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Chapter 1

Introduction

Autonomous software agents are considered by many as the next step in com-
puter automation. Given a set of goals and tasks, an autonomous agent will try
to maximally satisfy the interests of its owner. These agents should be capable
of autonomously performing certain tasks which are currently done manually, like
searching for information on the Internet, planning, booking a holiday, and buying
and selling goods and services.

Especially in the field of electronic commerce, an increased use of autonomous
agents is expected [30, 56, 65, 70, 92, 119, 144]. Such agents should be able to au-
tonomously negotiate with other agents about the price and other relevant aspects
of a product or service, such as delivery time, quality, quantity, payment methods,
and return policies. Furthermore, the agents should be adaptive in order to cope
with diverse and changing environments. Current electronic markets are becoming
increasingly transparent with low search costs. From a business perspective, this
potentially results in strong price competition and low margins, with a negative
effect on aspects such as quality and service. Through automated bargaining about
a multitude of aspects, a business can go beyond price competition and gain a com-
petitive advantage by personalising products and services to the needs of individual
customers.

In such a setting, where multiple self-interested adaptive agents perform complex
negotiations, the key question is how they will behave in a given environment and
with specific rules of interaction. Moreover, an important challenge is to find effective
bargaining strategies for the agents, and, if the rules can be changed, to determine
the set of rules that achieves the best results. These are the main issues addressed
in this thesis.

Game theory is a field that studies the behaviour of interacting agents and can
be used to address the above issues through mathematical analysis. The limitation
of game theory, however, is that many restrictive assumptions need to be made
in order for a mathematical analysis to be feasible. Commonly made assumptions

1



2 Introduction

are, for example, that the agents act rationally and are completely informed. This
means that the agents completely understand the rules of the game, have infinite
reasoning capabilities, make no mistakes, and know all that needs to be known about
the world and other agents’ preferences to derive optimal outcomes. If such agents
really existed, games like chess would no longer be a challenge. In reality, both
humans and computational agents have only limited forward looking capabilities
and information; instead, many tasks are learned through experience, by a process
of trial and error. To analyse such settings with so-called boundedly rational agents,
computer simulations are a helpful addition to the set of game-theoretic tools.

In this thesis we consider the setting where agents are adaptive to their en-
vironment, and learn effective bargaining policies by trial and error. We apply
learning techniques from the field of artificial intelligence, specifically evolutionary
algorithms, to model the adaptive nature of bargaining agents in practical settings.
In the first part of the thesis, we consider fundamental aspects of bilateral bargaining
between a buyer and a seller. We first validate the evolutionary model for bilateral
bargaining by comparing the outcomes with game-theoretic results of relatively sim-
ple bargaining settings. We then investigate several extensions of game-theoretical
bargaining games, which are more complex and closer to real-world settings than
traditional models. Such settings are difficult to analyse game-theoretically, but can
be approached using computational techniques.

In the second part, a number of business applications of automated bargaining
are introduced and investigated using computational simulations. The focus here
lies on one-to-many bargaining, where for example a seller negotiates with many
buyers simultaneously. Either an auction or a bilateral bargaining protocol is applied
to the one-to-many setting, depending on the application. Auctions can be an
effective way to allocate scarce resources efficiently, or in other words, to ensure
that goods are awarded to whoever values them the most. If resources are flexible,
however, and negotiation involves multiple aspects, bilateral bargaining can again
be the preferred way to reach an agreement. For the first case, we investigate the
effectiveness of various auction rules using an evolutionary simulation for problems
which are unwieldy to analyse mathematically. For the latter case, we present novel
bargaining strategies for the agents that can be used in practical applications. These
strategies are able to cope with complex goods and can maximise the gains of trade
(i.e., the joint gains that results from an agreement) by adjusting different aspects
of the goods to individual needs. We furthermore combine auctions with bilateral
bargaining and propose strategies which benefit from the fact that the setting is
one-to-many, even though the actual bargaining is bilateral. The performance of
the strategies is evaluated using computational simulations.
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1.1 Terms and definitions

This Section introduces the general terminology used throughout this thesis. A more
detailed explanation of game-theoretic concepts related to bargaining is presented
in Chapter 2, particularly Sections 2.1 and Sections 2.3. Furthermore, additional
local definitions are provided in the corresponding chapters. Some definitions are
numbered in order to facilitate the lookup. Note that the numbers contain the page
number where the definition is introduced, plus an additional index number.

1.1.1 General economic concepts

In order to analyse the choices that people make, such as in bargaining, it is impor-
tant to consider the preferences of decision makers for different outcomes. Within
economics and in this thesis the notion of utility is used to quantify individuals’ pref-
erences. Utility can be considered as an individual’s measure of goal achievement
and is usually expressed in real numbers. In general, this measure is subjective and
cannot be compared to the utility of other individuals. For many real-world appli-
cations, however, utility corresponds to a monetary value, in which case comparison
is possible. A utility function describes an individual’s preferences over possible
outcomes in terms of utility.

In many cases, outcomes depend not only on choices made by individuals, but can
also be affected by unpredictable events or lotteries. When such uncertainty exists,
the notion of expected utility is used. Expected utility specifies the preferences over
lotteries, and is computed by multiplying the utility of an event by the probability
that this event occurs, and adding across all events (see [72, Ch.6] for further details).

Often, people have several goals and trade-offs between these goals. For example,
when buying a house, trade-offs exist between the location, size, and price of the
house. A multi-attribute utility function [10, 101] can be used in order to represent
preferences in case of several (often independent) goals:

Definition 3.1 Multi-Attribute Utility Function A multi-attribute utility
function defines the utility over multiple weighted attributes, where each at-
tribute corresponds to a goal, and the weight indicates the relative importance
of the corresponding attribute. An attribute is also called a dimension or an
issue. In general, the attributes are assumed to be preferentially independent
or additive. In that case, the utility is calculated by multiplying each attribute
by its weight and adding across the attributes.

1.1.2 Game-theoretic concepts related to bargaining

Game theory [11, 90][72, Ch.8+9] is a collection of mathematical tools designed to
analyse situations where decision-makers interact, for instance when bargaining.
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The decision-makers are usually assumed to be fully rational (utility maximising)
and to be completely informed of the circumstances in which the game is played1 [11,
Ch.10+11]. These assumptions are far from realistic, but are often necessary in order
to make mathematical analysis feasible. We will elaborate on these assumptions in
Chapter 2 (see Section 2.1).

A decision maker in a game is henceforth called a player. We often use the term
agent instead of player, especially in a computational context.

Game theory is used in this thesis to investigate situations of bargaining. In a
bargaining situation two or more players have the option to make a joint choice from
a set of possible outcomes. The players may benefit from an agreement, but they
have different preferences for the various outcomes. In economic terms, the players
can jointly produce some type of bargaining surplus, provided that they agree on
how to divide it [81]. Examples include bargaining over the price of a house, but also
choosing a restaurant together; in both cases, all parties involved benefit from an
agreement, but might have conflicting preferences for the different outcomes. The
bargaining surplus or just surplus is the joint gains that can be achieved through
cooperation. For example, if a seller wants to sell a house for at least $100000, and
buyer is willing to pay up to $150000, then the bargaining surplus that is jointly
produced equals $50000. We define bargaining as the corresponding attempt to
resolve a bargaining situation, i.e., to determine the particular form of cooperation
and the corresponding division of the bargaining surplus. Bargaining is bilateral
when it concerns two players. We use the term negotiation interchangeably with the
term bargaining.

The interaction between negotiating agents is usually restricted by certain rules.
For instance, in the alternating-offers game (discussed in Section 2.3.2), the players
are restricted to making offers and counter offers in a sequential order. The rules
are set by the so-called bargaining protocol:

Definition 4.1 Bargaining Protocol A bargaining protocol (also called negoti-
ation protocol) specifies the rules that govern the negotiation process [5].

The outcomes of a bargaining game have two desirable features: individual ratio-
nality and Pareto-efficient [11, Ch. 5]:

Definition 4.2 Individually Rational A bargaining outcome is individually
rational 2 if the utility assigned to each player is at least as large as a player
can achieve by himself without cooperation.

1Complete information does not rule out uncertainty (e.g. about the preferences of other play-
ers). In case of uncertainty, however, it is assumed that the probabilities are known to the players.
This topic is further discussed in Section 2.1 of the next chapter.

2Individual rationality is also used to denote a property of a mechanism (see Def.5.1). In short,
a mechanism is individually rational if it induces voluntary participation.
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Definition 4.3 Pareto-Efficient, Pareto-Efficient Frontier A bargaining
outcome is Pareto-efficient if no outcome exists that is strictly preferred by
one player and not less preferred by any other player. The Pareto-efficient
frontier connects all the Pareto-efficient points in an N-dimensional space,
where each dimension corresponds to the utility level of a player (see Fig. 2.1
on page 21 for an example in a 2-dimensional space).

Loosely put, individual rationality of the bargaining outcome ensures that an agent
benefits from the agreement. In most cases, a utility of zero is set as the agent’s
status quo (i.e., the agent’s utility for not participating). Any positive outcome is
then individually rational. A Pareto-efficient outcome is desirable since there is then
no waste in the allocation of the resources [72, p. 313]. If outcomes are not Pareto
efficient, another deal could have been made which was at least better for one player
(and equally good for the other player), or even better for both.

The players are endowed with strategies that determine how the bargaining pro-
ceeds. In general, a player’s strategy is a plan which lays out a course of action for
each possible state or history [90]. In a bargaining setting, a strategy determines
the bids of a player, given the history of the game. Moreover, the strategy decides
how the player responds to the bids received by other player(s) in the game. In
the alternating-offers game (see Section 2.3.2), for example, a player can respond by
accepting or refusing the bid received by the opponent.

Mechanism design An important application area of game theory is setting up
the rules of the games, such as voting procedures or auctions rules, as to induce a
certain outcome, given that players act rationally and in their own best interest.
For example, game theory can help to understand what type of penalties, rewards
or tax system are most effective to induce industrial companies to apply environ-
mentally friendly production methods. In the context of bargaining, common goals
are maximising social welfare (i.e., the sum of utilities of the players) or maximising
revenue. Choosing the right rules in order to achieve desired outcomes is known in
economics as the problem of mechanism design [133][72, Ch. 23]. First, we define
the notion of mechanism.

Definition 5.1 Mechanism A mechanism is a set of decision rules that map the
strategies of the agents to a collective outcome.

A mechanism can be viewed as an institution with rules governing the procedure for
making the collective choice [72, p. 866]. In a direct mechanism, the agents are asked
to state their preferences directly (either truthfully or not). An agent’s preferences
or type is represented by a utility function, expressing the valuation of the possible
outcomes or allocations. In an indirect mechanism, players do not communicate
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an entire utility function, but for instance bids in an iterative auction such as the
English auction.3

Mechanism design deals with the problem of finding a mechanism that results in
a desired collective outcome, given that the agents maximise their individual utility,
and given that the institution that governs the rules does not know the preferences or
types of the agents beforehand (i.e., we are in a setting characterized by incomplete
information, see [72, Ch. 23.B] and Section 2.2). In other words, mechanism design
tries to answer whether or not, and if so how, a desired social outcome can be
materialised in a world of selfish agents.

A mechanism is called incentive compatible if it induces the agents to reveal their
preferences truthfully. An interesting theorem is the revelation principle [11, Ch.
11][72, Ch. 23], which states that if a desired social outcome can be realised by an
indirect mechanism, there exists an incentive compatible direct mechanism that also
reaches the desired outcome.

1.1.3 Concepts from computer science

We describe software agents [144] in this thesis that fully or partially automate the
task of negotiation. We define a software agent as an autonomous software program
which operates on behalf of its owner. Software agents have a certain goal, which
in this thesis is to maximise a given utility function. The software agents described
here can usually learn from experience and adapt their behaviour given feedback from
the environment, without any human intervention. When multiple software agents
interact, the entire system is called a multi-agent system. Note that in a multi-agent
system the agents can reside on different platforms, in which case communication
occurs via a physical network. We also use the term evolutionary agent to denote
an agent who’s strategy is adapted using an evolutionary algorithm.

1.2 Evolutionary algorithms

Evolutionary algorithms (EAs) are powerful search algorithms from the field of ar-
tificial intelligence that are based on the principles of natural evolution [8, 45, 51,
75, 103, 115]. EAs are originally applied to solve optimisation problems, such as the
travelling salesman problem and the knapsack problem [29], but are now increas-
ingly being used to model societies of learning agents, especially within the field of
agent-based computational economics (ACE) [4, 29, 104, 124, 127, 139]. Throughout
this thesis EAs are applied to model adaptive agents that can learn to bargain ef-
fectively by means of trial and error. This section first briefly explains the basic

3In an English auction players call out increasingly higher bids until no more increases are
made. The winner is the last bidder.
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principles of EAs. Then it motivates and explains the use of EAs in the context
of bargaining. Furthermore, Section 1.2.3 describes in more detail the actual algo-
rithm used in this thesis. The basic approach is the same in all chapters that apply
evolutionary algorithms.

1.2.1 Principles of evolutionary algorithms

The cornerstones of evolution in nature are “survival of the fittest” together with the
transfer (with some variation) of genetic material from one generation to the next.
EAs apply these aspects of biology to evolve an artificial population of individuals.
These individuals are not living organisms in this case, but for instance solutions
to a optimisation problem or bargaining strategies of an agent. The solutions are
encoded on a chromosome of an individual, often consisting of a string of real or
binary values.

As in natural ecosystems, the survival of these individuals depends on their
fitness. A suitable fitness measure in artificial ecosystems depends on the problem
domain. It can for instance be an objective function in case of an optimisation
problem, or the mean utility obtained by a strategy in a game. Using the example of
the well-known prisoner’s dilemma4 [90, p.16], an individual’s chromosome encodes
a player’s (binary) strategy: confess or not confess. The fitness is determined by the
final payoff (or utility) obtained when the game is played.

By reproduction new individuals are generated that inherit genetic material from
the existing individuals in a population. Natural selection then removes individuals
with a relatively low fitness from the population. This process of evolution causes
good traits (i.e., that contribute to a higher fitness) to remain and bad traits to die
out in the long run. Additionally, variation or “errors” in the transfer of genetic
material creates new type of individuals or solutions.

1.2.2 Modelling adaptive bargaining agents

Traditional game-theoretic studies of bargaining rely on strong assumptions such
as full rationality of the agents and common knowledge of beliefs and preferences
(for details see Chapter 2). In reality it is rare that these criteria are met. Even
in the case of computational autonomous agents, which are capable of performing
calculations much faster than humans, optimal or “rational” solutions cannot always
be found. More importantly, since agents can be programmed by different parties,
it is better to avoid strict assumptions on other agents’ behaviour, in particular
concerning their rationality. Rather than fully rational, we assume that bargaining

4In this game, two suspects in a crime can choose either to confess or not to confess, without
knowing the strategy of the other player. The payoff or final utility of a player depends on both
his choice and of the choice made by the other player.
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agents have little a-prori knowledge and gradually adapt and search for optimal
solutions by a process of trial and error. Such agents are called boundedly rational.

In this thesis we apply an EA to model this learning aspect of bargaining agents
and to develop effective strategies for these agents. EAs are frequently used for
modelling (adaptive) behaviour of human societies and societies of computational
agents from the bottom up, especially within the field of agent-based computational
economics (ACE).5 EAs are also increasingly being used to study situations of bar-
gaining that are difficult to analyse game-theoretically, as in [31, 34, 73, 88, 126] (see
also Section 2.4.1). The advantage of EAs is that they make no explicit assumptions
or use of rationality; basically, the fitness of the individual agents is used to deter-
mine whether a strategy will be used in future situations. Nonetheless, surprisingly
rational behaviour often emerges from such “low-rational” agents [146] (as we will
also show in this thesis).

There are several ways of modelling adaptive agents using EAs. In the approach
used in this thesis, agents select their bargaining strategies from a pool of strategies.
A separate pool of strategies exists for each agent type, where a type is defined
by the preferences (i.e., utility function) of the agent and/or the agent’s role (e.g.
buyer or seller). Agents of the same type select their strategies from the same pool,
as these agents are likely to have similar behaviour. On the other hand, agents of
different types will usually prefer different strategies, hence the use of separate pools.
The pools then evolve independently, i.e. no genetic material is exchanged between
the different pools. Note that if there is only a single agent of a certain type, all
strategies in a pool belong to that agent. This is also called a model of individual
learning. If there are several agents of the same type, this is called population
learning, since a population of agents (of the same type) learns as a whole. Below,
the implementation of the EA is explained in more detail.

1.2.3 Implementation

The term “evolutionary algorithm” refers to a broad class of algorithms. The imple-
mentation used in this thesis is based on a branch within EAs called evolution strate-
gies (ES) [8], originally developed by Rechenberg [103] and Schwefel [115]. The ES
were developed independently from the well known genetic algorithms (GAs) [45, 75],
introduced by Holland [51]. Whereas GAs are more tailored toward binary-coded
search spaces, ES are originally designed for real-encoded representations, the latter
being a more natural encoding for the type of bargaining strategies we employ in the
simulations. Other classes of evolutionary algorithms include genetic programming,
evolution strategies, and evolutionary programming. For an interesting overview of
the various approaches within evolutionary computation, see [7].

5For an on-line survey of the field of ACE, see [125].
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Figure 1.1: Iteration loop of the evolutionary algorithm.

An outline of the EA is given in Figure 1.1. The EA starts with a randomly
initialised parental population of individuals. Each individual contains a bargaining
strategy which is encoded on the chromosome, a fixed-size string [x0, ..., xl−1] of
length l and real values xi ∈ [0, 1]. Subsequently, offspring individuals are created
(see Figure 1.1) by first (randomly, with replacement) selecting an agent in the
parental population, and then mutating his chromosome to create a new offspring
(the mutation operator is described below). Figure 1.2 depicts the chromosomes of a
parent individual and a corresponding (mutated) offspring individual. This process
is repeated until the offspring population reaches the required size.

Parent individual x0 x1 x2 . . . xl−1

↓
Offspring individual x′

0 x′
1 x′

2 . . . x′
l−1

Figure 1.2: The chromosome of a parent individual and of an associated offspring
individual. Each chromosome consists of l real values xi, x

′
i ∈ [0, 1]. The offspring

individual is created by mutating the chromosome of the selected parent individual.

In the next stage, the fitness or performance of both the offspring and parent
individuals is determined by a process of negotiation. The way in which this is
achieved depends on the negotiation setup. Details are provided in the corresponding
chapters.

In the final stage of the iteration (see Fig. 1.1), the fittest agents are selected
as the new “parents” for the next iteration. Selection is performed using the deter-
ministic (µ + λ)-ES selection scheme [7, 8], where µ is the number of parents and λ
is the number of generated offspring. The µ survivors with the highest fitness are
selected (deterministically) from the union of parental and offspring agents. This
final step completes one iteration or generation of the EA.
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Mutation and Recombination

Mutation and recombination are the most commonly used EA operators for re-
production. Recombination exchanges parts of the parental chromosomes, whereas
mutation produces random changes in a chromosome. In case of an ES, it is common
to use mutation-based models without recombination, especially because the muta-
tion operator (explained below) is much more advanced compared to the standard
operator used in e.g. genetic algorithms. Moreover, for many computational experi-
ments of the kind discussed in this thesis, the effects of recombination seemed to be
negligible when using an ES (see also [126]). We therefore focus on mutation-based
models in this thesis.

The mutation operator of an ES implementation works as follows. Each real
value xi of a parent chromosome (see Figure 1.2) is mutated by adding a zero-mean
Gaussian variable with a standard deviation σi [8, 126], thereby producing a new
value x′

i for the chromosome of the offspring:

x′
i := xi + σiNi(0, 1). (1.1)

All resulting values larger than unity (or smaller than zero) are set to unity
(respectively zero).

In our simulations, we use two mutation models: a mutation model with self-
adaptive control of the standard deviations σi [8, pp. 71-73][126], and a model with
exponential decay of the standard deviations, which we describe below.

Self-Adaptive Control This model allows the evolution of both the strategy and
the corresponding standard deviations at the same time. More formally, an agent
consists of strategy variables [x0, ..., xl−1] and ES-parameters [σ0, ..., σl−1], where l is
the length of the chromosome.

The mutation operator first updates an agent’s ES-parameters σi in the following
way:

σi := σiexp[τ ′N(0, 1) + τNi(0, 1)], (1.2)

where τ ′ and τ are the so-called learning rates [8, p. 72], and N(0, 1) denotes a
normally distributed random variable having expectation zero and standard devi-
ation one. The index i in Ni indicates that the variable is sampled anew for each
value of i. We use commonly recommended settings for these parameters (see [8, p.
72]).6 After the strategy parameters have been modified, the strategy variables are
mutated as indicated in Eq. 1.1.

Note that, since selection works on the σi’s as well as on the strategy variables,
the σi’s are part of the evolutionary process. The particular initial value chosen for σi

is therefore typically not crucial for this model, as the self-adaptation process rapidly

6Namely, τ ′ = (
√

2l)−1 and τ = (
√

2
√

l)−1, where l is the length of the chromosome.
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scales σi into the proper range. For example, if solutions are far from the optimal
value, the σi can increase as a result of the evolutionary process. On the other
hand, if good solutions are found, the σi’s can converge to smaller values in order
to maintain these solutions. To prevent complete convergence of the population, we
force all standard deviations to remain larger than a small value εσ [8, pp. 72–73].

Exponential Decay Using this model, the standard deviations σi decay expo-
nentially such that every t generations their value is reduced to half the size. We
call t the half-life parameter. This model is similar to the simulated annealing mech-
anism, where a temperature parameter is slowly lowered to reduce variation in the
exploration space. Using this model, the EA always converges if the simulation is
run for a sufficient number of generations.

1.3 Organisation of the thesis

Readers that are new to the field of game theory and bargaining are recommended
to read the introduction to this topic in Chapter 2. Specific topics include the ulti-
matum game, the alternating-offers game, bargaining with incomplete information,
multi-issue bargaining, and one-to-many bargaining. Chapter 2 also contains a sur-
vey of approaches using techniques from artificial intelligence and are in that way
related to the general topic of the thesis. Chapter 8 concludes the thesis with a
discussion and an overview of the the main results.

The remaining chapters of the thesis are grouped into two parts: Part A consid-
ers fundamental aspects of bilateral bargaining systems using both game-theoretical
and computational techniques. Part B investigates two business applications of
automated bargaining, and introduces a number of effective bargaining strategies.
Additionally, in the Appendix a game-theoretic analysis is provided for the games
described in Chapter 3. Each chapter of parts A and B can, in principle, be read
independently. Where necessary, cross-references are indicated within the chapters.
A recurring theme is the application of evolutionary algorithms for simulating the
strategic behaviour of the agents. The evolutionary algorithm is therefore treated
separately in Section 1.2. Parts A and B are organised as follows:

Part A: Fundamental aspects of bargaining systems

Chapter 3 describes a system for bilateral negotiations in which artificial agents
are generated by an evolutionary algorithm. The negotiations are governed by a
finite-horizon version of the alternating-offers protocol. Several issues are negotiated
simultaneously. This can reduce the competitive nature of the game since trade-offs
can be made to obtain mutually beneficial solutions. These so-called Pareto-efficient
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solutions are indeed found by the evolutionary agents. The outcomes of the evolu-
tionary system are also analysed and validated using the game-theoretic subgame-
perfect equilibrium as a benchmark. We furthermore present and investigate an
extended model in which the agents take into account the fairness of the obtained
payoff. The concept of fairness plays an important role in real-life negotiations and
experimental economics. We find that when the fairness norm is consistently ap-
plied during the negotiation, the evolving agents reach symmetric outcomes which
are robust and rather insensitive to the actual fairness settings.

Chapter 4 extends the above game by allowing both agents to negotiate with
other opponents in case of a disagreement. This way the basics of a competitive
market are modelled where for instance a buyer can try several sellers before making
a purchase decision. Negotiations are limited to a single round, which corresponds to
the so-called ultimatum game. Whereas in the regular ultimatum game the proposer
demands the entire surplus, responding agents can now choose to refuse unaccept-
able take-it-or-leave-it deals and negotiate with another opponent. As before, the
game is investigated using an evolutionary simulation. The outcomes appear to de-
pend largely on the information available to the agents. We find that if the agents’
number of future bargaining opportunities is commonly known, the proposer has the
advantage. If this information is held private, however, the responder can obtain
a larger share of the pie, even if the initial number of bargaining opportunities is
equal for both agents. For the first case, a game-theoretic analysis of the game is
also presented and compared to the evolutionary results. Although a theoretical
analysis is hard for the incomplete information case, the evolutionary simulation is
very suitable for analysing both settings. The game is further extended to allow
several issues to be negotiated simultaneously. Furthermore, effects of search costs
are investigated and the case where uncertainty exists about future opportunities
and a new opponent cannot always be found.

Part B: Bargaining systems for business applications

Chapter 5 considers a business application of automated negotiation, where sev-
eral supplier agents of goods and services compete for banner space or “consumer
attention space” by bidding in an auction. Bidding occurs based on information
about the consumers, their so-called profile. As a result of the auction, a small
selection of banners is short-listed and presented to the consumer, for instance on
a web site. The supplier agents are simulated using an evolutionary algorithm,
and can learn, given feedback from the consumers and whether or not they were
short-listed, the type of consumers to target and the amount to bid. A number of
consumer behaviour models are investigated that simulate the consumer’s response
to the presented banners. In a relatively simple model, the response is independent
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of other banners displayed concurrently. In other models, the response contains
dependencies between the banners. The auctioneer can select the auction rules or
mechanism that generates the best advertisements for the consumers, but at the
same time provides the suppliers with sufficient profits. Several mechanisms are
investigated using the simulation environment.

Chapter 6 applies automated negotiation to buy and sell bundles of information
goods. A single information provider agent or seller agent negotiates with a number
of buyer agents simultaneously. Whereas in Chapter 5 an auction is used for a one-
to-many setting, a bilateral negotiation protocol is applied in this case, where the
seller negotiates with each buyer by alternating offers and counter offers, as described
in Chapter 3. A bilateral protocol is more suitable here because information goods
have no constraints on the supply and different buyers can be interested in very
diverse bundles of goods. A personalisation of bundles is achieved by bargaining
over multiple issues. Bargaining in this setting essentially has a double purpose:
(1) division of the surplus, and (2) maximising the joint gains that can be achieved
by finding win-win or Pareto-efficient (see Def. 4.3) outcomes. This chapter focuses
on the latter part and introduces negotiation strategies for multi-issue negotiations
which can approximate Pareto-efficient solutions.

Chapter 7 also considers the one-to-many bargaining setting using a bilateral
bargaining protocol, but focuses on the division of the surplus. Although the buyers
perceive bargaining as bilateral, the seller can actually benefit from the fact that
bargaining occurs with many buyers simultaneously. This is especially the case if
buyers have time pressure and prefer early agreements. Several bargaining strategies
for the seller are investigated and compared using an evolutionary simulation. A
class of strategies are introduced which are based on the first-price auction. These
strategies can especially benefit from competition arising from the time pressure.
The seller’s bargaining strategies also take into account a notion of fairness, which
should ensure that buyers are treated fairly and do not feel discriminated based on
their individual bargaining behaviour or preferences.

1.3.1 Publications

Chapters 3-6 are based on published work and/or work that has been accepted
for publication but has yet to appear. Chapters 2 and 7 are based on technical
reports.

• Chapter 2 is based on [41]: E.H. Gerding, D.D.B. van Bragt, and J.A. La
Poutré. Scientific approaches and techniques for negotiation: A game theoretic
and artificial intelligence perspective. Technical Report SEN-R0005, CWI,
Amsterdam, 2000.
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• Chapter 3 is based on [42]: E.H. Gerding, D.D.B. van Bragt, and J.A. La
Poutré. Multi-issue negotiation processes by evolutionary simulation: Valida-
tion and social extensions. Computational Economics, 22:39–63, 2003.

• Chapter 4 is based on [38]: E.H. Gerding and J.A. La Poutré. Bargaining
with posterior opportunities: An evolutionary social simulation. In M. Galle-
gati, A. Kirman, and M. Marsili, editors, The Complex Dynamics of Economic
Interaction, Springer Lecture Notes in Economics and Mathematical Systems
(LNEMS), Vol. 531, pages 241–256. Springer-Verlag, 2004.

• Chapter 5 is based on [17]: S.M. Bohte, E.H. Gerding, and J.A. La Poutré.
Market-based recommendation: Agents that compete for consumer atten-
tion. ACM Transactions on Internet Technology, August 2004 (to appear).
A shorter version appeared earlier as [16]: S. M. Bohte, E. H. Gerding, and
H. La Poutré. Competitive market-based allocation of consumer attention
space. In M. Wellman, editor, Proceedings of the 3rd ACM Conference on
Electronic Commerce (EC-01), pages 202–206. The ACM Press, 2001.

• Chapter 6 is based on [120]: K. Somefun, E.H. Gerding, S. Bohte, and J.A. La
Poutré. Automated negotiation and bundling of information goods. In
Agent-Mediated Electronic Commerce V, Springer Lecture Notes in Artificial
Intelligence (LNAI). Springer-Verlag, Berlin, to appear.

• Chapter 7 is based on [40]: E.H. Gerding, K. Somefun, and J.A. La Poutré.
Bilateral bargaining in a one-to-many bargaining setting. Technical Report,
CWI, Amsterdam, to appear. A shorter version has been accepted for pub-
lication as [39]: E.H. Gerding, K. Somefun, and J.A. La Poutré. Bilateral
bargaining in a one-to-many bargaining setting. In Proceedings of the 3rd
International Joint Conference on Autonomous Agents and Multi Agent Sys-
tems (AAMAS2004), New York City, New York. IEEE Computer Society
Press, 2004.



Chapter 2

Bargaining: an overview

This chapter contains an overview of approaches and techniques concerned with
bargaining. We here focus on the large body of literature that has been published
in the fields of economics (in particular game theory) and artificial intelligence (AI).
To give a brief impression of the rapid developments in this field, we first highlight
some important breakthroughs in economic bargaining theory in Section 2.1. Sec-
tion 2.2 discusses assumptions frequently made in game theory to make mathemati-
cal analysis feasible, and motivates the use of computational techniques. Details on
game-theoretic bargaining approaches follow in Section 2.3. Bargaining approaches
using computational techniques from the field of artificial intelligence are the topic
of Section 2.4. Finally, Section 2.5 concludes this chapter with a short discussion.

2.1 A brief history of bargaining

Perhaps surprisingly, the bargaining problem has challenged economists for decades.
Yet the bargaining problem is stated very easily [110]:

Two individuals have before them several possible contractual agree-
ments. Both have interests in reaching agreement but their interests are
not entirely identical. What “will be” the agreed contract, assuming
that both parties behave rationally?

Before the path-breaking work of Nash [82] and, much later, Rubinstein [110] the
bargaining problem was considered to be indeterminate. For example, in their influ-
ential work Von Neumann and Morgenstern [137] argued that the most one can say
is that the agreed contract will lie in the so-called bargaining set. The bargaining
set is the set of all feasible outcomes (an outcome is feasible if it can be jointly
achieved by the players involved) that are individually rational (see Def. 4.2) and
Pareto-efficient (see Def. 4.3), i.e., it is no worse than disagreement and there is no
agreement that both parties would prefer. But because this bargaining set consists

15
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in general of an infinite number of different agreements this requirement does not
yield a unique bargaining solution. A unique solution can be found, however, if
the agreed contract satisfies additional axioms such as those proposed by Nash [82].
This solution is called the Nash bargaining solution and is discussed in Section 2.3.1.
Because one can argue about which axioms are reasonable and which are not, Nash
suggested to complement this axiomatic approach with a strategic game. This route
was followed by Rubinstein [110] who proved that an important bargaining game
(the alternating-offers game) has a unique solution (see Section 2.3.2). Binmore
[12] then connected the fields of axiomatic and strategic bargaining by proving that
the solution of Rubinstein’s bargaining model coincides with the Nash bargaining
solution under special circumstances.

2.2 Game theory and artificial intelligence

Game theory frequently makes simplifying assumptions to facilitate the mathemat-
ical analysis. Common assumptions are for instance: (1) complete knowledge of the
circumstances in which the game is played and (2) full rationality of the players.
The first assumption implies that the rules of the game and the preferences (i.e., the
utility functions) and beliefs1 of the players are common knowledge.2 A game has
incomplete information if something about the circumstances in which the game is
played, such as the preferences of other players, is not known to the players. Game
theorists traditionally model incomplete information of other player’s preferences
and beliefs by specifying a limited number of player types (see also Section 2.4.3).
Each type is then uniquely determined by a set of preferences and beliefs. Players
are not completely certain about the exact type of their opponent. However, the
probability that an opponent is of a certain type is, again, common knowledge for
all players. In this manner, a game of incomplete information can be transformed
in a game of imperfect information.3

The second assumption relates to the need for common knowledge on how players
reason. It is assumed that players maximise their expected utility given their beliefs.
Players have infinite computational capacity to pursue statements like “if I think
that he thinks that I think...” ad infinitum. Furthermore, players are assumed to
have a perfect memory.4 These assumptions limit the practical applicability of game-

1Beliefs are subjective probability of events occurring about which the player is uncertain.
2Common knowledge means that the players know what the other players know, etc., in an

infinite regress.
3In a game with imperfect information uncertainty exists about the state of the world. A game

is said to have perfect information if (i) there are no simultaneous moves and (ii) at each decision
point it is known which choices have previously been made [131, Ch. 1].

4Lately, much research in game theory focuses on the field of “bounded” rationality, in which
players have limited computational power and/or limited hindsight. An overview of recent work
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theoretic results. In the field of AI, however, assumptions like complete knowledge
or full rationality are not necessary because the behaviour of individual agents can
be modelled directly.5 This gives the AI approach an important advantage over
more rigorous (but at the same time more simplified) game-theoretical models.

Researchers in the field of AI are currently developing software agents (see Sec-
tion 1.1.3) which should be able (in the near future) to negotiate in an intelligent
way on behalf of their users. A survey of the potential of automated negotiation is
given in [144, Ch. 9]. The state-of-the-art of agent technology is reviewed in [70].
In future applications for e-commerce, multi-agent systems will need to be flexible,
especially for trading, brokering, and profiling applications [128]. In particular, it is
important for the negotiating (software) agents to be able to adapt their strategies
to deal with changing opponents, changing topics and concerns, and changing user
preferences. Multi-agent learning, (the ability of the agents to learn how to com-
municate, cooperate and compete) becomes crucial in such domains [70, p.23]. This
should lead to much more advanced and universal systems.

Nevertheless, due to this rapidly increasing complexity, the connection between
the AI approach and a game-theoretic analysis remains important. Game theory
may aid in the difficult task of choosing a suitable bargaining protocol [14] (see
Def. 4.1). Tools and techniques from AI can be used to develop software applications,
bargaining strategies, protocols and mechanisms which are currently beyond the
reach of classical game theory.

2.3 Game-theoretic approaches to bargaining

Traditionally, game theory can be divided into two branches: cooperative and non-
cooperative game theory. In cooperative game theory, groups of players are taken as
primitives and binding agreements can be made. Cooperative game theory abstracts
away from the rules of the game and is mainly concerned with finding a solution
given a set of feasible outcomes.6 A topic like coalition forming is typically analysed
using cooperative game theory. Often, in real life, companies can gain profits by
working together, for example by securing a larger market share or by reducing direct
competition with the competitors. In such games, a surplus (see Section 1.1.2) is
created when two or more players cooperate and form a coalition. Cooperative

in this field can be found in [112]. Binmore also gives a short discussion of this topic in [11, pp.
478-488].

5For example, agents can be programmed with a certain strategy and use for instance reinforce-
ment learning to improve this strategy. These agents are not explicitly rational or fully informed.
Nevertheless, after a period of learning, the agents could exhibit behaviour that resembles that of
rational and fully informed agents.

6Recall from above that an outcome is feasible if it can be jointly achieved by the players
involved.
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game theory can then determine how the surplus is to be divided, given a coalition
and a set of assumptions (called axioms). Likewise, cooperative bargaining theory
determines how the surplus is to be divided which results from an agreement, given
the set of axioms (an example of such axioms resulting in a unique solution, the
so-called Nash bargaining solution, is discussed in Section 2.3.1).

Non-cooperative game theory, on the other hand, is concerned with specific games
with a well defined set of rules, game strategies, and payoffs rather than axioms.
All strategies, rules and payoffs are known beforehand by the players. A player’s
strategy is a plan which lays out a course of action for each possible state or history.
Strategies can be pure or mixed. A pure strategy determines the actions for a given
state deterministically. A mixed strategy requires a player to randomise between his
pure strategies. Payoffs are the final returns (expressed in utility) to the players
when the game is concluded.

Non-cooperative game theory uses the notion of a strategic equilibrium or just
equilibrium to determine rational outcomes of a game. Numerous equilibrium con-
cepts have been proposed in the literature (see [131] for an overview). Some widely-
used concepts are dominant strategies, Nash equilibrium and subgame perfect equi-
librium. We define these notions below.

Definition 18.1 Dominant Strategy A dominant strategy is optimal in all
circumstances, that is, the strategy achieves the highest payoff no matter what
the strategies of the other players are.

This is obviously a very strong notion of an equilibrium strategy. A slightly weaker,
but still very powerful, equilibrium concept is the so-called Nash equilibrium [83, 84]:

Definition 18.2 Nash Equilibrium Strategies chosen by all players are said to
be in Nash equilibrium if no player can benefit by unilaterally changing his
strategy.

