@ Electronic Commerce Research, 5: 7-24 (2005)
= © 2005 Springer Science + Business Media, Inc. Manufactured in the Netherlands.

Decentralized Peer-to-Peer Auctions

MARCUS FONTOURA
IBM Almaden Research Center, USA

MIHAIL IONESCU and NAFTALY MINSKY
Department of Computer Science, 110 Frelinghuysen Road, Rutgers University, Piscataway, NJ 08854, USA

Abstract

This paper proposes a flexible architecture for the creation of Internet auctions. It allows the custom definition of
the auction parameters, and provides a decentralized control of the auction process. Auction policies are defined
as laws in the Law Governed Interaction (LGI) paradigm. Each of these laws specifies not only the auction
algorithm itself (e.g., open-cry, Dutch, etc.) but also how to handle the other parameters usually involved in the
online auctions, such as certification, auditioning, and treatment of complaints. LGI is used to enforce the rules
established in the auction policy within the agents involved in the process. After the agents find out about the
actions, they interact in a peer-to-peer communication protocol, reducing the role of the centralized auction room
to an advertising registry, and taking profit of the distributed nature of the Internet to conduct the auction. The
paper presents an example of an auction law, illustrating the use of the proposed architecture.

Keywords: online auctions, law-governed interaction

Introduction

The Internet has made possible the creation of virtual auctions rooms, in which buyers
and sellers scattered across the globe interact to close deals. Internet auctions allow faster
and less expensive transactions with no geographical barrier [Lee and Clark, 7]. Although
Internet auctions have been successfully used [Lee, 6], current auction applications still
do not fully exploit the distributed nature of the Internet. They are based on centralized
systems that necessarily make decisions about the auction process, taking away important
choices from the auction participants. These choices include:

e The auction algorithm itself: several types of such algorithms can be used (like open-
cry, Dutch, sealed, etc.), and each of them may have many variations [Cassady Jr., 4;
Kumar and Feldman, 5].

e Certification: how to compute reputation and trust information about the auction partic-
ipants.

e Auditing: what needs to be audited, and by whom.

o The treatment of complaints: how to handle complaints about inappropriate behavior of
auction participants or about unsuccessful transactions.

Although some centralized auction systems provide flexibility in the choice of the auc-
tion algorithm (e.g., through parameters, as in the AuctionBot system [Wurman et al., 17]),

8 FONTOURA ET AL.

the ability to make the other auction parameters flexible, such as certification, auditing, and
treatment of complaints, is much more difficult, if at all possible, to be accomplished via a
centralized system.

Let us consider two auction scenarios: in the first the seller wants to sell modern art items
while in the second he or she wants to sell audio CDs. In the modern art case, it is very
important for the seller to present some certificate that can be used in order to determine
the authenticity of the items being sold. If this auction is being conducted by a centralized
auction server, the buyer has to trust either the server or the certifying authorities appointed
by the server. This might not be desirable for the buyer, since different people trust different
entities, which is especially true for transactions involving valuable items. Therefore, a
buyer should be able to decide to participate in such an auction only if some particular
certifying authorities (CAs) are involved. On the contrary, in the case of audio CDs, a
sophisticated certification mechanism is not necessary since buyers can easily check the
accuracy of the product description and complain afterwards, if not satisfied.

This simple example illustrates that the level of certification required in an auctioning
system is product dependent, and cannot be fully implemented by a centralized server. In-
stead, auction participants should be able to indicate which certifying authorities they trust,
customizing the auction process. The same argument is true for other auction parameters.
For example, the management of user reputation in eBay (http: //www.ebay . com)al-
lows people to build a good reputation by doing false transactions. Buyers would be more
willing to participate in some auctions if someone they trust knew the real identity of the
seller. If such an entity exists, complaints can more easily be solved and the possibility of
cheating decreases.

Having a centralized server to perform all the tasks of an Internet auction (advertising,
enforcing the auction policy, controlling user reputation, and so on) is not suitable for
online auctioning. Since different people trust different entities for performing each of the
individual tasks in the auction process, we need a different model, in which all the entities
involved can be dynamically specified in an auction policy.

In this model the auctions applications are reduced to an advertising registry, in which
sellers and buyers register and search for auctions.! Each registered auction follows a
given auction policy that is publicly available. Sellers and buyers can participate in a given
auction as long as they obey the auction policy. Once they find out about the auction, the
interested parties establish a peer-to-peer (P2P) communication, which is regulated by the
specified policy. The policy is explicitly defined in a special file, called the auction law,
using the Law Governed Interaction (LGI) paradigm [Minsky and Ungureanu, 12].

LGI allows a group, or a community, of distributed heterogeneous agents to interact
with each other with confidence that an explicitly specified policy, called the law of the
group, is complied with by everyone in the group. LGI has been designed specifically
to satisfy the following principles, which we consider critical for coordination in large
heterogeneous systems: (1) coordination policies need to be formulated explicitly rather
than being implicit in the code of the agents involved, (2) coordination policies need to be
enforced, and (3) the enforcement needs to be decentralized for scalability. LGI has been
implemented in a middleware system called Moses [Minsky and Ungureanu, 12], which
has been applied to a broad range of coordination and control applications, including:

DECENTRALIZED PEER-TO-PEER AUCTIONS 9

on-line reconfiguration of distributed systems [Minsky et al., 13], security [Minsky and
Ungureanu, 10], and electronic commerce [Minsky and Ungureanu, 11].

