
Distrib. Comput. (2006) 18(4): 293–305
DOI 10.1007/s00446-005-0134-7

SPECIAL ISSUE PODC 0 4

Joan Feigenbaum · Rahul Sami · Scott Shenker

Mechanism design for policy routing

Submitted: 25 August 2004 / Accepted: 2 July 2005 / Published online: 25 January 2006
C© Springer-Verlag 2005

Abstract The Border Gateway Protocol (BGP) for inter-
domain routing is designed to allow autonomous systems
(ASes) to express policy preferences over alternative routes.
We model these preferences as arising from an AS’s un-
derlying utility for each route and study the problem of
finding a set of routes that maximizes the overall wel-
fare (i.e., the sum of all ASes’ utilities for their selected
routes).

We show that, if the utility functions are unrestricted, this
problem is NP-hard even to approximate closely. We then
study a natural class of restricted utilities that we call next-
hop preferences. We present a strategyproof, polynomial-
time computable mechanism for welfare-maximizing rout-
ing over this restricted domain. However, we show that,
in contrast to earlier work on lowest-cost routing mech-
anism design, this mechanism appears to be incompati-

Supported in part by ONR grant N00014-01-1-0795 and NSF grant
ITR-0219018.

Supported by ONR grant N00014-01-1-0795 and NSF grant ITR-
0219018. Most of this work was done while the author was at Yale
University.

Supported in part by NSF grants ITR-0121555 and ANI-0207399.

This work was supported by the DoD University Research Initiative
(URI) program administered by the Office of Naval Research under
Grant N00014-01-1-0795. It was presented in preliminary form at the
2004 ACM Symposium on Principles of Distributed Computing [7].
Portions of this work appeared in preliminary form in the second au-
thor’s PhD Thesis [16].

J. Feigenbaum
Yale University, Computer Science Department, New Haven,
CT 06520, USA
E-mail: feigenbaum@cs.yale.edu

R. Sami (B)
MIT CS&AI Laboratory, 77 Massachusetts Avenue 32-G582,
Cambridge, MA 02139, USA
E-mail: sami@csail.mit.edu

S. Shenker
ICSI & University of California at Berkeley, EECS Department,
Berkeley, CA 94704, USA
E-mail: shenker@icsi.berkeley.edu

ble with BGP and hence difficult to implement in the
context of the current Internet. Our contributions include
a new complexity measure for Internet algorithms, dy-
namic stability, which may be useful in other problem
domains.

1 Introduction

The Internet is composed of many independently man-
aged subnetworks called domains or autonomous systems
(ASes). The task of discovering and selecting routes be-
tween these ASes is called interdomain routing. Currently,
the only widely deployed protocol for interdomain routing is
the Border Gateway Protocol (BGP); through BGP, a router
can learn of routes from neighboring networks, select routes
from the multiple alternatives it may learn of, and advertise
its selected routes to other networks.

In the interdomain-routing scenario, one of the key deci-
sions an AS must make is how to select a route from all the
routes it knows of to a particular destination. One frequently
studied model has each AS look at some objective metric
over the routes, such as the number of ASes a route passes
through or the cost of a route, and pick the route that mini-
mizes this metric. In practice, however, ASes want to select a
route based on many other criteria, such as commercial rela-
tionships or perceived reliability. For example, it is common
for an AS to select a route advertised by one of its customers
over all other routes. Thus, BGP was explicitly designed to
allow ASes to apply their own routing policies to the route-
selection and route-advertisement processes. This feature of
interdomain routing is referred to as policy-based routing or
policy routing for short.

Another aspect of routing that has recently received at-
tention is that of incentives. The participants in the rout-
ing process—the ASes, in this case—are independent eco-
nomic entities, each with its own goals. Thus, they cannot
be relied on to follow any specified policy in circumstances
in which they could profit by deviating from that policy.

294 R. Baldoni et al.

Further, much of the information relevant to selecting good
routes, such as costs or connectivity information, is known
privately to individual ASes; thus, even if there were a cen-
tral authority capable of enforcing a policy, it could not de-
tect strategic reporting of this information. This paper ex-
plores the extent to which one can cope with these strategic
issues in a computationally feasible manner.

The algorithmic mechanism design approach, introduced
by Nisan and Ronen [15], seeks to address both incentives
and computational complexity. One of the problems studied
by Nisan and Ronen is a simple routing problem: Given a
graph with a distinguished source node s, a distinguished
sink node t , and costs associated with each edge, find the
lowest-cost path from s to t . The wrinkle in the model is that
each edge can strategically lie about its cost. Nisan and Ro-
nen showed how a central authority can compute payments
for each edge such that every edge’s dominant strategy is
to be honest about its cost, yielding a strategyproof mecha-
nism for this problem. Later, Hershberger and Suri [12] pre-
sented a more efficient algorithm to compute the payments
required by this mechanism. Archer and Tardos [1] and
Elkind et al. [4] study mechanisms to select a path that mini-
mizes a metric from a broad class, not necessarily the sum of
edge costs; this too can be viewed as a variant of lowest-cost
routing.