Nash proved that every finite game has at least one equilibrium point (in pure or
mixed strategies [83, 84]). The concept of dominant strategies is a refinement of
the Nash equilibrium. That is, if strategies are dominant, they also constitute a
Nash equilibrium. The reverse is not necessarily true, however. Another important
refinement of a Nash equilibrium is Selten’s subgame-perfect equilibrium [116, 117]
for extensive-form games. Extensive-form games are games with a tree structure,
i.e., where players can make decisions sequentially and at various stages of the game
(by contrast, in strategic-form games, players are required to make decisions once
and simultaneously). Subgame-perfect equilibrium is defined as follows:

Definition 18.3 Subgame-Perfect Equilibrium Strategies in an extensive-
form game are in subgame-perfect equilibrium if the strategies constitute a a
Nash equilibrium at every decision point.
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An overview of the main bargaining literature from the field of cooperative game
theory is given in Section 2.3.1. We note that the concepts from cooperative game
theory are not necessary to understand the remainder of the thesis, and are intended
for the interested reader. In Section 2.3.2 several non-cooperative bargaining games
are discussed. Particular attention is paid to the most important bargaining proto-
col: the alternating-offers game. In Section 2.3.2 bargaining over a single issue is
assumed. Section 2.3.3 covers work on multiple-issue negotiations.

As we mentioned before, traditional game theory assumes complete information,
implying that the player’s preferences and beliefs are common knowledge. However,
lately many researchers in game theory have focused on the consequences of play-
ers having private information. Among other things, incomplete information could
explain why inefficient deals are reached or why no deal is reached at all. For in-
stance, the occurrence of strikes and bargaining impasses, but also the occurrence of
delays in negotiations can theoretically be addressed when complete information is
no longer assumed. Literature related to this topic is discussed in Section 2.3.4. We
also consider one-to-many bargaining, i.e., where one player interacts with multiple
opponents simultaneously. Auctions are the most common approach for such a set-
ting, and will be the topic of Section 2.3.5 (an alternative approach, using bilateral
bargaining, is discussed in Chapters 6 and 7).

2.3.1 Cooperative bargaining theory

Cooperative game theory considers the space of possible outcomes of a game, without
specifying the game itself in detail. In case of bargaining, the outcomes are often
denoted in terms of utilities (see Section 1.1.1). In case of two-player games, the
outcomes are then represented by utility pairs. Cooperative bargaining theory is
concerned with the question of which outcome will eventually prevail, given the set
of all possible utility pairs. A particular set of possible outcomes is also referred to
as a bargaining problem.

A function which maps a bargaining problem to a single outcome is called a
solution concept. Usually, a solution concept is only valid for a certain subset of all
possible bargaining problems. For instance, the first and most famous solution con-
cept, the Nash bargaining solution (see below) only applies to convex and compact
bargaining sets (see [11, pp. 180–181]). Only if these requirements are satisfied the
bargaining problem can properly be called a Nash bargaining problem.

An alternative bargaining solution has been proposed by Kalai and Smorodin-
sky [57]. Their approach is discussed below. Both the Nash and the Kalai and
Smorodinsky bargaining solutions are invariant with respect to the calibration of
the players’ utility scales. The utilitarian solution concept differs in that respect
and does actually depend on how the functions are scaled. For this reason, its appli-
cation is limited to those situations where inter-personal utility comparison makes
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any sense. Cooperative theories of bargaining are discussed in more detail in [106].

The Nash bargaining solution

Nash proposed four properties, now called the Nash axioms, which should be satisfied
by rational bargainers [82],[11, p. 184]:

1. The final outcome should not depend on how the players’ utility scales are
calibrated. This means the following. A utility function specifies a player’s
preferences. However, different utility functions can be used to model the
same preferences. Specifically, any strictly increasing affine transformation of
a utility function models the same preferences as the original function, and
should therefore yield the same outcome.

2. The agreed payoff pair should always be individually rational (see Def. 4.2)
and Pareto-efficient (see Def. 4.3)

3. The outcome should be independent of irrelevant alternatives. Stated oth-
erwise, if the players sometimes agree on the utility pair s when t is also a
feasible agreement, they never agree on t when s is a feasible agreement.

4. In symmetric situations, both players get the same.

The solution which satisfies these four properties is characterised by the payoff pair
s = (x1, x2) which maximises the so-called Nash product (x1 − d1)(x2 − d2), where
d1 and d2 are player 1’s and player 2’s outcomes in case of a disagreement. Nash
proved that this is the only solution which satisfies all four axioms [82]. Given a Nash
bargaining problem where the set of individually rational agreements is not empty,
the Nash bargaining solution then leads to a unique outcome. Figure 2.1 illustrates
how to construct the Nash bargaining solution for a given bargaining problem.

Due to the fourth axiom, both players are treated symmetrically if the bargaining
problem is symmetric as well. In other words, if the players’ labels are reversed, each
one will still receive the same payoff. A more general solution attributes so-called
bargaining powers α and β to player 1 and player 2, respectively. In this generalised
or asymmetric Nash bargaining solution, the fourth axiom is abandoned and the
bargaining solution comes to depend on the bargaining powers of the two players.7

The generalised Nash bargaining solution corresponding to the bargaining powers
α and β can be characterised as above as the pair s which maximises the product
(x1 − d1)

α(x2 − d2)
β [11, p. 189].

7What these bargaining powers represent depends on the actual (non-cooperative) game played.
For example, in case of negotiating companies the bargaining powers could be determined by the
strength of their respective market positions. It should be clear however, that the bargaining
powers have nothing to do with the bargaining skills of the players, since perfect rationality is
assumed.
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Figure 2.1: Construction of the Nash bargaining solution. This figure shows the
Pareto-efficient frontier (denoted by the solid line, see also Def. 4.3) and the Nash
bargaining solution for a specific bargaining problem. The bargaining problem is
defined by the set of feasible utility pairs (denoted by the grey area) and the dis-
agreement point d which specifies the players’ payoffs in case of a disagreement. To
find the (symmetric) Nash bargaining solution, one needs to find a supporting line
on the Pareto-efficient frontier which is bounded by lines r and t such that the Nash
bargaining solution is exactly halfway between these lines. The lines r and t are
respectively the horizontal and the vertical lines drawn from the disagreement point
d.

The Kalai-Smorodinsky bargaining solution

The third of the Nash axioms (independence of irrelevant alternatives) has been the
source of great controversy (follow the discussion in [69]). Kalai and Smorodinsky
therefore proposed an alternative to this axiom, which they refer to as the axiom
of monotonicity [57][72, p. 844]. For a set S of individually-rational and Pareto-
efficient points, let mi(S) = max{si | s ∈ S} be the maximum utility value that
player i could attain (for i = 1, 2), given that the players are individually rational.
The Kalai-Smorodinsky solution then selects the maximum element in S on the
line that joins the disagreement point (d1, d2) with the point (m1(S),m2(S)). An
example is given in figure 2.2.

Utilitarianism

A utilitarian policy in philosophy is one which prefers an outcome which maximises
the total welfare of the individuals in a society [80]. Any bargaining solution which
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Figure 2.2: Construction of the Kalai-Smorodinsky solution. m1 and m2 are the
maximum utilities for players 1 and 2 respectively, given that the players are in-
dividually rational. Point k is the unique solution which satisfies the four axioms
proposed by Kalai and Smorodinsky [57].

maximises the sum of utilities is therefore called a utilitarian solution concept.
Stated less formally, the utilitarian principle asserts that “you should do something
for me if it will hurt you less than it will help me”. Clearly, a utilitarian solu-
tion concept assumes that interpersonal utility comparisons are possible. Therefore,
Nash’s first axiom (independence of utility calibrations) no longer holds in utilitarian
models.8

Concluding remarks

Apparently, many different types of solutions to the bargaining problem exist in
cooperative game theory. The choice of a specific solution is of course based on
norms existing in a society, or, more specifically, on which axioms seem to be “rea-
sonable” in a specific bargaining context. Certain outcomes might be for instance
be considered as “unfair”. An example is given in [101, pp. 235–250].

Additionally, it is important to consider for which classes of non-cooperative
games the solution concepts from cooperative game theory are appropriate. For
instance, if no non-cooperative game can be found which results in a solution spec-
ified by cooperative game theory, then the results from cooperative game theory
have little bearing. Fortunately, such a connection between cooperative and non-

8Note that the Pareto-efficiency axiom still holds. The other axioms depend on the specific
solution concept.
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cooperative game theory has been observed under special circumstances [12]. More
details are given in the next section.

2.3.2 Bargaining over a single issue

Four different negotiation games or protocols (see Def. 4.1) are described in this
section. These protocols can be used by two bargainers to divide a given bargaining
surplus (see Section 1.1.2), that is, the mutual benefit resulting when the players
reach an agreement. Without loss of generality, we assume that the bargaining
surplus is of size unity in the following.

The following protocols are considered below: (1) the Nash demand game, (2) the
ultimatum game, (3) the alternating-offers game and (4) the monotonic concession
protocol. The first three games are well-known and widely-used. The fourth game is
described in [105] and is an attempt to model a more realistic negotiation scenario.
However, in all games described here analytical solutions are obtained using the
strong assumption of common knowledge. The extrapolation of results obtained
here to real-world cases is therefore a non-trivial step.

The protocols described in this section have been applied mainly to evaluate
negotiations over a single issue. In real life, this issue is often the price of a good to
be negotiated. Although this keeps matters simple, important value-added services
such as delivery time, warranty or service are left out. Both the supplier and the
consumer could for instance benefit if negotiations involve multiple issues. Moreover,
multiple-issue negotiations can be less competitive because solutions can be sought
which satisfy both parties. Multiple-issue negotiations are studied in more detail in
Section 2.3.3.

The Nash demand game

Both players simultaneously demand a certain fraction of the bargaining surplus
in this game, without any knowledge of the other player’s demand [11, pp. 299-
304]. In case the sum of demands exceeds the surplus, both players only receive
their disagreement payoff. Otherwise, the demands are said to be compatible, and
both players get what they requested. This game has an infinite number of Nash
equilibria: all deals which are Pareto-efficient, but also deals where both players
receive their disagreement payoff. For example, if both players ask more than the
entire surplus, no player could ever gain by unilaterally changing his strategy.

The concept of a Nash equilibrium thus places few restrictions on the nature
of the outcome. Nash therefore suggested a refinement for this game which does
result in a unique solution. This refinement of the demand game is called the per-
turbed demand game [89, pp. 77-81]. In this perturbed game the players are not
completely certain about which outcomes are within the bargaining set (i.e., the set



24 Bargaining: an overview

of compatible demands) and which outcomes are not. When the degree of uncer-
tainty approaches zero, the Nash equilibrium of the perturbed game approaches the
Nash bargaining solution of the regular demand game (without uncertainty).9 The
reader is referred to [131] for technical details on this subject. A more introductory
overview is given by Binmore [11].

The ultimatum game

Playing Nash’s demand game, both players could easily receive nothing, or it could
occur that some of the surplus is “thrown away”. Players would do better by
choosing a somewhat less competitive game. If they are unable to reach an agreement
using this alternative game, the demand game still remains an option.

A very simple alternative is the so-called ultimatum game. In this game, one of
the players proposes a split of the surplus and the other player has only two options:
accept or refuse. In case of a refusal, both players get nothing (or the demand game
is played). Although the game again has an infinite number of Nash equilibria, it
has only one subgame perfect equilibrium (in case the bargaining surplus can be
divided with arbitrary precision) where the first player demands the whole surplus
and the second player accepts this deal [11, pp. 197-200].

The alternating-offers game

Basically a multiple-stage extension of the ultimatum game, the alternating-offers
game is probably the most elegant bargaining model. As in the ultimatum game,
player 1 starts by offering a fraction x of the surplus to player 2. If player 2 accepts
player 1’s offer, he receives x and player 1 receives 1− x. Otherwise, player 2 needs
to make a counter offer in the next round, which player 1 then accepts or rejects
(sending the game to the next round). This process is repeated until one of the
players agrees or until a finite deadline is reached.

Bargaining over a single issue in an alternating fashion has been pioneered by
Ingolf St̊ahl [121]. A taxonomy and survey of economic literature on bargaining
before 1972 is given in this reference. St̊ahl analyzes bargaining games with a fi-
nite number of alternatives. Both games of finite and of infinite length are studied,
but he primarily evaluates games of a finite length. St̊ahl uses an assumption of
“good-faith bargaining” to simplify the theoretical analysis. Good-faith bargain-
ing prevents players from increasing their demands during play. He then identifies
optimal strategies for rational players with perfect information by starting at the
last stage of the game and then inductively working backwards until the beginning
of play. This procedure yields those equilibria which can be found with dynamic
programming methods.

9Note that only the Nash equilibria which result in solutions within the bargaining set are
considered. Nash equilibria in which no agreement is reached still remain [89, p.79].
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A straightforward dynamic programming approach can fail in case of imperfect
information [131, Ch. 1]. Sensible strategies can then be found by requiring that
each player’s optimal strategy for the entire game also prescribes an optimal strategy
in every subgame. As mentioned before, this concept of a subgame-perfect equilib-
rium (SPE, see Def. 18.3) is due to Selten [116, 117]. Rubinstein [110] successfully
applied this equilibrium concept to identify a unique solution in his variant of the
alternating-offers game. Rubinstein’s game [110] has an infinite length and there
is a continuum of alternatives. To simplify the analysis, Rubinstein made several
assumptions with regard to the players’ preferences. An important difference with
St̊ahl’s model is that time preferences are assumed to be stationary (this means that
the preferences of getting a part x of the surplus at time t over getting y at t + 1 is
independent of t).

Rubinstein analyses two specific stationary models: one in which each player has
a fixed bargaining cost for each period (c1 and c2) and one in which each player has
fixed discount factors (δ1 and δ2). Discount factors are used to relate the utility
of future consumption to the utility of consuming immediately. In other words,
discount factors model how impatient the player is [11, p. 202]. We provide a
formal definition of a discount factor:

Definition 25.1 Discount Factor The discount factor is used to translate ex-
pected utility or costs in any given future into present value terms.

Player i’s utility for getting a fraction x of the surplus at time t is equal to x(δi)
t. If

the discount factor is smaller than 1, a deal is therefore worth less if the agreement
is reached in the future than if a deal is reached immediately.

Using stationarity and other assumptions, Rubinstein first demonstrated that
the Nash equilibrium concept is too weak to identify a unique solution by proving
that every partitioning of the surplus can be supported as the outcome of Nash
equilibrium play. To overcome this difficulty, Rubinstein then applied the concept of
a SPE and proved that there exists a unique SPE in the alternating-offers bargaining
model. For example, if both players have a fixed discounting factor (δ1 and δ2)
the only SPE is one in which player 1 gets (1 − δ2)/(1 − δ1δ2) and player 2 the
remainder (of a surplus of size 1). Furthermore, if both players use their SPE
strategy, agreement will be reached in the first round of the game. Notice that
Rubinstein’s proof assumes that both players have perfect information about the
other player’s preferences (i.e., their bargaining cost or discount factor). Bargaining
with imperfect information (i.e., where uncertainty plays a crucial role) is discussed
further in Section 2.3.4.

Rubinstein’s paper has been very influential in bargaining theory. At the mo-
ment, a vast body of literature exists on infinite-horizon games. An overview is
given in [79, 89]. Many pointers to the literature are given in these references. We
will conclude this section by discussing a few key papers in this field.
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An particularly important paper is [12]. In this paper a relation between the SPE
outcome of the alternating-offers game and the Nash bargaining solution is identified
in case of weak player preferences (e.g., discount factors close to unity or small time
intervals between rounds). This establishes a link between non-cooperative and
cooperative bargaining theory and justifies the use of the Nash bargaining solution
to resolve negotiation problems (at least in case of complete information).

Van Damme et al. [132] have investigated the role of a smallest monetary unit
(i.e., a finite number of alternatives) in the alternating-offers game with payoff dis-
counting. They show that in case of a finite number of alternatives, any partition
of the surplus can be supported as the result of a subgame-perfect equilibrium if
the time interval between successive rounds becomes very small. This means that
Rubinstein’s assumption of a continuous spectrum of bids is essential in deriving a
unique solution of the alternating-offers game under these conditions.

Monotonic concession protocol

A more restricted protocol, compared to the alternating-offers game, is described
in [105]. In this monotonic concession protocol the two players announce their
proposals simultaneously. If the offers of both agents match or exceed the other
agent’s demand, an agreement is reached. A coin is tossed to choose one of the
offers in case they are dissimilar.

If no agreement is reached, the players need to make new offers in the next round.
The offers need to be monotonic, that is, the players are not allowed to make offers
which have a lower utility for their counter player compared to the last offer. Hence,
a player can either make the same offer (to stand firm) or concede. Negotiations end
if both agents stand firm in the same round. The players receive their disagreement
payoffs in this case. Because each round at least one of the players has to make a
concession (or a disagreement occurs), the protocol has a finite execution time if the
minimum concession per round is fixed and larger than zero.

Note that in order to make a (monotonic) concession possible, a player needs
to have some knowledge about the other players’ preferences. This knowledge is
crucial when several issues are negotiated at the same time. In this case not only
the sign of the utility function, but also the relative importance of the issues becomes
important.

Rosenschein and Zlotkin discuss which kinds of strategies are stable and efficient
when using this protocol (in negotiations over a single issue). A strategy pair is
efficient in this case if an agreement is always reached. Stability is defined using the
notion of symmetric Nash equilibrium: A strategy s constitutes a symmetric Nash
equilibrium (and is stable) if player 1 can do no better than playing s, given that
player 2 also uses s. Note that a strategy s in which both players make a concession
in the same round is not stable: one of the players could do better by standing firm.
On the other hand, a strategy where a player tosses a coin to determine whether to
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Figure 2.3: Four different bargaining procedures used in multiple-issue bargaining
[97].

concede or stand still is not efficient (nor stable): a disagreement will occur with a
probability of one fourth. The interested reader is referred to [105] for more details
on the characteristics of this mechanism.

2.3.3 Bargaining over multiple issues

The above situations can be described as negotiations about how to divide a surplus.
This means that the negotiations are distributive: a gain for one player always
creates a loss for the other player. These kinds of negotiations are also referred to
as competitive [48]. When more than a single issue is involved, and players attach
different importance to these issues, tradeoffs become an option and negotiations
may become integrative. The latter kind of negotiations is the main topic of this
section. Results from cooperative game theory are discussed first, followed by a
overview of results from non-cooperative game theory.

Cooperative game theory

An additive scoring system or an additive multi-attribute utility function (see Def. 3.1)
can be used to represent the relationships or trade-offs between the issues if several
issues are involved.10 However, these methods are appropriate only if the issues are
preferentially independent, that is, if the contribution of one issue is independent of
the values of the other issues.

Once the preferences are mapped, for instance onto an additive multi-attribute
utility function, the bargaining set can be determined. The main goal is again
to reach a Pareto-efficient outcome (see Def. 4.3). Previously introduced solution
concepts such as the Nash bargaining solution or the Kalai-Smorodinsky solution can
be used for this purpose. Several practical considerations (concerning for example
fairness of the outcome) and some instructive real-world examples are given by Raiffa
in [101].

10See [101, pp.154-155] for a discussion of the differences between these methods.
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Non-cooperative game theory

Four different bargaining procedures can be distinguished for multiple-issue bargain-
ing [97] (see figure 2.3). In case of global or simultaneous bargaining all issues are
negotiated at once. The second procedure is called separate bargaining. In this pro-
tocol the issues are negotiated independently. The final two procedures fall under
the header of sequential bargaining and are distinguished by their rules of imple-
mentation. These rules specify when the players can start enjoying the benefits of
the issues which have been agreed on.11 Three possibilities are considered in [35].
Here, however, we will only mention the most important two. Using the so-called
independent implementation rule, an agreement on an individual issue takes effect
immediately, that is, the agreed upon issues are no longer discounted. In the simul-
taneous implementation on the other hand, the players have to wait until agreement
is reached on all issues before they can enjoy the benefits of it. The time it takes
to agree on the remaining issues also influences the profits gained on the already
agreed upon issues.

When bargaining is sequential an agenda needs to be determined to set the order
in which the issues will be negotiated. Agenda setting is of course only relevant
if the issues are of different importance. Another concern is whether the players
attach the same importance to each issue or whether different players have different
evaluations regarding the importance of the issues. The latter is the most interesting
case since this allows for integrative negotiations. Unfortunately, however, only a
limited literature exists on this topic in game theory. Usually, either the issues are of
equal importance (as in [6]) or the players have identical preferences (as in [19]). In
[97] the assumption is made that preferences are additive over issues, implying that
the multi-issue bargaining problem is equal to the sum of the bargaining problems
over the separate issues.

One of the few papers in game theory on integrative bargaining is [35]. Fersht-
man considers sequential bargaining over two issues. He states that, when using
Rubinstein’s alternating-offers protocol for each issue in a sequential order, each
player prefers an agenda in which the first issue to bargain on is the one which is
the least important for him but the most important for his opponent. Notably, it is
shown in [35] that the subgame-perfect equilibrium outcome for this problem does
not need to be Pareto-efficient.

2.3.4 Bargaining with private information

Private information such as reservation values (i.e., limit values on what the players
find acceptable), preferences amongst issues, attitudes towards risk or time prefer-
ences are often hidden from the opponent in real-life negotiations. In bargaining it

11This is relevant in case the payoff is discounted in the course of time.
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might for example be beneficial to be dishonest about one’s attitudes towards risk
in order to get a greater share of the surplus (as would be the case in Rubinstein’s
alternating-offers game). Sometimes, however, a mechanism (see Def. 5.1) can be
designed which gives agents a compelling incentive to be honest to the opponent.
Such mechanisms are called incentive compatible (see Section 1.1.2, p. 6).

The Vickrey auction [136] is an example of such an incentive-compatible mech-
anism (this auction and other incentive-compatible mechanisms are discussed in
Section 2.3.5). Unfortunately, however, a suitable mechanism does not always exist.
Moreover, such mechanisms are static and mediated (e.g. by an auctioneer) [5]. In
practice, bargaining is often dynamic and involves a sequence of offers and counter
offers between two or more players. Therefore, it is necessary to analyse dynamic
or extensive-form bargaining games with incomplete information. As mentioned
in Section 2.2, game theory frequently assumes that the players have complete in-
formation. However, in order to analyse situations in which players are unsure of
the opponent’s type, the notion of imperfect information needs to be applied (see
Section 2.2).

Imperfect information enables us to address important issues as reputation build-
ing, signalling and self-selection mechanisms [111]. For example, the fact that players
are unsure of the other player’s type might explain the occurrence of (inefficient)
delays in reaching an agreement [89, Ch. 5]. Using such inefficient strategies may
be the only way to signal for instance one’s strength (an example is the outbreak of
strikes during wage bargaining situations). Any utterance which is not backed up by
actions can be considered as being cheap talk.12 Delays may therefore be required
to convey private information credible [58].

In a wage negotiation problem, for example, the union is often unsure about the
actual value of its workers for a firm. If this value is high, the firm will be more
eager to sign an agreement. In case of a low value however, the firm will behave
credible by bearing the costs of a strike [58]. A firm could try to “bluff” by ignoring
a strike even in case of a high valuation, and use this strategy to signal a lower
valuation of the union workers than actually is the case. However, such a strategy
can potentially be very harmful.

An overview of bargaining with incomplete information is given in [5]. More
introductory texts on bargaining with private information can be found in [58] and
[11, Ch. 11].

12In non-cooperative games, nothing anyone says constrains its future behaviour. If a player
chooses to honour an agreement or threat that has been made, this will only be because it is
optimal to do so.
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2.3.5 One-to-many bargaining

In a one-to-many bargaining setting, one player negotiates contractual agreements
with two or more opponents. A typical example is when a seller has one or more
items for sale, and several buyers wish to purchase an item (or a bundle of items).
Auctions are the most common mechanism (see Def. 5.1) to solve the one-to-many
bargaining problem. An alternative approach, using bilateral bargaining, is dis-
cussed in Chapters 6 and 7. This section explains the most common auctions or
mechanisms and discusses optimal bidding behaviour in these auctions.

We focus here on sealed-bid auctions, where buyers submit positive bids to an
auctioneer and the auctioneer selects the winners and the amount that they have to
pay.13 Note that the amount that the winners pay in such auctions does not always
correspond to the actual bid, which will become clear below. The auction is called
sealed because a buyer’s bid is hidden from the other buyers and is only revealed to
the auctioneer. Often, the role of the auctioneer is taken by the seller.

Auctions for a single good are discussed first, followed by auctions for more
complex cases. We assume in the following that buyers have independent valuations.
In this context, a the buyer’s valuation is the highest price that she14 is willing to
pay, such that she is indifferent between paying the highest price and not obtaining
the good(s) at all (i.e., both options have equal utility). A player’s valuation is
independent if it does not depend on information available about the preferences of
other players, nor on the allocation of the goods to other players.

Single unit

Perhaps the most common sealed-bid auction for selling a single item is the first-
price auction. In this auction, the item is awarded to the highest bidder, and she
pays the price equal to the submitted bid. We can use game theory to derive optimal
strategies for the buyers in this auction. Take for example the case where two buyers
compete for the good and have different valuations for the good. If a buyer knows
the valuation of the other buyer, it is optimal to bid slightly above the valuation of
the other buyer if she has the highest valuation, and to bid her valuation otherwise.
This strategy constitutes a Nash equilibrium. In case the other buyer’s valuation is
not known, but is independently drawn from a distribution, the optimal response
can again be calculated (we refer the interested reader to [72, p.865] for details).
Clearly, the buyer’s bid depends on a buyer’s speculation about the valuations of
other bidders. In general, the buyer will then bid below her valuation.

An interesting alternative auction is the aforementioned Vickrey or second-price
auction [136]. In this auction the highest bidder wins as before, but pays the price

13Note that such auctions can be considered direct mechanisms (see Section 1.1.2, page 5), in
which the players are asked to submit their preferences directly.

14In the following, we use she for a buyer and he to refer to a seller.
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bid by the second-highest bidder.15 In contrast to the previous auction, the optimal
strategy in this case is to bid the true valuation for the good, irrespective of the
valuations and bids of the other buyers [27, 136].16 This is in fact a dominant strategy
(see Def. 18.1). This auction is also called incentive compatible (see Section 1.1.2,
p.6) because it provides the players with the incentive to reveal their preferences
truthfully. Intuitively, this is because a buyer’s payment is independent from her
bid, and therefore she does not benefit by bidding lower than her valuation. Bidding
a higher value is also not beneficial since it can result in paying more than the
valuation. In fact, it appears that an auction is incentive compatible if and only
if the auction is bid-independent [44], i.e., if the bid value of a bidder i does not
determine bidder i’s payment (but only determines if she wins or not).

The Vickrey or second-price auction has several advantages compared to the first-
price auction. First of all, since the second-price auction is incentive compatible,
calculating the optimal strategy for the buyers is straightforward. The auction is
also robust, since the choices of buyers do not depend on the behaviour of others.
Another advantage is that the second-price auction is an efficient auction; efficient
auctions put goods into the hands of the buyers who value them the most [27].
Efficiency is a very desirable property, as it maximises the total gains of trade (i.e.,
the bargaining surplus). In [27] it is shown that any incentive compatible auction is
efficient. By contrast, the first-price is not, in general, efficient. In case of uncertainty
about other buyers’ valuations and thus speculating buyers, inefficient outcomes can
occur (see [27] for an example). Below, we consider incentive compatible (and thus
efficient) auctions for the more general case of multiple units.

Multiple units

In case multiple goods are traded, the Generalised Vickrey Auction (GVA) [133] can
be used to allocate the goods efficiently. Like the Vickrey auction, the GVA is also
incentive-compatible, that is, truth-telling is a dominant strategy. In this section,
we apply the GVA in case multiple (homogeneous) units of the same good are sold
(for other applications, see e.g. [133]). The GVA then works as follows.

In the initial stage, each buyer i reports a utility function ui(~x) to the auctioneer,
which may or may not be the true utility function. The vector ~x specifies the
number of units allocated to each buyer i.17 For this application, the utility function
expresses the amount of money a buyer is willing to spend for a given allocation ~x.
The auctioneer then calculates the allocation of units ~x∗ that maximises the sum of

15In case of a single bidder, this bidder gets the good for free.
16This holds assuming independent valuations, as stated before.
17For the case described here, we assume that buyers only care about the units they receive, and

not about the units received by others (which is part of the valuation independence assumption
described earlier), i.e., ui(~x) = ui(x

i); there are no so-called allocative externalities [55]. We note,
however, that the GVA can also be applied to the case of allocative externalities, see e.g. [134].
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utilities, under the constraint that the number of allocated units equals the number
of available units. The auctioneer also calculates the allocation that maximises the
sum of utilities other than that of buyer i. This allocation is denoted by ~x∗

∼i. Each
buyer i then receives the bundle according to the allocation ~x∗ and has to pay the
following amount to the auctioneer:

∑

j 6=i uj(x
∗
∼i) −

∑

j 6=i uj(x
∗). In words, a buyer

pays the other buyers’ “losses” as a consequence of obtaining the bundle. Note that
since the payment of a buyer i does not depend on the utility reported by buyer i,
but only on the utilities reported by the other buyers, it follows that this mechanism
is incentive compatible. Below we show the application of this mechanism for two
examples.

Example 1 In case of a single unit, this mechanism is equivalent to the second-
price auction. We show this in the following. We assume (without loss of generality)
that a buyer’s utility equals zero if no units are allocated to this player. In case
buyer i is not the highest bidder (i.e., does not report the highest utility value for
the good), the allocation is not affected by buyer i (i.e., ~x∗

∼i = ~x∗), and the payment
∑

j 6=i uj(~x
∗
∼i)−

∑

j 6=i uj(~x
∗) = 0. On the other hand, if buyer i is the highest bidder,

then the second part of the equation [
∑

j 6=i uj(~x
∗)] equals zero, since nobody else

gets anything. The first part [
∑

j 6=i uj(~x
∗
∼i)], however, equals the reported valuation

(i.e., bid) of the second-highest bidder, since this would be the (reported) valuation
of the winner if buyer i would not participate. The payment therefore equals the
reported valuation (i.e., bid) of the second-highest bidder.

Example 2 In case of N units, and if each bidder is allocated up to one unit,
the GVA mechanism reduces to an (N + 1)-price auction, i.e., where each winner
pays the price of the (N + 1)-highest bidder.18 To see this, consider first the case
where buyer i is not a winner. As before, buyer i does not affect the allocation,
and therefore pays zero. In the other case, i.e., when buyer i is one of the winners,
then

∑

j 6=i ~x
∗ equals the total bids (reported valuations) of the remaining winners.

Furthermore, since the unit would go to the (N + 1)-highest bidder if buyer i would
not participate (assuming there are at least N +1 participants),

∑

j 6=i ~x
∗
∼i equals the

total valuation of the remaining winners of the actual allocation, plus the valuation
of the (N +1)-highest bidder. The payment is then exactly the valuation (or bid) of
the (N + 1)-highest bidder. This holds for each winner, assuming there are at least
N +1 bidders. Note that if there are less than N +1 bidders, all bidders receive the
good for free.

2.4 Computational approaches to bargaining

Simplifying assumptions frequently made in game-theoretical analyses, such as as-
sumptions of perfect rationality and common knowledge, do not need to be made

18This auction is applied in Chapter 5.



2.4 Computational approaches to bargaining 33

if the behaviour of boundedly-rational negotiating agents is modelled directly, for
instance using techniques from the field of artificial intelligence (AI). This section
provides an overview of the key research related to this thesis, where AI techniques
such as evolutionary algorithms, reinforcement learning (specifically Q-learning)
and Bayesian beliefs are applied to develop a negotiation environment consisting
of intelligent agents. In addition, we shortly review the relatively new field of
argumentation-based negotiation. Note that the evolutionary approach is the main
focus of this thesis, and therefore the most relevant. The other techniques mentioned
are intended for the interested reader.

Using the above-mentioned techniques, agents are able to learn from experience
and adapt to changing environments. This learning aspect is essential for automated
negotiation settings (where software agents, see Section 1.1.3, bargain on behalf of
their owners), especially when the behaviour of competitors and the payoffs are
not known in advance. Several aspects of learning are potentially important during
the negotiation processes. First, a bargaining agent needs to have a strategy which
specifies his actions during the course of play. On the basis of the agent’s experiences
in previous bargaining games, he can learn that it might be profitable to adjust his
strategy in order to achieve better deals. Second, it might even be useful to update
a strategy during play. This may be the case if the agent is initially unsure about
the type of his opponent. After playing a bargaining game for a number of rounds,
the agent may form a belief about his opponent’s type and fine-tune his behaviour
accordingly. Third, an agent might need to learn the preferences of his owner first.
Here, attention is focussed on the first two kinds of learning.

This section is organised as follows. Section 2.4.1 discusses the main related
research where bargaining agents adapt using evolutionary algorithms (EAs). Q-
learning and an application hereof for bargaining is described in Section 2.4.2. Sec-
tion 2.4.3 approaches learning during the negotiation process using Bayesian beliefs.
Section 2.4.4 considers an alternative approach where negotiation is viewed as a
dialogue game, and the parties attempt to reach consensus using argumentation.

2.4.1 The evolutionary approach

Oliver [88] was the first to demonstrate that a system of adaptive agents can learn
effective negotiation strategies using evolutionary algorithms. Computer simula-
tions of both distributive (i.e., single issue) and integrative (i.e., multiple issue)
alternating-offers negotiations are presented in [88]. Binary coded strings represent
the agents’ strategies. Two parameters are encoded for each negotiation round:
a threshold which determines whether an offer should be accepted or not and a
counter offer in case the opponent’s offer is rejected (and the deadline has not yet
been reached). These elementary strategies were then updated in successive gen-
erations by a genetic algorithm (GA). Similar models are also investigated in this



34 Bargaining: an overview

thesis.

In [126], a related model was investigated. Here, a systematic comparison be-
tween game-theoretic and evolutionary bargaining models is also made, in case ne-
gotiations concern a single issue. Chapters 3 and 4 of this thesis extend similar
negotiation models even further by considering multiple issues and cases that are
unwieldy to analyse mathematically.

More elaborate strategy representations are proposed in [73]. Offers and counter
offers are generated in this model by a linear combination of simple bargaining tactics
(time-dependent, resource-dependent, or behaviour-dependent tactics). As in [88],
the parameters of these different negotiation tactics and their relative importance
weightings are encoded in a string of numbers. Competitions were then held between
two separate populations of agents, which were simultaneously evolved by a GA. The
time-dependent tactics are further investigated in [34] using GAs, for the case that
negotiating agents have different time preferences.

Dworman et. al [31] studied negotiations between three players. If two players
decide to form a coalition, a surplus is created which needs to be divided among
them. The third party gets nothing. Of course, all three players want to be part of
the coalition in this case. Moreover, they also want to receive the largest share of
the bargaining surplus. Genetic programming was used in this paper to adapt the
offers and to decide whether to form a coalition or not. A comparison with game
theoretic predictions and human experiments was made.

Evolutionary algorithms have recently been used not only to generate strategies
but also to design auction mechanisms (see Def. 5.1 and Section 2.3.5), notably by
Cliff [24] and Phelps et al. [96]. Especially for double auctions, where analytical
solutions are typically intractable, the evolutionary approach has been successfully
applied. Double auctions allow for many buyers and many sellers to exchange goods
or services. In this type of auction, sellers and buyers submit bids (offered quantity
and price) and asks (demanded quantity and price) respectively, which are then
matched by the auctioneer. The auctioneer also determines the trading price for
each match. In [96] genetic programming (GP) is used to evolve both the strategies
of the traders and the auction mechanism. In this first endeavour towards automated
design of auction mechanisms from scratch, GP is used to determine the rule for
setting the trading price, while having a fixed matching algorithm. The goal is to
optimise market efficiency, that is the total profits of both buyers and sellers as a
fraction of the theoretical maximum, given that buyers and sellers are only concerned
about maximising their individual profits. In a related approach by Cliff [24], a
genetic algorithm is used to evolve both the traders and an additional parameter
that selects between a continuum of auctions.
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2.4.2 Using Q-Learning

Many learning techniques require feedback each time an action is performed. How-
ever, in many practical cases feedback is only received at the end of a (long) sequence
of actions. A good example is a game like chess: only at the end of play the players
know with certainty how well their strategy performs. In learning models like Q-
learning, agents also try to evaluate the effect of intermediate actions. Q-learning
is a reinforcement learning algorithm [113, p. 528] which learns an action-value
function yielding the expected utility (see Section 1.1.1) of a given action in a given
state [113, p. 599].

This algorithm maintains a list of so-called Q-values Q(a, i), which denote the
expected utility of performing an action a at state i. The action which maximises
the expected utility is selected, and the system moves to a new state j. The Q-value
is then updated depending on the Q-value of the new state and the received reward
(if available). The following equation can be used [113, p. 613] for updating the
Q-value in case of a transition from state i to j by taking action a:

Q(a, i) ← Q(a, i) + α(R(i) + max
a′

Q(a′, j) − Q(a, i)), (2.1)

where R(i) is the actual reward received in state i and α is the learning rate. The
value maxa′ Q(a′, j) represents the expected utility of state j. For example, if the
current state i has a relatively low expected utility and the next state j has a high
expected utility, the Q-value Q(a, i) is updated in such a way that the difference
between these states is reduced. In this way rewards which are given at the terminal
state are passed to the other states in the sequence.