The rest of the paper is organized as follows. Section 1 briefly describes the LGI model
and its main concepts. Section 2 describes the architecture for law-based auctions and a
scenario in which the proposed architecture can be applied. Section 3 presents an overview
of related work. Section 4 concludes the paper and presents our future research directions.

1. Law-governed interaction—an overview

Broadly speaking, LGI is a message-exchange mechanism that allows an open group of
distributed agents to engage in a mode of interaction governed by an explicitly specified
policy, called the law of the group. The messages thus exchanged under a given law £
are called L-messages, and the group of agents interacting via L£-messages is called a
community C, or, more specifically, an £-community C-. The concept of LGI has been
introduced (under a different name) by one of the authors (Minsky) in [Minsky, 9], and has
been implemented via a middleware called Moses [Minsky and Ungureanu, 12].

By the phrase “open community” we mean (a) that the membership of this community
can change dynamically, and can be very large; and (b) that the members of a given com-
munity can be heterogeneous. In fact, we make here no assumptions about the structure
and behavior of the agents” that are members of a given community C, which might be
software processes, written in an arbitrary languages, or human beings. All such members
are treated as black boxes by LGI, which deals only with the interaction between them via
L-messages, making sure it conforms to the law of the community. (Note that members of
a community are not prohibited from non-LGI communication across the Internet, or from
participation in other LGI-communities.)

For each agent x in a given community C., LGI maintains, what is called, the control-
state CSy of this agent. These control-states, which can change dynamically, subject to
law L, enable the law to make distinctions between agents, and to be sensitive to dynamic
changes in their state. The semantics of control-states for a given community is defined
by its law, could represent such things as the role of an agent in this community, and
privileges and tokens it carries. For example, under law OC to be introduced in Section 2,
as a formalization of an open-cry auction policy, the term role(seller) in the control-
state of an agent denotes that this agent has been certified as a seller.

We now elaborate on several aspects of LGI, focusing on (a) its concept of law,
(b) its mechanism for law enforcement, and (c) its treatment of digital certificates. We
do not discuss here several important aspects of LGI, including the interoperability be-
tween communities, and the treatment of exceptions. Nor do we discuss here the ex-
pressive power of LGI, its theoretical performance, and the performance of its current
implementation. For these issues, and for a more complete presentation of the rest of
LGI, the reader is referred to [Minsky and Ungureanu, 12; Ungureanu and Minsky, 16;
Aoetal, 1].

10 FONTOURA ET AL.

1.1. The concept of law

Generally speaking, the law of a community C is defined over a certain type of events
occurring at members of C, mandating the effect that any such event should have—this
mandate is called the ruling of the law for a given event. The events subject to laws, called
regulated events, include (among others): the sending and the arrival of an L-message; the
coming due of an obligation previously imposed on a given object; and the submission of a
digital certificate (more about the latter two kinds of events, later). The operations that can
be included in the ruling of the law for a given regulated event are called primitive opera-
tions. They include, operations on the control-state of the agent where the event occurred
(called, the “home agent”); operations on messages, such as forward and deliver;
and the imposition of an obligation on the home agent.

Thus, a law £ can regulate the exchange of messages between members of an
L-community, based on the control-state of the participants; and it can mandate various
side effects of the message-exchange, such as modification of the control states of the
sender and/or receiver of a message, and the emission of extra messages, for monitoring
purposes, say.

On the local nature of laws Although the law £ of a community C is global in that it
governs the interaction between all members of C, it is enforceable locally at each member
of C. This is due to the following properties of LGI laws:

e L only regulates local events at individual agents,

o the ruling of £ for an event e at agent x depends only on e and the local control-state
CS, of x.

e The ruling of £ at x can mandate only local operations to be carried out at x, such as
an update of CSy, the forwarding of a message from x to some other agent, and the
imposition of an obligation on x.

The fact that the same law is enforced at all agents of a community gives LGI its nec-
essary global scope, establishing a common set of ground rules for all members of C and
providing them with the ability to trust each other, in spite of the heterogeneity of the
community. And the locality of law enforcement enables LGI to scale with community
size.

On the structure and formulation of laws Abstractly speaking, the law of a community
is a function that returns a ruling for any possible regulated event that might occur at any
one of its members. The ruling returned by the law is a possibly empty sequence of primi-
tive operations, which is to be carried out locally at the location of the event from which the
ruling was derived (called the home of the event). (By default, an empty ruling implies that
the event in question has no consequences—such an event is effectively ignored.) Such
a function can be expressed in many languages. Our middleware currently provides two
languages for writing laws: Java, and a somewhat restricted version of Prolog [Clocksin
and Mellish, 2]. We employ prolog in this paper.

When prolog is employed for this purpose, an LGI law is defined by means of a Prolog-
like program L which, when presented with a goal e, representing a regulated-event at a

DECENTRALIZED PEER-TO-PEER AUCTIONS 11

Operations on the control-state

t@ecs returns true if term t is present
in the control state, and fails,
otherwise

+t adds term t to the control state;

—t removes term t from the

control state;

Operations on messages

forward(x,m, y) sends message m from x to y;
triggers at y an
arrived(x,m,y) event

deliver(x,m,y) delivers the message m from
xtoy

Miscellaneous

teL returns true if term t is
present in list L, and fails,
otherwise

imposeObligation(oType, dt) causes the triggering of an
obligationDue(oType)

event after time interval dt.