The mechanism-design approach was extended by
Feigenbaum et al. [5], who sought lowest-cost routing
mechanisms in the context of interdomain routing. Their
main contribution was to focus on distributed mechanisms,
thus adopting the distributed algorithmic mechanism de-
sign approach initiated by Feigenbaum, Papadimitriou, and
Shenker [6]. Feigenbaum et al. [5] give a strategyproof
mechanism for the lowest-cost routing problem that can be
computed by an efficient distributed algorithm. Moreover,
they show that this mechanism can be computed by a “BGP-
based” algorithm, i.e., an algorithm with similar data struc-
tures and communication patterns to BGP that requires only
modest increases in communication and convergence time.
Thus, the mechanism is “backward compatible” with BGP,
which is critical for any routing algorithm that must be im-
plemented in the current Internet.

All the work on mechanism design for routing has fo-
cused on variants of lowest-cost routing. In practice, this has
two drawbacks: The cost model is oversimplified, and the
requirement that all ASes use a lowest-cost routing policy is
too restrictive. In this paper, we investigate whether the dis-
tributed algorithmic mechanism design approach can be ex-
tended to general policy routing. In essence, we look at inter-
domain routing at a higher level of abstraction: We assume
that source ASes have preferences over alternative routes to
a destination, but we do not model the causes of these pref-
erences. Thus, in our initial model, an AS can express any
routing policy, provided that it is based on some underlying
utility function—it need not arise from the cost of the route
but may take into account unspecified, subjective route at-
tributes as well. The goal of the mechanism is to compute
routes for every source-destination pair such that the overall

welfare, i.e., the sum of all ASes’ utility for their selected
routes, is maximized. The only constraint on the selected
routes is that all routes to a given destination must form a
tree; this is a very natural constraint in the Internet, where
packet forwarding decisions are based only on the destina-
tion (not source and destination) of the packet.

Our first result is that, for general preferences, comput-
ing an optimal set of routes is NP-hard; it is even NP-hard to
compute a solution that approximates the optimum to within
a factor of O(n

1
4 −ε), where n is the number of nodes in the

network, and ε is an arbitrarily small positive constant. We
prove this result by an approximability-preserving reduction
from the Maximum Independent Set problem.

This leads us to consider a restricted class of utility func-
tions that we call next-hop preferences. The restriction is that
an AS’s utility for a route can depend only on the first hop
along that route. This class of utility functions captures pref-
erences arising from customer/provider/peer relationships
an AS might have with its neighbors. These commercial re-
lationships are a major motivation for allowing flexible pol-
icy routing in BGP, and so this is an interesting class of pref-
erences to study. We show that, for next-hop preferences, the
welfare-maximization problem reduces to finding a maxi-
mum-weight directed spanning tree to each destination and
is hence computable in polynomial time. We derive a strat-
egyproof mechanism for this problem and show that it can
also be computed in polynomial time.

We next ask whether it is possible to implement this
mechanism with a distributed, BGP-based algorithm.
Unfortunately, we find that this is not the case. In order to
prove that a BGP-based implementation is impractical, we
refine the model of BGP-based computation given in [5] and
show that any implementation of the welfare-maximizing
policy-routing mechanism would be unacceptable, even on
Internet-like graphs with small numeric valuations, for two
reasons: (1) The selected routes may be long, and hence the
routing algorithm may take a long time to converge; and
(2) Any change in any AS’s utilities may require commu-
nication to �(n) nodes, which defeats the rationale of using
a path-vector protocol such as BGP. Thus, we conclude
that, unlike the lowest-cost routing mechanism of [5], this
mechanism is not easy to implement in the current Internet.

Mechanisms, and indeed Internet algorithms in general,
need to be compatible with the existing protocols that they
seek to extend or replace; this allows them to be adopted
gradually. Positive results about protocol compatibility have
been studied earlier, e.g., in [5, 8]. However, proving nega-
tive results about protocol compatibility is more difficult; to
our knowledge, our current paper is the first to prove that a
mechanism is incompatible with a given protocol. Thus, part
of our contribution is refinement of the BGP-based computa-
tional model to allow negative results to be proven. Further,
we believe that the “dynamic stability” criterion introduced
in Sect. 5.3 could potentially be used to prove hardness re-
sults for other Internet-algorithmic problems.