As we mentioned before, selecting an action in the current state depends on
the expected utility of each action. Hence, a trade-off needs to be made between
“exploitation” and “exploration”. In other words, should an action be chosen which
has already proven itself or do we prefer to try out new actions which might produce
even better results? This question of finding an optimal exploration policy has been
studied extensively in the subfield of statistical theory that deals with so-called
“bandit” problems [113, pp. 610-611].

The Q-learning approach was applied by Oliveira and Rocha [87] for the for-
mation of virtual organisations in an e-commerce environment. The idea is that in
order to satisfy some user’s need, often a combination of services is needed, which is
provided by different companies. The agent representing the user (called the “mar-
ket agent”) negotiates with several organisation agents, after which a selection of
these organisations is made and a virtual organisation is created. The protocol used
during the negotiation phase is as follows. First, each participating organisation
generates a bid, based on previous experience, and sends this bid to the market
agent. A Q-learning technique is then used to determine which bid to make. The
actions (i.e., the bids) made are then evaluated using the feedback given by the
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market agent. The market agent compares the bids using a multi-criteria evalua-
tion method based on qualitative measures (in which only the preference ordering
is assumed to be important). The market agent selects the organisation which ei-
ther proposes a satisfactory evaluation, or he chooses the highest evaluation when
a deadline is reached. Organisations not selected are given feedback as to which
attributes were not satisfactory. Negotiations take several rounds, and each round
an organisation is selected.

2.4.3 Using Bayesian beliefs

Bayesian beliefs are used to model an agent’s (probabilistic) knowledge of an un-
certain environment. Suppose the agent has some a priori knowledge about the
likelihood of a set of hypotheses Hi, with i = 1, ..., n. Furthermore, the agent has
some conditional knowledge about the probability that an event e will occur, given
that one of the hypotheses is true. If event e then occurs, the beliefs about the
hypotheses are updated using the Bayesian update rule [148]:

P (Hi|e) =
P (Hi)P (e|Hi)

∑n
k=1 P (e|Hk)P (Hk)

, (2.2)

where P (Hi|e) is the a posteriori probability of Hi and P (Hi) the a priori probability.
P (e|Hi) is the conditional probability that event e occurs given hypothesis Hi.

When agents have incomplete information about one another, it becomes impor-
tant to learn about the other agent by observing his behaviour during the negotiation
process. Bayesian beliefs are often used to make assumptions about the opponent
such as his type [64] or his reservation price [147],[148] (where the reservation price is
defined here as an agent’s threshold of offer acceptability). These beliefs are updated
depending on the opponent’s moves.

However, once both agents use beliefs to determine their strategies, they also
need beliefs about their opponent’s beliefs, and so on. This is known as the problem
of outguessing regress [148]. In game theory this problem is solved by having a
limited number of different types of players. The beliefs and preferences of each
type are common knowledge, but there is uncertainty about which player is of which
type. This theory, suggested by Harsanyi, is a technique for transforming a game
of incomplete information into a game of imperfect (but complete) information (see
also Section 2.2). In reality however, the number of different types is usually very
large, and, moreover, it is not always realistic to assume that the preferences and
beliefs of the different types are common knowledge. In more practical applications
(such as [64] and [147]), the problem of outguessing regress is circumvented by
assuming limited reasoning capabilities. In [147], for instance, a player has beliefs
about e.g. the payoff function and reservation price of the other player, but not
about the beliefs of the other player.



2.4 Computational approaches to bargaining 37

2.4.4 Argumentation-based negotiation

An alternative approach to automated negotiation is the use of dialogues or ar-
gumentation to resolve conflicts. In recent years, this field has received increasing
interest within the agent community [71, 74, 94, 99, 100]. We therefore relate some of
the main concepts and highlight some of the research in this field. A more extensive
overview of the state-of-the-art on argumentation-based negotiation can be found
in [99].

Argumentation can be useful when, for example, negotiations involve several
issues and a mutually beneficially situation can be achieved (as described in Sec-
tion 2.3.3). When agents have incomplete information about each others’ preferences
negotiations, inefficient deals are often obtained (see Section 2.3.4). This problem
can be resolved using argumentation. The idea is that the agents are able to provide
meta-information on why they have a particular objection to a proposal. This way,
information is exchanged, but without fully disclosing each others’ preferences.

A negotiation architecture using this kind of meta-information is described in
[94]. This approach was also used in MIT’s Tête-à-Tête system, a bilateral inte-
grative negotiation system for online shopping [71]. Agents within this framework
can: (1) make a new proposal, (2) accept the proposal of the counter agent, (3)
criticise a proposal or (4) withdraw from the negotiations. This system uses the
notion of a critique to enable agents to criticise a particular proposal. A critique
is a comment of an agent specifying which part of the proposal he dislikes. In case
of a new proposal or critique, the agent can also send additional information. For
instance, a proposal may include conditions under which it holds (e.g., I will provide
you with X if you provide me with Y).

Argumentation can also be used to influence the preferences, beliefs and/or goals
of other players. In general, preferences are assumed to be fixed. In reality, how-
ever, it is often true that a player’s preferences are not completely formed or that
uncertainty exists about the environment. In that case, a player’s preferences and
beliefs can be influenced upon receipt of new information. The negotiation process
then not only consists of dividing the surplus, but also of gathering information. An
interesting approach is described in [100], where one player may influence another
player’s preferences by discussing the underlying motivations and interests behind
adopting certain (sub)goals. For example, a buyer may want to negotiate a flight
ticket with a travel agent for the more fundamental goal of travelling to Paris. If
the fundamental goal is known to the travel agent, she can suggest a train ticket
as an alternative means to satisfy the same goal. Another way of influencing a
player’s behaviour is by means of persuasion, for example by using threats, rewards
or appeals [102].
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2.5 Discussion

The first part of this chapter reviews, in broad lines, literature on bargaining from the
field of game theory. This overview shows that game theory is a very useful tool to
analyse bargaining situations in a mathematical fashion. Such a rigorous analysis is
only tractable, however, if many details of human interaction, for instance emotions
or irrational behaviour, are abstracted away. This may undermine the capability of
game-theoretical models to explain or predict human behaviour.

This aspect may be less problematic when we consider systems in which artificial
agents interact with each other, because these agents are often designed to behave
(in good approximation) in a rational fashion. Game theory may therefore yield
fundamental insights in the design of efficient negotiation protocols for automated
trading. Furthermore, given a negotiation protocol and under certain assumptions,
optimal strategies can sometimes be derived.

Nevertheless, game-theoretical assumptions like common knowledge and perfect
rationality often appear to be too strong in modelling practical situations. The issue
of common knowledge has been solved only partially in game theory by introducing
a theory for players with imperfect information. The development of game-theoretic
models for boundedly-rational players is a relatively young research direction. Our
survey shows that techniques from the field of artificial intelligence are potentially
very powerful in situations of incomplete information and boundedly-rational play-
ers. Learning techniques developed within the AI community can for instance be
used to adapt the agents’ behaviour in complex environments and to construct ac-
curate models of the other agents’ preferences.
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Chapter 3

Multi-issue bargaining by
alternating offers

Automated negotiations have received increasing attention in the last years, es-
pecially from the field of electronic trading [14, 56, 65, 71, 73, 88, 128]. In the near
future, an increasing use of bargaining agents in electronic market places is expected.
Ideally, these agents should not only bargain over the price of a product, but also
take into account aspects like the delivery time, quality, payment methods, return
policies, or specific product properties. In such multi-issue negotiations, the agents
should be able to negotiate outcomes that are beneficial for both parties. The com-
plexity of the bargaining problem increases rapidly, however, if the number of issues
becomes larger than one. This explains the need for “intelligent” agents, which
should be capable of negotiating successfully over multiple issues at the same time.

In this chapter,1 we consider negotiations that are governed by a finite-stage
version of the Rubinstein-St̊ahl multi-round bargaining game with alternating offers
(see Section 2.3.2 and [110, 121]). We investigate the computation of strategies of the
agents by evolutionary algorithms (EAs) in case negotiations involve multiple issues.
We first assess the efficiency of the agreements reached by the evolutionary agents
(see Section 1.1.3). We then analyse to what extent the evolutionary outcomes
match with game-theoretic results. We study models in which time plays no role
and models in which there is a pressure to reach agreements early (because a risk
of breakdown in negotiations exists after each round).

Furthermore, we present and study a more realistic negotiation model, where
agents take into account the fairness of the obtained payoff. This use of fairness
is based on the following observation. When no time pressure is present, extreme
divisions of the payoff occur in the computational experiments, due to a powerful

1The results in this chapter have are published as [42]: E.H. Gerding, D.D.B. van Bragt, and
J.A. La Poutré. Multi-issue negotiation processes by evolutionary simulation: Validation and
social extensions. Computational Economics, 22:39–63, 2003.

41
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‘take-it-or-leave-it’ position for one of the negotiating agents in the last round of the
negotiation. Although such extreme outcomes are in agreement with game-theoretic
results, they are usually not observed in real-life situations, where social norms such
as fairness play an important role [13, 67, 107, 141]. We therefore introduce a fairness
norm and incorporate this in the agents’ behaviour. We perform computational
experiments with various fairness settings, and show that, depending on the actual
settings, “fair” deals indeed evolve.

A number of related paper demonstrate that, using an EA, artificial agents can
learn effective negotiation strategies [34, 73, 88, 126] (see also Section 2.4.1). In [126],
a systematic comparison between game-theoretic and evolutionary bargaining mod-
els is made, in case negotiations concern a single issue. In [34] single-issue negotia-
tions are also studied using a genetic algorithm, when agents can select between a
number of pre-specified strategies. The multi-issue problem is considered in [73, 88].
The main contribution in this chapter lies in the validation of the evolutionary
model for multi-issue negotiations with possible breakdown, using game-theoretic
subgame-perfect equilibrium (see Def. 18.3), and the introduction of a fairness norm
in such negotiations. Especially the latter is a first attempt to study complex bar-
gaining situations which are more likely to occur in practical settings. A rigorous
game-theoretic analysis is typically much more involved or may even be intractable
under these conditions.

The chapter is organised as follows. The alternating-offers negotiation protocol
for multiple issues is described in Section 3.1. Section 3.2 gives an outline of the
evolutionary simulation environment and how the strategies of the agents are rep-
resented. A comparison of the computational results with game-theoretic results is
presented in Section 3.3. The extension with fairness is the topic of Section 3.4.
Section 3.5 summarises the main results and concludes.

3.1 Description of the bargaining game

We consider negotiations that are governed by a finite-stage version of the Rubinstein-
St̊ahl multi-round bargaining game with alternating offers (see Section 2.3.2 for
details). During the negotiation process, the agents exchange offers and counter
offers in an alternating fashion at discrete time steps (rounds). In the following, the
agent starting the negotiations is called “agent 1”, whereas his opponent is called
“agent 2”.

Bargaining takes place over m issues simultaneously, where m is the total number
of issues. We assume that mutual gains are possible for each issue by reaching an
agreement, i.e., that a positive bargaining surplus is available (see also Section 1.1.2)
for each issue. We further assume (without loss of generality) that the total bar-
gaining surplus available per issue is equal to unity. We express an offer as a vector
~o, where the i-th component oi specifies the share that agent 1 receives of the bar-
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gaining surplus for issue i if the offer is accepted. Agent 2 then receives 1 − oi for
issue i. The index i ranges from 1 to m. Note that an offer always specifies the
share obtained by agent 1.

The agents evaluate multi-issue offers using an additive multi-attribute utility
function (see Def. 3.1 and [73, 88, 101]). Agent 1’s utility function is ~w1 · ~oj(r) =
∑m

i=1 wi
1 · oi

j(r), where j = 1 if the offer is proposed by agent 1 and j = 2 otherwise.

Agent 2’s utility function is ~w2 · [~1 − ~oj(r)]. Here, ~wj is a vector containing agent
j’s weights wi

j for each issue i. The weights are normalised and larger than zero,
i.e.,

∑m
i=1 wi

j = 1 and wi
j ≥ 0. Because we assume that 0 ≤ oi

j(r) ≤ 1 for all i, the
utilities are real numbers in [0, 1].

As stated above, agent 1 makes the initial offer. If agent 2 accepts this offer,
an agreement is reached and the negotiations stop. Otherwise, play continues to
the next round with a certain continuation probability p (0 ≤ p ≤ 1). When a
negotiation is broken off prematurely, both agents receive a utility of zero.

If negotiations proceed to the next round, agent 2 needs to propose a counter
offer, which agent 1 can then either accept or refuse. This process of alternating
bidding continues for a limited number of n rounds. When this deadline is reached
without an agreement, the negotiations end in a disagreement, and both players
receive nothing.

3.2 The evolutionary system

We use an EA to evolve the negotiation strategies of the agents. Implementation
details of the EA are discussed in Section 1.2.3. Each strategy in the EA is associated
with either an agent of type 1 (i.e., initiating the negotiation) or of type 2. The
strategies of competing agents evolve in separate populations2: the strategies of the
agents of type 1 evolve in population 1, and of type 2 in population 2. This way,
the EA populations co-evolve since the performance of a strategy depends on the
strategies in the opponent’s population. An overview of the evolutionary system
with separate populations for the strategies of the two agent types is depicted in
Figure 3.1.

The fitness of the parents is determined by negotiation between the agents in
the two parental populations (as shown in Fig. 3.1). Each agent negotiates with all
agents in the population of the opponent. The utility functions are the same for
agents within the same population (i.e., the weight settings are equal). The average
utility obtained in all negotiations is an agent’s fitness value. The fitness of the

2It is also possible to use a single population with strategies for both agent types on a single
chromosome. The outcomes, however, are then affected by so-called hitchhiking [75], where rela-
tively poor genes are selected because other genes on the chromosome yield a good performance.
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Figure 3.1: Iteration loop of the evolutionary algorithm where strategies for com-
peting agents evolve in separate populations.

EA Parental population size (µ) 25
Parameters Offspring population size (λ) 25

Selection scheme (µ + λ)-ES
Mutation model self-adaptive
Initial standard deviations (σi(0)) 0.1
Minimum standard deviation (ǫσ) 0.025

Negotiation Number of issues (m) 2
parameters Number of rounds (n) 10

Weights of agents in population 1 ( ~w1) (0.7, 0.3)T

Weights of agents in population 2 ( ~w2) (0.3, 0.7)T

Table 3.1: Default settings of the evolutionary system.

new offspring is evaluated by negotiation with the parental agents.3 A social or
economic interpretation of this parent-offspring interaction is that new agents can
only be evaluated by competing against existing or “proven” strategies.

3.2.1 Representation of the strategies

An agent’s strategy specifies the offers and counter offers proposed during the process
of negotiation. In a game-theoretic context, a strategy is a plan which specifies an
action for each history [11]. In our model, the agent’s strategy specifies the offers
~oj(r) and thresholds tj(r) for each round r in the negotiation process for agents
j ∈ {1, 2}.

The threshold determines whether an offer of the other party is accepted or

3In an alternative model, not only the parental agents are used as opponents, but also the
newly-formed offspring. Similar dynamics have been observed in this alternative model.
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Agent 1 ~o1(1) t1(2) ~o1(3) t1(4) . . .

Agent 2 t2(1) ~o2(2) t2(3) ~o2(4) . . .

Figure 3.2: The strategies for agent j ∈ {1, 2} specify a sequence of offers ~oj(r) and
thresholds tj(r) for rounds r ∈ {1, 2, . . . , n} of the negotiation.

rejected: If the value of the offer (see below) falls below the threshold the offer is
refused; otherwise an agreement is reached.4 This strategy representation is depicted
in Fig. 3.2. Notice that in each round, the strategy of an agent specifies either an
offer or a threshold, depending on whether the agent proposes or receives an offer
in that round. Note that in odd rounds, agent 1 makes an offer and agent 2 either
accepts or rejects, and visa versa in even rounds.

The strategy, consisting of offers and thresholds, is encoded on the chromosome
using real values in the unit interval (one offer or threshold for each negotiation
round). We use xi to denote the (real) value at location i of the chromosome. The
agents’ strategies are initialised at the beginning of each EA run by drawing random
numbers in the unit interval (from a flat distribution).

3.3 Validation and interpretation of the evolu-

tionary experiments

Experimental results obtained with the evolutionary system are presented in this
section. All relevant settings of the evolutionary system are listed in Table 3.1
(further explanation is provided in Section 1.2.3). A comparison with game-theoretic
results is made to validate the evolutionary approach. Section 3.3.1 addresses the
evolution of efficient negotiation results. Section 3.3.2 further analyses the results
and compares the experimental results with predictions from game theory. In the
following, we refer to the agents in the evolutionary system as evolutionary agents
(see Section 1.1.3).

3.3.1 Efficiency

First, we investigate the experimental results w.r.t. disagreements. Without break-
down (p = 1), disagreements can only occur when the deadline is reached. The
experiments show that the percentage of disagreements is then very small (around
0.1% after 1000 generations if n = 10). With a risk of breakdown of 30% (p = 0.7),

4A similar approach was used in [88, 126].
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Figure 3.3: Agreements reached by the evolutionary agents at (a) the start of a
typical EA run and (b) after 100 generations. The negotiation settings are p = 0.7
and n = 10. Each agreement is indicated by a point in these two-dimensional spaces.
The Pareto-efficient frontier is indicated with a solid line. In point S [at (0.7, 0.7)]
both agents obtain the maximum share for their most important issue, and receive
nothing for the other issue.
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this percentage is between 1% and 10%. Timing is now important for efficiency.
The evolutionary agents avoid disagreements by reaching agreements early: after
1000 generations, approximately 75% is reached in the first round.

Next, we study the efficiency of the agreements reached in the experiments. The
agreements are depicted in Fig. 3.3. This figure shows the utilities for both agents
of the deals reached. Also depicted in Fig. 3.3 is the so-called “Pareto-efficient
frontier”. An agreement is located on the Pareto-efficient frontier when an increase
of utility for one agent necessarily results in a decrease of utility for the other agent.
Agreements can therefore never be located above the Pareto-efficient frontier. A
special point is the symmetric point S [at (0.7, 0.7)], where both agents obtain the
maximum share of the issue they value the most, and receive nothing of the less
important issue.

Figure 3.3 shows that initially, many agreements are located far from the Pareto-
efficient frontier. After 100 generations, however, the agreements are chiefly Pareto-
efficient. We note that, even in the long run, the agents keep exploring the search
space, resulting in a continuing moving “cloud” of agreements along the frontier.

Conclusion. Results in this section thus show that the evolutionary agents reach
efficient agreements, viz. on the Pareto-efficient frontier, and that disagreements are
avoided. The next section studies the actual outcomes more closely, using results
from game theory as a benchmark.

3.3.2 Further Analysis

The computational results are analysed in more detail in this section and compared
with game-theoretic results, and in particular the subgame perfect equilibrium (SPE)
predictions (see Def. 18.3). Rubinstein and (much earlier) St̊ahl applied this notion
to the alternating-offers bargaining game [110, 121]. Our experimental setup differs
in two respects from their model, however. First, the agents bargain over multiple
issues instead of a single issue. Second, the evolutionary agents are “myopic”: they
do not apply any explicit rationality principles in the negotiation process, nor do they
maintain any history. Actually, they only experience the profit of their interactions
with other agents. The SPE behaviour of rational agents with complete information
will nevertheless serve as a useful theoretical benchmark. The equations for deriving
the SPE outcomes in case of multiple issues are presented in Appendix 1.

We distinguish between three classes of experiments w.r.t. the breakdown prob-
ability: (1) no risk of breakdown (p = 1), (2) a low breakdown probability (0.8 ≤
p < 1.0) and (3) a high breakdown probability (p < 0.8). For each of these classes
we consider the role of n on the outcomes.

We found that in our experiments, when p = 1, in the long run almost all
agreements are delayed until the last round (about 80% after 1000 generations).
Furthermore, the last offering agent makes a take-it-or-leave-it deal and demands
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almost the entire surplus (on each issue), which is accepted by the opponent. This
extreme division of the surplus agrees with game-theory (see Appendix 1.1); it is
rational for the responder to accept any positive amount in the last round. Note,
however, that rational agents are indifferent about the actual round in which the
agreement is reached. The deadline-approaching behaviour in our experiments cor-
responds better to “real-world” behaviour [108], however.

The EA results and SPE outcomes for different values of n (game length) are
compared in Fig 3.4a. To guide the eye, the SPE outcomes for successive values of n
are connected. Notice that the fitness of agents in population 1 converges to unity if
n is odd, and to zero if n is even (the opposite holds for the agents in population 2).
Figure 3.4b shows the results for p = 0.95. Note that the partitioning becomes less
extreme with a low breakdown probability compared to no breakdown. This holds
for both SPE outcomes and EA results, although the effect is much stronger in
the evolutionary system (see Fig. 3.4b). These differences with SPE are due to the
myopic properties of the agents in the EA. The evolutionary agents do not reason
backwards from the deadline (as in SPE), since most agreements are reached in the
first few rounds (if p < 1). As a result, the deadline is not perceived accurately by the
evolving agents. In fact, the game length is strongly overestimated. Furthermore,
in SPE all agreements are reached without delay (see [126]). The EA, on the other
hand, also continues to explore other strategies, which results in a remaining small
number of disagreements (see Section 3.3.1).

As p becomes smaller, the influence of the game length on the SPE outcome also
decreases (see [126]). Instead, the first-mover advantage becomes more important.
Therefore, if p becomes sufficiently small (e.g., p < 0.8), the computational results
automatically show a much better match with SPE outcomes than if p is large: the
match is almost perfect, although a small number of disagreements occur due to a
continuing exploration of new strategies. This is clearly visible in Figure 3.5, which
shows long-term results for n = 5 and different breakdown settings p.

Interestingly, in the limit of n → ∞, game theory predicts that the agents in
population 1 have a fitness of ≈ 0.71 when p = 0.95, whereas the agents in popu-
lation 2 have a fitness of ≈ 0.68. This corresponds to a point in the vicinity of the
symmetric point S, indicated in Fig. 3.3. The results reported in Fig. 3.4b show that
the behaviour of the agents corresponds much better to an infinite-horizon model
than the finite-horizon model for n ≥ 5 (see Fig. 3.4b). The same behaviour was
observed for other EA settings (e.g., larger population size) and other negotiation
situations (e.g., other weight settings).

We also studied the performance of the EA in case the number of issues m is
increased to 8.5 We observe that, for p = 1, the long-term outcomes of the EA

5The 8-dimensional weight vector for agents in population 1 is set to
1

3.9
(0.7, 0.3, 0.5, 0.2, 0.3, 0.4, 0.5, 1.0)T and equal to 1

3.9
(0.3, 0.7, 0.5, 1.0, 0.5, 0.5, 0.2, 0.2)T for

agents in population 2. These settings are such that they contain both “competitive” issues (e.g.,
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Figure 3.4: Comparison of the long-term evolutionary results with SPE results for
(a) p = 1 (time indifference) and (b) p = 0.95. The error bars indicate the standard
deviations across 25 runs.
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Figure 3.5: Average long-term results using 2 issues for different values of p, where
n = 5.

are unstable and do not converge to the extreme partitioning. When we increase
the population size for the EA from 25 to 100 agents,6 the extreme partitioning
reappears. Results are shown in Figure 3.6. Thus, for more complicated bargaining
problems, the EA parameters must be adjusted. For m = 8 and p < 1, similar
observations are found as reported in Section 3.3.2 (like Fig. 3.4) when using the
adjusted population size.

Conclusion. Game-theoretic (SPE) results appear to be a very useful benchmark
to investigate the results of the evolutionary simulations. In computational simula-
tions without a risk of breakdown (case 1), agreements are predominantly reached
in the final round. This deadline effect is consistent with human behaviour [108].
Furthermore, the last agent in turn successfully exploits his advantage and claims
a take-it-or-leave-it deal (as in SPE). In case of a small risk of breakdown (case 2),
the deadline is not accurately perceived by the evolving agents, and the last-mover
advantage is smaller than predicted by game theory. In fact, if the finite game be-
comes long enough, results match the SPE outcomes for the infinite-horizon game.
With a high risk of breakdown (case 3), however, this deviation from SPE becomes
negligible. Finally, it appears to be important to adjust the EA parameter settings
(e.g., by increasing population sizes) for more complex bargaining problems.

issue 3) and issues where compromises can be made (e.g., issue 8).
6To avoid a (quadratic) increase in the number of fitness evaluations, each agent negotiates

with 25 (random) opponents.



3.4 Social extension: fairness 51

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

30 40 50 60 70 80 90 100

SPE
data

m
e
a
n
 f
it
n
e
s
s
 (

o
v
e
r 

2
5
 r

u
n
s
)

continuation probability p*100

Figure 3.6: Average long-term results using 8 issues for different values of p, where
n = 5. These results are obtained using a population size of 100.

3.4 Social extension: fairness

We extend the agent model within our evolutionary system in this section to study
the influence of “fairness”, an important aspect of real-life bargaining situations.
The motivation and description of this fairness model is given in Section 3.4.1. In
the fairness model studied in Section 3.4.2 the evolving agents only take the fairness
of a proposed deal into account when the deadline is reached. Section 3.4.3 presents
results obtained when agents perform a “fairness check” in each round. Section 3.4.4
further analyses the model in Section 3.4.3 for a simple case.

3.4.1 Motivation and description: the fairness model

Game-theoretic models for rational agents often predict the occurrence of very asym-
metric outcomes for the two parties. We showed in Section 3.3.2 (see Fig. 3.4a) that
such “unfair” behaviour can also emerge in a system of evolving agents, in partic-
ular when p = 1 or n is small (see Fig. 3.4). Large discrepancies between human
behaviour in laboratory experiments and game-theoretic outcomes are found, how-
ever, both for ultimatum (a single round) and multi-stage (several rounds) games
[13, 25, 67, 107, 109, 141]. A possible explanation for the occurrence of these discrep-
ancies between theory and practice is the strong influence of social or cultural norms
on the individual decision-making process. In [107, p. 264] and [50], for example, it
is argued that responders tend to reject unfair or “insultingly low” proposals. There-
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Figure 3.7: Fairness functions used by the agents in the EA.

fore, an anticipating agent should lower his demand in order to avoid a disagreement,
this way taking into account the expectations about his opponent’s behaviour.

In [67] a model is proposed in line with this hypothesis. In their model, the prob-
ability of acceptance of an offer increases with the amount offered to the responder.
Such a model, making more realistic assumptions about the agents’ behaviour, ap-
pears to organise the data from experiments with humans better than the SPE
model [67].

Following [67], we introduce a fairness model in our evolutionary system. The
agent model is extended as follows. If the value of an offer exceeds the responder’s
threshold, the agent has the opportunity to re-evaluate his decision. The probabil-
ity that he finally accepts the agreement is then a function of the acquired utility.
This so-called “fairness function” is assumed to be piece-wise linear (with up to
three segments).7 The instances that we use are shown in Fig. 3.7.8 We now fur-
ther distinguish between two different extended agent models. In the first model,
the fairness function is used at the deadline only. This situation is studied in Sec-
tion 3.4.2. In the second model, the fairness function is effective at any moment.
This case is studied in Section 3.4.3. The first case is motivated by the deadline-
effect observed in the experiments without a risk of breakdown (see Section 3.3.2),
where most agreements are reached in the last round. The second case, however, is
more likely to be an appropriate model of human behaviour.

3.4.2 Fairness check at the deadline

In this section, fairness is applied in the last round. We study the case in which p = 1
and n = 3. Figure 3.8 shows that if the evolving agents in population 2 use fairness
function 1 (i.e., a “weak” fairness model), the partitioning is much less extreme than

7Piece-wise linear functions nicely fit the experimental data reported in [67, 109].
8We want to remark here that, although the fairness function is the same for all agents, the

actual fairness function can depend on cultural norms in the real world [67].
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Figure 3.8: Mean fitness when fairness functions 0-5 are applied at the deadline.

in case of no fairness check (function 0). However, the agents in population 1 still
reach a relatively high fitness (utility) level. Fair agreements evolve, on the other
hand, when the agents in population 2 use function 2 (a case with average fairness).
In this case the mean long-term fitness is approximately equal to 0.7 for all agents
(most agreements are thus located close to the symmetric point S in Fig. 3.3).

When stronger fairness functions (e.g., functions 3 through 5) are used by the
agents the roles reverse, and the agents in population 2 reach a higher fitness level
than their opponents in population 1 (see Fig. 3.8). Because of the strong fairness
check, many last-round agreements are rejected in this case and agents in popula-
tion 2 can demand a larger share of the surplus in the round before last. As a result,
the deadline is effectively reached one round earlier. This effect indeed occurs in our
experiments.

Conclusion. Our results show that fair outcomes can evolve in an evolutionary
system with a fairness model in the last round. However, there is a rather large
sensitivity to the actual fairness function that is used by the evolved agents; an
“average” fairness function yields symmetric results, whereas more extreme fairness
functions yield more asymmetric outcomes.

3.4.3 Fairness check in each round

This section studies the second fairness model, in which the responding agent re-
evaluates all potential agreements. The EA settings are the same as in the previous
section.

The results in Fig. 3.9 for fairness functions 1 are similar to the previous case
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Figure 3.9: Mean fitness when fairness functions 0-5 are applied each round.

(see Fig. 3.8). However, when fairness functions 2 through 5 are used, the agents in
both populations reach almost identical fitness levels. Most agreements now occur
in the vicinity of point S in Fig. 3.3. Note that the agents have no explicit knowledge
about the location of this point, and that this knowledge is also not incorporated
within the fairness functions. We also observe that agreements are now reached in
different rounds, whereas in earlier experiments without fairness most agreements
occur at the very end of the game.

Fig. 3.9 thus shows that the agents’ long-term behaviour is much less sensitive
to the shape of the fairness function: the various “stronger” fairness functions all
yield similar results. Figure 3.9 however indicates that when the agents use fairness
function 5, the mean fitness of both agents decreases. This is due to the increasing
number of disagreements which are a result of the strong fairness check.

We furthermore studied a 2-issue negotiation problem with an asymmetric Pareto-
efficient frontier, as shown in Fig. 3.10. In this case, agent 1 values both issues equally
important, whereas agent 2 has different valuations for each issue (his weights are
0.2 and 0.8 for issues 1 and 2 respectively). If each agent obtains the whole surplus
on his most important issue, agent 1 obtains 0.5, whereas agent 2 gets 0.8. This
outcome corresponds to the Nash bargaining solution (NBS), see Section 2.3.1. The
symmetric point (S), on the other hand, is located at ( 8

13
, 8

13
).9

Both solutions can be considered to be fair outcomes in different ways: the first
solution maximises the product of the agents’ utilities and also splits the surplus
equally, whereas in the second case equal utility levels are obtained for both agents

9This outcome corresponds to the Kalai-Smorodinsky solution, see Section 2.3.1.
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Figure 3.10: Resulting agreements in a single generation when the Pareto-efficient
frontier is asymmetric and fairness function 4 is used.

(see [101, Ch. 16] for a related discussion). In the computational results, we observe
that, when fairness functions 2-5 are applied, the agreements are divided and are
usually concentrated in two separate clusters (“clouds”), see Fig. 3.10. The issue
of the choice of and distribution over multiple “fair” agreement points seems an
important issue for further research, both in a computational setting as well as in
experimental economics.

We also experimented with different weight vectors and with m > 2. A general
finding is that extreme outcomes do not occur in the evolutionary process if the
agents apply a fairness check.

Conclusion. We have shown that fair agreements can evolve if fairness is evalu-
ated each round, even with strong fairness norms: the fairness of the deals is much
more stable w.r.t. the actual choice of the fairness function. Of course, the number
of actual agreements drops if a very strong fairness function is used, resulting in a
lower fitness for both parties. In case of two-issue negotiations with a symmetric
Pareto-efficient frontier, most agreements are reached in the vicinity of the symmet-
ric point. In the asymmetric case, fair solutions can also be obtained. The solutions
are then distributed over various possible outcomes, which can all be considered fair
in different ways.

In the following, we first derive the game-theoretic subgame-perfect equilibrium
for a relatively simple game (with only a single issue and using fairness function 4),
and then compare the results with evolutionary outcomes for this game.
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Payoff agent 1 Payoff agent 2
SPE 0.419 0.391
EA 0.391 (±0.022) 0.412 (±0.014)

Table 3.2: Comparison of the agents’ payoffs in the EA with SPE results.

Round Offer Offer Threshold Threshold
(SPE) (EA) (SPE) (EA)

1 0.609 0.58 ± 0.06 0.391 0.23 ± 0.21
2 0.375 0.39 ± 0.07 0.250 0.14 ± 0.13
3 0.500 0.48 ± 0.09 0.000 0.13 ± 0.13

Table 3.3: Comparison of the evolved strategies with game-theoretic (SPE) results
for each round.

3.4.4 Validation and strategy analysis

Although our incorporation of fairness aspects makes a game-theoretic analysis much
more complicated, SPE strategies can again be derived for a very simple version: the
game with only a single issue (m = 1) and fairness function 4. These settings were
chosen because of mathematical feasibility. The general equations are presented in
Appendix 2.1. A derivation for m = 1, n = 3, p = 1, and fairness function 4 is given
in Appendix 2.2.

Table 3.2 shows both the SPE results and the payoffs obtained by the evolving
agents (in the long run) in the a with m = 1, n = 3, p = 1, and with the (rather
strong) fairness function 4. Note that since m = 1, an agent’s payoff equals the share
obtained for issue 1. Results for the EA are obtained after 300 generations (averaged
over 25 runs). Notice that the SPE payoffs are in good agreement with the outcome
of the evolutionary experiments. However, in SPE agent 1’s payoff is slightly larger
than agent 2’s payoff. In the EA this is reversed, although Table 3.2 shows that
differences between theory and experiment are very small. We will further analyse
the evolving strategies below.

Table 3.3 compares the offers of the evolving agents (for each round) with SPE
results, showing a good match. From Table 3.3, it can be derived that agreements
are reached in all rounds, with some emphasis on the first round.10

Table 3.3 also shows the acceptance thresholds (the thresholds are calculated
based on the payoff which an agent expects to receive if he rejects the current offer,
see Appendix 2). Because the thresholds in rounds 2 and 3 are much lower than the
obtained utility, the thresholds in these rounds are not really relevant in SPE. This
explains the large variance of the thresholds in the EA and why these thresholds can

10Acceptance rates are approximately 39%, 22%, 20% in SPE in rounds 1-3, and 36±4%, 25±3%,
20 ± 2% for the EA in rounds 1-3.
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Figure 3.11: Average threshold values of the agent strategies in the EA in the first
round.

deviate from SPE predictions in these rounds. In round 1, the threshold is important
in SPE and influences the offer made. The experiments show a much lower average
threshold value than the SPE (see Table 3.3). Nevertheless, the thresholds influences
the offers made in the EA due to a high variance of the threshold values. We analyse
this more closely.

Figure 3.11 shows the evolution of the threshold value for the first round for a
single experiment. The indicate the variance in the population. Notice that this
variance and the volatility of the mean threshold is rather high. This forces the
offers in population 1 to be similar as in SPE.

In order to obtain an even better match with SPE results, we reduced the occur-
rence of frequent peaks by using a decreasing mutation step-size in the EA (instead
of self-adaptive mutation step-sizes, see Section 1.2.3). With this approach, the
mutation step sizes σi are gradually decreased in the course of evolution.11

At the beginning of each EA run, σi is set to 0.1 for all i (as before, see Table 3.1)
and then exponentially decrease until σi = 0.01 after 1000 generations. This pro-
cedure indeed reduces the fluctuations in the threshold values and the offers in the
long run. Results for experiments with this EA setting appear to be in excellent
agreement with SPE results, see Table 3.4. We found no significant effect of the new
mutation scheme on the evolutionary outcomes for m = 2, however. We suspect that
this is due to the integrative nature of the negotiation problem, where the results
obtained are already beneficial for both parties.

Conclusion. This relatively simple bargaining situation shows a good match

11A similar approach was applied in [3] for a genetic algorithm.
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Payoff agent 1 Payoff agent 2
SPE 0.419 0.391
EA with decreasing σi 0.416 ± 0.012 0.395 ± 0.009

Table 3.4: Comparison of the evolutionary agents’ payoffs after 1000 generations
(using exponentially decreasing mutation step-sizes) with SPE results

between theoretical (SPE) and experimental results. Furthermore, when fairness
norms are applied, the outcome of the negotiation process comes to depend on the
actual round in which an agreement is finally reached, while thresholds play an
important role in some of the rounds. We also showed that EA parameters can be
fine-tuned for a more stable situation if needed. This rendered an excellent match
with the SPE for m = 1.

3.5 Concluding remarks

We have investigated a system for negotiations, in which agents learn effective nego-
tiation strategies using evolutionary algorithms (EAs). Negotiations are governed by
a finite-horizon version of the alternating-offers game. Several issues are negotiated
simultaneously. Both negotiations with and without a risk of breakdown have been
studied. Our approach facilitates the study of cases for which a rigorous mathemat-
ical approach is unwieldy or even intractable. We presented computational results
for several difficult bargaining problems in this chapter.

We first validated the long-term evolutionary behaviour using the game-theoretic
concept of subgame-perfect equilibrium (SPE). When no risk of breakdown exists,
the last agent in turn proposes a take-it-or-leave-it deal in the last round and de-
mands most of the surplus for each issue. This extreme division is consistent with
SPE predictions. When a risk of breakdown exists, most agreements in the EA are
reached in the first round. If the finite game becomes long enough, the deadline is
therefore no longer perceived by the evolutionary agents and results actually match
SPE predictions for the infinite-horizon game.