Figure 1. Some primitive operations in LGI.

given agent x, is evaluated in the context of the control-state of this agent, producing the
list of primitive-operations representing the ruling of the law for this event. In addition
to the standard types of Prolog goals, the body of a rule may contain two distinguished
types of goals that have special roles to play in the interpretation of the law. These are
the sensor-goals, which allow the law to “sense” the control-state of the home agent, and
the do-goals that contribute to the ruling of the law. A sensor-goal has the form t@CS,
where t is any Prolog term. It attempts to unify t with each term in the control-state of
the home agent. A do-goal has the form do(p), where p is one of the above mentioned
primitive-operations. It appends the term p to the ruling of the law. A sample of primitive
operations is presented in Figure 1.

The concept of enforced obligation Informally speaking, an obligation under LGI is a
kind of motive force. Once an obligation is imposed on an agent—generally, as part of the
ruling of the law for some event at it—it ensures that a certain action (called sanction) is
carried out at this agent, at a specified time in the future, when the obligation is said to come
due, and provided that certain conditions on the control state of the agent are satisfied at
that time. The circumstances under which an agent may incur an obligation, the treatment
of pending obligations, and the nature of the sanctions, are all governed by the law of the
community.

Specifically, an obligation can be imposed on a given agent x at time t 0 by the execution
at x of a primitive operation

imposeObligation (oType,dt),

where dt is the time period, after which the obligation is to come due (dt is specified as a
pair [n, u], wheren is an integer and u is a unit of time, such as “second” or “hour”), and

12 FONTOURA ET AL.

oType—the obligation type—is a term that identifies this obligation (not necessarily in
a unique way). The main effect of this operation is that unless the specified obligation is
repealed before its due time t = t0 + dt, the regulated event

obligationDue (oType)

would occur at agent x at time t. The occurrence of this event would cause the controller
to carry out the ruling of the law for this event; this ruling is, thus, the sanction for this
obligation. Note that a pending obligation incurred by agent x can be repealed before its
due time by means of the primitive operation

repealObligation (oType)

carried out at x, as part of a ruling of some event. (This operation actually repeals all
pending obligations of type oType.)

For example, under law OC, when an seller d starts an auctions, an obligation
expired(timeout(P)) is imposed on d, to come due at the expiration time of this
auctions. When this obligation comes due, it will cause d to declare the current winner of
the auction.

Note that there is a significant difference between this concept, and the concept of oblig-
ation under deontic logic [Meyer et al., 8], used for the specification of normative systems.
The obligations of deontic logic allow one to reason about what an agent must do, but they
provide no means for ensuring that what needs to be done will actually be done [Roscheisen
and Winograd, 14].

1.2. The law-enforcement mechanism

We start with an observation about the term “enforcement”, as used here. We do not
propose to coerce any agent to exchange £-messages under any given law £, just as we
cannot coerce doctors to issue their orders via a computer rather than via pen and paper.
The role of enforcement here is merely to ensure that any exchange of L-messages, once
undertaken, conforms to law L. More specifically, our enforcement mechanism is designed
to ensure the following properties: (a) the sending and receiving of £-messages conforms
to law £; and (b) a message received under law £ has been sent under the same law (i.e.,
it is not possible to forge £-messages).

Since we do not compel anybody to operate under any particular law, or to use LGI, for
that matter, how can we be sure that all auction messages in a decentralized auction are
entered under law OC? The answer is that an agent may be effectively compelled to ex-
change £-messages, if he needs to use services provided only under this law, or to interact
with agents operating under it. For instance, if the sellers accept only OC-messages, then
anybody needing their services would be compelled to send OC-messages to them.

Distributed law-enforcement Broadly speaking, the law £ of community C is enforced
by a set of trusted agents called controllers, that mediate the exchange of £-messages be-
tween members of C. Every member x of C has a controller 7, assigned to it (7 here

DECENTRALIZED PEER-TO-PEER AUCTIONS 13

CS | CSy
X
X D y
. ~ — communication
sent forward networ arrived deliver
agent agent
L L
controller controller

Legend:

a regulated event -— -

a primitive operation ------ -------- —-

Figure 2. Enforcement of the law.

stands for “trusted agent”) which maintains the control-state CS, of its client x. And all
these controllers, which are logically placed between the members of C and the communi-
cations medium (as illustrated in Figure 2) carry the same law L. Every exchange between
a pair of agents x and vy is thus mediated by their controllers 7; and 7, so that this enforce-
ment is inherently decentralized. Although several agents can share a single controller, if
such sharing is desired. (The efficiency of this mechanism, and its scalability, are discussed
in [Minsky and Ungureanu, 12].)

Controllers are generic, and can interpret and enforce any well formed law. A controller
operates as an independent process, and it may be placed on any machine, anywhere in
the network. We have implemented a controller-service, which maintains a set of active
controllers. To be effective in a widely distributed enterprise, this set of controllers need
to be highly available, and well dispersed geographically, so that it would be possible to
find controllers that are reasonably close to their prospective clients. One can envision
such a service being provided by governmental agency, such as the US Post Office, or by
a commercial company (or several of them), which charges for the use of its controllers,
and assumes a degree of responsibility for their correctness, and a degree of liability for
damages that might be caused by a malfunctioning controller.

On the basis for trust between members of a community For a members of an
L-community to trust its interlocutors to observe the same law, one needs the following
assurances: (a) that the exchange of £-messages is mediated by controllers interpreting
the same law L; and (b) that all these controllers are correctly implemented. If these two
conditions are satisfied, then it follows that if y receives an £-message from some x, this
message must have been sent as an £-message; in other words, that £-messages cannot be
forged.