The rest of this paper is structured as follows: We for-
mulate the welfare-maximizing policy-routing problem in

Mechanism design for policy routing 295

Sect. 2. In Sect. 3, we prove that, with arbitrary preferences,
the problem is NP-hard, even to approximate closely. We
then turn to the next-hop preference model in Sect. 4. We
design a strategyproof, polynomial-time computable me-
chanism, the MDST mechanism, that maximizes welfare in
this model. In Sect. 5, we elaborate on the BGP-based com-
putation model and show that the MDST mechanism is hard
to implement in this model. The crux of this result is a proof
that any distributed algorithm for the MDST mechanism will
suffer from poor dynamic stability: Every change in the net-
work or preferences will trigger a large number of messages
in the network. We then demonstrate how dynamic-stability
analysis can be extended to other optimization problems in
Sect. 6. Finally, in Sect. 7, we summarize and present some
open questions.

2 The policy-routing problem

The network consists of n Autonomous Systems. For sim-
plicity, we treat each AS as an atomic entity; thus, we model
the network as a directed graph with nodes corresponding
to the autonomous systems. The edges in this graph corre-
spond to BGP peering or transit relationships between ASes:
We have a directed edge from node a to node b if b adver-
tises its routes to a. In practice, the edges in this graph may
vary with the destination under consideration; however, we
assume here that these edges are identical for routes to any
destination.

We assume throughout that the network is 2-connected,
i.e., even if a single node is removed, there is a directed path
from each node to every other node in the remaining graph.
This assumption is necessary to rule out monopolistic nodes
that can extract infinite payments. Earlier measurements on
a real undirected AS graph suggest that there is a large com-
ponent that remains connected even if a single node is re-
moved [5]; further, for an AS not in this component, there is
typically no route-selection problem, because each upstream
provider that serves such an AS typically knows only one
route to it, and that is the route that the provider advertises.
We believe that these properties of AS graphs will hold even
when edge directions are taken into account.

A route from a node i to a node j is simply a directed
path, with no cycles, from i to j in the AS graph. The routing
problem in this network is as follows: For each pair of nodes
i and j , we need to select a single route from i to j . Further,
we insist that the set of all routes to destination j forms a
tree rooted at j . This is a natural restriction when packets
are routed one hop at a time (as opposed to being routed
in an end-to-end manner, e.g., source-routed). A candidate
solution to the routing problem is thus a set of directed trees,
one for each destination. The trees for different destinations
are independent of each other, and hence it is possible to
analyze the model for a single destination. In the remainder
of the paper, we consider routing to a fixed destination j .

The basic difference between the lowest-cost routing
problem and the policy-routing problem lies in the source

of preferences. In the former, the costs incurred by tran-
sit carriers result in their preferring routes that do not pass
through them; in the latter, ASes have differing preferences
over alternative routes, and the constraint that routes form
a tree leads to conflicts of interest. There are many reasons
why ASes may have real economic preferences for different
routes: Two different routes from i to j may lead to dif-
fering transit costs, customer satisfaction, or service pay-
ments. In this paper, we assume that AS i’s preferences
among the candidate solutions are dictated entirely by the
route from i to j in each solution, independent of the routes
from other nodes to j . In a sense, this is complementary to
the lowest-cost routing model, in which AS i’s utility for a
tree depends only on the routes on which it was a transit
node.

Specifically, we suppose that AS i’s preferences for
paths can be expressed as a utility function ui : Pi j → �,
where Pi j is the set of all possible paths from i to j and the
empty path ⊥ (which corresponds to solutions in which there
is no route from i to j). Only the relative utilities are impor-
tant, and so we can normalize this function by requiring that
ui (⊥) = 0. Further, we assume that, for any route Pi j from
i to j , ui (Pi j) ≥ 0; in other words, having any route to j
cannot be worse for i than having no route at all.

AS preferences are private information, and hence an AS
may misreport its preferences, unless it is given appropriate
incentives. These incentives are provided by a mechanism.
Abstractly, a mechanism for the routing problem for desti-
nation j takes as input the players’ reported utility profiles
u′ = (u′

1, u′
2, . . . , u′

n) and outputs a routing tree T and a vec-
tor of payments p = (p1, . . . , pn), where pi is the amount of
money paid to i . We use the notation ui (T) to denote i’s util-
ity for its path to j in the tree T . We assume that the utility
functions are quasilinear1 and thus can be expressed directly
in terms of money. Then, AS i’s combined benefit from the
mechanism can be expressed as the sum (ui (T) + pi). A
mechanism is strategyproof if the payments are such that
every AS i’s dominant strategy is to report ui truthfully. In
other words, strategyproofness requires that, regardless of
other ASes’ reported utility functions, each AS i maximizes
the sum (ui (T) + pi) by reporting its true utility function
(i.e., u′

i = ui) to the mechanism.
The economic goal of this routing mechanism is to max-

imize the overall welfare, i.e., to choose a routing tree T
that maximizes W (T) = ∑

i∈N ui (T), where N is the set
of all ASes. We call this the welfare-maximizing routing
problem.