We also modelled and studied the concept of “fairness”, where a responding agent
carries out a fairness check before an agreement is definitely accepted. This fairness
check was modelled in two ways: a responding agent considers fairness only at the
deadline or all the time, for any potential agreement. In both cases, fair outcomes
can be obtained but the outcomes in the second case are much less sensitive to
the actual choice of the fairness function. In case of an asymmetric bargaining
situation (where the players have asymmetric preferences), multiple outcomes then
exist which can be considered “fair” in different ways. We also found a good match
between the EA results and game-theoretic SPE predictions for a simple bargaining
game (concerning a single issue).
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An interesting line of research is to further explore the notion of fairness and to
compare the computational outcomes with results from experimental studies with
human subjects. Of particular interest is the study of asymmetric multi-issue bar-
gaining situations, where more than one outcome can be considered “fair”. This
raises several new research questions for experimental economics as well as compu-
tational sciences.





Chapter 4

Bargaining with multiple
opportunities

In the advent of ubiquitous application of agent technology, bargaining agents are
expected to play an essential role in electronic market places. The agents in a
competitive market are self-interested and can be equipped with the ability to au-
tonomously search for products and services and negotiate the terms of an agree-
ment. In this chapter,1 we focus on strategic aspects of bilateral bargaining within
a market-like setting.

We use the one-shot ultimatum game as the basic bargaining procedure for our
model, a well-known approach within the field of game theory. In this game (see
also Section 2.3.2), two players, a proposer and a responder, negotiate about the
division of a bargaining surplus (see Section 1.1.2). The proposer makes an offer
and the responder can only choose to accept or reject this offer. The ultimatum
game has been extensively researched, both theoretically and by experiments using
human subjects [67, 90, 107].

The ultimatum game models a negotiation between an isolated pair of players. In
a market setting, however, an agent’s behaviour can change if future opportunities
are taken into account. This chapter introduces a natural extension of the basic
ultimatum game in which fall-back opportunities are explicitly modelled. Both the
proposing and the responding agents have several bargaining opportunities with
different opponents before their final payoff is determined. In this way a market
place is modelled where several sellers and buyers are available.

The game is further extended to allow several issues to be negotiated simulta-
neously, as in the previous chapter; not only the price, but also other important

1This chapter is based on [38]: E.H. Gerding and J.A. La Poutré. Bargaining with posterior
opportunities: An evolutionary social simulation. In M. Gallegati, A. Kirman, and M. Marsili,
editors, The Complex Dynamics of Economic Interaction, Springer Lecture Notes in Economics
and Mathematical Systems (LNEMS), Vol. 531, pages 241–256. Springer-Verlag, 2004.
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attributes such as delivery time, package deals, warranty, and other product-related
aspects can be taken into account. This can reduce the competitive nature of the
game since trade-offs can be made to obtain win-win solutions. Furthermore, we
study the impact of search costs if an offer is refused and a new opponent needs to
be found. In addition, we consider the case where uncertainty exists about future
opportunities and a new opponent cannot always be found.

An important aspect within this setting is the information available to the agents
about their opponents. We distinguish between the complete information case,
where an agent’s current number of future bargaining opportunities is common
knowledge, and the incomplete information case, where this information is known
to the protagonist but hidden from the opponent. The complete information case
can be approached theoretically using game theoretic subgame-perfect equilibrium
(see Def. 18.3) given reasonable assumptions. The subgame-perfect results show an
extreme split of the surplus, similar to the ultimatum game: the proposer claims
the entire surplus, and the responder accepts this deal.

The incomplete information case, on the other hand, seems much more difficult
to analyse theoretically. We therefore apply an evolutionary simulation as described
in Section 1.2 to investigate this setting. We also compare the evolutionary and
the theoretical approach in the complete information case. The evolutionary out-
comes show a good match with the game-theoretic results. Moreover, the simulation
shows that results differ significantly if information about the opponent’s future bar-
gaining opportunities is not available: if the number of bargaining opportunities is
sufficiently high, the responder now obtains the largest share.

The outcomes in the incomplete information case, however, also depend on the
existence of positive search costs. Search costs stimulate agents to reach agreements
early and discourage both players to exploit the additional opportunities. In the
evolutionary simulation, the agreements are then similar to the one-shot ultimatum
game. A similar effect is observed if bargaining is terminated with a small probability
because no new opponent can be found.

This chapter is organised as follows. In Section 4.1 the bargaining game with
multiple bargaining opportunities is described. Section 4.2 provides a game-theoretic
analysis of the game in case of complete information. Section 4.3 outlines the evolu-
tionary simulation and Section 4.4 discusses the obtained results from the simulation.
Lastly, Section 4.5 concludes.

4.1 Description of the bargaining game

The modelled market consists of buyers and sellers who exchange a single good
through bilateral negotiations. At each bargaining opportunity, an ultimatum-like
game is played, where the proposer makes an offer and the responder can reject or
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Figure 4.1: A two-issue negotiation example in a market where each agent has two
initial bargaining opportunities (n = 2).

accept this offer.2 If an agreement is reached, both agents obtain a payoff equal
to their utility of the offer. For convenience, we use seller and buyer to denote a
proposer and responder respectively in the following (although we previously used
the terms agent 1 and agent 2, this is not suitable here since several buyers and
sellers can participate in a single “market” game).

In our model an offer consists of one or more issues. The utility is calculated as
in Chapter 3 (cf. Section 3.1): the seller’s utility us for an offer ~o can be written
as ~ws · ~o =

∑m
i=1 wi

s · oi, where ~ws is a vector containing the seller’s weights for
each issue and m is the number of issues. Similarly, the buyer’s utility function
ub = ~wb · [~1−~o], where ~wb represents the buyer’s weights. The utilities of the agents
are normalised between 0 and 1. The differences in weights of the two players
determine the degree of competitiveness of the negotiations (i.e., to what extend
trade-offs can be beneficial). We formalise the notion of competitiveness and address
this issue further in Section 4.4.3.

Each buyer and seller initially has up to n bargaining opportunities to reach an
agreement. In case of a disagreement the agents are newly matched with randomly
selected opponents, until no more bargaining opportunities remain. The number
of remaining bargaining opportunities we call an agent’s bargaining state, denoted
by γs ∈ {0, 1, . . . , n} for a seller and γb ∈ {0, 1, . . . , n} for a buyer. If an agent’s
bargaining state reaches zero, the agent obtains a disagreement payoff which is set
to zero.

An example for a two-issue negotiation is shown in Figure 4.1 from a buyer’s
perspective. The buyer, whose initial bargaining state is γb = 2, first encounters
a seller, seller 1, with bargaining state γs = 1. The seller proposes an offer ~o =
(0.5, 0.5) and the buyer refuses this offer. Because the seller has no more bargaining

2Alternatively, the multi-round alternating-offers game (e.g. see chapter 3) can be used. As
shown in chapter 3, however, outcomes are equivalent to the ultimatum game, if no time pressure
exists; agreements are delayed until in the final round a take-it-or-leave-it offer is made.
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opportunities his bargaining game ends and he obtains the disagreement payoff.
The buyer, on the other hand, can continue bargaining when matched with another
opponent, seller 2. In the example this opponent with γs = 2 offers (0.6, 0.6). The
buyer now accepts and the bargaining game ends for both agents.

Note that even though the agents initially have equal bargaining opportunities,
the matched agents can have different bargaining states. Having agents with dif-
ferent states is an important aspect of the market game, particularly when agents
are unaware of their opponent’s remaining opportunities. We assume that, once an
offer is rejected, agents cannot go back on a previous offer.3 We also assume that
there are an equal number of buyers and sellers in the market. This in contrast to
the work in e.g. [89], where markets are studied with unequal number of buyers and
sellers.

4.2 Game-theoretical approach

This section considers the game-theoretic subgame-perfect equilibrium (SPE) of the
above game where the agents’ bargaining states are common knowledge. A game-
theoretical analysis seems to be very difficult if the agents have incomplete infor-
mation of their opponent’s bargaining state. We will, however, drop the complete
information assumption in the evolutionary approach (Section 4.3). In the follow-
ing analysis we assume all agents of a specific type (i.e., buyer or seller) apply the
same negotiation strategy. This assumption is reasonable since the preferences are
identical for a given type.

In case of a single opportunity, the bargaining game is reduced to the ultimatum
game. The ultimatum game has a unique SPE where the seller (here the proposer)
claims the total share for each issue, and the buyer (the responder) accepts this take-
it-or-leave-it deal [90]. This result can be obtained by applying backward induction.
Intuitively, a rational buyer will accept any positive amount, which is always better
than obtaining the zero payoff in case of a disagreement. The SPE is precisely the
point where the buyer is indifferent between accepting and refusing.

We argue that the game with multiple bargaining opportunities and complete
information has an SPE with the same outcome as the ultimatum game: the seller
obtains the entire share, and the buyer receives the disagreement payoff, which is
set to zero.4 Consider a buyer with γb = 1, i.e. with a final bargaining opportunity
remaining. The buyer will then accept any positive amount offered by the seller.
An anticipating seller will then claim the entire share, as in the ultimatum game,
independent of γs. In SPE, the buyer’s payoff for γb = 1 therefore equals zero. Note
that this only holds if the seller is informed about the buyer’s bargaining state.

3Agents are said to have no recall [149].
4This holds for continuous divisions of the surplus.
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If γb = 2, the buyer has two bargaining opportunities. Using the above, we can
replace the payoff for refusing the seller’s offer when γb = 2 by the disagreement
payoff. The situation for γb = 2 is now equal to γb = 1: the buyer is indifferent
between accepting and refusing a value of zero and in SPE the buyer accepts this
deal, independent of γs. By backward induction the same holds for γb = n.

We note that, because the agents are indifferent to the bargaining state in which
the agreement is reached, actually several subgame-perfect equilibria can exist. In
all cases, however, the divisions are the same. Note furthermore that the above
argument only holds if the seller is informed about the buyer’s number of remain-
ing bargaining opportunities. If this information is not available, a game-theoretic
analysis seems much more difficult. An evolutionary simulation, however, is very
apt to analyse the case of incomplete information. We analyse both the completely
informed and the uninformed case in Section 4.4. First, the evolutionary system is
described in detail.

4.3 Evolutionary approach

We use an evolutionary algorithm to evolve the strategies of the agents. The evolu-
tionary simulation is depicted in Figure 4.2. The evolutionary algorithm is based on
the implementation described in Section 1.2.3. As in Chapter 3, each strategy in the
EA corresponds to an agent of a certain type (buyer or seller), and we use separate
populations to evolve the strategies of the two types of agents. The way in which
the fitness of the agents is determined, however, differs from the approach described
in Chapter 3. In the previous model, each agent was evaluated against all agents in
the opponent’s population. In this case, however, all agents together constitute a
market-like setting, where buyers and sellers can bargain several times with differ-
ent opponents before their final fitness is determined. Also because the interactions
determine the bargaining states of the agents, another approach is required here.

The fitness of the agents is determined as follows. The parental and offspring
populations are first combined to form a group of sellers and a group of buyers. The
agents are then evaluated by a sequence of pair-wise matches. For each match, two
agents are randomly selected (with replacement) and play the one-shot game. An
agent obtains a payoff in case an agreement is reached or the disagreement payoff
(which is zero) if no more opportunities are available for this agent. If an agent still
has opportunities remaining, his fitness remains undetermined. Note that, since both
agents can be in different bargaining states, the consequences of a disagreement may
be different for the individual agents. Because an outcome depends on many random
factors, each strategy is evaluated a number of times and the fitness is the average
of r payoff values. The parameter r is called the evaluation frequency. This way the
fitness becomes a more accurate measure of the expected payoff. The bargaining
games continue until all agents have obtained at least r payoff values.
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Figure 4.2: Iteration loop of the evolutionary algorithm.

Since both buyers and sellers start with the same bargaining state, in the first
periods the opponent’s bargaining states do not represent an ongoing bargaining
society. To prevent so-called initiatory effects and to model an on-going bargaining
society, a strategy’s fitness is only measured after the first payoff is determined. A
strategy is thus evaluated at least r + 1 times. Furthermore, we model a market
situation where the number of agents remains constant over time, also called a
steady-state market in [89]. Therefore, once the fitness of a strategy has been
established, the strategy can still be selected to play again but its fitness is no longer
affected by the outcome. The bargaining games are continued until the fitness for
each strategy has been established.

4.3.1 Strategy Encoding

The strategy, encoded on the chromosome, specifies either an offer or a threshold
for each bargaining state, depending on the type of the agent (i.e., sellers only have
offers and buyers only have thresholds). The threshold determines whether an offer
of the opponent is accepted or rejected: if the utility falls below the threshold the
offer is refused; otherwise an agreement is reached. A similar representation was used
in Chapter 3 for the alternating-offers game, although in that game all strategies
contain both offers and thresholds.

We distinguish between the complete information setting and the incomplete
information setting (see Section 4.1). The strategy representation depends on this
setting and is schematically depicted in Figures 4.3 and 4.4 for the complete and
incomplete information case respectively. In the incomplete information case (Fig-
ure 4.4), an offer or threshold is specified for each bargaining states of the agent. In
case of complete information (Figure 4.3), an offer or threshold is also conditional
on the opponent’s bargaining state.



4.4 Evolutionary simulation results 67

Seller ~o(1|1) ~o(2|1) . . . ~o(n|1)
Strategy ~o(1|2) ~o(2|2) . . . ~o(n|2)

. . . . . . . . . . . .
~o(1|n) ~o(2|n) . . . ~o(n|n)

Buyer t(1|1) t(2|1) . . . t(n|1)
Strategy t(1|2) t(2|2) . . . t(n|2)

. . . . . . . . . . . .
t(1|n) t(2|n) . . . t(n|n)

Figure 4.3: The strategies of a seller and a buyer for the market game with com-
plete information about the opponent’s bargaining state. The offers ~o(γs|γb) and
thresholds t(γb|γs) are conditional on the bargaining state of the opponent, where
γs, γb ∈ {1, . . . , n}.

Seller Strategy ~o(1) ~o(2) . . . ~o(n)

Buyer Strategy t(1) t(2) . . . t(n)

Figure 4.4: The strategies of a seller and a buyer for the market game, where the
players are uninformed about the opponent’s bargaining state. An offer ~o(γs) or
threshold t(γb) is only determined by an agent’s own bargaining state, since more
information is not available.

4.3.2 Mutation Operator

Although several mutation models were tried, the mutation model with exponential
decay showed a closest match with game-theoretic benchmark cases. We therefore
only report the results using the exponential decay model. This mutation operator
is explained in Section 1.2.3.

4.4 Evolutionary simulation results

The results are organised as follows. First, the game with complete information
is studied in Subsection 4.4.1 and the results are compared to the game-theoretic
(SPE) predictions. Subsection 4.4.2 studies the incomplete information case. Sub-
section 4.4.3 introduces a measure of competitiveness for multi-issue negotiations
and compares results for different levels of integrative negotiations. Finally, in Sub-
section 4.4.4 considers the effects of fixed search costs in the market game and
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Parental population size (µ) 30
Offspring population size (λ) 30
Initial standard deviations (σ) 0.1
Mutation model exponential decay
Standard deviation half-life (t) 400
Number of generations 4000
Number of runs per experiment 30
Strategy evaluation frequency (r) 20

Table 4.1: Default settings of the evolutionary simulation.

uncertainty about future opportunities.

4.4.1 Game-Theoretic Validation

This section considers a competitive (i.e., single-issue) scenario with complete in-
formation of the agents’ bargaining opportunities and compares the evolutionary
algorithm (EA) outcomes to SPE predictions. Default parameter settings for the
EA are shown in Table 4.1. Note that because of random fluctuations, the EA
results are averaged over 30 runs using the same settings.

In SPE the share of the buyers is zero and the sellers obtain the whole surplus
in case the initial number of bargaining opportunities of the players is finite, and
the bargaining state of the opponent is common knowledge (see also Section 4.2).
Figure 4.5 shows the EA outcomes for different values of n (initial bargaining op-
portunities). The results indicate an almost perfect match between evolutionary
outcomes after 4000 generations and game-theoretic outcomes, particularly when n
is small.

For larger values of n we find that, using the same EA parameter settings, the
evolutionary outcomes become somewhat less extreme. See also Figure 4.6, which
shows the long-term EA outcomes (after 4000 generations) for n up to 10. This
is because as n becomes larger, the complexity of the problem increases due to a
larger search space, making learning by an EA more difficult. However, a better
match for larger values of n also appears by adjusting EA parameters, such as the
evaluation frequency and the population size, to handle the increased complexity.
Details on tuning the EA are not treated here. Instead, we refer the interested reader
to previous research [126], in which different EA settings are systematically studied
for an alternating-offers bargaining game. Henceforth, we present only experiments
using uniform EA settings here.
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Figure 4.5: Development of the mean fitness (averaged over 30 runs) for complete
information setting with varying initial number of bargaining opportunities.

Figure 4.6: Results after 4000 generations (averaged over 30 runs) in case of complete
information.
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Figure 4.7: Results after 4000 generations (averaged over 30 runs) for incomplete
information settings with various n. The error bars indicate the standard deviation
of the averaged results.

4.4.2 Incomplete Information

We now examine the results when the agents do not know their opponent’s bargain-
ing states; the agents only know their own bargaining states. Although no explicit
information is available, the agents implicitly learn the distribution of the bargaining
states in the opponent’s population. This distribution is endogenously determined
by the strategies of the agents. The strategies, in turn, adapt to the distribution
of the bargaining states. This complex interaction is one reason why theoretical
analysis is difficult. An EA, on the other hand, is well suited to find outcomes that
emerge from such local interactions.

Results produced after 4000 generations of the EA for the incomplete information
case are shown in Figure 4.7, for different values of n (the initial number of bargaining
opportunities). These results are averaged over 30 runs. The error bars indicate
the standard deviation. Whereas in the complete information case the seller obtains
almost the entire surplus, the responder (i.e., buyer) has the best bargaining position
in the incomplete information case (see Figure 4.7). This holds as long as the initial
number of bargaining opportunities are sufficiently large (i.e., ≥ 5). Note that these
results are obtained even though the buyers’ and sellers’ initial settings are equal.

The results can be explained as follows. If the buyer is in her final state, she will
accept any deal (as in the ultimatum game). In other states, however, the buyer
can try to find a better deal elsewhere. Consider a seller in his last bargaining
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state. Because he does not know the buyer’s bargaining state, he can no longer
anticipate the buyer’s behaviour. In order to prevent a disagreement, the sellers
will then concede in the last bargaining state. The expected payoff in case of a
disagreement and the offers in earlier bargaining states will then also decrease. After
many generations, the simulation converges to an outcome where the seller concedes
almost his entire surplus in each bargaining state. We also observe that the seller
concedes slightly less if he has more bargaining opportunities remaining, resulting
in less extreme deals if n becomes large, as shown in Figure 4.7.

In the incomplete information setting the first-mover (here the seller), has no
information about his opponent. The responder, on the other hand, can make a
relatively more informative decision based on the seller’s offer. Whereas in the ul-
timatum game the proposer seems to dominate the outcome, a more competitive
setting allows the responder to obtain a considerable advantage. This result, how-
ever, holds only if the number of bargaining opportunities is finite and equal for
both players. Furthermore, the players incur no costs for refusing a deal. As we will
show in Section 4.4.4, even slight costs completely change these results.

When the number of initial bargaining opportunities is set higher than three, a
sudden transition in the long-term outcomes can be observed in Figure 4.7: up to
n = 3, the seller obtains almost all, whereas the buyer obtains the largest share if
n > 3. By increasing n, the number of possible states increases, making the buyer’s
behaviour less predictable for the seller. The value for which the transition occurs
depends on game parameters such as r and the competitiveness of the negotiation.
The latter will be discussed further in the next section.

4.4.3 Integrative Negotiations

An advantage of bilateral negotiation is the ability to negotiate complex contracts
with several issues. When mutually beneficial solutions are available, negotiations
are called integrative (see Section 2.3.3). We consider integrative two-issue negoti-
ations in this section and introduce the notion of competitiveness. We show that
the information in the integrative case has a very similar impact as in the compet-
itive case. Due to increased complexity, however, the evolutionary results are less
extreme when the number of bargaining opportunities is large.

The utility of an offer is an additive, weighted function of the share obtained
for each issue (see also Section 4.1). The weights for sellers and buyers for the two
issues are ~ws = (0.5 − α, 0.5 + α) and ~wb = (0.5 + α, 0.5 − α)T respectively, where
α ∈ [0.0, 0.5] is the so-called degree of competitiveness. When the parameter α is set
equal to 0, negotiations are purely competitive; if α = 0.5 there is no competition
at all. Note that the maximum social welfare, i.e. the maximum total utility that a
seller and a buyer can achieve together equals 2 · (0.5+α), where each agent obtains
(0.5 + α).
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Figure 4.8: Mean long-term outcomes for two-issue negotiations and α = 0.2.

Results for α = 0.2 are visualised in Figure 4.8. The results show that, as in the
competitive case, a transition occurs to a buyer-dominated outcome for sufficiently
large n and incomplete information. We find, however, that this transition already
occurs when n = 2 (see Figure 4.8). Only two bargaining opportunities are needed
to obtain an advantage for the responder, as supposed to four in the single-issue
game (Figure 4.7).

Figure 4.8 also shows a less extreme split compared to competitive negotiations,
particularly for large n. This occurs firstly since the strategy search space is in-
creased (a value for each issue needs to be learned), making learning more difficult.
Moreover, the win-win possibilities are fully exploited: if one of the agents slightly
concedes, the other agent can obtain a relatively large gain by negotiating a Pareto-
efficient deal. As shown in Figure 4.9, this effect becomes stronger as α increases.
In the extreme case, where α = 0.5, both agents can obtain the full surplus without
any concession.

Note that the EA parameters are fixed for the various game settings. As we
mentioned in Section 4.4.1 we can adjust the parameters to handle more complex
bargaining settings as a result of a larger n and an increased number of issues. By
increasing the population size and adjusting other parameters of the EA, we obtain
results which are closer to game-theoretic predictions.
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Figure 4.9: Mean long-term outcomes for n = 5 and different values for the com-
petitiveness (α).

4.4.4 Search Costs and Premature Termination

We further extend the bargaining game in two ways. First, we introduce search or
negotiation costs each time an offer is refused and agents engage in a new negotiation.
Subsequently, we consider the case where there exists uncertainty about whether a
new bargaining opponent can be found. Whereas we have assumed until now that
the number of bargaining opportunities remains fixed, there can be external factors
which influence the number of opportunities (e.g., if a seller has in the meanwhile
sold the good to another buyer). This is modelled as a probability that negotiations
terminate prematurely, i.e., before the final number of bargaining opportunities is
completely exhausted.

Search costs can represent the amount of money, time, or effort that an agent
may incur for finding a new opponent. It is shown theoretically that if buyers have
search costs, the sellers charge monopolistic prices in equilibrium [22, Ch.7]. We
consider the impact of search costs on the bargaining game where both buyers and
sellers have equal search costs β. The final utility is reduced by fixed search costs β
for each new bargaining opportunity. Only the first bargaining opportunity has no
costs.

Evolutionary outcomes for the complete and incomplete information settings
with different search costs are depicted in Fig 4.10. Negotiations are competitive
and buyers and sellers each have 5 initial bargaining opportunities. Search costs seem
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Figure 4.10: Mean long-term results as a function of the search costs (β) for n = 5.

to have little impact on the fitness in the complete information case; variations are
not statistically relevant. Although the fitness does not change, the actual behaviour
of the agents does: most agreements are now reached immediately. Without search
costs, agreements reached are distributed over the various bargaining states.

In the incomplete information case, on the other hand, even small search costs
have a drastic impact on the fitness of the agents, see Figure 4.10. The sellers claim
almost the entire share even if search costs are very small (e.g. 0.01) and equal for
both agents. Results are robust for different settings of the EA. These outcomes are
consistent with economic theory, which states that prices become monopolistic even
if search costs are infinitely small.

As in the complete information case, both buyers and sellers are stimulated to
reach agreements early in case of search costs. The final opportunity of the seller
is therefore almost never reached, removing the advantage for the buyer. The game
changes from a game with incomplete information, to a game where almost all
players complete a deal in their first bargaining opportunity. Now the seller can
again claim the entire surplus as in the one-shot game.

Similar outcomes are observed when bargaining for a buyer and/or a seller is
discontinued with a certain probability after each disagreement.5 Figure 4.11 shows
the long-term outcomes for different probabilities of premature termination after
each bargaining opportunity. The probability is set equal for buyers and sellers, and

5This is analogous to discount factors or a probability of break down in case of multi-round
bargaining, as used in e.g. Chapter 3.
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Figure 4.11: Long-term fitness values for n = 5 and incomplete information, when
negotiations are discontinued with a certain probability after each disagreement.

for each bargaining opportunity, but drawn independently. As with search costs,
the seller obtains the largest share if the probability is sufficiently high.

Note that the effect of premature termination is less extreme, however. This
is because search costs also affect the utility if an agreement is not reached, pro-
viding an additional incentive to reach agreements (otherwise, a negative utility is
obtained). In case of premature termination, on the other hand, an agent is indiffer-
ent between termination after the first bargaining opportunity and a disagreement
in the last bargaining opportunity.

4.5 Concluding remarks

We study the evolutionary dynamics of a market-like game in this chapter, where a
seller sells a single good and has several opportunities to do so. At the same time,
a buyer wishes to buy an item by trying several sellers. The terms of an agreement
are negotiated using an ultimatum-like game, where the seller proposes an offer and
the buyer can choose to accept or reject the offer. The game is extended to allow
for multiple opportunities for both the seller and the buyer if the deal is rejected.
This way a competitive market is modelled. We furthermore investigate multi-issue
integrative negotiations and the effects of search costs and premature termination if
a disagreement occurs.

The game-theoretic outcome using subgame-perfect equilibrium (SPE) for the
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one-shot ultimatum game predicts an extreme split of the surplus: the seller obtains
the whole surplus whereas the buyer obtains her disagreement payoff. We extend
the analysis for multiple bargaining opportunities with complete information of the
opponent’s bargaining state and find an equivalent outcome. A theoretical analysis
seems to be very difficult, however, if the bargaining states of the agents are not
common knowledge. An evolutionary simulation, on the other hand, is very well
suited to investigate such games with incomplete information.

We first compare the evolutionary results with the game-theoretical outcomes for
the game with complete information to validate the evolutionary approach. If the
initial number of bargaining opportunities is small, a very good match is found. In
larger games or when the negotiations become less competitive, the EA shows some-
what deviating outcomes due to larger search space and the limited computational
capacity of the EA. We note that we mainly report experiments using uniform EA
settings in this paper. However, adjusting EA settings appear to improve results
even further for more complex games.

The evolutionary simulation shows a large impact of the additional bargaining
opportunities if the agents have no information on their opponent’s number of future
opportunities. Whereas in the complete information game the seller dominates the
market, the buyer is better off in the incomplete information setting, as long as the
number of bargaining opportunities is sufficiently high. By increasing the initial
number of bargaining opportunities a sudden transition is observed where the buyer
obtains the largest share instead of the seller. This occurs because the seller can
then no longer anticipate the buyer’s response and gives in to avoid a disagreement.

Similar outcomes are found for two-issue integrative negotiations. At the same
time, integrative negotiations produce less extreme evolutionary outcomes, both in
the game with complete and incomplete information, particularly if the number
of initial bargaining opportunities is large. This mainly occurs since the space of
possible deals increases. Moreover, the agents find win-win situations which benefit
one agent without affecting the payoff obtained by the opponent.

An integrative setting also already affects small games with incomplete informa-
tion: we find that for certain settings, a transition from a seller to a buyer dominated
payoff occurs even in case both agents merely have two initial bargaining opportu-
nities, whereas in the competitive case more bargaining opportunities are needed to
achieve the same result.

We also study the effect of search or negotiation costs in case a negotiation fails
and the agent needs to find a new opponent. Search costs induce players to reach an
agreement in the very first bargaining opportunity. This changes an incomplete in-
formation game into an ultimatum-like game with only a single bargaining opportu-
nity. Even very small search costs result in an extreme split where the seller obtains
almost the entire share, similar to the ultimatum game outcome. This is consistent
with economic theory which states that even infinitely small search costs produce



4.5 Concluding remarks 77

monopolistic prices. The outcomes are similar but less extreme if search costs are
replaced by a probability that bargaining is discontinued after a disagreement. This
models the situation where uncertainty exists about future opportunities.

In this chapter we have shown that evolutionary simulations are extremely use-
ful to investigate negotiations with incomplete information, which are unwieldy to
analyse theoretically. Using evolutionary algorithms, we can simulate complex in-
teractions involving a large number of agents, as is the case in bargaining with
multiple opportunities. It is interesting to further refine the model to specific real-
world settings, where for instance agents have incomplete information about their
own future number of bargaining opportunities. Another interesting extension is
allowing agents to return to previously encountered opponents.
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Bargaining systems for business
applications





Chapter 5

Competitive market-based
allocation of consumer attention
space

In this chapter,1 we consider an e-business application of automated negotiation
using software agents. We present a framework for a distributed Competitive
Attention-space System, CASy, to allocate the scarce resource that is consumer
attention via the techniques of dynamic market-based control [20, 23, 43] and adap-
tive software agents (see see Section 1.1.3 and [47, 60, 144]). In the example of
an electronic shopping mall, CASy recommends shops to a consumer: the task of
matching a consumer to a set of suitable shops is delegated to the individual shops,
each of which evaluates the information that is available about the consumer and
his or her interests (the consumer’s interests and other information which the con-
sumer is willing to provide; e.g. keywords, product queries, and available parts of a
profile). Based on this information and on their domain knowledge, shops can make
a monetary bid in an auction where a limited amount of consumer attention space,
or banners, for the particular consumer is sold.

To facilitate CASy, the system is designed as a multi-agent system (see Sec-
tion 1.1.3) where each shop is represented by a software agent that executes the
task of bidding for the attention of each individual consumer. The use of learning
software agents allows shops to rapidly adapt their bidding strategy such that they
only bid for consumers that are likely to be interested in their offerings. Further-

1The results of this chapter have been published in [17]: S.M. Bohte, E.H. Gerding, and J.A. La
Poutré. Market-based recommendation: Agents that compete for consumer attention. ACM
Transactions on Internet Technology, Special Issue on Machine Learning in the Internet, August
2004 (to appear). A shorter version appeared as [16]: S. M. Bohte, E. H. Gerding, and H. La Poutré.
Competitive market-based allocation of consumer attention space. In M. Wellman, editor, Pro-
ceedings of the 3rd ACM Conference on Electronic Commerce (EC-01), pages 202–206. The ACM
Press, 2001.
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more, efficient bidding for each customer is only feasible when automated: hence
the use of software agents. These agents allow a shop to process a large number of
small transactions, and enable them to make a deliberated bid for every customer
entering the shopping mall.

In CASy, shops react to consumer behaviour and to behaviours of other shops,
yielding various interdependencies in the commercial effects related to being dis-
played together with competitors. For various basic and simple models for on-line
consumers, shops, and profiles, we demonstrate the feasibility of our system, i.e.,
that proper matchings of consumers with shops are achieved, and that shops can
learn their niche in the market, even in the case of such interdependencies. Es-
pecially, to validate the economical concept of the market mechanism underlying
CASy, we develop an evolutionary system for bidding supplier agents. In this ap-
proach, the agent system is investigated like an (adaptive) economic market, as in
agent-based computational economics (ACE) (see also Section 1.2, and Chapters 3
and 4).

Furthermore, in this chapter we reflect on the merits of the system, and assess
the advantages and issues that need further attention, from both the technological
and the economical point of view. In [17] we extend this work and also develop
adaptive software agents that learn bidding strategies based on neural networks and
strategy exploration heuristics.

We note that the mechanism we describe is not limited to the example of the
electronic shopping mall, but can easily be extended to other domains where (pre)
selection of possibilities has to be guided, like banners on more general websites,
attention spaces on mobile devices, or other types of marketplaces.

This chapter is organised as follows. First, Section 5.1 motivates the decen-
tralised, agent-based approach for allocating attention space, and discusses related
approaches. In Section 5.2, the design of CASy is presented. The evolutionary
simulation is explained in Section 5.3, whereas Section 5.4 contains the results.
Section 5.5 reflects on practical implementation issues such as privacy and the com-
munication overhead of the mechanism. Finally, Section 5.6 concludes.

5.1 Motivation and related research

Before describing CASy in more detail, we first elaborate on the merits of such a
system, and the motivation for using software agents. Also, we discuss related work.
In Section 5.1.1 we compare the decentralised approach with the more commonly
used centralised approach. In Section 5.1.2 we comment on the use of software
agents. Section 5.1.3 gives an overview of related work.
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5.1.1 Centralised vs. decentralised recommendation

With the advent of electronic marketplaces, scale limitations as encountered in the
brick-and-mortar world no longer apply: the supply side of the market is no longer
restricted by geographical considerations or lack of physical (shelf) space. At the
same time, novel problems are encountered, like how consumers can find their way
in a large marketplace where very many suppliers offer their products.

To this end, a mechanism provided by a trusted third party is desired to propose
relevant shops and products to a consumer in e.g. a virtual shopping mall. A central
filtering scheme is a feasible solution for several different business areas. For such
an approach, knowledge on both the user and of the shops, as well as knowledge on
the product domain needs to be stored in a central location in order to determine
appropriate matches. This approach is used in recommender systems like Amazon
and eBay [114] to recommend goods on specific domains such as books and CD’s,
and in shopbots or pricebots [46], as for instance BargainFinder [66]. Keyword
profiling is also a popular method for ranking online sites in search engines. This
amounts to contracts for charging monetary amounts for increased visibility, given
specific keyword entries, e.g. [52–54].

A central or personal filtering system works well in the case of suitable and well-
demarcated domains, as for instance for a book and music store. However, for a large
heterogeneous marketplace with many participating shops and consumers, several
complexity difficulties arise. This is due to the amount of relevant information that
has to be tracked and processed by the filtering mechanism in the form of relevant up-
to-date knowledge of e.g.: the consumer’s interest in different product domains and
shop categories; the shops’ products, ways of doing business, and business interest;
and ontologies and domain knowledge for various product categories. Also, the
weighing of multiple issues like service, quality, price, and product diversity (add-
ons and customisation of products) can be important.

Besides the computational complexity problems for information processing, this
requires the transfer of business information of shops towards the central system as a
trusted third party. Such a practice encounters many objections by businesses, even
if only product catalogues are concerned [78, 135]. In addition, a central mechanism
still needs to make decisions about what to display in which order to a consumer, in
a way that is reasonable to all parties: all the suppliers and consumers. A fair and
general ’ of interests (utilities) of different market parties is usually not possible,
however, and concepts like Pareto-efficiency (see Def. 4.3) are used instead.

Thus, central filtering mechanisms may suffer from increasing (computational)
complexity as well as serious objections and obstructions from commercial parties
in various sorts of business areas.
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5.1.2 Use of adaptive software agents

We believe that the system as presented is the natural evolution of auction-based
allocation systems like those currently employed by internet companies like Google
(for sponsored keywords, [52]) and Overture (for banner targeting, [53]). Whereas
these pre-cursor systems rely on the human factor to set essentially static prices
for particular goods, the use of software agents in our system in principle allows a
market-party to assess the value of each individual prospect, if desired at a very
detailed level, as well as take into account real-time business-related domain knowl-
edge and strategies. The implementation of adaptivity into the software agents
allows the “market” for consumer attention to function more efficiently, where the
targeting of potential prospects can be more precise, and changing buyer behaviour
can be tracked and followed. As such, agent-assisted recommendation in compet-
itive markets represents the next logical step for current auction-based allocation
systems.

5.1.3 Related research

Our work relates to the large body of research concerning market-based control [20,
23, 43]. This paradigm is essentially about controlling complex systems using a
(distributed) market mechanisms for allocating scarce resources. A large number
of applications exist such as the allocation of computational resources [23, 43], load
balancing and climate control [145]. Our work applies the paradigm of market-
based control to generating recommendations in a distributed fashion using software
agents.

Related to our approach for generating recommendations is a prototype called
MATE [91] (Multi-Agent Trading Environment) that performs market-matching us-
ing agent technology. In [91], merchant agents receive the profile of the consumer,
and each suggests one or more products to a personal consumer agent. The per-
sonal consumer agent then filters the appropriate products and ranks the remaining
products according to the customer’s preferences. In this approach, selection is
done on the consumer side, and significant knowledge on a product domain should
be incorporated in the personal consumer agent, being a task of a central party to
provide.

A more recent approach by Wei et al. [142, 143] has a number of characteristics
similar to CASy; they also apply a central auctioneer to shortlist the recommenda-
tions based on bids made by information providers (called recommending agents).
In their approach, a reward agent determines the reward or feedback for the rec-
ommending agents based on the quality of the recommendations as perceived by
the user. The rule used to calculate the reward is shown to be Pareto-efficient (i.e.,
maximise the social welfare) [142]. Based on this feedback, the bidding (recom-
mending) agents update their strategy using heuristic rules. The bidding strategy
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proposed here, on the other hand, is more general and adapted by machine learning
algorithms.2 Also, the feedback is directly obtained via the consumers, and it is up
to the supplier agent to determine the value of this feedback.