To ensure that a message forwarded by a controller 7, under law £ would be handled by
another controller 7, operating under the same law, 7, appends a one-way hash [Schneier,

14 FONTOURA ET AL.

15] H of law £ to the message it forwards to 7. 7, would accept this as a valid £-message
under £ if and only if H is identical to the hash of its own law.

With respect to the correctness of the controllers, if an agent is not concerned with ma-
licious violations, then it can trust a controller provided by our controller-naming service,
or a controller provided by the operating system—just like we often trust various standard
services on the Internet, such as TCP/IP protocols. When malicious violations are a con-
cern, however, the validity of controllers and of the host on which they operate needs to
be certified. In this case, the controller-naming service needs to operate as a certification
authority for controllers. Furthermore, messages sent across the network must be digi-
tally signed by the sending controller, and the signature must be verified by the receiving
controller, allowing the two controllers to trust each other. Such secure inter-controller
interaction has been implemented in Moses [Minsky and Ungureanu, 11].

1.3. The treatment of certificates under LGI

Under LGI, all agents are made equal at the time they join an £-community. This is
because the control-state of all new members is identical—and control-states provide the
only means for a law to make distinctions between agents. We now explain how an agent
can acquire extra privileges, thus becoming more equal than others (with apologies to
George Orwell), by submitting appropriate certificates.

The submission by an agent x, operating under law L, of a certificate Cert to its con-
troller, has the following effect. An attempt is made to confirm that Cert is a valid cer-
tificate, duly signed by an authority that is acceptable to law L, i.e., an authority that is
represented by one of the authority — clauses in the preamble to the law (see Fig-
ure 6 for an example). If this attempt is successful,? then a certified-event is triggered. This
event, which is one of the regulated-events under LGI, has as its argument the following
representation of the submitted certificate:

[issuer (I), subject(S), attributes(aA)].

Here I and S are internal representations of the public-keys of the CA that issued this
certificate, and of its subject, respectively; and A is what is being certified about the subject.
Structurally, A is a list of attribute(value) terms. For example, the attributes of a
certificate might be the list [name(johnDoe), role(seller)], asserting that the name
of the subject in question is JohnDoe and his role in this community is a doctor. Additional
components of the attributes field include the expiration time of the certificate, the URL of
the server that maintains CRLs for this type of certificates, a certificate id (used to identify
it in CRLs), etc. (Currently we support SPKI format of certificates [Ellison, 3].)

What happens when the certified event is triggered depends, of course, on the law.
In the case of law OC of Figure 6, for example, the following would happen when a seller-
certificate is presented, triggering the certified event: (a) the term role(seller) is set
in the control-state of the agent in question, and (b) an obligation is imposed to deal with
the eventual expiration of this certificate.

DECENTRALIZED PEER-TO-PEER AUCTIONS 15

> Ty

o~ .

-~ ™~
" Controller Cluster ™
/ i

Controller
Server

Figure 3. Deployment of an £-group.
1.4. Engaging in an L-community

For an agent x to be able to exchange £-messages with other members of an £-community,
it must: (a) find an LGI controller, and (b) notify this controller that it wants to use it, under
law L. We will discuss these two steps below.

Locating an LGI controller As already discussed, the Moses middleware includes a
controller-service, which can be used to maintain a set of active controllers. This server
provides the address (host and port) of the available controllers to any agent that wishes to
engage in LGI. One may have any number of such servers so that controllers can be dis-
tributed in different regions of the Internet. Efficiency-wise, x would do best by selecting
a controller closest to it (to minimize the overhead of forwarding £-messages through the
controller). But functionally, one is free to choose a controller anywhere on the Internet,
and several agents may share a single controller, without knowing of each other. In Fig-
ure 3, we present a simple example of such an organization, as well as possible ways of
interacting with it.

For simplicity we presented here only one cluster of controllers, maintained by one
organization. This is not mandatory. Under our architecture multiple such clusters can
exist which can be maintained by one or multiple organizations. In order for agent x to
exchange £-messages with agent y, x (and y) have first to locate an available controller.
This is done by contacting the controller-server and obtaining from it the address of a
controller (messages 1 and 2, respectively 1’ and 2/, in Figure 3). Then they both have
to tell their respective controllers to adopt law L, as we will discuss below, tehy have to
find each other addresses (as illustrated by arrow 3 in the diagram). In our example of
law-governed auctions, the seller is publishing its own address so that the buyers are able
to contact it. In other applications, discovering the address of an agent can be done either

16 FONTOURA ET AL.

by using centralized name servers or by any other means of communication (like telephone
or e-mail messages).

After x knows the address of v, every message that x sends to y (message 4 in Figure 3)
passes first through x’s controller, then through y’s controller and finally, if the law allows,
is delivered to y.

Adopting a law Upon selecting a controller C, x would send C the message
adopt (law, name),

where 1aw is the law that it wants to adopt, and name is the name that it wants to be known
by. The argument 1aw can take the form of either the text of the law to be adopted or the
name of such a law, given to it by a specified law-repository service, which is another tool
provided by Moses—we will not discuss here the details of this service but rather assume
that the text of the entire law is always passed to the controller.

