nesting of models represented explicitly by our framework. Uncertainty-based
decision-theoretic frameworks for HCI have been used by Jameson and associates
in [25, 26].
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In earlier work in AI, Cohen and Levesque provide a logical formalization of
the concepts of intention and commitment [7], and apply it to issues of communi-
cation [8]. In this formalization, the concept of rationality takes a prominent place
but, as the authors remark ([7], p. 40), it is not the formalization that the agents
should actually use as a guide to their action. Rather, it is an attempt to formally
describe a rational agent’s behavior. We agree with this view. For example, the fact
that a rational agent will not attempt to achieve goals that it believes are already
true (in either action or communication) is just a manifestation of the expected util-
ity of such attempts to a rational agent being zero.18 Cohen and Levesque, as well
as Perrault in [35], also analyze the nestedness of beliefs so important in issues of
communication, but rely on a notion of common belief, the justifiability of which,
as with common knowledge, we find problematic (see the discussion in [17]). In a
similar vein is the work of Grosz and Sidner [20], Pollack [37], and Meyden [44].
As we mentioned before, our research differs, but also complements this previous
work. We concentrate on the notion of decision-theoretic rationality as a norma-
tive paradigm in communicative behavior, and define the decision-theoretic version
of pragmatics of communicative acts. This enables the agents to rationally choose
which communicative behavior should be executed in a situation at hand.
Other work in AI include efforts on semantics of KQML [29, 41], which is closely

related to earlier work of Cohen and Levesque, but it does not include the notion of
value central to our approach. Work on communication in negotiation is reported
in [28, 48, 49].
Recently, Tambe [42] suggested decision-theoretic communication selectivity to

establish mutual belief among agents in a team. This approach is similar to ours
in that the focus is on whether or not an agent should transmit a given message
(fact) to others. Tambe uses a decision tree containing reward and penalty values
that are domain knowledge. However, obtaining these values when the environ-
ment is dynamic, not fully observable or when the status of another agent is not
fully predictable, is problematic. Our framework, in contrast, does not rely on pre-
determined rewards and penalties, but computes them based on possibly incom-
plete and uncertain models of other agents. Tambe’s work is further closely related
to work by Cohen and Levesque [8] and Grosz and Sidner [20] mentioned above.
Communication among rational agents has also been of interest for the

researchers in game theory, usually viewed a part of pre-game “cheap talk”
[9], or as threat games [32] (see also discussion in [13] and references therein).
These approaches, however, concentrate on the influence of pre-play communica-
tion on equilibria of the resulting game. Thus, it assumes common knowledge and
takes the global view of the multi-agent system, as opposed to our taking an agent-
centered and decision-theoretic view. Additionally, this work does not explicitly
represent the state of knowledge of the agent, and does not represent the change
of this state due to a communicative act, which is central to our approach. A qual-
itative approach, more closely related to ours and including dishonesty, has been
presented by Myerson in [31]. In a similar vein, Parikh [33] used game-theoretic
insights for disambiguation.
Other relevant work includes value of information approaches by Horvitz and

associates [36], building on earlier work by Howard [24]. Horvitz’s approach is
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related in that the decision-making situation of the agent includes uncertainty, and is
represented as an influence diagram. These diagrams contain an agent’s alternative
actions, utility, and states that influence utility, which are the elements represented
by the payoff matrices that we use. The main difference is that, as we mentioned,
the value of information from the hearer’s point of view, which the above work
is computing, need not correspond to the value of transmitting the message from
the speaker’s point of view, which is what we compute. In other words, we concen-
trate on the rational communicative acts executed by a speaker, while the value-of-
information approach concentrates on an agent’s active search for information.

12. Conclusions

We address the issue of rational communicative behavior among autonomous intel-
ligent agents that make decisions as to what to communicate, to whom, and how.
We treat communicative actions as aimed at increasing the efficiency of interaction
among agents. We postulate that a rational speaker design a speech act so as to max-
imally increase the benefit obtained as the result of the interaction. We quantify the
gain in the quality of interaction as the expected utility, and we present a frame-
work that allows an agent to compute the expected utility of various communicative
actions. Our approach uses the Recursive Modeling Method as a convenient com-
pilation of available information residing in the knowledge base pertaining to the
agent’s decision-making situation. We then define the decision-theoretic pragmat-
ics of a speech act as the transformation it induces on the agent’s decision-making
situation. This transformation leads to a change in the quality of the interaction,
expressed in terms of the benefit to the agent. We analyze the decision-theoretic
pragmatics of a number of important communicative acts, and investigate their
expected utilities using examples. Our approach to computing the expected util-
ities of communicative acts accommodates and quantifies the realistic possibility
that the agents do not share a communication language, and the possibility that the
communication channel is unreliable.
We considered a number of types of speech acts and evaluated their value for the

agents involved using examples. Included were intentional, acknowledging and mod-
eling messages, and, in a preliminary form, questions, messages stating propositional
attitudes, and imperatives. It turns out that in the society of purely autonomous
agents intent on maximizing their own benefit, questions may best be implemented
as declarations of ignorance, and imperatives make sense only when individual
decision-making is both redundant and costly.
We have conducted a number of experiments on the air defense domain and