We make one further simplifying assumption: We as-
sume that, for each node i , the payment pi must be stored at
node i . Thus, when the value of pi changes, node i must be
updated. This natural assumption allows for a clearer proof
of the hardness result in Sect. 5.3. We can drop this assump-
tion and still prove essentially the same hardness result; this
extension is discussed at the end of Sect. 5.3.

1 A utility function is quasilinear if the player’s happiness on receiv-
ing an outcome T and payment pi is equal to ui (T) + pi .

296 R. Baldoni et al.

3 NP-hardness of the general problem

In this section, we show that the general form of the
welfare-maximizing routing problem stated in Sect. 2 is not
tractable.

An instance of the routing problem we are considering is
as follows: We are given a directed graph G, with a distin-
guished destination node j . Each node i is associated with a
set Si of allowed paths2 from i to j in G and a utility func-
tion ui : Si → �≥0.

We now show that, for the very general class of utility
functions defined in Sect. 2, it is NP-hard to compute a tree
that maximizes the overall welfare. We prove this result by a
reduction from the Independent Set problem: Given a graph
G with vertices N , find a largest subset S of N such that no
two vertices in S have an edge between them. This problem
is known to be NP-hard [14]; in fact, it is even NP-hard to
approximate the size of the largest independent set to within
a factor of n

1
2 −ε [11]. Under the different complexity as-

sumption that NP �= ZPP, Håstad has shown that there is
no polynomial-time algorithm to approximate the size of the
largest independent set to within a factor of n1−ε [11].

Given an instance G = (N , E) of the Independent
Set problem, we construct an instance of the welfare-
maximizing routing problem. The construction of the
network H is illustrated in Fig. 1. For each vertex v in N ,
we have a terminal vertex tv in H . In addition, for each
edge e = (v1, v2) in E , we add three vertices ev1, ev2 ,
and e to H . We also add directed edges from e to ev1

and ev2 . Finally, we add a special destination vertex j to
H . We then choose an arbitrary order for the edges in E .
For a vertex v in N , let ei1, ei2, . . . , eil be the edges inci-
dent on v in G, in that order. We add the directed edges
(tv, ei1), (e

v
i1
, ei2), . . . (e

v
il−1

, eil), (e
v
il
, j) to H .

In this manner, we construct a directed path

Pv = (tv, ei1),
(
ei1, ev

i1

)
,
(
ev

i1
, ei2

)
, . . . ,

(
eil , ev

il

)
,
(
ev

il , j
)

for each terminal vertex tv . Now, we let Stv = {Pv}, and
utv (Pv) = 1, for each such vertex. For a nonterminal ver-
tex e corresponding to an edge e = (v1, v2) in G, we
let Se = {Pv1, Pv2}, where Pv1 is the suffix of Pv1 from
e to j , and Pv2 is the suffix of Pv2 from e to j . We let
ue(Pv1) = ue(Pv2) = 0. Similarly, for a vertex of the form

2 There may be an exponentially high number of paths from i to
j in the graph (and, indeed, in the Internet). Thus, it might seem that
even describing the AS utility functions completely is a hopeless task.
However, it is possible that an AS’s utility function can be described
in a polynomial amount of space. We include a set of allowed paths
in the problem description simply to provide one such representation:
A path Pi j implicitly has utility 0 if it is not in the allowed set. The
NP-hardness reduction in this section shows that, even when all ASes
have utility functions that can be expressed concisely using this rep-
resentation, it is NP-hard to find a welfare-maximizing routing tree.
Any other concise representation of utility functions with small sup-
port would suffice for the reduction described here.

Fig. 1 Reduction from Independent Set. The path Pa is shown in bold

ev , we let Sev contain only the suffix of Pv from ev to j , and
set ev’s utility for this path to zero.3

Lemma 1 Given an instance G = (N , E) of the Indepen-
dent Set problem, let (H, {Si }, {ui (·)}) be an instance of
the welfare-maximizing routing problem constructed as de-
scribed above. Let T ∗ be an optimal routing tree for this
problem. Then, the following conditions hold:

(i) For any vertices v1, v2 ∈ N such that (v1, v2) is an edge
in G, at most one of tv1 and tv2 has an allowed path to j
in T ∗.

(ii) If S ⊆ N is an independent set, then W (T ∗) ≥ |S|.

Proof 1 Let e be the edge (v1, v2). If tv1 has a path to j ,
it must be the path Pv1 . The vertex e lies on this path, and
hence the unique path from e to j in T ∗ must pass through
ev1 , not ev2 . It then follows that the path Pv2 is not contained
in T ∗, and hence there is no path from tv2 to j in T ∗.
1 No two vertices in S have any edge in common; hence,
if v1, v2 ∈ S, the paths Pv1 and Pv2 are disjoint. Thus, the
union of paths Pv for all v ∈ S forms a tree T (S). Fur-
ther, we note that W (T (S)) = |S|. T ∗ is optimal, and hence
W (T ∗) ≥ |S|. ��
Corollary 1 If S is a maximum independent set in G, then
T (S) is an optimal routing tree. Conversely, if T ∗ is an op-
timal routing tree, then S = {v|tv has a path to j in T ∗} is a
maximum independent set in G.