When controller C receives the adopt message, it checks the supplied law for syntactic
validity, and the chosen name for uniqueness among the names of all current agents handled
by C. If these two conditions are satisfied, and if C is not already loaded to capacity, it will
set up an initial control-state for agent x, as specified in the preamble of the law adopted
by x, allowing x to start operating under this law.*

2. Decentralized auctions and scenarios of use

In this section we present the LGI-based auctioning system. We start with the general ar-
chitecture and we then describe an example law for an open-cry auction policy [Kumar and
Feldman, 5]. We also propose solutions for two different issues related to the auctioning in
the Internet: auditing and treatment of complaints. We show how these issues, which can
be viewed as auction parameters, are specified as part of the auction policy using LGI. The
same approach is valid for other auction parameters.

2.1. LGlI-based auctioning architecture

The three main entities in the LGI-based auctioning architecture are: auction registry, sell-
ers, and buyers. The following paragraphs detail each of them.

e Auction registry. The auction registry is a separate agent that holds the selling offers
as a tuple {ProductName, Description, SellerAddress, AuctionPolicy, Timeout}. Sellers
can insert or delete tuples from the registry, while buyers can just query the registry
about current auctions.’ If there is no offer until the timeout for the auction expires, the
registry withdraws the auction tuple.

e Sellers and buyers. All the interaction between sellers and buyers is governed by
LGI according to the auction policies (laws) specified in the registry tuples. We as-
sume, for simplicity, that the actual exchange of product and money between the buyer
that wins the auction and the seller is handled by the two parties involved, like in

DECENTRALIZED PEER-TO-PEER AUCTIONS 17

Auction
registry

1. Register auction 2. Find about
auctions

4

4

3. P2P interaction

Figure 4. Interaction among sellers, buyers, and the auction registry.

other auction systems, such as eBay (http://www.ebay.com). However, the law
can also incorporate electronic methods of payment like electronic money or PayPal
(http://www.paypal .com). After the auction is over, the seller deletes the associ-
ated tuple from the auction registry.

The following messages summarize the interaction between the different entities, as
illustrated in Figure 4:

1. Sellers send messages to the auction registry to insert or delete auction tuples. Before a
tuple is inserted in the auction registry, or after it is deleted, it is not possible for buyers
to bid on the specified product.

2. Buyers make requests for offers that meet some conditions and the registry returns the
list of such tuples (if any) back to the buyer. When a buyer discovers about an interesting
auction, it can adopt the auction law and join the community that is conducting the
auction.

3. Buyers and sellers exchange messages according to the law specified in the auction
tuple. They interact directly, in a peer-to-peer communication model, meaning that
there is no centralized auction room. The enforcement of the auction law is distributed,
using LGI.

Itis up to the agents involved to agree to participate in the auction or not, after examining
the auction law. Please note that the auction registry does not necessarily belong to the
community since interaction with the registry does not need to be governed by LGI. In
fact, several implementations of the auction registry can be used, as long as they provide
methods for registering and consulting auctions.

Other kinds of agents may also participate in the auctioning process, such as auditors
and complaints agents. Figure 5 shows a snapshot of the system with two buyers and two
sellers: buyer 1 interacts with seller 1 under law K and with seller 2 under law L. Buyer 2
only interacts with seller 2 under law L. Moreover, in the case of law K buyers and sellers
interact with a given auditor, while in law L they interact with an another auditor and with a
complaints agent. All interaction among buyers, sellers, auditors, and complaints agents, is
peer-to-peer and enforced using LGI. Section 2.2.1 details auditioning, while Section 2.2.2
describes how complaints can be handled in the proposed architecture.

18 FONTOURA ET AL.

: Find about
Auction = suctions
registry o | +
: .) Register auction L: Buver ?
Register auctly ‘\ealed'h'd law ye
open-cry law
Find about PzP interaction
auctions on auction L
Seller 1 Seﬂer 2
P2P mtaractmn P2P interaction
on auction K on auction L
Auditor X kﬂudﬂar y Complainis

agentZ

Figure 5. A snapshot of the system with 2 buyers and 2 sellers.

2.2. Auction law example

In this section we present an example of auction law (called open-cry auction [Kumar and
Feldman, 5]) written using LGI. The main idea is that buyers compete with each other to
purchase the specified product. At each moment, a buyer can either make a bid or ask
for the highest bid so far. If the bid value is greater than the current maximum value, this
value is stored at the seller as the maximum current bid. If not, the bid is rejected and
the current maximum value is sent back to the buyer. When a higher bid is accepted, the
buyer that had the previous highest bid is notified that it was out-bided. At the end of the
auction period the seller notifies the winning buyer that he or she actually won the auction.
In this way, all of the involved buyers will be notified if they won the auction (by receiving
a succeeded message) or if they were out-bided. The law is presented in Figures 6 and 7.
The rules of the law are followed by comments (in italic) that, together with the following
discussion, should provide the reader with some understanding of the nature of LGI laws.
Using the techniques described in this paper, one can easily develop laws for different types
of auctions.

The preamble of the law contains the following clauses. First, there is the 1aw clause
that identifies the name of this law, and the public key of the CA to be used for the authen-
tication of the controllers that are to mediate OC-messages, as described in Section 1.4.
Second, there is an authority clause that identifies admin, represented by its public
key, as a CA for certifying various roles played in this community. Third, the initialCS

DECENTRALIZED PEER-TO-PEER AUCTIONS 19

clause defines the initial control-state of all agents in this community—it is empty in this
case. And finally the Audi tor specifies the auditor for this auction.