our results validate the reasonableness of our approach. The expected utilities of
messages we have considered largely coincide with human assessment of what mes-
sages are most appropriate, which indicates that our method is psychologically plau-
sible. We verified the usefulness of our method in numerous scenarios by measuring
the increase in the quality of interaction that has been achieved due to rational
communicative behavior. We compared the performance of our automated agents
with that of communicating humans and showed that our agents are competent
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in their interaction and communication, frequently outperforming humans in our
experimental domain.
In our future work we will investigate techniques that can be used to compile the

results of full-blown RMM method into situation/communication pairs, to be used
to urgent situations. This naturally gives rise to the establishment of protocols. The
combinatorics of the search for the best communicative act we consider here can be
greatly reduced by restricting the types of messages available and by clustering col-
lections of communications together into “standard” interactions (question-answer,
or announce-bid-award, for example). As clusters grow and are reapplied to differ-
ent (but similar) situations, they become stored plans of communication resembling
protocols. Thus, while substantial research is needed to adequately operational-
ize this process of going from computing utilities of individual actions based on
transforming a nested modeling structure, all the way up to representing general-
ized protocols for guiding dialogues, this research path looks both important (to
build systems that can survive and establish new protocols based on first-principle
methods when known protocols fail) and promising (since we have, in this paper,
described how to derive primitives for such protocols, such as query-response, within
this framework).
Another strand of our future work will be devoted to the issues of emerging

cooperativeness of communicating agents that interact repetitively. Previous work
in game theory [1], as well as experimental work [3] shows how cooperation emerges
among selfish repeatedly interacting utility maximizers. Our work will be aimed at
the emergence of cooperative communicative behavior, so closely related to the
status of questions, requests and orders in the human society.

Acknowledgments

This research was supported, in part, by the Department of Energy under con-
tract DG-FG-86NE37969, by the National Science Foundation under grant IRI-
9015423, by the PYI award IRI-9158473, by ONR grant N00014-95-1-0775 and by
the National Science Foundation CAREER award IRI-9702132.
We would like to gratefully acknowledge the many comments and help of Pro-

fessor Jeffrey S. Rosenschein from the Department of Computer Science at the
Hebrew University of Jerusalem, Israel. We also acknowledge the help of our stu-
dent, Sanguk Noh from the University of Texas at Arlington’s CSE department, for
his invaluable help in implementing and experimenting with RMM.

Notes

1. Since our formalism is probabilistic, it naturally handles cases when the meaning of a message is
itself uncertain.

2. The notion of the utility of a message we use here differs from the notion of the value of information
considered in decision theory [34, 38]. The latter expresses the value of information to its recipient.
We, on the other hand, consider the value of a message to its sender, since, of course, it is the
sender that makes the decision of if, and what, to communicate. The two notions coincide in two
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special cases, when the preferences of the agents perfectly coincide, and when a speaker requests
information from the hearer by asking a question.

3. Note that the same message may have nontrivial DT pragmatics, as well as a considerable value, in
a different decision-making situation.

4. The agents’ selfishness does not preclude that various forms of cooperative behavior will emerge in
a society of repeatedly interacting agents [1, 3]. In this paper we do not go into issues of repeated
interactions and non-myopic evaluations they necessitate, leaving it to future work.

5. Say, because P2 is higher or allows observation of a more interesting area.
6. See [17] for more formal definition and more details.
7. In [17] we describe a dynamic programming implementation of this process, also called a decision-

theoretic approach to game theory. The bottom-up version is simplified and sufficient here, however.
8. Structure in Figure 2 is a simplified version of recursive structures presented in [17].
9. This distinction may seem counterintuitive since content is the same, but note that the pragmatics

of these two communicative acts may be quite different if, for example, the recipient does not speak
German.

10. We should remark that we are using a concept of cardinal utility, so that the difference between
utilities is well defined. See, for example [22] for discussion.

11. The message that is not understood is trivial under usual circumstances. Under some circumstances
such a message may be of value, as in the “German soldier” example described by Searle, but it is
clearly not trivial in the light of Definition 3 in this paper.

12. For simplicity we neglect here the various ways in which M1�1 can be misunderstood.
13. Here, intention is the current best behavioral alternative considered by the agent.
14. Actually, the speaker may want to inform another agent about what it thinks other agents will do,

as well as about what it thinks others expect other agents to do, and so on. All of these acts are of
intentional kind according to our definition.

15. In human communication, this message would likely be interpreted as a conjunction of two mes-
sages: First one saying that there is a point P2 out there (modeling), and the second saying that
R1 will do something about it (intentional). In this discussion we treat M2 purely as an intentional
message.

16. Note that, in reality, this is an underestimate.
17. We would expect that anti-air specialists, equipped with a modern defense doctrine, could perform

better than our subjects. However, the defense doctrine remains classified and was not available to
us at this point.

18. See [45] for arguments showing how the notion of utility generalizes the notion of a goal.
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