Finally, we observe that this reduction implies that even
an approximately optimal routing tree is hard to find: If
T̃ is an approximately optimal routing tree, then the set

3 We could alternatively define Se and Sev to be empty sets, because
all of their candidate paths have zero value. However, we choose to
explicitly define the possible paths in order to clarify the construction.

Mechanism design for policy routing 297

S̃ = {v|tv has a path to j in T̃ } is an approximately maxi-
mum independent set in G, with the same approximation
factor. Note that we reduce a graph with n vertices to a net-
work with O(n2) nodes and O(n2) allowed paths. Thus, an

(n2)
1
4 −ε = n

1
2 −2ε approximation to the welfare-maximizing

routing problem would give us an n
1
2 −2ε approximation to

the independent set problem, and an (n2)
1
2 −ε = n1−2ε

approximation to the welfare-maximizing routing problem
would give us an n1−2ε approximation to the independent
set problem. Combining this with known results on the hard-
ness of computing exactly maximum independent sets and
approximately maximum independent sets [11, 14], we get
the following hardness result:

Theorem 1 Given a general network on n nodes with a
total of O(n) allowed paths and arbitrary AS-path utility
functions,

– Unless N P = P, there is no polynomial-time algorithm
to compute a welfare-maximizing routing tree.

– For any ε > 0, unless N P = P, there is no polynomial-
time algorithm to compute a tree the total welfare of
which approximates that of a welfare-maximizing rout-

ing tree to within a factor of n
1
4 −ε .

– For any ε > 0, unless N P = Z P P, there is no polynom-
ial-time algorithm to compute a tree the total welfare of
which approximates that of a welfare-maximizing rout-

ing tree to within a factor of n
1
2 −ε .

Theorem 1 probably rules out the possibility of solving
this problem exactly or approximately in the most general
case. There are two possible approaches to restrict the scope
of the problem in order to make it more tractable. The first is
to restrict the class of networks, while still covering Internet-
like situations. The second approach is to restrict the class of
allowable utility functions; we pursue the second approach
in Sect. 4.

4 Next-hop preferences

In this section, we consider solutions to the welfare-maxi-
mizing routing problem with a restricted class of AS prefer-
ences. Specifically, we assume that AS i’s utility ui (Pi j) for
route Pi j depends only on the next hop from i on this route
(i.e., the utility depends only on which of i’s neighbors this
route passes through). The motivation for this is that an AS
is likely to have different economic relationships with dif-
ferent neighbors (customers, providers, and peers), leading
to different utilities for routes depending on which neighbor
is used for transit; however, it is reasonable to assume that
two routes to j through the same neighbor have a similar
economic impact on i . Further, we assume that the set of al-
lowed routes from i is likewise determined solely by which
neighbors of i may be used to transit packets destined to j .

With this assumption, i’s utility function can be written
as a function ui (a) of the neighboring AS a. Similarly, the

set of i’s allowed routes can be expressed as a set Si of i’s
neighbors that can be used to carry transit traffic to j . (The
set Si reflects agreements between i and its neighbors: If
a ∈ Si , it means that, in principle, i is willing to send pack-
ets through a, and a is willing to accept packets from i for
destination j .)

This leads to a convenient combinatorial form of the wel-
fare-maximizing routing problem. We construct a graph G j ,
with a vertex corresponding to each AS and an identified
destination vertex j . If a ∈ Si , we include a directed edge
e from i to a; we assign this edge a weight ue = ui (a). A
routing tree is then simply a directed tree (arborescence) T
with all edges directed towards the root j . Further, an AS i’s
utility for its route in T is the weight ue of the edge outgoing
from i in T if such an edge exists or 0 otherwise. Thus, the
overall welfare with routing tree T is

W (T) =
∑

e∈T

ue

It follows that the welfare-maximizing routing tree T ∗ is a
maximum-weight directed tree with root j in G j .

We first show that we can restrict our attention to di-
rected spanning trees.

Lemma 2 Suppose we are given a weighted graph G j , with
vertex set N . Define R ⊆ N by

R
def= {i ∈ N | There is a path from i to j in G j } ∪ { j}

Then, there is a maximum-weight directed tree with root j
that spans R.