Rules R1 and 'R2 deal with the adoption of this law, allowing an agent to start operating
either as a seller or as a buyer by getting the term seller or buyer in its initial control-
state. The adoption of the law is conditioned on presenting a valid certificate, previously
obtained from a certifying authority. Any agent that presents a valid certificate gets the
term certifiedin its control state, allowing him to participate (as a buyer or as a seller)
in any auction. The certificates expire after a specified period of time (100 seconds in our
example). When that happens, Rule R 11 is trigerred and the term certifiedis removed
from the control state of the agent. The agent is then not able to participate in any auction
until he or she presents a valid certificate to its controller. We will now discuss how a buyer
can make an offer and what are the possible answers from the seller.

First, by Rule R3, the seller actually starts the auction for the product with the name P.
The maximum price is initially set to 0. An obligation is imposed in the sense that the
auction should be finished after a specified period of time. Buyers can now send offers
using Rule R4. According to the rule RS, the bid is checked if it is the best offer. If it is,
the maximum price is set to this value and the buyer that had previously the best offer is
informed that his offer was out-bided triggering the execution of Rule R10. If it not the
best offer, according to Rule R6, the buyer is informed that his or hers bid was rejected
and the execution of Rule R9 is triggered. When the auction is finished (rule R7) the seller
informs the winning buyer through Rule RS.

We also try to minimize the possibility of a seller to act as a buyer in the same auction to
artificially increase the price. When an offer is received by the seller (in rules RS and R6),
the law checks whether the seller is also a buyer or not.

Agents have to exchange messages using the format required by the law. The current
implementation of LGI provides an XML interface, allowing agents to communicate using
XML as the main language for describing the data. In this case, the law plays also the role
of the schema for the XML documents that are exchanged between the agents.

2.2.1. Auditing The LGI paradigm naturally supports the concept of auditing. An au-
ditor is basically an agent that is not involved in the auction but that receives copies of
the messages that were exchanged. If an auditor exists, an agent can request copies of
the messages exchanged during the auction and use this information to find out about the
behavior of some of the involved agents. An auction can have more than one auditor and
the auction law specifies the messages that are sent to each of them. An agent can choose
not to participate in an auction if it does not trust its auditors. Although the law specifies
what messages are sent to the auditors, it imposes no restrictions in the way they handle
the messages they receive.

2.2.2. Treatment of complaints An agent can complain about another agent (A) if he or
she thinks that A did not have a correct behavior. Examples of incorrect behavior include:
not sending the item once the auction is over, sending a defect product, not sending the
payment, and so on. To handle these situations an auction law can specify a complaints
agent, which is an analogue of the Better Business Bureau from the real life. A complaints

20

FONTOURA ET AL.

RI1

R2

R3

R4

\Preamble: 1aw (name (oc) , ca (publicKeyOfCAuth)) .

authority (admin,URL (http://aramis.cs.rutgers.edu:9020))
initialcs (o)
alias (auditor, auditor@enterprise.com)

certified (X, certificate(issuer (admin), subject(Y),
attributes([seller(N)])))
:—do(deliver (X, certificate(issuer (admin), subject(Y),
attributes([seller(N)])), X)), do(+certified),
do (+role(seller)), repealObligation(endCertified(X)),
imposeObligation(endCertified(X), 100), do(deliver (X,
attributes([seller(N)], auditor).
An agent can participate in the auction as a seller—i.e., having a term role(seller) in its contro
state. In order to participate in the auction it has to present a valid certificate. An obligation is imposed)
to limit the duration of the validity of the certificate (in this case the certificate is valid for 100s). The|
content of the certificate, along with the seller name, is also sent to the auditor.
certified (X, certificate(issuer (admin), subject(Y),
attributes ([buyer(N)])))
:-do(deliver (X, certificate(issuer (admin), subject(Y),
attributes([buyer(N)])), X)), do(+certified),
do (+role(buyer)), repealObligation(endCertified (X)),
imposeObligation(endCertified(X),100), do(deliver (X,
attributes([buyer (N)], auditor).
An agent can participate in the auction as a buyer—i.e., having a term role(buyer) in its control state.
Like in the case of the seller, an obligation is imposed to limit the duration of the validity of the certificate|
(the certificate is valid for 100s) and the content of the certificate, along with the buyer name, is also sent|
to the auditor.
sent (X, start(P, T), X)
:-certified@CS, role(seller)@CS, do(+P), do(+max(P, 0)),
do (+winner (P, X)), do(imposeObligation(timeout(P), T)),
do (deliver (X, start(P, T), auditor).
Only a seller can start the auction for the product P. From this moment on, offers are received and an|
obligation is imposed that the auction should stop after the specified period of time. The tuple corre-
sponding to this product should have been already placed in the auction registry, otherwise the buyers
cannot find about this auction. A copy of the message is sent to the auditor.
sent (X, offer(P, M), Y) :- certified@CS, role(buyer)@Cs,
do (forward (X, offer(P, M), Y)), do(deliver (X, offer(P, M, Y),
auditor) .
The offer can be made by the buyer only if he or she has been certified. A copy of the message is also
sent to the auditor.

Figure 6. Law OC for the open-cry auction, part 1.

agent interacts with the auditors and with the certifying authorities to get copies of the
messages exchanged and the IDs of the involved agents. By processing this information, it
can check if a given complaint is accurate or not and it can inform the certifying authorities
about the improper behavior of agents.