5.2 The design of CASy

In this section, we present the framework of CASy (Competitive Attention-space
System) for matching consumers with relevant suppliers in the case of an electronic
shopping mall. We note that the framework we describe is not limited to the ex-
ample of the electronic shopping mall, but can easily be extended to other domains
where (pre) selection of possibilities has to be guided, like banners on more general
websites, attention spaces on mobile devices, or other types of marketplaces. Instead
of addressing to the case of “shops” only, we henceforth mainly use the more general
term “supplier” to refer to the suppliers of goods or services.

Figure 5.1: Advertisements are shown in the form of banners. The banner list is
tailored towards a consumer’s characteristics.

When a consumer enters a shopping mall, he3 expresses his interest for certain
products and selects the business sector of his interest. The information about
his interest, possibly augmented by additional knowledge, is passed on to potential
suppliers in the sector. The suppliers subsequently compete against each other in
an auction by placing bids to “purchase” one of a limited number of entries of
attention space for this specific consumer. Finally, the consumer is shown the list of
winning suppliers, using for instance banner advertisements. An example is depicted
in figure 5.1.

Software agents (see Section 1.1.3)) are used to facilitate the fine grain of inter-
action, bidding, and selection in CASy. For our mechanism, we have software agents
for the suppliers and for the enabling intermediary: the mall manager. The model

2We discuss results using evolutionary algorithms in this chapter. For an approach using neural
networks, see [17].

3“he” stands for “he or she.”
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Figure 5.2: Components of the shopping mall and their interactions.

of the electronic shopping mall is depicted in figure 5.2, showing both the software
agents and the actual economic players in the shopping mall: the consumers and the
suppliers. The participants within the shopping mall and their roles are discussed
in more detail in the sections that follow.

5.2.1 Mall manager agent

The Mall Manager Agent (MMA) acts as an intermediary between consumers and
supplier agents. The task of the MMA is to facilitate bidding and information dis-
semination processes by providing the auctions and additional customer profiling
services to the suppliers. Given privacy concerns, the consumer profile will not
automatically be communicated in full to the suppliers, as e.g. described in Sub-
section 5.2.2. Information on the consumers could be stored within the MMA for
revisiting consumers, leaving open consumers who wish to remain anonymous. The
MMA applies the auction: it collects the bids of the supplier agents, selects the
winners, charges the selected suppliers, and enables their display. In Section 5.2.4
we address the auction in more detail.

5.2.2 Consumers

In the model of figure 5.2, the consumer directly communicates its interest and
preferences to the MMA, e.g. via a web page. Note, however, that the assistance
of a personal software agent for the consumer is conceivable. Preferences include
the product that is being searched after and various values for the attributes of the
product. The MMA can also consider information on a consumer’s profile. The
consumer profile consists of more generic information on the consumer. This could
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include regular personal information like general interests, previous acquisitions, as
well as age or zip code; but also general sales-related information like style or the
interest in issues as price, quality, and service. The consumer can either be queried
directly for this information, or the MMA can derive the information from previous
interactions. The consumer can restrict or disable the dissemination of his profile
information. E.g., distribution of such information can be limited to for specific or
anonymised parts, or to general sales-related information that is derived from the
private profile.

5.2.3 Suppliers and supplier agents

Each supplier “owns” an agent that acts on the supplier’s behalf, called a supplier
agent. The main task of a supplier agent is to effectively purchase attention space.
The agent will do this by bidding on attention spaces that are to be displayed to
consumers it deems interesting, thus maximizing the supplier’s profits. To this end,
it has to evaluate (information about) consumers. The valuation of a consumer by a
supplier agent is closely linked to its bidding strategy: the bid should not outweigh
the expected profit (if the supplier is to break even) or percentage thereof. This task
can be complicated: the variety of consumers can be great, and the competitive
environment can change rapidly. Also, the supplier’s conception of the targeted
audience may deviate from its actual audience.

The agent can learn this targeting by for instance using the push-back informa-
tion from individual customers, e.g. the knowledge whether or not its advertisement
was selected by the customer (click-through), subsequent buying actions, or, to be
provided by the mall manager, (selected) click-stream information (e.g. time spent
on pages, mouse actions). Additionally, the agent can use supplier-specific knowl-
edge and (adaptive) rules for accurate targeting.

Along with a strategy for bidding on customers, a supplier agent is also equipped
with knowledge about the supplier. Such knowledge can contain amongst others
relevant business information on the supplier that is needed for the matching process.
This information should determine the supplier’s conception of its “niche” in the
market, and hence the type of preferred consumer. Typical business information
could be the products carried and the intended audience. Furthermore, the goals
and limitations of the supplier can be taken into account, such as the current quantity
of a certain product in stock or the service level.

5.2.4 Auctions

In this Section we address the auctions protocol and the payment procedure of the
MMA. A payment procedure specifies what should be charged and when. See also
Section 2.3.5, where various auction mechanisms are discussed.



88 Competitive market-based allocation of consumer attention space

Auction protocol

The actual choice of the auction protocol can depend on many factors. We focus
on the single-bid sealed auction, being a communication-efficient auction. With this
procedure, each supplier submits a single sealed bid for a particular consumer. The
MMA allocates the available positions to the highest bidders, where the first position
is allocated to the highest bidder, the second position to the second highest bidder,
and so on. In some environments the ranking is not important, whereas in other
cases the profits for the supplier depend on the position obtained. For this reason,
the choice of payment scheme matters, and is discussed below. Note that, since the
MMA executes the auction for each arriving consumer, suppliers losing an auction
could increase their bid in the next auction for a similar consumer.

Payment procedure

Several different payment schemes are possible for various auction procedures. In
the Vickrey auction, the winner pays the price of the second-highest bid (see also
Section 2.3.5). This is a prominent and widely-used auction type, which has been
shown to be efficient for independent valuations of the item [27, 133, 136]. The
auction is also robust, since revealing ones true preferences is the dominant strategy
in case of independent valuations.

For the case where multiple banners are shown concurrently, we apply an ex-
tension of the Vickrey auction where winners pay the (N+1) price, where N is the
number of items (here banners). This is an instance of the generalised Vickrey
auction, which has the same auction characteristics as above (see Section 2.3.5 for
details).

Note that in such a setup, the same price is charged to the winners of a banner
placement. The auction is only theoretically guaranteed to work well if the sold
goods (the attention spaces) are assumed to be identical, an assumption that is
dependent on the way a customer chooses from a list of alternative offerings. In the
simulations, we investigate models of customer behaviour where this assumption
is valid, as well as a model where it does not hold. In the latter case, we also
investigate another payment scheme, the so-called next-price auction. Here, each
winner pays the price of the next-highest bidder. Such more complicated auctions
are notoriously hard to theoretically demonstrate optimal behaviour for, and we use
the ACE methods (as discussed later) to show that in the simulations this auction
does work efficiently in the case where the valuation of an attention space depends
on the position it has on the list and when the highest position is the most valuable
(and the second-highest position is the next most valuable etc..).
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5.2.5 Effectiveness and feasibility

Although the typical business information for the supplier agent can contain many
variables that relate to those in a consumer profile, these cannot be matched directly.
Rather, the supplier must find and improve its actual niche in the market, especially
in the fine-grained advertisement mechanism of CASy. Similar observations hold
even more for the valuation of a consumer.

The need for accurate valuation and targeting is especially pronounced when
consumers are significantly contested by competing suppliers. We illustrate this
by the case of a very expensive department store: consumers arriving in a fancy
car are a priori as likely to buy at the store as consumers arriving in a middle-
class car. However, when a cheaper department store exists across the street, this
competition changes the behaviour of the latter consumers much more than of the
former. Similarly, in CASy the valuation of an advertisement space depends on the
selection of and competition between suppliers.

An N+1 auction mechanism is theoretically efficient in case of fully rational
agents and independent valuation of the items. However, if consumer purchases are
like consumer models 2 and 3 (see also Section 5.3.2), the valuation of advertisement
space also depends on the selection and competition between various suppliers. It is
then unclear whether an efficient allocation of the attention space will emerge, i.e., a
correct match between consumers and suppliers with the largest appearing interests
for being displayed together.

In the following, we will show via evolutionary simulation as in the field of agent-
based computational economics (ACE, [123]) that the market mechanism is indeed
effective and results in an efficient allocation. Furthermore, supplier agents learn to
properly evaluate their environment and thereby locate their niche in the market.

5.3 Evolutionary simulation model of CASy

In this section, we model the electronic shopping mall for an evolutionary simulation
as in ACE, based on Section 5.2. The goal of the simulation is to assess the feasibility
of the market mechanism of CASy (see Section 5.2.5). To this end, we will make some
additional assumptions and simplifications, which enables us to study, measure, and
visualise the emerging behaviour of CASy (results are given in Section 5.4).

5.3.1 Mall manager agent

The MMA has in the simulation 3 banner advertisements to dispatch (see also
figure 5.1), and executes the auction as described before.
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5.3.2 Consumer models

We abstract away from any interpretation of the profiles. Profiles are represented
by a vector of real values. In the simulations, the consumers are classified by a one
or two dimensional vector with entries in a [0 . . . 1] range. The profile can reflect a
consumer’s interests such as price segment, taste, or quality, or any combination of
characteristics projected on 1 or 2 dimensions. We thus model a class of consumers
for some given category of products. In the simulation of CASy, several consumers
with different profiles arrive and are contested by the suppliers in CASy.

The “buying” behaviour or feedback of the consumers is also simulated. This
enables the supplier agents to learn the proper bidding strategy. We first model
the purchasing behaviour of a single consumer for one isolated supplier, and then
extend the buyer behaviour to models with several displayed suppliers.

Buying behaviour model for one consumer and one supplier

For each supplier i, the expected gross monopolistic profits E〈πi(c)〉 is its average
gross profits for a possible purchase following the observation of a consumer of its
advertisement, while no other supplier is shown. We take

E〈πi(c)〉 = µiPi(c),

where Pi(c) denotes the monopolistic purchase probability for consumer profile c
and µi is a constant value related to the supplier’s average profit when a purchase
is made. Note that both µi and Pi(c) are taken as an externally imposed model for
interaction and are initially not known or available to the supplier.

In the simulation each supplier is given a centre of attraction ai, where Pi(c) is
maximised. We used two types of purchase probability functions Pi in the experi-
ments: (1) linear functions, where the Pi is proportional to the Euclidean distance
d(c, ai) in the following way:

Pi(c) = 1 − δd(c, ai),

and (2) Gaussian functions with the highest point corresponding to the centre of
attraction. The width of the Gaussian curve is then set by parameter σi. For
simplicity the maximal monopolistic purchase probability is set constant to 1. This
value can be chosen lower, but is chosen for maximal discrimination between various
advanced behaviour models (see Subsection 5.3.2).

Buying behaviour models for several displayed suppliers

As the consumer is presented with a selection of winning ”Consumer Attention
Spaces”, we assume that with some probability p he or she will buy a product. In
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effect, this stochastic behaviour can be modelled as meaning that a single presen-
tation of banners results in an amount p of products being sold: how much and at
which recommended supplier (the buying behaviour) is formalised in the Customer
Buying Behaviour Models. Here, we present several Customer Buying Behaviour
Models, as the behaviour of consumers shopping for a specific product may be dif-
ferent for different product areas or different consumer populations.

We modelled three classes of consumer behaviour:

1. Independent visits with several purchases. In this model (see figure 5.3), the
consumer visits all displayed suppliers, and can buy products at several sup-
pliers (e.g. CDs).

2. Independent visits with one expected purchase. In this model (see figure 5.4), a
consumer visits all displayed suppliers and then buys on average one product
in total (e.g. a computer).

3. Search-till-found behaviour. In this model (see figure 5.5), the consumer visits
the suppliers in sequential order from top to bottom, until he finds a supplier
with the proper product, which he buys (e.g. a raisin bread).

The consumer behaviour in these models is stochastic: whether a product is
purchased by consumer c at a certain supplier j depends on a probability value Qj(c).
The monopolistic purchase probabilities Pi(c) are the basic parameters, determining
these probability values Qj(c) as shown in figures 5.3 to 5.5. The expected gross
profits E〈ρj(c)〉 for supplier j is then given by

E〈ρj(c)〉 = µjQj(c).

Notice that in the models of figure 5.4 and 5.5, the probability that an item is sold
at one supplier depends on the monopolistic purchase probabilities of its competitors
within the list. Importantly, for the third model, the actual position of a supplier
on the list influences the expected average proceeds, meaning that the individual
banners are no longer identical. We will address this issue, and a solution, in detail
in Section 5.4.5.

5.3.3 Supplier models

We will denote by gross profit the profit that a supplier earns on a product, before the
cost of advertisement is taken into account (but after accounting for all other costs),
and by net profit the profit after deduction of all costs, including advertisement cost.

The goal of a supplier is to maximise net profits, and therefore a supplier tries
to sell as many items as possible at the lowest possible advertising costs. The net
profit of a supplier is also referred to as the supplier’s payoff. The supplier agents in
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Figure 5.3: Consumer model of independent visits with several purchases, where Pi =
Pi(c).

Figure 5.4: Consumer model of independent visits with up to one purchase, where Pi =
Pi(c).

Figure 5.5: Consumer model with search-till-found behaviour, where Pi = Pi(c).
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the simulation have no initial knowledge of their own actual niche or payoff function
in the market (see Section 5.2.5).

A bidding strategy specifies the monetary bid for each possible consumer profile.
Given the feedback in the form of actual payoff from visiting consumers, a supplier
agent adapts its bidding strategy and thereby indirectly learns the consumer be-
haviour and its competitive environment determined by other supplier agents. Note
that these two factors are interrelated (see also Section 5.3.2). The strategy of the
agent is learned using an evolutionary algorithm (EA). The EA is explained below.

5.3.4 Evolutionary simulation of supplier agents

We simulate the adaptive behaviour of the supplier agents using an evolutionary
simulation like in the field of agent-based computational economics (ACE) [1, 42, 123,
127, 130, 138] and similar to the implementation used in previous chapters. Unlike
the previous implementations, however, the strategies of each supplier agent evolves
independently in a separate population. This is because each supplier agent is of a
different type (i.e., has a different centre of attraction) and therefore targets different
consumers.

We proceed as follows. Each supplier agent is represented by an evolving pop-
ulation of strategies. These strategies are evaluated and evolved according to the
amount of profit they earn in a CASy simulation. In such a CASy simulation, a
number of consumers arrive, supplier strategies bid for each of these, and the win-
ners get the expected payoffs as described in Section 5.3.2. The strategies that are
evolved after repeating this process many times, show the emerging behaviour of
the suppliers. Hence, the process of evolution finds effective strategies for a CASy
simulation.

An evolutionary algorithm (EA) as described in Section 1.2 is used to adapt the
strategies of the supplier agents. The fitness function and the strategy representation
are explained below. For further implementation details, see Section 1.2.3.

Fitness evaluation

The fitness of a strategy is equal to the average profits obtained. The actual profit
naturally depends on the context, i.e. the profiles of the visiting consumers and
the bidding strategies used by the opponents (viz. the competing shops). The
populations therefore co-evolve. In order to obtain an adequate indication of the
performance, the fitness measure is based on several trials with different opponent
strategies. The fitness of the opponent strategies is determined concurrently.

We now give a more detailed description of the steps used to determine the fitness
of the suppliers’ bidding strategies.
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1. For each of the suppliers combine the offspring and parent population into a
single larger population. We now have m populations, one for each supplier.

2. Reset all previously made profits.

3. Select randomly a single strategy from each population. These bidding strate-
gies are used by the suppliers in the competition. If the competitor is set to
random (as in Section 5.4.2), however, the strategies are evaluated against
random bidding strategies.

4. Let a number of consumers with different profiles visit the shopping mall in a
sequential order. We use a fixed set of consumers that are evenly distributed
over the profile space (this reduces stochastic variation in measuring the per-
formance of the strategies).

5. For each consumer the supplier obtains feedback on the obtained profits. When
a consumer visits the mall the following steps determine the profits:

(a) Each supplier bids on the consumer using the selected strategy and given
the consumer’s profile. The strategy is basically a function which maps
the consumer profile to a bid. Below, the details on the strategy repre-
sentation are described.

(b) The mall manager agent (MMA) selects the winners and determines the
advertising costs, as described in Section 5.2.4. Only suppliers who bid
higher than zero will participate in the negotiation.

(c) The MMA shows the list of selected suppliers to the consumer, who de-
cides how much to buy. The purchase amount is determined by the con-
sumer profile and consumer behaviour models described in Sections 5.3.2.

6. The total profits (purchases minus advertising costs) for each strategy are then
stored for later reference.

7. If the profits of a strategy have been determined a pre-set, fixed number of
trials (and the strategy has thus been tested against different opponent strate-
gies), this strategy is removed from the population.

8. The process is repeated from step 2 until all the populations are empty.

9. The fitness for each strategy then equals the average profit obtained in each
of the trials.
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Figure 5.6: Examples of two bidding strategies as learned by co-evolution. The
bidding strategy determines the bid value for any consumer profile. The top figure
shows a strategy for a one-dimensional consumer profile, whereas the bottom figure
shows a strategy for a two-dimensional consumer profile

Bidding Strategy Representation

In general terms, a supplier’s bidding strategy is a function which returns a bid value
given the consumer profile. Within the set-up of the simulation the profile has either
one or two dimensions. In case of a single dimension, the strategy is represented using
a piece-wise linear function that returns the bid given a value along the consumer-
profile axis. For a two-dimensional consumer profile, the strategy is represented
by triangular planes. Examples of a bidding strategy for a one-dimensional and
two-dimensional consumer profile are given in Fig. 5.6 The piece-wise linear bidding
strategies are encoded on the chromosome as follows. In case of a one-dimensional
profile, the chromosome contains (x, y) coordinates for each of the defining points
(the number of defining points is a parameter in the simulation), where x is the
consumer profile and y the bidding value. The bidding values for the edges of the
consumer profile are always specified within the chromosome. The bidding value
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for a given consumer profile is then calculated by interpolation between two points
neighbouring of the consumer profile on each side.

For a two-dimensional consumer profile, the strategy is represented by triangular
planes. The strategy is constructed using Delaunay triangulation of the (three-
dimensional) defining points. The bidding value is then determined by interpolation
between the three vertexes of the triangle containing the given consumer profile.

5.3.5 Measure for proper selection of suppliers

The selection procedure in an auction should ultimately lead to an appropriate
selection of suppliers for consumers. We start from the economic point of view of
optimizing the revenue of the collection of shops in the shopping mall as a whole.

Consider the n suppliers with the largest expected payoffs for a given consumer.
We measure the proportion of properly selected n suppliers as the fraction of these
n suppliers that are present in the actual list of 3 displays shown to the consumer.

From the consumer point of view, we can interpret the expenditures of a con-
sumer at a supplier as a measure for his interest in the supplier. In case that the
ratio between expenditures and payoff within a certain business sector is similar
for the suppliers in that sector, the above measure is related to both the consumer
interests as well as the supplier interests.

5.4 Results

We performed a number of experiments in the e-shopping-mall simulation outlined
in Section 5.3. The results are given and discussed in this Section.

5.4.1 Simulation settings

Table 5.1 shows the parameters and their values which are varied for different sim-
ulation runs. For a description of the mall parameters refer to Section 5.3. For
a description EA parameters, see Section 1.2. Two of the parameters are further
explained below.

• Expected gross monopolistic profit functions (E〈π〉). The E〈π〉-functions are
explained in Section 5.3.2. The applied settings are specified in table 5.2.
Figure 5.7 shows the functions “set2” for 8 different suppliers and a one-
dimensional consumer profile. The functions defined in “set3” have different
µi and δ combinations for each supplier; µi varies between 0.5 and 1.0, and δ
between 1.0 and 2.0.

• Number of defining points. A supplier has to obtain a bidding function on the
space of consumer profiles. The function that is learned is an interpolation
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Parameter Value
EA Parental population size (µ) 25
Parameters Offspring population size (λ) 25

Selection scheme (µ + λ)-ES
Mutation model self-adaptive
Initial standard deviations (σi(0)) 0.1
Minimum standard deviation (ǫσ) 0.025

Mall Number of suppliers 8
Parameters Number of banner spaces (N) 3

Maximum bid value 1.5
Consumer behaviour model 1 / 2 / 3
Expected gross monopolistic profit (E〈π〉) set1 / set2/ set3
Profile dimensionality 1 or 2
Number of defining points 8 (1-D,), 16 (2-D)
Number of consumers 50 (1-D), 100 (2-D)

Table 5.1: Default settings of the simulations.

E〈π〉 function name Type µi δ σ
Set1 Linear 1.0 2.0 -
Set2 Gaussian 1.0 - 0.2
Set3 Linear variable variable -

Table 5.2: Consumer purchase functions and their general settings.

function, based on a number of defining points. For the one-dimensional case,
this results in a piecewise linear function; for the two-dimensional case, we
obtain the function values by triangularisation of the profile surface.

5.4.2 Single advertisement model

In this subsection, we illustrate the use and evolution of the bidding function for a
supplier for a very simple setting, where the optimal bidding strategy is known from
auction theory.

The setting contains a single store competing against a random opponent for the
case of one banner. The random player bids any random value between 0 and 1.5.
Since a Vickrey (second-price) auction is used, it is a well-known dominant strategy
for the supplier to bid its true valuation (i.e. the expected gross profit) [136]; any
lower bid risks a missed profit-opportunity, whereas a higher bid might result in
direct loss. The dominant strategy maximises the supplier’s net profit, regardless
of the opponent’s behaviour. Thus, the store should learn the profit function as
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Figure 5.7: Expected gross monopolistic profits at the different stores for “set2”
function settings.

the bidding function. The results for experiments on this setting show that this
happens indeed. Typical, good results are shown in figure 5.8, where E〈π〉 is a
Gaussian (recall that piecewise linear functions are used).

5.4.3 Consumer model 1: independent visits with several
purchases

This consumer model assumes that expected purchases at each supplier can be
modelled by the same function as in the single banner case (see Subsection 5.3.2).

The results are shown in figure 5.9. Matching accuracy is measured in several
ways. We display the proportion of properly selected n suppliers for 3 banners and
n = 3, 2, 1 (see Subsection 5.3.5). The reason for including n = 2, 1 as well is
that the evolutionary system has some degree of stochasticity, and thus small errors
occurring frequently can have larger influence on individual outcomes (although
relatively little impact on the payoff obtained). Results using these two measures
show an almost perfect match. The results after 500 generations of the EA are
summarised in table 5.3.

5.4.4 Consumer model 2: one expected purchase

It is more difficult to get a stable system in this situation, since the expected amount
purchased at a supplier (and therefore the valuation of a banner space) depends on
which other stores are selected as well. Nevertheless, the simulation does stabilise,
and the results are comparable to the previous consumer model. See table 5.3.
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Figure 5.8: Example of a bidding strategy as employed by the supplier after co-
evolution no longer increased the profits obtained. Results are shown for a single
supplier competing against random supplier. Also shown is the dominant bidding
strategy.

Consumer model E〈π〉 n = 3 n = 2 n = 1
Regular auction settings
1 set1 0.95 ± 0.01 0.99 ± 0.00 0.99 ± 0.00

set2 0.96 ± 0.00 0.99 ± 0.00 1.00 ± 0.00
set3 0.92 ± 0.01 0.98 ± 0.00 0.99 ± 0.00

2 set1 0.94 ± 0.01 0.99 ± 0.00 0.99 ± 0.00
set2 0.95 ± 0.00 0.99 ± 0.00 1.00 ± 0.00
set3 0.90 ± 0.01 0.97 ± 0.01 0.99 ± 0.00

3 set1 0.73 ± 0.03 0.76 ± 0.07 0.79 ± 0.09
set2 0.83 ± 0.05 0.89 ± 0.06 0.92 ± 0.05
set3 0.75 ± 0.02 0.89 ± 0.02 0.97 ± 0.01

Next-price auction
3 set1 0.79 ± 0.03 0.92 ± 0.03 0.97 ± 0.02

set2 0.75 ± 0.03 0.92 ± 0.02 0.98 ± 0.01
set3 0.83 ± 0.02 0.95 ± 0.02 0.99 ± 0.00

Table 5.3: Matching results for consumer models 1 through 3. Results denote pro-
portions of properly selected n suppliers for 3 banners and n = 3, 2, 1. Averages
over 10 runs of the simulation are shown with the standard deviations.
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Figure 5.9: Matching results for consumers with independent purchases and E〈π〉
is set to “set2”.

5.4.5 Consumer model 3: search-till-found

In this model, it is not only important for the stores to be in the list, but also to take
into account the position on the list (and the other stores above him). Table 5.3
shows that it is indeed more difficult for the stores to find a good matching, in
particular when using “set1”. This occurs since all relevant suppliers prefer the very
top advertisement space and are willing to bid above their valuation (because of the
N + 1-price auction their payment remains relatively low). As a result, the bids
reach their limit value (even when this is set to 2.5).

Therefore, we have applied another auction payment procedure as well: each
of the winning stores pays the price offered by the next following highest bidder,
the so-called next-price auction. This procedure appears to improve the matching,
giving comparable results to other consumer models (see table 5.3). Note that a
store who obtains the first banner position now pays more than the other stores.
This is also reasonable, since the first position is actually more valuable.

We want to remark that we have chosen the maximal purchase probability to 1
(see Subsection 5.3.2) to have maximum difference between this consumer model and
the previous ones. When this value is lower, results will become more comparable
to the other models also for the regular auction setting.

5.4.6 Two-dimensional profile

We now consider the two-dimensional case, where each consumer profile corresponds
to a position within a square. The types of profit functions are similar to the previous
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Consumer model E〈π〉 n = 3 n = 2 n = 1
1 set1 0.95 ± 0.01 0.99 ± 0.00 1.00 ± 0.00

set2 0.90 ± 0.02 0.97 ± 0.01 0.99 ± 0.01
set3 0.93 ± 0.01 0.98 ± 0.00 0.99 ± 0.00

2 set1 0.94 ± 0.01 0.98 ± 0.00 0.99 ± 0.00
set2 0.92 ± 0.01 0.98 ± 0.00 1.00 ± 0.00
set3 0.93 ± 0.01 0.98 ± 0.00 0.99 ± 0.00

3 set1 0.85 ± 0.01 0.93 ± 0.01 0.97 ± 0.01
set2 0.75 ± 0.02 0.89 ± 0.02 0.97 ± 0.01
set3 0.82 ± 0.02 0.91 ± 0.02 0.94 ± 0.02

Table 5.4: Matching results for consumers with two-dimensional profiles. See also
table 5.3 for comparison.

Figure 5.10: Expected gross monopolistic profits E〈π〉 for “set2” function settings
and a 2-dimensional consumer profile.

case, extended for two dimensions. An example is shown in figure 5.10.
The matching results are comparable, but slightly less accurate than for one

dimension, see table 5.4. These can be explained through the more difficult learning
problem (more defining points are needed for the search function), and thus the
settings of the evolutionary algorithms could be further optimised for more accurate
learning results in this case.

Specialisation

Interestingly, the suppliers indeed find a niche in the market in case of competition.
This becomes clear in figure 5.11, which shows the intersection of a supplier’s bidding
strategy for two different consumer models, viz. 1 and 2. For consumer model 1,
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Figure 5.11: Contours of the average evolved strategy at level 0.5 of a supplier 1 at
generation 500 for consumer models 1 (left) and 2 (right) using “set2”. The points
indicate the centres of attraction of the suppliers’ Gaussian curves.

a supplier’s payoff is independent of the other suppliers displayed. In the second
consumer model, however, the payoff is shared amongst the displayed suppliers. In
the latter model the payoff thus depends on the competition. We find that this gives
supplier an incentive to locate niches in the market, and bid more in places where
less competition is present. In figure 5.11, the depicted supplier clearly expands
its market to the upper right, and reduces its bids in the lower left region, where
competition is relatively greater.

Supplier payoff

The above results mainly focus on the proportion of proper selection. We now
briefly discuss the supplier payoffs, i.e. the net profits (see Section 5.3.3). Firstly,
we find that in all experiments suppliers obtain positive accumulative payoff in
the long run. The strategies emerged are thus individually rational (see Def. 4.2).
Secondly, a supplier’s payoff depends both on its function settings E〈π〉 and on
the amount of competition. The latter is shown in figure 5.12, which displays the
accumulated payoff of the suppliers for consumer model 2 and “set2”. The more
isolated suppliers, in particular suppliers 4, 6, and 7, obtain a larger payoff than
those with much competition (see also figure 5.11). This is due to the difference in
advertisement costs. Note that this is in accordance with economics theory: in case
of large competition, the net profit of competing suppliers is close to zero.

5.4.7 Conclusions

The experiments show that a proper selection of suppliers emerges with very good
to perfect matches. In case consumer model 3 is applicable, a next-price auction
mechanism further improves the results. Furthermore, we find that all experiments
show positive supplier payoffs. Finally, we observe that shops find their customers
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Figure 5.12: The average accumulated payoff for each supplier using “set2” and
consumer model 2.

and their niche in the market via CASy.

5.5 Evaluation and further research

5.5.1 Reflections

We can identify a number of commercial and technological advantages of CASy. In
CASy, proper matching does not have to be performed or enabled by a third party.
This significantly reduces the combinatorial complexity as compared to centrally
processing all product ontologies and information about consumers and shops. Fur-
thermore, shops have substantial autonomy and can thus incorporate local domain
knowledge and momentary business considerations in their bidding strategies and
thus in the ultimate matching process. Especially, they do not have to reveal sen-
sitive business information to a third party, and can take more sales aspects into
account: not only product pricing, but also service level, quality, product diver-
sity, or customisation of products. The system also enables them to quickly adapt
to market dynamics or their own internal situation (out-of-stock, discount periods,
promotion). Note that the relevance of the shop for the consumer is still expressed
via the monetary bidding procedure. The mechanism is also a form of dynamic
pricing of attention space.

There is much debate about whether or not advances in Information Technology
(IT) will increasingly make intermediaries within markets redundant (disintermedia-
tion) [37], or whether such advanced IT will help re-establish intermediaries because
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of new value-added services that become possible (reintermediation) [21]). The re-
sults in this chapter can be taken either way: on the one hand, we can conceive the
basic auction functionality performed by the MMA to be part of the customer agent,
replacing the matching function previously performed by central filtering mecha-
nisms. Alternatively, we noted that there are many possible value-added services
regarding user-profile enhancement that could be performed by a central shopping
mall intermediary. This conclusion is in line with recent arguments regarding the
effects of current agent technology on the disintermediation/reintermedation debate
[86].

The proceeds the electronic shopping mall can derive from the matching mech-
anism (through the auctions) can be used to facilitate additional intermediation
services to both customers and shops (e.g. micro payments, 24x7 intermediation).
Offering an effective matching mechanism adds considerable value to the customer
experience, and can thus be expected to be an important selling point for the elec-
tronic shopping mall, and entice suppliers to participate in the mechanism. It will
be interesting to investigate the exact economic conditions – such as at which price
the suppliers are no longer prepared to follow the customers – for this to be relevant,
but we leave that for future research here.

Some points need attention when further implementing CASy. In CASy, infor-
mation about a consumer is (partially) communicated to suppliers. At the same
time however, the consumer’s privacy requirements must be respected. We will not
extensively address this here, but just mention some approaches: having the con-
sumer decide what information he allows to be communicated, restricting the types
of communicated information in general, or conversion of personal information to
more sales-related properties. The latter could include restricting the profile to at-
tributes of the desired product (instead of the customer), like “expensive vs. cheap”,
“ultra trendy vs. conservative” etc. . . . Such attributes could in principle even be
queried from the customer. As argued in [63], no uniform solution for privacy de-
mands exist, rather “privacy will have to be dynamically tailored to each individual
user’s needs” and requirements.

There remains the issue whether a central entity like the shopping mall would
be willing to convey individual user related profile information. Google for instance
currently considers its click stream information a business secret. In the setup
we introduced here, however, the proceeds that the intermediary obtains from the
ongoing auctions, and possibly for additional advanced IT services, will be a strong
incentive for the intermediary to consider what parts of the profile information are
allowed to be disseminated by its clients (here, the suppliers). Note that when the
intermediary charges a (fixed) price for customer profile information services, such
information would constitute a sunk cost for each seller, and reduce the available
funds for placing advertisements, resulting in lower bids. Since such cost will reduce
all bids from all agents, the relative ordering of the bids remains intact and the
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market-based selection mechanism itself is not affected by such additional cost.

We remark that once individual shops receive customer (related) profiles, they
have the tools developed in information intensive personalised marketing research at
their disposal for determining how interested they are in each individual customer:
i.e. interactive marketing, database marketing, micromarketing and one-to-one mar-
keting [15, 49, 76, 77, 95]; in [118] these slightly different approaches are considered
in more detail. The information filtering mechanism we describe here is then the
gate controlling the flood of finely targeted business interests.

Another point concerns the communication between suppliers and shopping mall,
which is increased because of the bidding process and the communication of con-
sumer profiles to the suppliers. However, the communication in the mall is linear
in the number of customers, and also in the number of participating shops, and the
size of the consumer profile. The latter is also typically very small, e.g. up to 100
bytes. In a prototype implementation on a single PC, a single market comprising of
100 learning shop-agents was easily able to sustain 100 customers per second, and
still continuously update the internal state of the agents (the learning mechanism)
[122].

To scale to even larger settings, the market can be divided into a number of
segments, with each market handled by different agents. The profile then only
needs to be transmitted to agents within a particular market segments, reducing the
overall communication. We pursued this approach in a distributed prototype of the
electronic shopping mall ([122]). In the extended agent architecture of the prototype
different market segments are handled by sub agents (which can run on different
machines). In all, we do not perceive the somewhat increased communication as
a significant problem, but rather as an issue that can easily be addressed in the
process of framework-engineering if necessary.

5.5.2 Open problems and future research

We investigated the concept of CASy for several basic models. The results we de-
scribe here show that the market-based approach yields excellent buyer-seller match-
ing given adaptation of the bids made by the sellers. The ACE simulations have
been carried out to demonstrate feasibility and learnability of the concept, as these
simulations showed effective matching for different auction types and consumer be-
haviour models. It is also interesting to investigate how software agents can be
developed for more advanced settings: one such example would be the extension
of the simulations to a dynamical market, with sellers changing their profiles, or
sellers entering and leaving the market. For ACE feasibility and learnability stud-
ies, methods that can deal with such dynamic environments are only just starting
to emerge. As we demonstrated that the steady state version of the problem per-
se is both effective and learnable, we would expect that dynamic versions of the
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problem would also be learnable, but the effectiveness is then rather dependent on
the speed and quality of the machine learning techniques employed by the shop
agents as well as the actually chosen models for the dynamic environment. E.g.,
for methods such as neural networks (see [17]), the introduction of dynamics into
the market will mean that additional complexity in terms of effective (commercial)
exploration/exploitation strategies has to be introduced. At this point we leave the
investigation of dynamisation of the system as an interesting problem for future
research.

Other points that need to be addressed in future work should be concerned
with taking account of the role of (local) ontologies, of marketing and data-mining
techniques, and of partial consumer information. Furthermore, in this work, we
placed an emphasis on the N+1-price auction with single sealed bids. Other types of
auctions could be further investigated, for example addressing the possible feedback
given on bids of other participants (e.g. multi-round auctions) or to address the
revenue of the mall manager.

From the consumer’s point of view, we have interpreted the expenditures of a
consumer at a shop as a measure for his interest in the shop. CASy gives priority to
suppliers with the largest expected payoffs for a given consumer. This thus leads to
optimisation of the revenue of the collection of shops in the shopping mall as a whole.
In the case that within a certain business sector, the ratio between expenditures and
payoff is similar for the suppliers in the sector, this means that CASy completely
reacts on the interest of an individual consumer. However, across different sectors,
there may be differences or anomalies, leaving the extension of CASy with additional
(monetary) correction mechanisms to avoid such anomalies as an interesting open
problem. This is part of our future work.

Finally, our system CASy is complementary to existing recommendation systems.
It is important to know in what way these together could be used as part of a broader
system. Also, which application areas are more suited for the existing recommender
systems, and which for the CASy system.

5.6 Concluding remarks

In this chapter, we present a competitive distributed system, CASy, for allocating
consumer attention space (Section 5.2). By evolutionary simulation as in agent-
based computational economics (ACE), we show the conceptual feasibility of the
system (Sections 5.3 and 5.4). We modelled the various parts in the system in a
basic and simple way suitable for analysis, visualisation, and comparison, and show
that proper matchings emerged while suppliers can learn their niche in the market.
Finally, we reflect on the advantages, opportunities, and further open problems
concerning the proposed system (Section 5.5).



Chapter 6

Automated bargaining and
bundling of information goods

Personalisation of information goods becomes more and more a key component of a
successful electronic business strategy [2]. The challenge is to develop systems that
can deliver a high level of personalisation combined with, whenever possible, a high
adaptability to changing circumstances. In this chapter,1 we introduce a system
which can attain these properties through the manner in which it sells information
goods.

We consider a novel approach in this chapter, where bundles of information
goods, such as news articles, stock quotes, music, and video clips are sold through
automated negotiation. Bundling of information goods has many potential benefits
including complementarities among the bundle components, and sorting consumers
according to their valuation (see [9] and the references therein). The advantage of the
developed system is that it allows for a high degree of flexibility in the price, quality,
and content of the offered bundles. The price, quality, and content of the delivered
goods may, for example, differ based on daily dynamics and personal interest of
buyers of information goods.

The system as developed is also capable of taking into account business related
constraints. More specifically, it tries to ensure that customers perceive the bar-
gaining outcomes as being “fair” by having customers end up with equivalent offers
whenever that seems fair. This is important for customer satisfaction and acceptance
of the system by customers. Partly because of this fairness constraint the actual
bargaining process is not really one-to-one bargaining between seller and customer
but instead is one-to-many (i.e., between seller and customers).