Proof Let T ∗ be a maximum-weight directed tree with root
j . Suppose there is some vertex v ∈ R such that v /∈ T ∗.
There is a path from v to j in G j ; we can add edges from
this path to T ∗ without decreasing its weight, because the
utilities are always non-negative. By adding edges along this
path in order, we can eventually grow the tree to include v,
without reducing its weight. ��

Note that the ASes that cannot even reach j can be com-
pletely ignored for the purpose of finding routes to j . Also,
it is easy to compute, for each AS i , whether j is reachable
from i . This, combined with Lemma 2, means that, without
loss of generality, we can assume that T ∗ spans the vertex
set N .

Thus, we want to compute a maximum-weight directed
spanning tree (MDST), with edges directed towards j . (A
spanning tree with edges directed towards j is also known
as a j-arborescence; thus, we seek a maximum-weight span-
ning j-arborescence).4 This is a well-studied problem; the
first polynomial-time algorithm was given by Edmonds [3].
A distributed algorithm for the MDST problem was given
by Humblet [13].

4 This is essentially equivalent to the problem of computing a
minimum-weight spanning j-arborescence, with weights adjusted
appropriately.

298 R. Baldoni et al.

4.1 A VCG mechanism

We now describe a welfare-maximizing,5 strategyproof
mechanism for the welfare-maximizing routing problem
with next-hop preferences. This is a direct application of
the theory of Vickrey-Clarke-Groves (VCG) mechanisms [2,
10, 18]. It follows from the characterization of welfare-
maximizing and strategyproof mechanisms [9] that the pay-
ment to AS i must have the form:

pi =
∑

a �=i

ua(T ∗) + hi (u−i) (1)

(Here, hi (·) is an arbitrary function of u−i , the vector of util-
ities of all agents other than i .) Further, any mechanism with
output and payments of this form is strategyproof [9].

The exact form of the functions hi (·) can be determined
by normalizing the payments to satisfy other reasonable con-
ditions. We normalize the payment by requiring that nodes
that do not carry transit traffic (leaf nodes in T ∗) are not paid.
The rationale for this requirement here is that leaf nodes are
not contributing to other agents’ value. Let T −i denote the
maximum-weight j-arborescence6 in N\{i}. Then, W (T −i)
is a function of u−i alone. Recall that an AS can refuse to ac-
cept transit traffic, i.e., effectively cut off all incoming edges.
If AS i did this, it would force the optimal tree to have it as
a leaf node. We would then have T ∗ = T −i ∪ (i, a), where
(i, a), an edge from AS i to some other AS a in the network,
is the heaviest outgoing edge from i . As i would be a leaf,
the payment pi must evaluate to 0 in this case; for this to oc-
cur, we must have hi (u−i) = −W (T −i). Substituting back
into Eq. (1), we get the following formula for the payment
pi :

pi =
∑

a �=i

ua(T ∗) − W (T −i)

= W (T ∗) − ui (T ∗) − W (T −i) (2)

We call this the MDST mechanism. In order to compute
this mechanism, we will have to compute the MDST, as well
as the payment pi to be given to each AS i . The payments
can be computed by solving (n − 1) maximum-weight j-
arborescence instances (one for each node except j), and
thus the MDST mechanism is polynomial-time computable.

5 Hardness of BGP-based implementation

Up to this point, we have formulated the problem of
finding the welfare-maximizing routing tree with next-hop
preferences as a maximum-weight directed-spanning-tree

5 In the economics literature, welfare-maximizing mechanisms are
also known as “efficient” mechanisms. In this paper, we use the term
“welfare-maximizing” to avoid any confusion with computational effi-
ciency.

6 Recall that we assume the network is 2-connected, and hence such
a tree exists.

problem and derived the natural strategyproof, welfare-
maximizing mechanism for this problem. This mechanism is
polynomial-time computable in a centralized computational
model; this leads us to hope that, as in the case of lowest-
cost routing [5], we can find a BGP-based distributed algo-
rithm for it. Unfortunately, this appears not to be the case. In
Sect. 5.1, we further develop the BGP-based computational
model; in Sects. 5.2 and 5.3, we argue that the MDST mech-
anism is incompatible with BGP.

5.1 BGP-based distributed computation

We start by recalling the BGP-based computation model
defined by Feigenbaum et al. [5]: An algorithm is “BGP-
based” if it has similar data structures and communication
pattern to (a simplified abstraction of) BGP. Further, such an
algorithm has acceptable performance if the storage space
per router, time to convergence, and total communication re-
quired in running the algorithm are within constant factors
of the requirements for running BGP itself.

This definition of BGP-based algorithms is not yet com-
plete. It is adequate for proving that a specific algorithm,
such as the price-computation algorithm in [5], does not
cause large changes in the structure or performance of BGP:
We can assure ourselves by inspection that the algorithm
“has similar structure” to BGP. However, for proving impos-
sibility results, we need a more precise specification of the
class of acceptable algorithms. Thus, we elaborate on the
specific properties that we expect a BGP-based computation
to have.

Consider routing to some destination j . The properties
we require of any BGP-based computation of the routes to j
are:

P1 The routing tables should use O(l) space to store a route
of length l.