An example of how a complaints agent can be used to increase the trust of agents in
the correctness of the auction is the prevention of the artificial increase of the price by the
seller. As we detailed in the previous section, the law can check if the seller is registered

DECENTRALIZED PEER-TO-PEER AUCTIONS 21

RS5 arrived(X, offer(P, M), Y)
:-role(seller)@CS, max(P, Q)@CS, winner (P, Z)@CS, M > Q,

not role(buyer)@CS, do(-max(P, Q)), do(+max(P, M)),

do (-winner (P, Z)), do(+winner (P, X)), do(forward(Y,

accepted(P, M), X)), do(deliver(Y, accepted(P, T, X), auditor),
do (forward(Y, outbid(P, M), Z)), do(deliver(Y, outbid(P, T, Z),
auditor) .

If the offer is the best offer, it is recorded as the max bid for the item and the buyer becomes the current
winner of the auction. We do not allow for the seller to bid on the same item, in order to prevent artificial
increase of the price. Copies of the accepted and out-bid messages are also sent to the auditor.
R6 arrived(X, offer (P, M), Y)
:-role(seller)@CS, max(P, Q)@CS, winner (0, Z)@CS,

not role(buyer)@CS, Q >= M, do(forward(Y, rejected(P, Q), X)),

do (deliver (Y, rejected(P, M, X), auditor).
If the offer is not the best offer, a message is sent to the buyer indicating that his or hers bid was rejected
and informing value of the current maximum bid. We do not allow for the seller to bid on the same item,
in order to prevent artificial increase of the price. A copy of the message is also sent to the auditor.

R7 obligationDue (timeout (P)) :- max(P, M)@CS, M > 0, winner (P, X)@QCS,
do(-P), do(forward(Self, succeeded(P, M), X)), do(deliver(Self,
winner (P, M, X), Self)), do(deliver(Self, succeeded(P, M, X),
auditor) .

When the auction is finished, the buyer with the biggest offer receives the succeeded message. This
message also indicates the amount he or she has to pay. A copy of the message is also sent to the auditor.
R8 arrived (X, succeeded(P, M), Y) :- role(buyer)@CS, do(deliver).
The buyer that receives the succeeded message is the winner of the auction. The actual exchange of money
and products is done by the two parties independently of LGI.
RY9 arrived (X, rejected(P, M), Y) :- role(buyer)@CS, do(deliver).
The buyer is notified that his or hers bid was not accepted.

R10 arrived (X, outbid(P, M), Y) :- role(buyer)@CS, do(deliver).
The buyer is notified that he or she was out-bided.

R10 obligationDue (endCertified(X)) :- do(-certified).
The agent certificate expired without a replacement. When this happens, sellers are not able to start a
new auctions (the current ones are not affected) and buyers are not able to send new offers.

Figure 7. Law OC for the open-cry auction, part 2.

at the same controller as a seller and as a buyer. However, the law cannot check whether
the seller registered himself as a buyer on another controller and participates in the auction
as a regular buyer. Moreover, it might happen that “friends” of the seller participate in the
auction to artificially increase the price.

Once a complaint is filed, the complaints agent can talk to the auditor to retrieve copies
of all the exchanged messages and the real IDs (as are written in the certificates) of the
agents. With this information at hand, it can find out about the malicious behavior of such
a seller. When the seller certificate expires and he or she requests a new one from the
certifying authority (CA), the CA can ask the complaints agent about the seller behavior
and it can refuse to issue the new certificate.

22 FONTOURA ET AL.

3. Related work

Currently several Web sites provide auction services. These sites can be classified into
two categories: consumer-to-consumer (C2C) and business-to-consumer (B2C). In C2C
auctions, such as Ebay (http://www.ebay.com), users can act as both sellers and
buyers, posting new auctions and participating in existing auctions. In B2C auctions, such
as Egghead (http://www.egghead.com), users act only as buyers, participating in
the available auctions. B2C auctions are less “risky” for buyers, since the seller is usually
a “brand name” company that can be trusted. In C2C auctions, although the auction site
acts as a mediator, there is no guarantee about the reputation of the seller. As discussed
throughout the paper, centralized auction systems cannot solve this issue since they do not
allow auction participants to engage the entities they trust as part of the auction process.

The AuctionBot system [Wurman et al., 17] allows users to customize auction policies.
The system is centralized, having a very similar structure to eBay (http://www.ebay.
com) or other commercial systems. The main advantage of AuctionBot is that the user can
parameterize the pre-defined auction policies (like Dutch, sealed) to choose, for example,
between the first prize or the second prize as the auction winner. The marketplace frame-
work described in [Kumar and Feldman, 5] also allows the definition of several auction
and negotiation protocols. However, both systems do not support distributed enforcement
and rely on a centralized marketplace, limiting the customization options of the auction
participants.

The auction registry component of the proposed LGI-based architecture can be view as
a yellow pages or discovery service, where buyers search for auctions. UDDI (Universal
Description, Discovery and Integration) can be used to standardize the auction registry
interface. UDDI is an “open industry initiative enabling businesses to (i) discover each
other, and (ii) define how they interact over the Internet and share information in a global
registry architecture” (http: //www.uddi.org).

4. Conclusions and future work

Online auctions is an important application area—Forecast Research expects that in 2003
there will be a market of 14 million consumers and $19 billion in sales. In this paper we
presented a novel system for supporting online auctions that takes full advantage of the
distributed nature of the Internet.

In the proposed architecture, agents can setup their own auction policies and these poli-
cies are explicitly enforced using the LGI paradigm. Auctions are conducted in a totally
distributed manner, through a peer-to-peer communication protocol among the several
agents. There is no centralized authority that can act as a trusted mediator. However,
we have shown how third parties, such as auditors and complaints agents, can participate
on the auctioning process under a given law. Currently, none of the online auction services
follow a similar architecture. Moreover, this architecture is not limited to auctions, but it
can be applied to any online trading model.