In the developed system, autonomous “software agents” perform (part of) the

1This chapter is based on [120]: K. Somefun, E.H. Gerding, S. Bohte, and J.A. La Poutré. Au-
tomated negotiation and bundling of information goods. In Agent-Mediated Electronic Commerce
V, Springer Lecture Notes in Artificial Intelligence (LNAI). Springer-Verlag, Berlin, to appear.
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negotiation on behalf of the users of the system. A seller (or information provider)
agent negotiates with several buyer (or customer) agents simultaneously in a bilateral
fashion, using an alternating offers protocol like in Chapter 3. The agents are capable
of negotiating about several issues simultaneously, such as the price and the quality
of the offered goods. Chapter 3 showed that, using such a bilateral negotiation
protocol, efficient outcomes can be achieved after a process of learning from several
negotiations. In this chapter, we introduce strategies that are capable of finding
efficient solutions within a single negotiation (i.e., real-time).

To enable efficient and real-time multi-issue bargaining outcomes, we decompose
the bargaining strategies into concession strategies and Pareto-search strategies.
The concession strategy determines the desired utility level during the bargaining
process, whereas the Pareto search strategy looks for Pareto-efficient (see Def. 4.3)
outcomes that maximise win-win opportunities for a given a desired utility level.
Together these strategies produce offers and counter offers for the agents. An im-
portant contribution of this chapter lies in the actual development of Pareto search
methods that result in efficient solutions while, at the same time, bargainers make
concessions using a variety of concession strategies. To that end, we introduce
the orthogonal and orthogonal-DF method: two Pareto search methods. We show
through computer experiments that the respective use of these two Pareto search
methods by the two bargainers, combined with various concession strategies, re-
sults in very efficient bargaining outcomes (i.e., these outcomes closely approximate
Pareto-efficient bargaining solutions). We obtain these results without assuming any
a priori knowledge of other player, nor experience from previous bargaining games.

The remainder of this chapter is organised as follows. First, we introduce a
system for selling bundles of news articles through bargaining in Section 6.1. Section
6.2 discusses the buyer and seller agent in more detail and presents bargaining
strategies for multi-issue negotiations. In Section 6.3 we investigate the Pareto-
efficiency of the introduced bargaining approach through computer experiments. As
we only consider the Pareto-efficiency of the deals reached in this chapter, we do not
simulate the entire system as developed, but rather restrict attention to bargaining
with a single buyer. Experiments using one-to-many bargaining are investigated in
the next chapter. Related approaches such as auctions are discussed in Section 6.4.
In Section 6.5 we revisit our approach and conclusions follow in Section 6.6.

6.1 A system for selling information goods

The goal is to develop a system for the sales of bundles of news items where buyers
bargain over the pricing, quality, and content of the bundles. The negotiated con-
tract applies to a fixed time interval, which is typically a short period of time, e.g.
a single day. The bundle content defines which news categories the bundle contains.
The system distinguishes between k categories. We furthermore distinguish between
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low and high quality-of-service categories. If a category with low quality of service
is selected, a buyer receives only the news headlines for this category. A buyer can,
however, after reading the headline, decide to purchase the entire article. In that
case, a variable price is paid. Alternatively, the buyer can opt for a high quality of
service category, in which case the buyer obtains all the articles without additional
(variable) costs. In the following, we simply use quality to refer to the quality of
service.

The buyer negotiates about the variable price, the content, and the quality of
the categories in the bundle. At the same time, a buyer negotiates a fixed price
which is an upfront payment for the bundle as selected. Clearly, a high quality
category is likely to result in a higher fixed price than a low quality category. Both
buyer and seller have private preferences regarding such trade-offs between issues.
Differences in preferences allows for the possibility of win-win outcomes (see also
Chapter 3). The agents in the system can find these win-win outcomes using Pareto-
search strategies, without having to fully disclose their preferences.

The value customers attach to news items may fluctuate heavily due to daily dy-
namics. Moreover, there may be wide differences in personal interests of customers.
The advantage of the developed system is that it allows for a high degree of flexibil-
ity in the price, quality, and content of the offered bundles. The price, quality and
content of the delivered goods may, for example, differ based on daily dynamics and
personal interest of customers.

The system as developed is also capable of taking into account business related
constraints. More specifically, it tries to ensure that buyers perceive the bargaining
outcomes as being “fair” by having buyers end up with equivalent deals whenever
that seems fair. Due to the notion of fairness, negotiations are no longer independent
and bilateral, but are in fact one-to-many from the perspective of the seller. Fairness
and the way in which it affects the seller’s bargaining strategy is discussed in more
detail in Section 6.1.2. We first continue, however, by describing the bargaining
aspect of the system in Section 6.1.1. The bargaining protocol used is explained in
Section 6.1.3.

6.1.1 Bargaining using software agents

Within the system, autonomous software agents (see Section 1.1.3) perform (part
of) the negotiation on behalf of the seller and the buyers. A buyer agent is a software
agent owned by the buyer, and a seller agent is owned by the seller. Buyers and
seller instruct their agent through a user interface (UI). Figure 6.1 depicts, at a
high abstraction level, the bargaining process between a buyer and the seller. There
are roughly three possibilities for implementing the starting time of the negotiation
process: buyers can negotiate a contract before, after, or during the time that the
news becomes available. The system is set up in such a way that all three possibilities
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Figure 6.1: The bilateral bargaining process between a seller and a buyer using
software agents.

can be implemented.
Given a desired bundle content, a buyer agent can negotiate with the seller

agent about the fixed price, variable price, and the quality for each category. The
negotiated contracts apply to bundles of news items which become available during
a predefined and fixed time interval (e.g., a day). The value buyers attach to news
items may fluctuate heavily due to daily dynamics. Moreover, there may be wide
differences in personal interests of buyers. The advantage of the developed system
is that it allows for a high degree of flexibility. The price, quality, and content of
the delivered goods may, for example, differ based on daily dynamics and personal
interest of buyers.

6.1.2 Fairness and one-to-many bargaining

Potentially, bargaining can lead to unsatisfied buyers if buyers perceive the outcomes
of the negotiations as unfair. This can occur when, for instance, two buyers obtain
similar goods at the same time but end up paying very different amounts. Fairness
of negotiation outcomes is important for customer satisfaction, which in turn may
be important for a business’ long term profitability. The seller agent can prevent
unfair outcomes by incorporating a notion of fairness, whereby buyers are treated
in a similar fashion. This notion of fairness also implies that any information that
is revealed about buyers during negotiation or by using the system in general, is not
used to their disadvantage in relation to other buyers. This is also essential in order
for buyers to accept the system and delegate responsibilities to software agents.

In the system, the following notion of fairness is incorporated into the bargaining
strategy of the seller agent: within a limited time frame, the seller agent maintains
an equal expected utility level with buyers who are interested in an identical bundle
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content. To define fairness more formally, suppose a buyer reaches a deal at time td.
We say that this deal is fair, relative to a fixed interval ∆ > 0, whenever there exist
a start time ts, with td ∈ [ts, ts + ∆], such that the seller2 is indifferent between any
other deal reached within the interval [ts, ts + ∆].

Whenever price is the only negotiable issue, the notion of fairness simply implies
that all buyers interested in the identical bundle content end up paying the same
price for this bundle, given that the deals are reached within a given time frame.
This notion of fairness corresponds to the notion of envy-freeness in auctions [44],
adapted to the more continuous setting of bilateral bargaining. In our case, however,
negotiations concern several issues, in which case the expected utility level is used
rather than the price. Note that the values for the various issues, such as fixed
and variable price, can still vary for different buyers, since buyers can have diverse
interests. This is an essential aspect of personalisation which needs to be preserved.
Fairness, however, ensures that the seller’s expected utility for these different deals
is identical.

Because of the fairness imposed on the seller strategy, the bargaining process
between the seller and an individual buyer can also affect other negotiations which
occur concurrently. Fairness limits the bargaining options of the seller. Therefore,
bargaining between a seller and a buyer is not really bilateral, but is in fact one-
to-many. Note that this holds only from the perspective of the seller. The buyers
can normally not observe the negotiation processes with other buyers, and therefore
perceive the negotiations to be bilateral.

We note that besides fairness, also other business side-constraints may be imple-
mented. The actual way in which side-constraints, such as fairness, are implemented
may be important because it can alter the strategic behaviour of buyers as well as
the seller.

6.1.3 Bargaining protocol

The seller agent negotiates with many buyer agents simultaneously by alternating
offers and counter offers. An offer specifies the fixed price, the variable price (uniform
for all low quality categories), the bundle content, and the desired quality for each

category separately. Formally, an offer is described by the tuple < pf , pv,~b, ~q >,

where pf is the fixed price, pv is the variable price. Furthermore, ~b ∈ {0, 1}k is a
binary array describing the bundle content, where bi = 1 if category 1 ≤ i ≤ k is
selected, and bi = 0 otherwise, and ~q ∈ {0, 1}k describes the quality settings for each
category, where qi = 0 if a selected category is of low quality, and qi = 1 if category
i if of high quality.

2Note that since the preferences of the buyers are hidden, fairness is defined from the perspective
of the seller agent.
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Attached to an offer are also preconditions which specify until when the offer
is valid. If the offer is accepted within that time, the proposing agent is bound to
the conditions specified in the offer. Otherwise, the offer expires. We call the offer
combined with the preconditions a proposal. A bargainer can accept, reject, or place
a counter proposal. The bargaining process continues until an agreement is reached
or one of the bargainers terminates the process. Figure 6.2 depicts the alternating
offer bargaining protocol.

Figure 6.2: The bilateral bargaining protocol.

To accelerate the negotiation process, we allow concurrent negotiation threads
for the same bundle content with different quality settings. The buyer can therefore
submit several offers at the same time. In order to discern between threads, each
thread must have a different combination of quality settings for the selected cate-
gories. The seller can only respond by varying the fixed and variable price. The
thread in which the agreement is reached first determines the prices and quality
settings for the desired categories. Figure 6.3 depicts the one-to-many bargaining
process and the possibility of parallel negotiation threads between a buyer and the
seller.

Using the above protocol, offers submitted by the buyers could violate the notion
of fairness if these offers are immediately accepted by the seller. To provide a seller
with the opportunity to ensure fairness (as defined in Section 6.1.2), the bargaining
protocol allows for post-agreement negotiation: the bargainer who accepted the
offer can propose a post-agreement offer which the other party either accepts or
rejects.3 In case of an acceptance, the original offer is replaced by the post-agreement
offer. The process terminates after the post-agreement offer is proposed and is then
either accepted or rejected. Post-agreement negotiation can be used by the seller
to adjust the offers in favour of the buyers, such that fairness is ensured within the

3Post-agreement negotiation is a common approach in the single negotiation text literature [32].
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Figure 6.3: One-to-many bargaining with parallel threads.

defined time interval. Note that, in case of multiple issues, the seller can produce
a more favourable offer by conceding on one or more issues. Although the buyer’s
preferences are private and unknown to the seller, this approach assumes that a
buyer always prefers a lower (fixed or variable) price or a better quality.

6.2 Agents and bargaining strategies

In this Section we discuss the seller agent and buyer agent in greater detail. Addi-
tionally, we introduce bargaining strategies that generate good (i.e., closely approx-
imate Pareto-efficient) multi-issue bargaining outcomes.

6.2.1 Seller agent

The seller agent’s bargaining behaviour is based on the agent’s so-called aspiration
level, which we define as follows:

Definition 113.1 Aspiration Level An aspiration level of an agent refers to an
agent’s desired expected utility level.

Unlike common usage in the literature (where aspiration level is used as a point
of reference), the aspiration level is used here as the minimum expected utility the
agent is willing to accept at a certain point in time. If the expected utility of an offer
received by the buyer exceeds the aspiration level, the offer is accepted, otherwise the
offer is rejected. Whenever the seller agent makes a (counter) proposal, the offer’s
expected utility is set in a way as to match the aspiration level. The aspiration
level can change during the process of negotiation. The aspiration is adjusted using
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the concession strategy, whereas the generation of an offer (given a fixed aspiration
levels) is achieved by the Pareto-search strategy. These strategies are considered
more closely in Section 6.2.3. In this Section, we specify the seller agent’s measure
of expected utility. The seller’s expected utility us for an offer < pf , pv,~b, ~q > is
defined as follows:

us(< pf , pv,~b, ~q >) = pf + pv

k
∑

i=1

ei
sb

i(1 − qi), (6.1)

where the components ei
s of vector ~es denote the seller agent’s expectation about

the number of articles an average buyer will read for the duration of the contract,
specified for each category 1 ≤ i ≤ k. Note that bi(1 − qi) equals 1 if category i is
selected and is of low quality, and 0 otherwise. Therefore,

∑k
i=1 ei

sb
i(1− qi) indicates

the expected total number of articles an average buyer will read in the selected low-
quality categories (and for which the buyer pays an additional pv per article). The
seller agent can estimate ~es based on, for example, aggregate sales data.

Due to the notion of fairness, the seller agent cannot apply different aspiration
levels for different buyers in case of identical bundles (within the defined time inter-
val). Consequently, the seller agent must use the same measure of expected utility
in different (simultaneous) negotiations. A seller agent is therefore not allowed to
use knowledge of individual buyers, such as their past reading behaviour, to directly
discriminate between buyer agents in the negotiations. In other words, the seller
agent must use the same values for ~es in negotiations with different buyers (within
the defined time interval). We note, however, that the components ei

s of ~es need
not be constants, but can be functions as well. In the experiments described in Sec-
tion 6.3, for example, the expected number of articles read is a declining function
of the variable price pv. This incorporates the likely assumption that buyers who
prefer a high variable price, will purchase less additional articles on average than
buyers with a low variable price. This can be used to indirectly discriminate between
buyers, without violating the notion of fairness. We defer further discussion on the
topic of price discrimination until Section 6.5.

6.2.2 Buyer agent

The buyer agent acts on behalf of the buyer. The buyer can indicate her preferences
by specifying, for each information category she is interested in, the amount of
articles she expects to read. The buyer can furthermore select between several
negotiation strategies to be used by the agent and specify a maximum budget bmax

for the given bundle content and number of articles. The budget provides the agent
with a mandate for the negotiation; the total expected costs for the selected bundle
should not exceed bmax. The value bmax can also be interpreted as the buyer’s worth
for the bundle content and the number of articles specified by her preferences.
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Similar to the seller agent, the buyer agent’s bargaining behaviour is based on a
desired level of expected utility or aspiration level. Given an offer < pf , pv,~b, ~q >,
the buyer agent’s expected utility ub in case of an agreement is defined as follows:

ub(< pf , pv,~b, ~q >) = bmax − [pf + pv

k
∑

i=1

ei
bb

i(1 − qi)], (6.2)

where the components ei
b of the vector ~eb describe the buyer’s expectations regarding

the number of articles she will read, specified for each category. In case of a dis-
agreement, the buyer agent’s utility equals zero. Note that the part of Equation 6.2
in squared brackets is identical to seller’s expected utility (see Equation 6.1), except
that ei

s is replaced by ei
b.

As mentioned Section 6.1.3, the negotiation protocol allows for multiple negotia-
tion threads for the same bundle content. Given a bundle content with k categories,
in principle 2k threads are possible (by varying the selected quality of each category).
The buyer agent, however, selects only a limited number of combinations based on
the buyer’s preferences, to reduce the amount of communication. In the current
system the buyer agent initiates k + 1 threads. In the first thread the quality for all
categories is set to low. In the second thread, only the quality for the category with
the highest expected articles read is set to high. In the third thread, this is done for
the two categories with the first and second highest expected articles read, and so
on. Within a thread, a fixed price and a variable price are negotiated.

6.2.3 Decomposing the bargaining strategy

The buyer agents and seller agent are endowed with various bargaining strategies
that can bargain over multiple issues. We decompose bargaining strategies into
concession strategies and Pareto search strategies. Concession strategies determine
what the aspiration level of an offer will be at any decision point. Pareto search
strategies determine, given the current aspiration level, and given a particular history
of offers and counter offers, the actual (multi-dimensional) offer, i.e., the fixed price
pf and the variable price pv. Note that the quality settings are fixed for a particular
negotiation thread. As a result, the Pareto-search strategy in this case is only
concerned with continuous issues. In terms of a multi-dimensional utility function,
a (counter) offer entails both a movement of the so-called iso-utility curve and a
movement along the iso-utility curve. Given a specified utility level, an iso-utility
curve connects all (pf , pv) points which generate that utility (see Figure 6.4 for an
example). Concession strategies determine the movement of an iso-utility curve;
Pareto search strategies determine the movement along an iso-utility curve.

Pareto search strategies aim at reaching agreement as soon as the respective
concession strategy allows it. Therefore, it may be good for both parties to use such
an approach. The resulting agreements are then also Pareto efficient (see Def. 4.3).
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From a system design perspective, Pareto efficiency of the negotiated bundle is
desirable since it maximises win-win opportunities.

In Section 6.2.4 we introduce a particular class of Pareto search strategies. The
experiments in Section 6.3 show that if the seller agent uses this Pareto search algo-
rithm and buyer agents use a similar Pareto search algorithm, then the bargaining
outcome will closely approximate a Pareto-efficient solution given a wide variety of
concession strategies.

In the system the seller agent uses an instance of the Pareto search algorithms
combined with a concession strategy. Although a buyer is free to select other bar-
gaining strategies, the system is set up such that it is actually in the best interest of
buyers to have their agents use Pareto search strategies combined with a concession
strategy. We elaborate on this issue in the discussion in Section 6.5.

6.2.4 Orthogonal strategy and DF

Both buyer agent and seller agent may use what we call an orthogonal strategy as
the Pareto-search strategy. This strategy is probably best explained through an
example. Suppose, the buyer (with whom the seller bargains over the combination

of pf and pv) places the tth offer < pf (t), pv(t) > (since the remaining attributes ~b
and ~q remain fixed, we omit these attributes in the following). Moreover, the seller’s
concession strategy dictates an aspiration level of u′

s(t + 1): i.e., the (counter) offer
should have an expected utility of u′

s(t + 1). Based on this information, the seller’s
orthogonal strategy determines a counter offer < pf (t + 1), pv(t + 1) >, such that
us(< pf (t+1), pv(t+1) >) = u′

s(t+1) and the point (pf (t+1), pv(t+1)) lies closest,
measured in Euclidean distance, to the point (pf (t), pv(t)). Figure 6.4 provides a
graphical example of the orthogonal strategy. In this Figure, function fs denotes
the seller’s iso-utility curve at time t + 1, containing all points (pf , pv) such that
us(< pf , pv >) = u′

s(t + 1).
The use of the orthogonal strategy by both parties results in a mapping f from

a bargainer’s aspiration level at t to the aspiration level at t + 2. Given convex
preferences (cf. [72]) and fixed aspiration levels the mapping f can be shown to
satisfy the Lipschitz condition ||f(x)−f(y)|| ≤ ||x−y|| for all x and y in the domain
of f .4 Thus, given fixed aspiration levels and convex preferences, the orthogonal
strategy does imply that consecutive offers do not diverge. Figure 6.5 illustrates
the use of the orthogonal strategy by both parties for the case of tangent iso-utility
curves. It draws a sequence of two offers and counter offers with convex preferences
and a fixed aspiration level. The figure illustrates, for instance, how the buyer’s
offer at time t = 1 is transformed into an offer at time t = 3 (where the aspiration

4The proof is a straightforward application of convex analysis (cf. [140]) given that without loss
of generality we can assume that the preferences are bounded. That is, negative and extremely
high < pf (t), pv(t) > combinations can be discarded, without loss of generality.
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Figure 6.4: Example of the orthogonal strategy, where fs denotes the seller agent’s
iso-utility curve.

Figure 6.5: Sequence of two offers and counter offers with fixed aspiration levels and
convex preferences, where < p∗f , p

∗
v > denotes a Pareto-efficient offer. Here, fs and

fb denote the iso-utility of the seller and buyer agent respectively.

level remains constant, i.e., u′
b(1) = u′

b(3)).

The use of just the orthogonal strategy by both parties may lead to very slow
convergence to Pareto-efficient bargaining outcomes. To speed up the convergence
process we can add an amplifying mechanism to the orthogonal strategy. As the
amplifying mechanism we use the derivative follower with adaptive step-size (ADF).
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Henceforth, we will call this strategy the orthogonal-DF.
The derivative follower (DF) is a local search algorithm (cf. [61]). It adjust the

variable price pv returned by the orthogonal strategy by either subtracting or adding
δ to it depending on the result of the previous two adjustments, where δ is called
the step-size of the DF. Consequently, also the fixed price pf changes because the
adjusted offer still needs to generate the same expected utility level (specified by the
concession strategy). The difference between ADF and DF is that the step-size δ
becomes adaptive [26, 129]. We use the ADF proposed by [129]. Intuitively, the idea
is to increment the step-size relatively far away from a Pareto-efficient solution and
decrement it in the vicinity of a Pareto-efficient solution. Consequently, a quicker
and more accurate search of the solution space becomes possible. Algorithm 1 (on
page 119) specifies the orthogonal-DF in greater detail and figure 6.6 illustrates the
use of the orthogonal-DF by the seller (where the buyer uses the orthogonal strategy
only).

Figure 6.6: Sequence of two offers and counter offers with fixed aspiration levels
where the seller uses the orthogonal-DF and the buyer only uses the orthogonal
strategy.

6.3 Experimental setup and results

The previous sections outlined the general system for selling bundles of news items
to several buyers through negotiation. As discussed in Section 6.2.3, negotiation
essentially consists of two strategic aspects: the concession of the agents and the
Pareto search method. In this section we focus on the latter aspect of the nego-
tiations. By means of computer experiments we investigate the effectiveness and
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Algorithm 1 The orthogonal-DF strategy

The following is given: (a) the opponent’s last and before-last offer: O1 =<
pf (t), pv(t) > and O2 =< pf (t − 2), pv(t − 2) > respectively, (b) an agent’s utility
function u(< pf , pv >) and aspiration level u′(t+1) at time t+1, (c) the step-size δ,
and (d) the search direction sdr ∈ {−1, +1}. Based on this information the agent’s
orthogonal-DF computes the next counter offer O =< pf (t + 1), pv(t + 1) > by
executing the following procedure:

1. Use the orthogonal strategy to compute O′
1 =< p′f (t), p

′
v(t) > and O′

2 =<
p′f (t − 2), p′v(t − 2) >, i.e., the points on the iso-utility curve with expected
utility u′(t + 1) that lie closest to O1 and O2, respectively.

2. Compute d1 and d2, the distance of the opponent’s last two offers, i.e., d1 =
||O1 − O′

1|| and d2 = ||O2 − O′
2||, where || · || denotes Euclidian distance.

3. Update sdr: whenever d1 > d2 the orthogonal-DF “turns”, i.e., sdr = −1 · sdr,
otherwise sdr = sdr.

4. Update δ: decrease δ whenever the orthogonal-DF turns. For a number of
periods directly after a turn δ is not increased, and otherwise δ is increased
(cf. [129] for the details).

5. Compute the counter offer O =< pf (t + 1), pv(t + 1) >: set pv(t + 1) =
p′v(t) + δ · sdr. Next, calculate pf (t + 1) such that (pf (t + 1), pv(t + 1)) lies on
the iso-utility curve, i.e., u(< pf (t + 1), pv(t + 1) >) = u′(t + 1).
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robustness of the orthogonal and orthogonal-DF approach, to find Pareto-efficient
solutions for a wide variety of settings. We evaluate the robustness of the search
strategy by experimenting with various concession strategies on the buyer side.

Although the system enables buyers to initiate several concurrent negotiation
threads, within a thread the Pareto search strategy operates independently from
the other threads. For researching the efficiency and robustness of Pareto search
strategies it therefore suffices to consider only a single negotiation thread in the
experiments. Furthermore, the bundle content in the experimental setup consists of
a single category with a low quality of service. The experimental results generalise
to negotiations involving multiple categories: only the shape of the iso-utility curves
is affected by the number of categories. In the experiments the shape is varied using
different parameter settings.

A general specification of the buyer agents and the seller agent was provided in
Section 6.2. Sections 6.3.1 and 6.3.2 describe the agent settings which are specifi-
cally used within the experimental setup. In particular the agents’ preferences and
concession strategies are specified in detail in Sections 6.3.1 and 6.3.2 respectively.
The experimental results are discussed in Section 6.3.3.

6.3.1 Agent preference settings

We simulate the negotiation with a variety of buyer and seller preferences, expressed
by the agents’ expected utility functions (see also Sections 6.2.2 and 6.2.1). In the
experiments we consider only a single low-quality category. The number of articles
eb (we omit the index for clarity in the following) the buyer expects to read is
assumed to be a constant, set randomly between 1 and 20 at the beginning of an
experiment. The buyer agent’s expected utility therefore reduces to ub(< (pf , pv) >
) = bmax − (pf + pv · eb). Note that this results in a linear iso-utility curve in the
(pf , pv) plane (see e.g. Fig. 6.5). Furthermore, since the purpose is to demonstrate
the efficiency of the final deals reached, we set the buyer agent’s mandate bmax for
the bundle such that an agreement is always reached.

The expected utility for the seller agent is based on es, the expected number
of articles that the buyers will read on average in the (low-quality) category. In
contrast to the buyer agent, the expectation is not a constant but a function of the
variable price pv. It is assumed that buyers who are willing to pay a high variable
price are expected to read less than buyers with a low variable price (i.e. we assume
the law of demand holds cf. [72]). In the experiments we use the linear function
es(pv) = b − a · pv with b = 20 and a set randomly between 0.03 and 0.07 at the
beginning of an experiment. Note that the seller agent’s iso-utility curve is now
convex (towards the origin).
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6.3.2 Concession strategies

The buyers and the seller can each select their own concession strategies. Although
a seller agent’s concession in the main system can depend on the behaviour of all
buyers (i.e., one-to-many), in the experiments the seller agent’s strategy is simply to
decrease the desired utility level or aspiration level with a fixed amount each round
(more advanced strategies are considered in Chapter 7). The initial aspiration level
is randomly varied. Note that the number of buyers and their behaviour does not
affect the seller’s concession when this strategy is used.

On the buyer side, on the other hand, we implemented four classes of concession
strategies to investigate the robustness of the Pareto search strategy:

1. Hardhead. The buyer agent does not concede when this strategy is used; the
aspiration level remains the same during the negotiations.

2. Fixed. A fixed amount c in utility is conceded each round.

3. Fraction. The buyer agent concedes the fraction γ of the difference between the
current desired expected utility level and the expected utility of the opponent’s
last offer.

4. Tit-for-tat. This strategy mimics the concession behaviour of the opponent,
based on subjective (expected) utility improvement. If the expected utility of
the seller agent’s offers increases, the same amount is conceded by the buyer
agent. Note that the concession is based on an increment in expected utility
perceived by the buyer agent. The seller agent’s actual concession is shielded
from the buyer agent, as an improvement could also occur when the seller
agent moves along his iso-utility curve. Furthermore, note that the perceived
expected utility improvement could also be negative. To make the concession
behaviour less chaotic, however, no negative concessions are made by the buyer
agent.

6.3.3 Results

The seller agent and the buyer agent in the experiments negotiate in an alternating
fashion until an agreement is reached. The efficiency of the agreement is then
evaluated based on the distance of the final offer from a Pareto-efficient solution. We
measure an offer’s distance from a Pareto-efficient solution as the maximum possible
expected utility improvement for the buyer if a Pareto-efficient offer was made, all
else remaining equal. This is achieved by moving the buyer’s iso-utility curve until
the obtained deal is Pareto-efficient.

To evaluate the quality of the results we compare the outcomes using various
search strategies and concession strategies of the buyer agent. Table 6.1 provides



122 Automated bargaining and bundling of information goods

Pareto-search strategy
Concession strategy Random Orthogonal/DF DF/DF
hardhead 18.92 (±23.56) 8.03 (±11.44) 18.63 (±32.81)
fixed (c = 20) 26.52 (±34.49) 10.43 (±17.34) 28.82 (±46.71)
fixed (c = 40) 38.91 (±49.72) 16.21 (±23.84) 44.29 (±69.76)
fixed (c = 80) 42.12 (±56.88) 25.61 (±38.72) 48.84 (±72.12)
fraction (γ = 0.025) 30.26 (±38.37) 10.07 (±15.03) 32.25 (±52.81)
fraction (γ = 0.05) 31.53 (±40.00) 11.52 (±16.16) 28.52 (±52.13)
fraction (γ = 0.1) 37.81 (±48.82) 16.91 (±30.80) 26.28 (±42.20)
tit-for-tat 72.78 (±121.35) 59.60 (±113.27) 56.64 (±116.82)

Table 6.1: Average distance from Pareto-efficient solution for various buyer con-
cession strategies (rows) and buyer/seller search strategies (columns). Results are
averaged over 500 experiments with random parameter settings. Standard devia-
tions are indicated between brackets. Best results (see column Orthogonal/DF ) are
obtained if the buyer and seller agents use orthogonal search, and the seller agent’s
search is amplified with a derivative follower.

an overview of the results. The row labelled Random contains the outcomes when
both seller and buyer agents use a random search strategy. This strategy selects
a random point on the iso-utility curve.5 The distance of the final offer (from the
closest Pareto-efficient solution), when random search is used, lies between 1 and 3
percent of the total costs.

Although the inefficiency with random search is only small compared to the to-
tal costs, even better results are obtained when one bargainer (typically the buyer
agent) uses orthogonal search and the other (the seller agent) uses orthogonal-DF
(i.e., orthogonal search combined with a derivative follower). The results are shown
in the column labelled Orthogonal/DF of Table 6.1. The improvements are con-
siderable. The distance of the final offer as a percentage of total costs lies then, for
almost all concession strategies, between 0 and 1. Only for the tit-for-tat strategy
the distance lies around 1.8 percent. Notice that the Orthogonal/Orthogonal-DF
strategy combination is also robust, as best results are obtained using this strategy,
relatively independent of the concession strategy selected by the buyer agent.

Table 6.1 also shows the results if both buyer and seller agents use orthogonal-
DF search (column DF/DF ). These results are very similar to random, however.
The derivative follower relies on a consistent response from the opponent to signal
the right direction. If both use a derivative follower, this signal is distorted.

Notice that the average distance depends on the concession strategy used by the
buyer. Although in individual cases Pareto-efficient agreements (with zero distance)
are reached using the orthogonal/DF search, the average distance consistently shows

5Only the downward sloping part of the seller agent’s iso-utility curve is used.
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some (usually slight) inefficiencies, even when the buyer makes no concessions (i.e.,
the hardhead strategy). The reason for this is twofold. Firstly, the DF accelerates
finding the efficient solution by making, at times, large steps on the iso-utility curve.
At a certain point the algorithm passed the Pareto-efficient point, and then turns.
This way the offers keep oscillating around the optimal point. If the concessions are
sufficiently large, an agreement can be reached at a point which is less than optimal.

Secondly, the direction and step-size of the DF are based on changes in the
Euclidean distance between the seller and buyer offers through time. The distance
can be influenced by both concessions and movements along the iso-utility curve.
As the opponent’s iso-utility curve is unknown, the agents are unable to distinguish
between the two. This can mislead the DF whenever concessions are very large.
Two possible solutions are to make either small concessions, or have intervals with
no concessions allowing the search algorithm to find the best deal.

Particularly tit-for-tat results in a relatively high inefficiency, because of the
reasons described above. Recall that tit-for-tat uses a subjective measure of the
opponent’s concessions. In practice, the perceived utility increments are sometimes
quite large, resulting in bursts of very large concessions. If this occurs near the
agreement point this can result in inefficient outcomes.

To conclude, the orthogonal/DF strategy clearly outperforms other combinations
of search strategies in the experiments. Inefficiencies still occur, especially if the
concessions are large. A trade-off therefore exists between reaching an agreement fast
(by making large concessions) and reaching an efficient agreement. Since concessions
appear to influence the Pareto-efficiency of the outcomes, it is essential that a Pareto-
search strategy is evaluated together with a concession strategy.

6.4 Related approaches

In this section some related approaches for multi-issue negotiations are discussed.

6.4.1 Fuzzy similarity criteria

Related to our work, in [33] a heuristic approach for finding win-win trade-offs
between issues is introduced. Contracts which are similar to the opponent’s offer
are selected based on fuzzy similarity criteria, and given a desired utility level.
They use fuzzy similarity criteria because most of the considered issues take on very
limited discrete values. Based on these similarity criteria, an iterative hill-climbing
algorithm is used to find the most similar offer. This hill-climbing algorithm is
limited, however, to linearly additive utility functions.

By contrast, we consider negotiation over continuous issues (or issues that can
take on many values). For this problem domain, Euclidean distance is a more natural
choice than the similarity criterion. With Euclidean distance standard mathematical
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techniques (from fields such as convex analysis) are immediately at our disposal.
Moreover, implementing the similarity criterion entails a straightforward application
of standard techniques from numerical analysis. The orthogonal search method
finds, from the collection of offers that have the desired utility level, the offer closest
to the opponents last offer, measured in Euclidean distance. Unlike the heuristics
developed in [33], our approach is not restricted to linearly additive utility functions.

A possible limitation of any search method using only a distance method to
determine the counter offer, such as the orthogonal search method and the fuzzy
similarity criteria described in [33], is that the rate of convergence depends to a large
extent on the bargainers’ preferences. As we found in our experiments, convergence
rate is indeed often very slow (i.e., when both agents use the orthogonal strategy).
Therefore, we amplified the search using a derivative follower, which can converge
quickly to a Pareto-efficient solution. Slow rate of convergence is especially a problem
whenever software agents are not a priori restricted but can search for clever trade-
offs and at the same time make concessions (as is the case in our experiments). If the
search method is too slow, very little improvement in the efficiency can be realised
before a deal is closed. The developed orthogonal-DF, however, is sufficiently fast
and consequently can also work very well in conjunction with concessions.

6.4.2 Intermediaries

In the literature the difficulties with bargainers simultaneously making concessions
and searching for clever trade offs is generally avoided by assuming an intermedi-
ary [32, 62, 68, 101]. The mediator is inspired by the idea of a single negotiation text
(SNT). SNT is a mediation device suggested by Roger Fisher [36]. During negotia-
tion, the mediator first devises and proposes a deal (SNT-1) for the two bargainers
to consider. The mediator is not trying to promote the first proposal, rather, it is
meant to serve as an initial, single negotiation text; a version to be criticised by both
parties and then modified in an iterative manner. Modifications to the SNT-1 will
be made by the mediator based on the criticisms from the two sides. Thus, both
parties need to reveal (aspects of) their preferences to the mediator, hence trust
becomes an important issue. Furthermore, additional costs are often involved with
a mediator.

The orthogonal-DF method is somewhat related to the work of Ehtamo et al. [32].
They develop the method of improving directions which is a mathematical formali-
sation of the SNT method (with a mediator). In essence it is a multi-criteria decision
making gradient search method. Given a SNT, bargainers give their most preferred
direction of the next SNT which is just the gradient. The mediator then uses some
relatively straightforward procedure to determine the jointly improving direction
which is then used to determine the next SNT. The orthogonal-DF also searches for
such a jointly improving direction, but without the use of a mediator, however.
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6.4.3 Auctions

Another approach increasingly used to automate one-to-many negotiations is through
auctions. Although our system has characteristics similar to those of auctions,
bundling and negotiation of information goods have distinct properties which im-
pede the use of current available auction designs. Mainly, information goods have
negligible incremental reproduction and distribution costs [18]. The supply of goods
can therefore be virtually unlimited. Auctions, however, are more suitable when
resources are scarce.

Furthermore, information goods can be easily packaged in a wide variety of
configurations, resulting in multi-dimensional products and pricing schemes. Per-
sonalisation of information goods then becomes a key component of a successful
electronic business strategy [2]. As illustrated in this chapter, and in Chapters 3
and 4, a bilateral approach can be naturally used to perform multi-issue negotia-
tions. Traditionally, auctions have focused on price as the single dimension of the
negotiation. Although multi-attribute auctions have recently received increasing at-
tention [28, 93], the agents are usually required to reveal their complete preferences.
Moreover, the focus is on obtaining Pareto-efficient outcomes and profits are usually
not considered. In case of unlimited supply, however, such auctions may fail to pro-
vide sufficient profit for the seller. Because of the disentanglement of the concession
and Pareto-search strategies, the profits can be regulated by the concession strategy
(this issue will be further addressed in the next chapter).

A seller may also have business-related considerations for preferring a bilateral
bargaining approach. For example, the bilateral bargaining protocol allows for much
flexibility and can be easily applied in case of continuous sales. Using bargaining,
new buyers can enter the negotiation at any given time, and buyers can obtain the
good at any time by simply accepting a seller’s counter offer.

6.5 Discussion

6.5.1 The system revisited

Although the focus of this chapter is the problem of selling bundles of news items,
other types of (information) goods can also be sold through the developed system.
A key question for extending the use of the system to other application areas is,
however, if buyers and (to a lesser degree) sellers are willing to have software agents
automate the actual bargaining. A prerequisite would be that the traded goods have
a relatively low value and transactions are conducted frequently. Consequently, the
risks are low and an agent has many opportunities to learn from past experience
and gradually improve performance. Note that the negotiation procedure of the
system does not require both seller and buyer to use the same level of automation.
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Depending on the particular application of the system, it may be desirable for the
buyer to rely more or less on the assistant of the software agent.