P2 Routes should be computable in time polynomial in the
diameter of the network rather than the total size of the
network.

P3 When a node fails or there is a change in the information
(such as costs or preferences) associated with the node,
the change should not always have to propagate to the
whole network; instead, it should usually be propagated
only to a small subset of nodes. Formally, we require
that there are only o(n) nodes that trigger �(n) UPDATE
messages by failing and coming back up, or by changing
their cost or utility reports by infinitesimal amounts.

Property P1 says that the routing table should have
roughly the same size as BGP routing tables or be smaller;
this is clearly desirable in any proposed routing algorithm.
While the number of ASes in the Internet has grown rapidly,
the AS-graph diameter has remained small. In addition, cur-
rent Internet routes typically pass through few intermediate
ASes. Property P2 requires a routing algorithm to stabilize
rapidly in networks of this form.

The justification for Property P3 is as follows: In a link-
state routing protocol, any change has to be broadcast to all

Mechanism design for policy routing 299

the nodes in the network. BGP is a path-vector protocol,
partly to avoid this dynamic communication burden; thus, a
BGP-based algorithm should preserve this property. As the
set of routes to j forms a tree, we cannot prevent changes in
a few nodes near the root from affecting many other nodes.
Similarly, it seems acceptable that a large change in the cost
or preference of node i can put it near the root and hence
affect many nodes. However, we don’t want every change to
result in this much communication; this is expressed in the
statement of P3.

Property P3 is an unusual feature of our model in that it
deals with the dynamic performance of an algorithm—speci-
fically, it requires the algorithm to have dynamic stability.
The main analytic reason for introducing this constraint is to
rule out algorithms that compute routes in a centralized fash-
ion at a single location, using logarithmic-depth spanning
trees to collect the inputs and distribute the outputs. Such
an algorithm is clearly not similar to BGP, yet it could meet
the static performance requirements with some clever en-
coding in the routing tables. The dynamic stability require-
ment prevents this and also provides new insight as to why a
fully distributed algorithm, such as BGP, may be preferable
in loosely coupled systems.

It may be argued that requirements P2 and P3 capture
desirable properties of distributed algorithms generally and
not BGP-based algorithms in particular. This is not an obsta-
cle for our purposes in this section. Because we are trying to
show that the MDST mechanism is not BGP-compatible, it
suffices to show that it does not have properties required for
a larger class of algorithms that contain those that are BGP-
based. These three properties suffice for the negative result
sought in this section. We do not claim that these proper-
ties provide us with a fully fleshed out “BGP computational
model”; that is a goal for future work.

We are also concerned about the robustness of our hard-
ness results—a hardness result that is too contrived would
not be meaningful to the real-world application of this mech-
anism. For this reason, we do not necessarily require these
conditions to hold for all possible networks and all possible
cost or preference values. The only networks that we care
about are “Internet-like” networks—those that can plausibly
represent an AS graph or some subgraph of an AS graph. We
restrict ourselves to networks that satisfy three properties:
They must be sparse, with average node degree O(1); they
must have small diameter—specifically, diameter O(log n);
and, when any one node is removed from the network, the
diameter must remain O(log n).

It is more difficult to identify what “reasonable” cost or
preference values might be. We definitely want them to be
polynomial in n and preferably polylogarithmic in n. Fur-
ther, we are not concerned with hardness that may arise
because of some strange coincidence of specific numerical
values that happen to produce a very unstable state. At the
same time, there is no single natural distribution with re-
spect to which we can analyze the average-case complex-
ity of an algorithm. Instead, we insist that any hardness re-
sult hold over an open set of cost or preference values; this

means that the hardness holds over a region of preference
space with non-zero volume, as opposed to holding on iso-
lated points or a degenerate surface. This is similar in spirit
to the smoothed analysis of Spielman and Teng [17]. For ex-
ample, in a lowest-cost mechanism, it is possible that, for a
specific cost profile, there are many paths to a node with ex-
actly equal costs. At this profile, the lowest-cost path may be
sensitive to a large number of node costs. However, this sen-
sitivity occurs only because of numerical coincidence, and
it disappears if the costs are infinitesimally perturbed. This
example would not count as a hardness proof in our model,
because it does not meet the open-set criterion.

In [5], the authors presented a distributed algorithm to
compute the lowest-cost paths (LCPs) and the prices re-
quired by the strategyproof LCP-mechanism. This algo-
rithm was “BGP-based” in the sense that it used similar
data structures and communication patterns as BGP. We can
show that this algorithm satisfies properties 1–3, provided
the costs are not very skewed; the proof is included in the
Appendix.

By contrast, we now show that a welfare-maximizing
routing mechanism cannot simultaneously satisfy all these
properties, even for networks and preference values that fit
our definition of “reasonable.”