We are currently working on the definition of laws for other types of negotiation. We
are especially interested in studying the behavior of agents in the presence of several op-

DECENTRALIZED PEER-TO-PEER AUCTIONS 23

tional (and conflicting) laws. Another topic we plan to investigate is the integration of
our system with the Web services paradigm, in which agents find out about each other us-
ing XML-based discovery mechanisms, such as UDDI (http: //www.uddi . org), and
exchange messages using XML and SOAP. We are particularly interested in investigat-
ing the relationship between laws and Web service description languages, such as WSDL
(http://www.uddi.org). Another point of extension that we are currently working
on is the development of a Web-based system for the definition of auction policies in a sim-
ple and straightforward manner. This interface allows users to define new laws visually,
based on previously defined ones.

Notes

1. Although the paper focuses on auctions, the proposed architecture also works for other kinds of online trading,
such as brokerages and two party negotiations [Kumar and Feldman, 5].

2. Given the popular usages of the term “agent,” it is important to point out that we do not imply by it either
“intelligence” nor mobility, although neither of these is being ruled out by this model.

3. If the the certificate is found invalid then an exception-event is triggered.

4. If any one of these conditions is not satisfied, then x would receive an appropriate diagnostic, and will be able
to try again.

5. In the case of reverse auctions, such as Priceline (http://www.priceline.com), the opposite situation
is possible: the buyers post the auctions and the sellers query the registry for new auctions. For the sake of
simplicity, in the rest of the paper our discussion does not consider reverse auctions. However, the proposed
architecture can be used to model any kind online trading [Kumar and Feldman, 5], as long as it can be
represented as a law in the LGI paradigm.

References

[1] Ao, X., N. Minsky, T. Nguyen, and V. Ungureanu. (2000). “Law-Governed Communities over the Internet.”
In Proceedings of Fourth International Conference on Coordination Models and Languages, Limassol,
Cyprus, September 2000. Lecture Notes in Computer Science, Vol. 1906. Berlin: Springer, pp. 133-147.

[2] Clocksin, W.F. and C.S. Mellish. (1981). Programming in Prolog. Berlin: Springer.

[3] Ellison, C. (November 1999). “The nature of a usable pki.” Computer Networks 31, 823-830.

[4] Cassady, R., Jr. (1979). Auctions and Auctioneering. Univ. California Press.

[5] Kumar, M. and S. Feldman. (August 1998). “Internet Auctions.” In Fifth USENIX Workshop on Electronic
Commerce, pp. 167-176.

[6] Lee, H.G. (1998). “Do Electronic Market Marketplaces Lower the Price of Goods.” Communications of the
ACM 41(1), 73-80.

[7]1 Lee, H.G. and T.H. Clark. (1996). “Impact of the Electronic Marketplace on Transaction Cost and Market
Structure.” International Journal of Electronic Commerce 1(1), 127-149.

[8] Meyer, J.J.C., R.J. Wieringa, and F.P.M. Dignum. (1998). “The Role of Deontic Logic in the Specification
of Information Systems.” In J. Chomicki and G. Saake (eds.), Logic for Databases and Information Systems.
Dordrecht: Kluwer.

[9]1 Minsky, N.H. (February 1991). “The Imposition of Protocols over Open Distributed Systems.” I[EEE Trans-
actions on Software Engineering, 183—195.

[10] Minsky, N.H. and V. Ungureanu. (1998). “Unified Support for Heterogeneous Security Policies in Distrib-
uted Systems.” In 7th USENIX Security Symposium.

24

[11]

[12]

[13]

[14]

[15]

[16]

[17]

FONTOURA ET AL.

Minsky, N.H. and V. Ungureanu. (1998). “A Mechanism for Establishing Policies for Electronic Com-
merce.” In the 18th International Conference on Distributed Computing Systems (ICDCS), May 1998,
pp. 322-331.

Minsky, N.H. and V. Ungureanu. (2000). “Law-Governed Interaction: A Coordination and Control Mecha-
nism for Heterogeneous Distributed Systems.” ACM Transactions on Software Engineering and Methodol-
ogy 9(3), 273-305.

Minsky, N.H., V. Ungureanu, W. Wang, and J. Zhang. (1996). “Building Reconfiguration Primitives into
the Law of a System.” In Proceedings of the Third International Conference on Configurable Distrib-
uted Systems (ICCDS’96), March 1996, pp. 89-100. Available through http://www.cs.rutgers.
edu/~minsky/.

Roscheisen, M. and T. Winograd. (1996). “A Communication Agreement Framework for Access/Action
Control.” In Proceedings of the IEEE Symposium on Security and Privacy, May 1996, pp. 154-164.
Schneier, B. (1996). Applied Cryptography. New York: Wiley.

Ungureanu, V. and N.H. Minsky. (2000). “Establishing Business Rules for Inter-Enterprise Electronic Com-
merce.” In Proceedings of the 14th International Symposium on Distributed Computing (DISC 2000),
Toledo, Spain, October 2000. Lecture Notes in Computer Science, Vol. 1914. Berlin: Springer, pp. 179-193.
Wurman, P.R., M.P. Wellman, and W.E. Walsh. (1998). “The Michigan Internet AuctionBot: A Configurable
Auction Server for Human and Software Agents.” In K.P. Sycara and M. Wooldridge (eds.), Proceedings of
the 2nd International Conference on Autonomous Agents (Agents’98), New York. ACM Press, pp. 301-308.