An additional important aspect of the relevance to other application areas is the
potential benefit of using such a system. The developed system appears particular
suitable for selling complex goods with a high degree of personalisation and relatively
rapidly changing preferences (as is the case with the news items). More specifically,
within the system personalisation entails discriminating between buyers based on
the bundle price and the quality of service. Second-degree price discrimination is
the economic term for this type of personalisation.

In second-degree price discrimination the price depends on the quantity and/or
quality of the purchased good. The distinguishing aspect of second-degree price
discrimination is that buyers can self-select the best purchase. Traditionally, buyers
are offered a menu of price combinations. The work of [18, 59] discusses algorithms
which, given a particular pricing scheme, learn the best price combinations on-line.
They conclude that (especially in a dynamic environment) complex schemes are
generally not the most profitable due to the need of more learning.

The distinguishing aspect of the developed system is that instead of having ex-
plicit pricing schemes, buyers can bargain for the most appropriate bundle/price
combination. This can result in a similar (or even higher) degree of discrimina-
tion between buyers as with explicit complex pricing schemes. In the absence of
an explicit structure the seller is, however, more flexible in the degree to which she
discriminates. The seller does not have to a priori limit the complexity of the pricing
scheme. Whenever bundles of (information) goods are being offered, an additional
advantage is that, by initiating the negotiation process, buyers can explicitly ex-
press their interest in a particular bundle of goods. This may facilitate the process
of offering buyers the appropriate bundles (and consequently it may facilitate the
indirect discrimination between buyers).

6.5.2 Bargaining and Pareto efficiency

In the system the seller agent uses the orthogonal-DF as the Pareto search strat-
egy combined with a concession strategy. The concession strategy determines the
next concession relatively independently of the ongoing bargaining process with a
particular buyer. The idea is that, on the one hand, bargaining with a particular
buyer should lead to finding the best possible deal for both parties, given the seller’s
desired expected utility level. That is, the bargaining outcome should closely ap-
proximate a Pareto-efficient solution. On the other hand, the one-to-many aspect
of the bargaining process (i.e., bargaining with more than one buyer) should guide
the updating of the concession strategy. Thus the seller uses the disentanglement
of the bargaining strategy (in a concession and Pareto search strategy) to distin-
guish explicitly between the one-to-many and one-to-one aspects of the bargaining
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process.
The experiments in Section 6.3 show that if a buyer agent uses an orthogonal

strategy as the Pareto-efficient search strategy then the bargaining outcomes will
closely approximate a Pareto-efficient solution. The experiments are conducted for
a variety of (buyer) concession strategies, buyer preferences, and seller preferences.
Based on the experimental results we can conclude that any other strategy choice
of a buyer will probably result in less efficient outcomes. Moreover, such a strategy
will not influence the concession strategy of the seller (due to the independence
of the concession strategy). Consequently, any alternative bargaining strategy of
the buyer is probably at most as good as the orthogonal strategy combined with a
concession strategy that mimics the concessions of the alternative strategy. Thus,
given the seller’s choice of the orthogonal-DF combined with a relatively independent
concession strategy, it is in a buyer’s best interest to choose the orthogonal search
strategy combined with a concession strategy. Moreover, this choice results in (a
close approximation of) a Pareto-efficient solution.

6.6 Concluding remarks

We introduce a novel system for selling bundles of news items in this chapter.
Through the system, buyers bargain over the price and quality of the delivered
goods with the seller. The advantage of the developed system is that it allows for
a high degree of flexibility in the price, quality, and content of the offered bundles.
The price, quality, and content of the delivered goods may, for example, differ based
on daily dynamics and personal interest of buyers.

The system as developed here can take into account business related side-constraints,
such as “fairness” of the bargaining outcomes. Fairness ensures that buyers with
similar preferences are treated in the same fashion. Because of fairness, the actual
bargaining process between seller and buyers is not really bilateral, but is in fact
one-to-many since the bargaining process with one buyer can have an impact on a
simultaneous bargaining process with another buyer.

Autonomous software agents perform (part of) the negotiation on behalf of the
users of the system. To enable efficient negotiation through these agents we decom-
pose the bargaining strategies into concession strategies and Pareto-search strategies.
Moreover, we introduce the orthogonal and orthogonal-DF strategy: two Pareto
search strategies. We show through computer experiments that the respective use
of these two Pareto search strategies by the two bargainers will result in very efficient
bargaining outcomes. Furthermore, the system is set up such that it is actually in the
best interest of the buyer to have their agent adhere to this approach of decomposing
the bargaining strategy into a concession strategy and Pareto search strategy.





Chapter 7

Bargaining strategies for
one-to-many bargaining

Through the use of autonomous agents a business can obtain flexibility in prices and
goods, and distinguish between different groups of buyers based on their preferences.
The previous chapter showed how personalisation of goods in the context of infor-
mation goods can be achieved using automated negotiation. In this chapter,1 we
focus on the (expected) utility obtained by a seller agent and how different groups
of buyers can be targeted having different valuations for obtaining the goods. We
consider agent strategies for a one-to-many bargaining setting, where a seller agent
negotiates, as before, with many buyer agents simultaneously in a bilateral fashion.
We focus on domains where the supply of goods is flexible and new goods can be
reproduced quickly, at relatively low costs. Such characteristics apply not only to
information goods, but may also apply to other retail markets. As in the previous
chapter, the strategies also take into account a notion fairness that is important
for maintaining customer satisfaction and acceptance of the system by customers.
Fairness ensures that buyers are treated in a similar fashion and is comparable to
the notion of envy-freeness in auctions [44] (see Section 6.1.2 for further details).

In many cases, auctions can be used to effectively organise one-to-many bar-
gaining. Depending on the setting, auctions can provide buyers with the incentive
to reveal their preferences truthfully, and to allocate the goods efficiently (see also
Section 2.3.5). For various situations, however, auctions may not be the preferred
protocol for bargainers. In situations of, for example, virtually unlimited supply,
multiple issues, and/or continuous sale the appropriate auction protocol becomes,

1This chapter is based on [40]: E.H. Gerding, K. Somefun, and J.A. La Poutré. Bilateral
bargaining in a one-to-many bargaining setting. Technical Report, CWI, Amsterdam, to appear.
A shorter version has been accepted for publication as [39]: E.H. Gerding, K. Somefun, and J.A. La
Poutré. Bilateral bargaining in a one-to-many bargaining setting. In Proceedings of the 3rd
International Joint Conference on Autonomous Agents and Multi Agent Systems (AAMAS2004),
New York City, New York. IEEE Computer Society Press, 2004.
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at best, much more complex. Consequently, businesses may opt for the intuitive
and flexible bilateral bargaining protocol, where the seller agent negotiates bilater-
ally with one or more buyers simultaneously by exchanging offers and counter offers.
These motivations are more closely considered in Section 6.4.3 of the previous chap-
ter.

Only little work has been done to study actual strategies for one-to-many bar-
gaining. A few related papers study concurrent bilateral negotiations within a one-
to-many setting [85, 98]. In these papers, a framework is described where a buyer
negotiates with several sellers simultaneously to find a single best deal. This differs
from our setting, however, since the seller in our system can come to an agreement
with many buyers as we assume that supply is flexible. The various negotiations in
our case are nevertheless related mainly through the notion of fairness.

For the case of virtually unlimited supply, as for information goods, we present
a number of one-to-many bargaining strategies for the seller in this chapter, that
take into consideration the notion of fairness. In particular, we introduce auction-
inspired strategies that achieve good results. We compare the performance of the
bargaining strategies using an evolutionary simulation, especially for the case of
impatient buyers. These experiments show that the auction-inspired strategies are
able to extract almost all the bargaining surplus, given sufficient time pressure of
the buyers. The auction-inspired strategies benefit from the fact that the setting is
one-to-many, even though bargaining occurs in a bilateral fashion.

This chapter is organised as follows. In Section 7.1 we discusses the bargain-
ing setup and the strategies used by the seller agent. In Section 7.2 we introduce
the simulation environment used for testing the performance of the strategies. We
present the simulation results of the conducted computer experiments in Section 7.3.
Conclusions follow in Section 7.4.

7.1 One-to-many bargaining

Bargaining is performed using the bilateral bargaining protocol described previously
in Section 6.1.3. Although the protocol allows for multiple issues to be negotiated
simultaneously, we concentrate on single-issue bargaining (e.g. the price) in this
chapter and consider the (expected) utility obtained by the agents in the system.
The multi-issue aspect is addressed in Chapter 6. We assume here that buyers
are impatient and have an incentive to reach agreements early. The buyers’ time
pressure is further discussed in Section 7.1.1.

An agent representing a business can be endowed with various bargaining strate-
gies. We present a number of strategies for the seller agent in Section 7.1.2. These
bargaining strategies take into account a notion of fairness, such that different buy-
ers are treated equally whenever that seems fair. For a detailed description of the
fairness concept applied by the seller agent, we refer to Section 6.1.2.
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We note that the reader is assumed to be familiar with the contents of Sec-
tions 6.1.2 and 6.1.3 of the previous chapter in the following.

7.1.1 Time pressure

An important assumption is that buyers are impatient and prefer an early agreement.
Time pressure or time impatience is a common assumption in bargaining, e.g. [110]
(see also Section 2.3.2). The seller is simultaneously and continuously negotiating
with many buyers and is therefore less concerned with immediately reaching an
agreement for a particular bargaining outcome, i.e., he is relatively patient. Fur-
thermore, we assumed earlier that the seller can reproduce the offered goods quickly
and at low costs. Therefore, a seller can respond timely to the demand and with lit-
tle additional costs for matters such as storage of the goods. We model this relative
time patience by assuming that the seller, unlike the buyers, has no time pressure.

At least in theory, the seller can benefit from buyers’ time-pressure by introduc-
ing a delay before submitting a counter offer. An important question is then which
bargaining strategies can most effectively utilise these potential benefits. Experi-
mental results discussed in Section 7.3 show that auction-inspired strategies, which
we will present in the next Section, are very effective: depending on the time pres-
sure, they are capable of extracting very large shares of the bargaining surplus (see
Section 1.1.2) for the seller.

7.1.2 Bargaining strategies

The challenge is to develop bargaining strategies for the seller that maximise ex-
pected utility by utilising differences in buyers’ willingness to pay without violating
the fairness constraint. Instead, these strategies make use of differences indirectly
through buyers’ time pressure. In order to benefit from time pressure all the strate-
gies discussed below introduce a (fixed) delay before the seller agent submits a
counter offer.

Fixed and time-dependent threshold strategies

For purpose of comparison we introduce a fixed threshold strategy, where the the
seller’s desired expected utility level or aspiration level (see Def. 113.1) remains
constant through time. The seller only accepts offers above the aspiration level and
counter offers always have an expected utility level equal to the aspiration level.
Whenever the seller agent accepts two different offers within a certain time interval,
the bargaining outcome may be unfair. To rule out an unfair outcome, the seller
agent immediately engages in post-agreement negotiation with all buyers from which
it accepted an offer. During these negotiations the seller agent offers a buyer agent
an improved offer where the expected utility corresponds with the seller agent’s
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aspiration level. In case of multiple issues, the seller will concede on one or more
issues, and not change the value of the remaining issues.2

Clearly, the fixed threshold strategy is not capable of utilising buyers’ time pres-
sure. The purpose of the strategy is to provide some insights in the minimal ex-
tractable profit, given strategic behaviour of the buyers.

The second strategy we consider is a time-dependent threshold strategy: the
current aspiration level depends on time. The aspiration level only changes from
one period to the next. Again, the seller only accepts offers above a (time-period
dependent) aspiration level and counter offers are always equal to the current as-
piration level. As before, the seller agent immediately engages in post-agreement
negotiation in case the seller accepts a buyer’s offer to ensure fairness.

Unlike the fixed-threshold strategy the time-dependent strategy is capable of
utilising buyers’ time pressure. Its success, however, depends on how much it knows
about buyers’ preferences, or how easily buyer preferences can be learned, in relation
to time-based pricing strategies.

Auction-inspired strategies

We introduce a bargaining strategy which is inspired by the first-price auction. The
auction-inspired strategy operates as follows. The seller agent collects all offers
submitted within a certain fixed time interval, after his last offer. Then it sets the
aspiration level to the current highest utility level, which is equal to the best offer
from the collection of offers. It accepts all offers equal to the current aspiration level
and counters the unaccepted offers by setting the counter offer’s expected utility
equal to the current aspiration level. The strategy introduces a fixed time delay
before countering the unaccepted offers. Note that because the auction-inspired
strategy only accepts offers with the same expected utility within a certain time
interval, post-agreement negotiation is not necessary to ensure fairness.

The success of the auction-inspired negotiating strategy does not depend on
some (a priori) knowledge of buyer preferences, unlike the fixed and time-dependent
strategies. Intuitively, buyers who, due to time pressure, suffer more from delay
are inclined to bargain less “hard-headed” than other buyers. Consequently, these
buyers may reach a deal sooner and pay more. Thus, at least potentially, the
strategy is capable of utilising buyers’ time pressure without requiring (a priori)
knowledge of buyer preferences. Unlike auctions, actual bargaining occurs in an
alternating exchange of offers and counter offers, typically initiated by a buyer.
Even though the seller’s strategy can be auction-inspired, buyers will be unaware of
this fact. They do not know the opponent’s bargaining strategy on forehand; they

2Note that this approach assumes that the agents have conflicting interests on individual issues
and nonsatiation of buyers (i.e., buyers always prefer more than less). If this is not necessarily the
case, a weaker form of fairness can be used instead, where the seller tries to improve the offer to
the best of his knowledge.
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perceive the bargaining process to be bilateral. Buyers may of course suspect some
relationship with other ongoing negotiations. The point is that unlike a true auction
the relationship with other simultaneously submitted offers is not specified up front,
through a set of rules.

Reservation value

A drawback of the auction-inspired strategy is that it becomes vulnerable whenever
groups of buyers experience very little time pressure. Without time pressure, buyers
have no incentive to buy soon and could independently decide to initially submit very
low offers; consequently profits will be very low. To circumvent this we also consider
auction-inspired strategies with a reservation value (i.e., a lowest acceptable utility
level). A seller agent is never willing to sell below the reservation value. This means
we alter the earlier definition of the current highest utility level. It now becomes the
maximum of the reservation value and the utility of the best offer from the offers
collected within a certain time interval. An interesting advantages of introducing a
reservation value occurs when some but not all buyers experience very little time-
pressure. The auction-inspired strategy can then still utilise the time-pressure of
the other buyers.

We consider two approaches for determining the reservation value. Either the
reservation value is fixed, like the fixed-threshold strategy, or it is time dependent,
like the time-dependent threshold strategy. Thus the auction-inspired strategy with
a reservation value is actually a combination of the auction-inspired strategy (with-
out reservation value) and either the fixed or time-dependent threshold strategies.

7.2 Bargaining simulation environment

We apply a simulation environment in order to evaluate the performance and robust-
ness of the above negotiation strategies against many learning buyers. The agents
in the simulation are assumed to be boundedly rational: they can learn and adapt
their strategies by a process of trial and error, and they do not know the seller’s
strategy. The bargaining process is repeated many times, enabling buyers and the
seller to learn from past interactions. An evolutionary algorithm is used to model
the learning aspect of the agents. A similar approach was used in previous chapters
(Chapters 3-5).

7.2.1 The bargaining game

The seller agent negotiates with many buyer agents simultaneously by alternating
offers and counter offers, where the buyer agents initiate the negotiations. For
our simulations we set a maximum number of r rounds, where r is set sufficiently
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large such that it has no significant impact on the results. At the start of the
negotiation, buyer agents submit their offers to the seller agent, which responds by
either accepting an offer or sending a counter offer in the next round. Offers consist
of a single issue, viz. the price of the negotiable good. Negotiation continues after
all buyer agents have reached an agreement or the maximum number of rounds is
reached, which concludes a so-called bargaining game. We note that buyer agents
in the simulation do not leave the negotiations or enter later.

We assume that, since buyers are impatient, buyer agents in the simulation will
respond to the seller agent’s counter offer without delay. This is modelled by having
the buyer’s counter offer occur in the same round as the seller’s counter offer.

7.2.2 Buyers and their agents

Buyers are interested in buying at most one unit of the offered good in each bar-
gaining game. They can have different preferences regarding their time pressure and
valuation of the good, which together characterise the buyer type. For the analysis
we assume buyers can be grouped into a finite number of k types. The number of
buyer agents of each type participating in a negotiation game varies randomly and is
unknown to the seller agent. The seller agent is also uninformed about the identity
or type of a specific buyer agent. The actual number of participants of each type is
determined independently by a Poisson distribution with average λ.

A buyer agent tries to maximise a given utility function for buyer type i, ui,
which is defined as follows:

ui = (vi − p)δt
i , (7.1)

where vi is the buyer’s valuation of the good, p is the negotiated price, δi is the
discount factor used to model the time pressure, and t is the negotiation time. In
the simulation negotiation occurs at fixed time intervals. Therefore, δ is the discrete
representation of time pressure and t therefore also indicates the negotiation round.
Note that discount factors are commonly used for modelling time pressure, e.g. in
the Rubinstein-St̊ahl alternating-offers model (see Section 2.3.2). The agents are
furthermore assumed to be individually rational (see Def. 4.2): they will not bid nor
accept offers with a negative utility.

Within the simulation, buyer agents are endowed with adaptive time-based
strategies to produce offers and evaluate the seller’s offers. Although this is a rel-
atively simple strategy, the adaptive nature of the strategies provides buyer agents
with sufficient flexibility to bid effectively in the long run. A strategy consists of
a piece-wise linear function, which determines the price level of new offers and is
also used as threshold to accept or reject the seller’s offers: if the seller’s offered
price is above the threshold, the offer is accepted, otherwise the offer is rejected. A
post-agreement offer is automatically accepted if this is beneficial for the buyer.
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Figure 7.1: The EA cycle for negotiations with two buyer types and an adaptive
seller

We also applied an extended strategy in our experiments, where the threshold
and offers are determined by separate piece-wise linear functions. The separation of
the two functions enhances the bargaining capabilities of the buyer agent. Results
using the two representations are very similar. The outcomes presented in this
chapter are obtained using the extended strategy.

7.2.3 Seller agent

The seller agent bargains with a number of buyers simultaneously, without knowing
the type of these buyers. The seller agent’s utility is equal to the total utility or
profit obtained over all buyers (recall from Section 7.1.2 that the we can assume the
seller has no time pressure). Production costs are set to zero.

We consider five strategies for the seller agent: fixed threshold, time-based
threshold, auction-inspired strategies and two combined strategies. The first two
strategies and the combined strategies are adaptive: strategies that maximise total
utility are learned using an EA. The time-based threshold strategy is similar to the
strategy used by the buyer.

7.2.4 The evolutionary system

Evolutionary algorithms (EAs) are used to produce effective bargaining strategies
for the buyer agents and seller agent. The implementation used is described in detail
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in Section 1.2. The strategies for buyer agents of each type are produced by separate
EAs, which operate in parallel. Furthermore, a separate EA can also be used to
produce strategies for the seller agent, in case the seller uses an adaptive strategy.
An example of the evolutionary system with two buyer agents and an adaptive
seller agent is depicted in Figure 7.1. Note that, whereas in previous chapters a
single EA was used with several evolving populations, the current implementation
applies several (independent) EAs. This enables for instance the seller agent to use
a different strategy representation than a buyer agent.

The fitness of the strategies is determined by the average utility obtained in a
number of bargaining games, which go as follows. At the start of each bargaining
game, the number of participating buyer agents of each type is determined randomly
using a Poisson distribution as described above. Buyer agents are then assigned a
randomly selected strategy from either the parent or offspring population of the
corresponding type. Similarly, a strategy is selected randomly for the seller agent
(in case of an adaptive seller). The bargaining game is played for a fixed number of
times, re-establishing the number of buyer agents and assigning new strategies at
the start of each game.

Strategy encoding

As mentioned in Section 7.2.2, the buyer agent’s strategy consists of two piece-wise
linear functions: an offer and a threshold function. The functions are encoded using
real values, where each bending point of a function is encoded by two real values.
Additionally, two end points mark the values for the first and last rounds. For
example, 8 real values are needed to encode a pair of functions with two line pieces
each.

The same representation is used for the seller agent if he uses a time-based
threshold strategy. If a fixed threshold is used, only a single real value is needed to
encode this. Note that the seller agent uses the same function for both the threshold
and for producing offers.

7.3 Experimental results

This section reports on computational experiments using the bargaining simulation
environment.

7.3.1 Settings

The following settings are used for the experiments reported in this chapter. Buy-
ers are grouped into three types, each type having adaptive bargaining strategies
evolving in separate populations. The time pressure (discount factor) for each type
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is set as a control parameter. A type’s valuation, on the other hand, is randomly
selected from a uniform distribution at the beginning of each experiment. In order
to make sure that all types have different valuations, the valuation of type 1 is se-
lected between 0 and 1000, type 2 between 1000 and 2000, and type 3 between 2000
and 3000.

The piece-wise linear functions of the buyer agents, and of the seller agent in case
of time-based threshold strategy consist of two line pieces. The number of buyers of
each type participating in a bargaining game is determined randomly by a Poisson
distribution with the average λ = 10. The length of a bargaining game is set to 40
rounds.

The EA settings are chosen such that results are robust and the EAs are able
to find good solutions. All buyer types use equal settings, with 20 strategies in
the parent populations and 20 offspring strategies. An exponential decay model
is selected to determine the mutation standard deviation (see Section 1.2.3). The
mutation standard deviation is initially set to 0.2, and decays with a half-life value of
50 generations. The EA settings for the seller are the same, except that each seller
population only contains 10 strategies. Buyers have larger populations because
more buyers than sellers participate each game, and because in case of the extended
buyer strategy (with two functions) the search space for the buyer is larger (a higher
population size is often recommended for larger search spaces). The fitness of the
strategies for a single generation is determined by 200 bargaining games. The EAs
using these settings are able to find almost optimal solutions for simple test cases.

7.3.2 Results

The reported results are obtained after a process of learning, when the strategies
have converged. It is important to note that during learning, the preferences of the
buyers remain unchanged, although the number and composition (i.e., number of
each type) of buyers can differ in each bargaining game. Experiments are run for
100000 bargaining games (500 generations). Results are averaged over the last 1000
bargaining games of an experiment, and over 30 experiments, accounting for random
settings such as the number of participating buyers and the buyer valuations.

The performance of the strategies is evaluated by comparing the fraction of bar-
gaining surplus or just surplus (see Section 1.1.2) obtained by the seller agent. Since
the seller benefits from any positive agreement (there are no costs for the seller, see
Section 6.2.1), the bargaining surplus in this case is equal to the buyer’s valuation of
the good. Figure 7.2a compares the seller’s obtained fraction of surplus for different
seller strategies and buyer discount factors, where the buyer types have equal dis-
count factors. The average round an agreement is reached is shown in Fig. 7.2b. The
results when buyers have different discount factors are shown in Table 7.1, where δi

denotes the discount factor for buyer type i and the strategy numbers correspond to
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Figure 7.2: Seller’s obtained fraction of bargaining surplus (a) and average round
of agreement (b) using 5 bargaining strategies: (1) fixed threshold, (2) time-based
threshold, (3) auction-inspired, (4) combined (3) and (1), and (5) combined (3) and
(2).
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Fig. 7.2. As shown in Fig. 7.2a and Table 7.1, a fixed threshold strategy (1) is able
to extract around 65% of the surplus. Note that the outcomes are independent of
the discount factor. Clearly, the fixed threshold strategy is unable to benefit from
the buyers’ time pressure.

The time-based threshold strategy (2), on the other hand, shows that higher
profits can be obtained if the threshold changes in time, see Fig. 7.2a and Table 7.1.
Buyers with a high valuation will settle for an agreement relatively early, since
waiting for a better deal does not compensate the loss due to time discounting.
Buyers with a low valuation, on the other hand, have the incentive to reach an
agreement in a later stage if they can get a better price for it. This way the seller can
indirectly discriminate between buyers with different valuations and time pressures.
A disadvantage, however, is that this leads to much efficiency loss due to delayed
agreements. Figure 7.2b and Table 7.1 show that the average round in which an
agreement is reached is relatively high when a time-based strategy is used, resulting
in a lower final expected utility for the buyers.

Note that with no time discounting (i.e., when the discount factor is 1) the
fixed threshold strategy performs better. This is due to the difference in strategy
complexity: only a single value needs to be optimised in case of a fixed threshold,
whereas an entire function (encoded by 4 values) needs to be learned in case of the
time-based threshold. This is clearly more difficult, especially within a dynamic
environment with learning buyers.

Outcomes using the auction-inspired bargaining strategies (see Fig. 7.2a and
Table 7.1, strategies (3),(4) and (5)) show an impressive increase in the fraction of
surplus when buyers are impatient. If the time pressure becomes sufficiently high,
the seller obtains almost the entire surplus. Even for lower time pressure, results are
much better for the seller compared to the fixed and time-based threshold strategies.
For the case of no or very low time pressure, the results also show that simple
auction-like mechanisms are not sufficient in case of unlimited supply. Without
competition between buyers, the market price goes to cost level, resulting in a zero
profit for the seller. This problem can be resolved in bargaining by combining the
auction-inspired strategy with an adaptive reservation value. As shown in Fig. 7.2a,
this results in very good outcomes, even if buyers are very patient. This makes the
combined strategy very versatile. We note that these outcomes also generalise to
settings where different buyer types have different time preferences, assuming that
buyers with higher valuation have a higher time pressure, as indicated by Table 7.1.

7.3.3 Bargaining revisited

An important aspect of the bargaining protocol is the ability of the seller to produce
counter offers in the next round of bargaining. The auction-inspired strategy only
accepts the highest offers in each round. Usually, only a single bid will be accepted
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strategy δ1 δ2 δ3 round fraction
1 1.0 0.95 0.90 0.88 ± 3.28 0.65 ± 0.09
2 1.0 0.95 0.90 23.94 ± 3.92 0.82 ± 0.08
3 1.0 0.95 0.90 5.75 ± 0.93 0.74 ± 0.08
4 1.0 0.95 0.90 11.88 ± 5.63 0.90 ± 0.06
5 1.0 0.95 0.90 18.05 ± 7.28 0.91 ± 0.03
1 0.95 0.90 0.85 0.00 ± 0.01 0.65 ± 0.08
2 0.95 0.90 0.85 22.44 ± 5.07 0.82 ± 0.05
3 0.95 0.90 0.85 6.29 ± 0.86 0.91 ± 0.04
4 0.95 0.90 0.85 6.75 ± 2.36 0.93 ± 0.03
5 0.95 0.90 0.85 17.02 ± 5.90 0.95 ± 0.03

Table 7.1: Average round an agreement is reached (column “round”) and seller’s
fraction of surplus (column “fraction”) when different buyer types have different
discount factors and for different seller strategies (the strategy numbers correspond
to the strategies of Fig. 7.2).

due to differences in the buyer agents’ strategies. Even if buyers are of the same
type, small differences remain because of mutations. The outcome where all buyers
make the same offer is therefore unstable (this can be compared to e.g. “trembling
hand” in game theory, where players are assumed to make small mistakes when
executing their strategies). This would result in large inefficiencies because of delays.
The counter bid in the next round, however, enables remaining buyers with similar
valuations (i.e., of the same type) to accept the seller’s bid (albeit with a certain
time delay). This way, all remaining buyers of the same type can reach an agreement
within a single round. Results (see Fig 7.2b and Table 7.1) show that, in fact, buyers
reach agreements on average in the 6th negotiation round when the auction-inspired
strategy is used, even though on average 30 buyers participate in each negotiation.
This is much more efficient than e.g. the time-based threshold strategy.

A possible disadvantage of producing counter offers by the seller is that buyers
could bid very low, and then accept the counter offer of the seller. Such a strategy
could be beneficial in case the seller’s counter offer is influenced by the buyers’ offers,
as with the auction-inspired strategies. This could then result in low profits for the
seller. To see if indeed buyers profit by using such a strategy, the strategy repre-
sentation for buyers was extended by separating the functions for producing offers
and determining the threshold (see Section 7.2.2). Even with separated function,
however, the auction-inspired strategy performs very much in favour of the seller (as
shown by the results). This occurs because the counter offer is delayed by the seller,
although agreements occur without delay, providing the buyers with an incentive to
try and get an agreement immediately.
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7.4 Concluding remarks

In this chapter, we consider strategies for a seller agent who negotiates with many
buyers simultaneously in a bilateral fashion. These strategies respect a notion of fair-
ness such that buyers are treated similarly. An important assumption is that buyers
are impatient and prefer early agreements. Furthermore, buyers can have different
valuations and time preferences. A buyer’s actual valuation and time preference is
only known to himself (i.e., a buyer’s type constitutes private information).

We investigate several seller strategies for bilateral bargaining in a one-to-many
setting, and introduce several auction-inspired strategies. Five different seller strate-
gies are evaluated and compared: (1) fixed threshold, (2) time-dependent threshold
strategies, (3) auction-inspired, (4) auction-inspired with fixed reservation value, and
(5) auction-inspired with time-dependent reservation value. The last two strategies
are actually a combination of the auction-inspired strategy with the first two strate-
gies.

We use an evolutionary simulation to analyse the performance of the different
strategies. The buyers’ bargaining strategies adapt and learn through the use of
an evolutionary algorithm (EA). The seller’s strategies (1) and (2), and the com-
bined strategies (4) and (5) also adapt and learn using an EA. The auction-inspired
strategy (3), on the other hand, determines the threshold value based on the offers
received by the buyers, and does not require any learning.

The auction-inspired strategies appear to be very successful in utilising the time
pressure and consequently extract a very high share of the surplus. For sufficiently
high time pressure, the seller obtains approximately the entire surplus, indicating
that buyers almost bid their valuations. This is achieved without much delay. Thus
buyers self-select to pay their valuation, while the bargaining outcomes respect our
notion of fairness. The results also show superior performance of the combined
strategies (4 and 5) compared to the auction-inspired strategy (3), in case some or
all buyers have very little time pressure. In other words, the combined strategy is
very versatile.





Chapter 8

Discussion and conclusion

We investigated both fundamental aspects of bargaining and introduced real-world
business applications of bargaining using autonomous agents in this thesis. We
applied computational simulations to analyse various situations of bargaining that
are difficult to approach mathematically, and demonstrated the feasibility of the
suggested applications. The agents in these simulations are not assumed to be com-
pletely rational, but rather they learn by doing, and adjust their bargaining policies
based on feedback from interactions with other agents. Complete rationality is usu-
ally not realistic for actual multi-agent systems, mainly for two reasons. Firstly,
agents may not have sufficient time and/or computational power to find optimal
or rational outcomes. Secondly, in a multi-agent system with different agents pro-
grammed by different parties, one cannot rely on the other agents to act rationally.
Nevertheless, game-theoretic or “rational” outcomes serve as a useful benchmark to
validate our computational approach.

Evolutionary algorithms (EAs) are used in this thesis to govern the adaptive
behaviour of the agents in the computational experiments. EAs are increasingly
being used to model societies of learning computational agents and humans, espe-
cially within the field of agent-based computational economics. As shown in this
thesis, EAs can be used effectively for bargaining both in case of population learn-
ing, where several agents select their strategies from a common strategy pool, and
individual learning, where genetic material is not exchanged between agents. A
possible drawback for using EAs in practice is that off-the-shelf implementations of
EAs may require many fitness evaluations before converging to good solutions. If
such evaluations are expensive or limited, e.g. when each bargaining game involves
large sums of money, a more specialised approach may be required. The applications
discussed here, however, mainly involve relatively small-risk transactions that are
repeated frequently. Nevertheless, many solutions for learning using limited evalu-
ations already exist in the literature which can be used for high-risk applications.
However, it is beyond the scope of this thesis to discuss such approaches in detail.
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In order to validate our evolutionary approach, we first compared experimental
results to game-theoretic outcomes for relatively simple cases. In Chapters 3 and 4
we considered the game-theoretic subgame-perfect equilibrium as the benchmark for
the bilateral bargaining game. Interestingly, in many cases the emerging behaviour
of the evolutionary system did coincide with “rational” or game-theoretic behaviour
in the long run. In Chapter 5, a validation was carried out for market setting
where evolving agents learn to bid in a second-price auction. The second-price
auction provides bidders with the incentive to bid truthfully in case of independent
valuations. This outcome was indeed found in the evolutionary simulation.

After validating our experimental approach, we applied the evolutionary simu-
lation to analyse situations which are hard or unwieldy to analyse theoretically. In
Chapter 3 the agent model was extended with a fairness norm for multi-issue nego-
tiations. The evolutionary outcomes showed that the surplus is more evenly divided
when the fairness norm is applied, and that these outcomes are relatively insensi-
tive to the fairness curve if the norms are consequently applied in each negotiation
round. If the Pareto-efficient frontier is asymmetric, different types of agreements
are reached in the various rounds. Chapter 4 considered a different extension, where
agents can have additional opportunities if negotiations fail. Each agent is charac-
terised by her state, denoting the number of opportunities remaining. If the agent’s
state is common knowledge, the number of opportunities only has a slight impact
on the division of the surplus in the simulation. If this information is only privately
known, however, the division of surplus reverses if the number of opportunities is
sufficiently large and equal for both players. Further extensions, such as the in-
fluence search costs and uncertainty about future opportunities were also analysed
using the evolutionary framework.

The power of evolutionary algorithms for analysing complex behaviour was also
demonstrated in Chapter 5 in a market setting. A framework was presented for sell-
ing consumer attention space or “banner space” to the highest bidders (suppliers)
in an auction. The value of the attention space is not a-priori known to the bidders
and can only be learned with consumer feedback. This value depends on the pro-
file of the consumer, but may also be influenced by other banners which are shown
concurrently. Such a setting involving multiple goods, complex interdependencies,
and uncertainty in the valuation of the goods is difficult to analyse theoretically.
A computational simulation with evolving bidding agents was therefore applied to
demonstrate the feasibility of the approach and to compare the effectiveness of
various auction designs. With no interdependencies, the adaptive suppliers could
accurately learn the profile of the consumers. In case of interdependencies, however,
the suppliers also need to take into account the effect of competitive banners. In-
terestingly, the agents in the framework then learn to target specific niches in the
market. The performance of the system, i.e., if a good match between consumers
and suppliers is found, appeared to depend on the auction rules in case of interde-
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pendencies. Results indicated that the so-called next-price auction (where goods are
sold at the price of the next-highest bidder) performed well in general.

An important advantage of bargaining is that not only the price, but other prod-
uct and service related issues can be taken into consideration as well. This can reduce
the competitiveness of negotiations if agents have different preferences regarding the
relative importance of the issues. The multi-issue aspect has therefore been given
much consideration throughout this thesis, especially in Chapters 3, 4 and 6. The
main objective of such negotiations is to obtain Pareto-efficiency by finding optimal
trade-offs between issues. Chapter 3 showed that the evolutionary agents agree on
Pareto-efficient outcomes after a relatively short learning period. Chapter 4 intro-
duced a parameter to tune the competitiveness of two-issue negotiations. Using
the evolutionary simulation, the impact of competitiveness in the game with mul-
tiple opportunities was investigated. Chapter 6 introduced advanced strategies for
autonomous agents that are capable of approximating Pareto-efficiency within a
single alternating-offers bargaining game. These strategies require no learning or
knowledge of the opponent’s preferences. In the example of information goods, we
demonstrated that these strategies work well even for non-linear preferences.

In Chapters 6 and 7 bilateral bargaining was applied to the case of virtually
unlimited supply as with information goods. Using an alternating-offers protocol
as in Chapter 3, a seller negotiates with many buyers simultaneously and aims at
reaching as many agreements as possible, and at the same time obtain a large share
of the surplus. Chapter 6 focused on the multi-issue problem within the domain of
information goods, whereas Chapter 7 considered the profits gained by the agents.
For the latter we introduced a number of seller strategies that also take into account
a fairness constraint; a negotiation between a buyer and a seller should be fair
relative to other concurrent negotiations. One of the introduced strategies is able
to extract almost the entire surplus, provided that buyers are sufficiently impatient
and prefer to reach agreements early in the negotiation process. This strategy is
inspired by the first-price auction, and simply accepts the highest offer received in
each period. As before, we carried out evolutionary experiments to compare the
performance of the seller strategies. The results showed that, in the absence of time
pressure, there is no real competition and prices using the auction-based strategy
dropped to cost level. We prevented such low prices by incorporating either a fixed or
time-dependent reservation price into the seller’s strategy. This combined strategy
indeed showed superior performance in the evolutionary experiments.

To conclude, we considered both bilateral bargaining and auction approaches in
this thesis, and successfully applied these approaches to several practical settings.
An evolutionary framework was developed to investigate various bargaining settings
and business applications. The outcomes of the computational experiments resulted
in insights that go beyond current game-theoretic findings and demonstrated the
effectiveness of automated bargaining for the application to real-world domains.





Appendix

Game-theoretic analysis

In this Appendix we derive subgame perfect equilibrium (see Def. 18.3) strategies
for multiple-stage games from Chapter 3 using a backward induction approach. We
follow the same approach as in [126], but extend the analysis to multi-issue nego-
tiations and the extended model where the agents perform an additional fairness
check. Appendix 1 studies the multi-issue models and is related to Section 3.3.2.
In Appendix 2 we analyse the extended model with fairness and is related to Sec-
tion 3.4.4.

1 Multi-issue bargaining

In Appendix 1.1, we study a model for multi-issue bargaining without a risk of break-
down. The more general model (with a risk of breakdown) is then investigated in
Appendix 1.2. Furthermore, Appendix 1.3 presents equations for calculating Pareto-
efficient (see Def. 4.3) utility pairs for additive multi-attribute utility functions (see
Def. 3.1), given any number of issues and weight settings of the agents.

1.1 Model without a risk of breakdown (p = 1)

Because time plays no role in the model without a risk of breakdown, the last agent
in turn has the opportunity to reject all proposals from his opponent and demand
the entire surplus (for each issue) in the last round. In subgame perfect equilibrium
(SPE), the other agent accepts this proposal (see also the discussion in [11, pp. 200-
201]). If the maximum number of rounds n is odd, agent 1 will therefore receive the
entire surplus, whereas agent 2 receives all in case n is even. Due to the absence of
time pressure, multiple subgame perfect equilibria exist in this case. Although these
equilibria differ in the timing of the agreements, all result in the same outcome (i.e.,
the agent in turn at t = n− 1 always receives the entire surplus for all issues). It is
for instance subgame perfect for the last responder to concede the entire surplus (for
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all issues) to his opponent before the deadline is actually reached or, alternatively,
to accept a take-it-or-leave-it deal from the opponent at any point in time.

1.2 Model with a risk of breakdown (p < 1)

We calculate the SPE for the model with a risk of breakdown in this Section. We first
show that in Nash equilibrium (see Def. 18.2) the deals are always weakly Pareto-
efficient (and therefore also in subgame perfect equilibrium). A deal is called weakly
Pareto-efficient if there exists no other deal that both agents prefer. We assume in
the following that the agents’ decision to accept or reject an offer is determined by
a threshold value τ : the offer is accepted if the utility level is above the threshold,
and rejected otherwise. Consider a proposing agent i making an offer ~oi(t) to his
opponent, agent j, in round t of the negotiations (t < n). Assume that agent i
knows that agent j’s threshold is equal to τj(t). It is then a best response for agent
i to propose a weakly Pareto-efficient deal to agent j.

We show this by contradiction. Suppose agent i proposes an offer ~oi(t) to agent j
which is not Pareto-efficient and agent j accepts this offer. Since the offer is Pareto-
inefficient, there exists an offer ~o′i(t) which results in a higher utility for agent i and
the same utility or higher for agent j. Since agent j is either indifferent between ~oi(t)
and ~o′i(t) or prefers ~o′i(t), agent i would do better by offering ~o′i(t) instead (which
agent j will also accept).

The SPE partitioning can now be calculated as follows. If the maximum number
of rounds n is even, agent 2 will be the proposer in the last round (i.e., at t = n−1).
Agent 2 will then demand the whole surplus for each issue and agent 1 will receive
nothing. This division of the surplus would yield agent 2 a payoff (expected utility)
of π2(t = n− 1) = pn−1, where πi(t) denotes agent i’s payoff in the bargaining game
starting at time t. We now analyse the previous round (t = n − 2). Suppose agent
1’s offer to agent 2 is ~o1(t = n − 2). Agent 2’s payoff π2(t = n − 2) would then be
pn−2u2[~o1(t = n − 2)]. In equilibrium, at t = n − 2 agent 1 should propose agent
2 a payoff-equivalent deal [i.e., π2(t = n − 2) = π2(t = n − 1)], . This implies
that u2[~o1(t = n − 2)] should be equal to p. Agent 1’s payoff π1(t = n − 2) is
then pn−2f1(p), where f1(u2) describes the location of the Pareto-efficient frontier.
This function returns the utility of agent 1 when agent 2’s utility is equal to u2

and the agreement is Pareto-efficient.1 At t = n − 3, agent 2 can, in a similar
fashion, propose an equivalent offer (in terms of payoff) and receive a payoff of
π2(t = n−3) = pn−3f2[pf1(p)]. (The f2(u1) function is the inverse of the f1 function.)

This procedure is then repeated until the beginning of the game is reached (at
t = 0). The same line of reasoning holds if the number of rounds is odd (simply
switch the roles of agent 1 and agent 2). As in the infinite-horizon game [110],

1For the bargaining problem studied in this paper (depicted in Fig. 3.3), the Pareto-efficient
frontier is described by the equation .3 in Appendix 1.3.
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the agents agree immediately on a deal. Table .1 shows the SPE partitionings for
different game lengths.

n Payoff agent 1 [π1(t = 0)] (SPE) Payoff agent 2 [π2(t = 0)] (SPE)
1 1 0
2 f1(p) p
3 f1(pf2(p)) pf2(p)
4 f1(pf2(pf1(p))) pf2(pf1(p))
5 f1(pf2(pf1(pf2(p)))) pf2(pf1(pf2(p))))
6 f1(pf2(pf1(pf2(pf1(p))))) pf2(pf1(pf2(pf1(p)))))
. . . . . . . . .

Table .1: Payoffs for agent 1 and agent 2 for different lengths n of the alternating-offers
game, assuming that both agents use SPE strategies.

1.3 Calculating the Pareto-efficient frontier

We now show how Pareto-efficient values can be calculated if the agents use an addi-
tive multi-attribute utility function. The functions f1 and f2 are used to determine
the Pareto-efficient utility of agent 1 and 2 respectively, given the utility received
by the opponent. We will first give a recursive formula for f1 and f2 which can be
used for any number of issues, and then present an example for two issues. As was
described in section 3.1, each issue i is associated with a weight wi

j for agent j. We
assume that, without loss of generality, the issues are sorted such that

∀i ∈ {1, 2, . . . ,m − 1} :
wi

1

wi
2

≥ wi+1
1

wi+1
2

.

We begin by deriving f2, the maximum utility which agent 2 can obtain, given
that agent 1 receives a utility u. Starting with demanding the full dollar on each
issue, agent 2 needs to concede on zero or more issues such that a utility level u for
agent 1 is reached. Agent 2 will first concede on issues with a relatively low loss in
utility for agent 2 (i.e. with a low weight for agent 2) and a relatively high gain for
agent 1. The issues are now sorted in such a way that agent 2 will first concede on
issue 1, then on issue 2, etc., until the desired utility level for agent 1 is reached.
This is reflected in the following formula, given agent 1’s utility u: f2(u) = 1−r1

2(u)
where r2 is a recursively defined function:

ri
2(u) =







ri+1
2 (u − wi

1) + wi
2 if u > wi

1,
wi

2

wi

1

u otherwise.
(.1)
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Similarly, agent 1 will start conceding on the last issue. The function for agent 1
is defined as f1 = 1− rm

1 (u) where m is the number of issues, and r1 is a recursively
defined function:

ri
1(u, i) =







ri−1
1 (u − wi

2) + wi
1 if u > wi

2,
wi

1

wi

2

u otherwise.
(.2)

For any number of issues m ≥ 1 and any weights, given that
∑m

i=1 wi
1 =

∑m
i=1 wi

2 =
1 and wi

j > 0 for all i ∈ {1, . . . ,m}, j ∈ {1, 2}, the following properties hold: f1(1) =
f2(1) = 0, f1(0) = f2(0) = 1 and f1(f2(u)) = f2(f1(u)) = u for all u : 0 ≤ u ≤ 1.
The next equation is an example of a two-issue bargaining situation with weight
vectors ~w1 = (0.7, 0.3)T and ~w2 = (0.3, 0.7)T for agents 1 and 2 respectively:

f1(u) = f2(u) =

{

0.7
0.3

(1 − u) if u > 0.7.
1 − 0.3

0.7
u otherwise,

(.3)

This function yields the Pareto-efficient frontier depicted in figure 3.3. Note
that when the weights are diametrically opposed, the same function applies to both
agents, i.e. f1(u) = f2(u) for all u : 0 ≤ u ≤ 1.

2 Extended model: Fairness

The fairness models evaluated in Section 3.4.2 (i.e., with a fairness check at the
deadline only) and in Section 3.4.3 (i.e., with a fairness check in each round) are
analysed in this appendix. As in Appendix 1.2, we apply backward induction to
deduce the SPE partitioning.

2.1 General analysis

The fairness function is now formally denoted as gr(u). This (real-valued) function
returns the probability of acceptance of a proposal in round r in case the responding
agent’s utility is equal to u. If a fairness check is performed only in the last round,
gr(u) = 1 for all r < n (where n is the number of rounds). In case the same fairness
check is performed each round, gr(u) is independent of r. We assume that the fairness
function is a monotonic non-decreasing function of u and that gr(u = 1) = 1. Let
agent j be the agent proposing a deal at round r and agent −j the responder. We
then abbreviate gr[u−j(~oj(r))] (the probability of acceptance of agent j’s offer ~o in
round r) as pacc

r (~o).
If n is even, agent 2 will propose an offer in the last round (at r = n). Agent

2 will then propose an offer ~o2(r = n) which, in SPE, maximises his payoff, i.e.,
his expected utility. The payoff π2 received by Agent 2 if his offer is accepted
equals pnu2[~o2(r = n)], where u2 is agent 2’s utility function (see Section 3.1). The
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acceptance probability is equal to pacc
n [~o2(r = n)]. Agent 2’s payoff in round r = n

is therefore:

π2(r = n) = max
~o2(r=n)∈P

pnu2[~o2(r = n)]pacc
n [~o2(r = n)], (.4)

where P ⊂ [0, 1]m is the set containing all Pareto-efficient offers. Analogously, the
payoff π1 for agent 1 in round r = n is equal to:

π1(r = n) = pnu1[~o2(r = n)]pacc
n [~o2(r = n)], (.5)

where u1 is agent 1’s utility function.
It is again straightforward to show that it is optimal to propose a Pareto-efficient

deal. Assume for instance, that a Pareto-inefficient offer is made. The proposer of
this offer can then improve his payoff by selecting an offer on the Pareto-frontier
which yields his opponent the same payoff. Because the probability of acceptance
only depends on the responder’s utility of this offer, this will not affect the fairness
evaluation.

We now analyse the previous round (r = n − 1). In SPE, at r = n − 1 agent 2
only accepts a deal which is at least equal to the payoff π2(r = n) that he receives in
the next round (in SPE). Therefore, π2(r = n − 1) ≥ π2(r = n) in SPE. Effectively,
π2(r = n) acts as a threshold used by agent 2 to determine the minimal acceptable
offer at r = n − 1. Some elementary manipulations then show that in SPE agent 1
should make an offer ~o1(r = n − 1) such that

pn−1u2[~o1(r = n − 1)] ≥ π2(r = n), (.6)

otherwise, agent 2 rejects the proposal at r = n − 1 to earn π2(r = n) in the last
round. We now define R ⊂ [0, 1]m to be the set of offers for which Eq. .6 is not
violated. In SPE, agent 1’s payoff in round r = n − 1 then equals

π1(r = n − 1) = max
~o1(r=n−1)∈P∩R

pn−1u1[~o1(r = n − 1)]pacc
n−1[~o1(r = n − 1)]

+{1 − pacc
n−1[~o1(r = n − 1)]}π1(r = n). (.7)

In a similar fashion, we can calculate agent 2’s payoff at r = n − 1 in SPE:

π2(r = n − 1) = pn−1u2[~o1(r = n − 1)]pacc
n−1[~o1(r = n − 1)]

+{1 − pacc
n−1[~o1(r = n − 1)]}π2(r = n). (.8)

For r = n − 2 expressions very similar to Eqs. .7 and .8 can be derived (but the
roles of the two agents switch). This procedure is then repeated until the beginning
of the game is reached (at r = 1). The same line of reasoning holds if the number
of rounds is odd (simply switch the roles of agent 1 and agent 2).
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In the basic model without fairness all agreements occur in the first round in
SPE (for p < 1). When the agents apply a fairness check in each round, however,
even in SPE a significant number of agreements occurs after the first round. In this
case, the strategy followed in all rounds comes to play a role in determining the
outcome of the game.

We also remark that, although a responder’s fairness considerations determines
for a large part the offers made by a proposing agent, this does not make the respon-
der’s thresholds superfluous in SPE. Recall that the role of the threshold is reflected
in Eq. .6.

2.2 Application to a simple case

We will now apply the general approach presented above to a relatively simple
example with m = 1 (a single issue), n = 3 (3 rounds) and p = 1 (no time pressure).
Because m = 1, the offer vector ~o(t) has only a single component. We denote he value
of this component as x(t) in the remainder of this appendix. It is obvious (because
the agents are assumed to be risk neutral, see Section 3.1) that u1[x(t)] = x(t), and
u2[x(t)] = 1−x(t) for 0 ≤ t ≤ n−1. In this example, the agents evaluate the fairness
of the offers (in each round) using fairness function 4 in Figure 3.7 [i.e., gt(u) = u].
Furthermore, we take n = 3 and p = 1. Notice that, because the number of rounds
n is odd in this example, we need to switch the roles of agent 1 and agent 2 when
we apply Eqs. .4-.8 in the following.

Agent 1 makes an offer to agent 2 in the final round (at t = 2). In SPE, agent
1 applies Eq. .4 to maximise his payoff π1(t = 2). Substituting parameters for this
problem, the product term on the RHS of Eq. .4 becomes u1[x(t = 2)]g2[u2(x(t = 2)],
which can be simplified further to x(t = 2)[1 − x(t = 2)]. This term is maximised
for x(t = 2) = 0.5, which results in π1(t = 2) = 0.25. Using Eq. .5, the payoff of
agent 2, π2(t = 2), is then also equal to [1 − x(t = 2)]x(t = 2) = 0.25.

Agent 2 makes a move at t = 1. We initially assume that the condition stated
in Eq. .6 is not violated by agent 2’s offer. Agent 2’s payoff is then determined by
applying Eq. .7. Substituting the parameters of this problem and simplifying, the
term that should be maximised in Eq. .7 becomes equal to [1 − x(t)]x(t) + [1 −
x(t)]0.25. This term is maximised for x(t = 1) = 0.375. The condition stated in
Eq. .6 is not violated because u1(0.375) = 0.375 ≥ 0.25. Our initial assumption
therefore turns out to be valid. We can now apply Eqs. .7 and .8 to derive that
π1(t = 1) ≈ 0.297 and π2(t = 1) ≈ 0.391.

Agent 1 proposes an offer in the first round (at t = 0). Again, we initially
ignore Eq. .6. Using Eq. .7, agent 1 then maximises his payoff π1(t = 0). This
results in x(t = 0) ≈ 0.648. However, this offer violates the condition in Eq. .6,
since u2(0.648) = 0.352 < π2(t = 1). Agent 1 should therefore propose a payoff-
equivalent deal to agent 2 [i.e., π2(t = 0) = π2(t = 1)]. For x ≈ 0.609 this condition
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is satisfied and agent 2 becomes indifferent between accepting or refusing this deal.
Subgame perfection then predicts that agent 2 accepts this proposal, yielding agent
1 a payoff of ≈ 0.419. Tables 3.2 and 3.3 in Chapter 3 summarise these theoretical
results. Notice that, in this example, Eq. .6 (i.e., the responder’s threshold) indeed
plays a role in round 1, whereas in the rounds 2 and 3 the equation does not influence
the proposals made in SPE.
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Samenvatting (Dutch)

Onderhandelen speelt een steeds grotere rol door de ontwikkelingen binnen de elek-
tronische handel, met name door de ontwikkeling van autonome software agenten.
Dit zijn programma’s die, gëınstrueerd door een gebruiker, in staat zijn zelfstandig
en op een intelligente wijze een gegeven opdracht te verwezenlijken. Door middel
van autonome software agenten kan het onderhandelingsproces worden geautoma-
tiseerd, waarmee goederen en diensten met de daarbij horende voorwaarden, zoals
garantie en leveringstijd, flexibel kunnen worden afgestemd op de individuele wensen
van de betrokkenen. In dit proefschrift wordt aandacht besteed aan zowel funda-
mentele aspecten van onderhandelen als bedrijfstoepassingen van geautomatiseerd
onderhandelen dmv software agenten.

Het fundamentele deel houdt zich bezig met de vraag wat de uitkomst van on-
derhandelende agenten zal zijn in een gestileerde wereld en hoe deze uitkomst wordt
bëınvloed. Hierdoor kunnen inzichten worden verkregen voor het produceren van
agenten, strategieën en het opstellen van onderhandelingsregels voor praktijksitu-
aties. Wij bestuderen deze aspecten aan de hand van computer simulaties van
onderhandelende agenten. Hierbij wordt gekeken naar adaptieve systemen, dwz
waarbij agenten leren hun onderhandelingsstrategie aan te passen aan de hand van
ervaringen uit het verleden. Het leergedrag wordt gesimuleerd door evolutionaire
algoritmen. Deze algoritmen komen voort uit de kunstmatige intelligentie en zijn
gëınspireerd door de evolutie theorie uit de biologie. Oorspronkelijk zijn de evoluti-
onaire algoritmen ontwikkeld om optimalisatieproblemen op te lossen, maar binnen
de economie wordt deze methode steeds vaker toegepast om leergedrag van mensen
te modelleren. Naast computer simulaties bestuderen wij voor relatief eenvoudige
gevallen wiskundige oplossingen uit de zogenaamde spel theorie. De spel theorie
houdt zich met name bezig met de ”rationele mens”, dwz met optimale oplossing in
een geabstraheerde situatie (of spel), gegeven dat iedereen zich rationeel gedraagt.
De spel-theoretische uitkomsten worden gebruikt om de computer experimenten te
valideren. Het voordeel van de computer simulaties is dat minder stricte assump-
ties nodig zijn en dat complexere interacties die dichter bij de werkelijkheid staan
kunnen worden bestudeerd.
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Allereerst wordt een onderhandelingssituatie onderzocht waarbij twee spelers bo-
den en tegen boden tegen elkaar uitwisselen, het zogenaamde alternerende boden
spel. Dit spel wordt vaak gebruikt als model voor onderhandelen over bijvoorbeeld
de prijs van een product of dienst. Het is echter belangrijk om ook andere product
of dienst gerelateerde aspecten in beschouwing te nemen zoals de kwaliteit, leve-
ringstijd en garantieperiode. Dit geeft namelijk de mogelijkheid om compromissen
te sluiten door toe te geven op minder belangrijke aspecten en meer te vragen voor
belangrijke aspecten. Hierdoor zijn onderhandelingen minder competitief en kunnen
uitkomsten ontstaan die voor beide partijen aantrekkelijk zijn. Derhalve onderzoe-
ken wij middels computer simulaties een variant op het alternerende boden spel,
waarbij meerdere aspecten gelijktijdig worden onderhandeld. Daarnaast gebruiken
wij de speltheorie om resultaten van de simulatie te valideren. De simulatie laat
zien dat lerende agenten in korte tijd tot optimale compromissen komen, ook wel
Pareto efficiënte oplossingen genoemd. Vervolgens bestuderen wij het effect van
tijdsdruk die ontstaat als onderhandelingen met een kleine kans worden afgebroken,
bijvoorbeeld als gevolg van externe factoren. Bij het ontbreken van tijdsdruk en
een maximum aantal rondes, zijn de uitkomsten zeer onevenwichtig: de speler die
als laatste de kans krijgt om een bod uit te brengen doet een “alles of niets” bod
in de laatste ronde, wat voor de andere speler slechts een fractie beter is dan hele-
maal geen overeenkomst. Bij een relatief hoge tijdsdruk, is juist het eerste bod het
belangrijkste, en worden bijna alle overeenkomsten in de eerste ronde afgesloten.
Een andere interessante uitkomst is dat de simulatie resultaten na een lange leer-
periode in grote lijnen overeenkomen met oplossingen uit de speltheorie, ondanks
dat de lerende agenten niet “rationeel” zijn. In de werkelijkheid is niet alleen de
uitkomst belangrijk, maar spelen ook andere factoren mee, zoals de eerlijkheid van
de uitkomst. Middels de simulatie wordt gekeken naar de invloed op de onderhande-
lingsuitkomsten als door de agent met dergelijke normen rekening wordt gehouden.
Door deze normen zijn de uitkomsten veel evenwichtiger, ook bij het ontbreken van
tijdsdruk, en lijken meer overeen te komen met de werkelijkheid.

Onderhandelingen staan vaak niet op zichzelf, maar worden bepaald door externe
factoren zoals additionele onderhandelingsmogelijkheden. Naast het gëısoleerde on-
derhandelingsspel, bestuderen wij daarom ook onderhandelingen binnen een markt-
achtige omgeving, waarbij zowel kopers als verkopers meerdere keren kunnen onder-
handelen met verschillende spelers om tot een overeenkomst te komen. Deze onder-
handelingen worden opeenvolgend uitgevoerd totdat een overeenkomst is gesloten
of totdat er geen onderhandelingsmogelijkheden meer zijn. Elk onderhandelingsspel
tussen twee spelers wordt hier beperkt tot één ronde, waarbij speler 1 een bod doet,
en speler 2 kan dit bod weigeren of accepteren. Met een evolutionaire simulatie
onderzoeken wij verscheidene eigenschappen van het markt spel. Het blijkt dat de
uitkomsten erg afhangen van de informatie die beschikbaar is binnen het spel. Als
de spelers op de hoogte zijn van elkaars onderhandelingsmogelijkheden, dan doet
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de biedende speler telkens een alles of niets bod en krijgt het grootste voordeel.
Dit komt overeen met speltheoretische uitkomsten die wij tevens presenteren in dit
proefschrift. Als deze informatie niet bekend is, wordt een theoretische analyse heel
moeilijk. De evolutionaire simulatie laat dan echter zien dat de tweede speler, dwz
de speler die het bod weigert of accepteert, de beste onderhandelingspositie bezit.
Dit komt omdat de eerste speler niet kan inschatten wat de reactie zal zijn van de
tweede speler, en hierdoor lager inzet. In het proefschrift wordt verder ook gekeken
naar andere factoren die de uitkomsten bëınvloeden, zoals het onderhandelen over
meerdere aspecten tegelijkertijd, zoekkosten en afbreekkansen.

Naast de aandacht voor fundamentele vraagstukken worden in dit proefschrift
een aantal bedrijfsgerelateerde toepassingen van geautomatiseerd onderhandelen ge-
presenteerd alsmede generieke onderhandelingsstrategieën voor de agenten die in
gerelateerde applicaties kunnen worden ingezet. Als eerste toepassing introduceren
wij een raamwerk waarbij onderhandelen wordt gebruikt voor het aanbevelen van
winkels aan klanten, bijvoorbeeld op een webpagina van een elektronisch winkel-
centrum. Middels de marktwerking van een veiling wordt op een gedistribueerde
wijze een relevante selectie van winkels voor de klant bepaald. Hiertoe worden een
beperkt aantal advertentieplaatsen in een elektronische veiling aangeboden. Voor
elke individuele bezoeker van de pagina kunnen winkels via hun winkel agent ge-
automatiseerd bieden voor deze ”aandachtsspanne” van de klant. Het bieden door
deze software agent geschiedt op basis van een klantenprofiel, wat persoonlijke ge-
gevens bevat van de bezoeker, zoals zijn/haar interessen, leeftijd, en/of opgegeven
zoekwoorden. De winkel agenten zijn adaptief en leren, gegeven terugkoppeling van
de klant, op welke profielen ze zich moeten richten en hoe hoog ze moeten bieden.
De hoogste bieders worden vervolgens aan de klant getoond. De werking van het
op deze wijze gedistribueerd bepalen van relevante winkels is aangetoond middels
een evolutionaire simulatie. Wij onderzoeken verschillende modellen van klanten en
veilingmechanismen, en laten zien dat het veilingsysteem resulteert in een passende
selectie van winkels voor de klant.

Onderhandelen kan vooral van belang zijn als niet alleen de prijs, maar ook an-
dere aspecten een rol spelen. Hierdoor kunnen bijvoorbeeld goederen en diensten
beter worden afgestemd op individuele wensen van de gebruiker. Dit aspect wordt
benut in een systeem wat wij hebben ontwikkeld voor de verkoop en personalisa-
tie van zogenaamde informatiegoederen, zoals nieuws artikelen, software en muziek.
Middels het alternerende boden protocol kan een verkopende software agent met
meerdere kopende software agenten tegelijkertijd automatisch onderhandelen over
een vaste prijs, een “stukprijs”, en de kwaliteit van een bundel informatiegoederen.
Het systeem houdt ook rekening met belangrijke bedrijfsgerelateerde voorwaarden
zoals de eerlijkheid van de onderhandeling. De agenten gebruiken een combinatie
van een concessiestrategie en een zoekstrategie om een onderhandelingsbod te gene-
reren. De concessiestrategie bepaalt hoeveel elke ronde wordt toegegeven, terwijl de

171



zoekstrategie zorgt voor gepersonaliseerde boden. In dit proefschrift introduceren
wij een tweetal zoekstrategieen, en wij laten middels computer simulaties zien dat
bij gezamenlijk gebruik door een kopende agent en een verkopende agent deze stra-
tegieën leiden tot gepersonaliseerde oplossingen, ook in combinatie met verschillende
concessiestrategieën. Deze zoekstrategieën kunnen ook gemakkelijk worden toepast
bij andere onderhandelingssituaties waarbij personalisatie een rol speelt.

Naast bovenstaande zoekstrategieën hebben wij ook een aantal concessiestra-
tegieën ontwikkeld voor een verkopende agent die met meerdere kopende agenten
tegelijkertijd onderhandelt. Ook al is het onderhandelingsproces op zich bilateraal
(dwz tussen twee partijen), kan de verkopende agent gebruik maken van het feit
dat meerdere onderhandelingen tegelijkertijd plaatsvinden. De ontwikkelde onder-
handelingsstrategieën zijn gericht op situaties waarbij het aanbod flexibel is en kan
worden afgestemd op de vraag, zoals bij informatie goederen. Wij bestuderen hier-
bij vaste strategieën, tijdsafhankelijke strategieën, en introduceren tevens een aantal
strategieën die gëınspireerd zijn door veilingen. Veilingen worden vaak gebruikt in
situaties waarbij één partij onderhandelt met meerdere partijen tegelijkertijd. Hoe-
wel deze laatste strategie de voordelen heeft van een veiling, blijft de onderhandeling
zelf bilateraal en bestaat uit het uitwisselen van boden en tegen boden. Een evo-
lutionaire simulatie omgeving is ontwikkeld om de strategieën van de verkoper te
evalueren. Hierbij wordt voornamelijk gekeken naar de situatie waarbij de kopers
tijdsdruk ondervinden en onder druk staat om snel tot een overeenkomst te komen.
Uit de simulatie blijkt dat de op veiling gëınspireerde strategieën van de verkopende
agent in staat zijn bijna de maximale winst uit de onderhandelingen te halen bij
voldoende tijdsdruk van de kopers.
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Summary (English)

Bargaining is becoming increasingly important due to developments within the field
of electronic commerce, especially the development of autonomous software agents.
Software agents are programs which, given instructions from a user, are capable of
autonomously and intelligently realise a given task. By means of such agents, the
bargaining process can be automated, allowing products and services together with
related conditions, such as warranty and delivery time, to be flexible and tuned to
the individual preferences of the people concerned. In this theses we concentrate on
both fundamental aspects of bargaining as well as business-related applications of
automated bargaining using software agents.

The fundamental part investigates bargaining outcomes within a stylised world,
and the factors that influence these outcomes. This can provide insights for the pro-
duction of software agents, strategies, and setting up bargaining rules for practical
situations. We study these aspects using computational simulations of bargaining
agents. Hereby we consider adaptive systems, i.e., where agents learn to adjust
their bargaining strategy given past experience. This learning behaviour is simu-
lated using evolutionary algorithms. These algorithms originate from the field of
artificial intelligence, and are inspired by the biological theory of evolution. Origi-
nally, evolutionary algorithms were designed for solving optimisation problems, but
they are now increasingly being used within economics for modelling human learn-
ing behaviour. Besides computational simulations, we also consider mathematical
solutions from game theory for relatively simple cases. Game theory is mainly con-
cerned with the “rational man”, that is, with optimal outcomes within an stylised
setting (or game) where people act rationally. We use the game-theoretic outcomes
to validate the computational experiments. The advantage of computer simulations
is that less strict assumptions are necessary, and that more complex interactions
that are closer to real-world settings can be investigated.

First of all, we study a bargaining setting where two players exchange offers and
counter offers, the so-called alternating-offers game. This game is frequently used for
modelling bargaining about for instance the price of a product or service. It is also
important, however, to allow other product- and service-related aspects to be nego-
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tiated, such as quality, delivery time, and warranty. This enables compromises by
conceding on less important issues and demanding a higher value for relatively im-
portant aspects. This way, bargaining is less competitive and the resulting outcome
can be mutually beneficial. Therefore, we investigate using computational simula-
tions an extended version of the alternating-offers game, where multiple aspects are
negotiated concurrently. Moreover, we apply game theory to validate the results of
the computational experiments. The simulation shows that learning agents are ca-
pable of quickly finding optimal compromises, also called Pareto-efficient outcomes.
In addition, we study the effects of time pressure that arise if negotiations are broken
off with a small probability, for example due to external eventualities. In absence
of time pressure and a maximum number of negotiation rounds, outcomes are very
unbalanced: the player that has the opportunity to make a final offer proposes a
take-it-or-leave-it offer in the last round, which leaves the other player with a deal
that is only slightly better than no deal at all. With relatively high time pressure,
on the other hand, the first offer is most important and almost all agreements are
reached in the first round. Another interesting result is that the simulation out-
comes after a long period of learning in general coincide with the results from game
theory, in spite of the fact that the learning agents are not “rational”. In reality,
not only the final outcome is important, but also other factors play a role, such as
the fairness of an offer. Using the simulation we study the influence of such fairness
norms on the bargaining outcomes. The fairness norms result in much more bal-
anced outcomes, even with no time pressure, and seem to be closer outcomes in the
real world.

Negotiations are rarely isolated, but can also be influenced by external factors
such as additional bargaining opportunities. We therefore also consider bargaining
within a market-like setting, where both buyers and sellers can bargain with several
opponents before reaching an agreement. The negotiations are executed consecu-
tively until an agreement is reached or no more opportunities are available. Each
bargaining game is reduced to a single round, where player 1 makes an offer and
player 2 can only respond by rejecting or accepting this offer. Using an evolutionary
simulation we study several properties of this market game. It appears that the
outcomes depend on the information that is available to the players. If players are
informed about the bargaining opportunities of their opponents, the first player in
turn has the advantage and always proposes a take-it-or-leave-it deal that leaves
the other player with a relatively poor outcome. This outcome is consistent with
a game-theoretic analysis which we also present in this thesis. If this information
is not available, a theoretical analysis is very hard. The evolutionary simulation,
however, shows that in this case the responder obtains a better deal. This occurs
because the first player can no longer anticipate the response of the other player, and
therefore bids lower to avoid a disagreement. In this thesis, we additionally consider
other factors that influence the outcomes of the market game, such as negotiation
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over multiple issues simultaneously, search costs, and break off probabilities.

Besides fundamental issues, this thesis presents a number of business-related
applications of automated bargaining, as well as generic bargaining strategies for
agents that can be employed in related areas. As a first application, we introduce
a framework where negotiation is used for recommending shops to customers, for
example on a web page of an electronic shopping mall. Through a market-driven
auction a relevant selection of shops is determined in a distributed fashion. This
is achieved by selling a limited number of banner spaces in an electronic auction.
For each arriving customer on the web page, shops can automatically place bids for
this “customer attention space” through their shop agents. These software agents
bid based on a customer profile, containing personal data of the customer, such as
age, interests, and/or keywords in a search query. The shop agents are adaptive
and learn, given feedback from the customers, which profiles to target and how
much to bid in the auction. The highest bidders are then selected and displayed
to the customer. The feasibility of this distributed approach for matching shops
to customers is demonstrated using an evolutionary simulation. Several customer
models and auction mechanisms are studied, and we show that the market-based
approach results in a proper selection of shops for the customers.

Bargaining can be especially beneficial if not only the price, but other aspects
are considered as well. This allows for example to customise products and services
to the personal preferences of a user. We developed a system makes use of these
properties for selling and personalising so-called information goods, such as news
articles, software, and music. Using the alternating-offers protocol, a seller agent
negotiates with several buyers simultaneously about a fixed price, a per-item price,
and the quality of a bundle of information goods. The system is capable of taking
into account important business-related conditions such as the fairness of the nego-
tiation. The agents combine a search strategy and a concession strategy to generate
offers in the negotiations. The concession strategy determines the amount the agent
will concede each round, whereas the search strategy takes care of the personalisa-
tion of the offer. We introduce two search strategies in this thesis, and show through
computer experiments that the use of these strategies by a buyer and seller agent,
result in personalised outcomes, also when combined with various concession strate-
gies. The search strategies presented here can be easily applied to other domains
where personalisation is important.

In addition, we also developed concession strategies for the seller agent that can
be used in settings where a single seller agent bargains with several buyer agents
simultaneously. Even if bargaining itself is bilateral (i.e., between two parties), a
seller agent can actually benefit from the fact that several such negotiations occur
concurrently. The developed strategies are focussed on domains where supply is
flexible and can be adjusted to meet demand, like for information goods. We study
fixed strategies, time-dependent strategies and introduce several auction-inspired
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strategies. Auctions are often used when one party negotiates with several oppo-
nents simultaneously. Although the latter strategies benefit from the advantages of
auctions, the actual negotiation remains bilateral and consists of exchanging offers
and counter offers. We developed an evolutionary simulation environment to eval-
uate the seller agent’s strategies. We especially consider the case where buyers are
time-impatient and under pressure to reach agreements early. The simulations show
that the auction-inspired strategies are able to obtain almost maximum profits from
the negotiations, given sufficient time pressure of the buyers.
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G. Fábián. A Language and Simulator for
Hybrid Systems. Faculty of Mechanical Engi-
neering, TUE. 1999-11

J. Zwanenburg. Object-Oriented Concepts
and Proof Rules. Faculty of Mathematics and
Computing Science, TUE. 1999-12

R.S. Venema. Aspects of an Integrated Neu-
ral Prediction System. Faculty of Mathematics
and Natural Sciences, RUG. 1999-13

J. Saraiva. A Purely Functional Implementa-
tion of Attribute Grammars. Faculty of Math-
ematics and Computer Science, UU. 1999-14

R. Schiefer. Viper, A Visualisation Tool
for Parallel Progam Construction. Faculty of
Mathematics and Computing Science, TUE.
1999-15

K.M.M. de Leeuw. Cryptology and State-
craft in the Dutch Republic. Faculty of Mathe-
matics and Computer Science, UvA. 2000-01

T.E.J. Vos. UNITY in Diversity. A stratified
approach to the verification of distributed algo-
rithms. Faculty of Mathematics and Computer
Science, UU. 2000-02

W. Mallon. Theories and Tools for the Design
of Delay-Insensitive Communicating Processes.
Faculty of Mathematics and Natural Sciences,
RUG. 2000-03

W.O.D. Griffioen. Studies in Computer
Aided Verification of Protocols. Faculty of Sci-
ence, KUN. 2000-04

P.H.F.M. Verhoeven. The Design of the
MathSpad Editor. Faculty of Mathematics and
Computing Science, TUE. 2000-05

J. Fey. Design of a Fruit Juice Blending and
Packaging Plant. Faculty of Mechanical Engi-
neering, TUE. 2000-06

M. Franssen. Cocktail: A Tool for Deriving
Correct Programs. Faculty of Mathematics and
Computing Science, TUE. 2000-07

P.A. Olivier. A Framework for Debugging
Heterogeneous Applications. Faculty of Natural
Sciences, Mathematics and Computer Science,
UvA. 2000-08

E. Saaman. Another Formal Specification
Language. Faculty of Mathematics and Nat-
ural Sciences, RUG. 2000-10

M. Jelasity. The Shape of Evolutionary
Search Discovering and Representing Search
Space Structure. Faculty of Mathematics and
Natural Sciences, UL. 2001-01

R. Ahn. Agents, Objects and Events a com-
putational approach to knowledge, observation
and communication. Faculty of Mathematics
and Computing Science, TU/e. 2001-02

M. Huisman. Reasoning about Java programs
in higher order logic using PVS and Isabelle.
Faculty of Science, KUN. 2001-03



I.M.M.J. Reymen. Improving Design Pro-
cesses through Structured Reflection. Faculty
of Mathematics and Computing Science, TU/e.
2001-04

S.C.C. Blom. Term Graph Rewriting: syntax
and semantics. Faculty of Sciences, Division
of Mathematics and Computer Science, VUA.
2001-05

R. van Liere. Studies in Interactive Visual-
ization. Faculty of Natural Sciences, Mathe-
matics and Computer Science, UvA. 2001-06

A.G. Engels. Languages for Analysis and
Testing of Event Sequences. Faculty of Mathe-
matics and Computing Science, TU/e. 2001-07

J. Hage. Structural Aspects of Switching
Classes. Faculty of Mathematics and Natural
Sciences, UL. 2001-08

M.H. Lamers. Neural Networks for Analy-
sis of Data in Environmental Epidemiology: A
Case-study into Acute Effects of Air Pollution
Episodes. Faculty of Mathematics and Natural
Sciences, UL. 2001-09

T.C. Ruys. Towards Effective Model Check-
ing. Faculty of Computer Science, UT. 2001-10

D. Chkliaev. Mechanical verification of con-
currency control and recovery protocols. Fac-
ulty of Mathematics and Computing Science,
TU/e. 2001-11

M.D. Oostdijk. Generation and presentation
of formal mathematical documents. Faculty of
Mathematics and Computing Science, TU/e.
2001-12

A.T. Hofkamp. Reactive machine control: A
simulation approach using χ. Faculty of Me-
chanical Engineering, TU/e. 2001-13
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