5.2 Long convergence time

Figure 2 shows an example of a network with 2n − 1
nodes for which a BGP-based algorithm for the welfare-
maximizing routing mechanism takes �(n) stages to con-
verge. The network consists of a balanced j-arborescence.
The leaf nodes are a1, a2, . . . , an . The network can be ex-
tended to have diameter 2 log n by adding reverse edges with
lower preference values; these reverse edges do not affect
our argument, and so we omit them from Fig. 2. Similarly,
by adding one more low-preference edge from each internal
node to a node outside its parent’s subtree, we can arrange
for the diameter to remain small even when any one node is
removed. Each node is adjacent to at most 4 other nodes, and
so the network satisfies the sparseness requirement as well.

The preference values are shown as numbers (weights)
on the edges in Fig. 2. Each ai in {a1, a2, . . . , an−1} prefers
to route through its neighbor ai+1 (value 2) rather than take
the path up the tree (value 1). Thus, the welfare-maximizing
routing solution, given by the maximum-weight j-arbore-
scence in this network, consists of the path a1a2 . . . an , at-
tached to the remainder of the tree at an . Note that the values
are in a small range [1, 2]. We also remark that this remains
the optimal solution even if any subset of the next-hop val-
ues are perturbed by a small amount (less than 0.5 each).

Thus, the optimal solution has a route of length �(n),
for any preference values in an open set around the specified
values. BGP builds routes on a hop-by-hop basis. An AS can
use a route only when its next hop on the route has advertised
it, and it can itself extend and advertise the route only in the

300 R. Baldoni et al.

Fig. 2 Network with low diameter and a long path in MDST

Fig. 3 Construction of network for Sect. 5.3, for m = 3

next stage. Thus, we have proved that any such algorithm
does not satisfy property P2:

Theorem 2 Any BGP-based algorithm for computing the
next-hop welfare-maximizing mechanism in the network of
Fig. 2, over an open set of preference values in a small
range, takes �(n) stages to converge.

Given the hop-by-hop route construction in BGP, it may
seem that a more reasonable requirement than P2 is that the
number of stages required for convergence is proportional
to the length of the longest route. However, the length of the
longest selected route is also a function of the mechanism
under consideration (in this case, the MDST mechanism);
for this reason, we prefer the more stringent requirement P2,
which is independent of the mechanism. One of the reasons
that the MDST mechanism is incompatible with BGP is pre-
cisely that it may select very long routes even in networks
with small diameter and hence will cause BGP (or any hop-
by-hop protocol substrate) to converge very slowly.

5.3 Extensive dynamic communication

It may be argued that the long route in Fig. 2 is unlikely
to arise, because long routes are inherently undesirable, and
hence ASes will lower their preference values for neigh-
bors with long routes to the destination. In other words,

even though next-hop preferences may adequately capture
an AS’s preferences at any given time, these preferences will
themselves evolve (over a longer time period, perhaps) to
rule out value profiles that lead to long routes. In this sec-
tion, we show that, even if there are no long routes, any al-
gorithm to compute the next-hop welfare-maximizing mech-
anism will not satisfy condition P3: There are situations in
which every change in a single node’s utility function will
trigger update messages to at least half of the other nodes.

At a high level, we prove this result as follows: We con-
struct a network such that there are two edge-disjoint ar-
borescences TB and TR such that TB is optimal and TR is
nearly optimal. In addition, these trees have the property that
every transit node in TB is a leaf node in TR . We prove that
for each such node i , TR contains the optimal tree T −i in the
network without i . Then, using the structure of the MDST
mechanism payments, it is easy to show that pi will change
whenever any edge in either TB or TR changes in weight.
Updating pi requires at least one message, and as this must
be done for almost half the nodes in the network, any algo-
rithm to implement the mechanism must violate P3.

The network construction is depicted in Fig. 3. The net-
work has n = 2m + 1 nodes. We construct it with by recur-
sively constructing clusters of nodes.

At the bottom, we construct a 1-cluster that consists
of two nodes, B and R. The 1-cluster has two edges, a
“blue” edge from R to B and a “red” edge from B to R.

Mechanism design for policy routing 301

Here, “blue” and “red” are simply labels that we attach to
the edges to clarify the analysis; they have no particular
semantics. Each of these two edges has weight L − 1, where
L = 2m + 4.

In each cluster in our construction, we identify two spe-
cial nodes: One is the “blue port,” and the other is the “red
port.” For a 1-cluster, B is the blue port, and R is the red
port. We recursively construct (k + 1)-clusters from two k-
clusters, for k = 1, 2, . . . , m − 1: We add a blue edge from
the blue port of the right k-cluster to the blue port of the
left k-cluster; the latter then serves as the blue port of the
(k + 1)-cluster. Similarly, we add a red edge from the red
port of the left k-cluster to the red port of the right k-cluster,
which serves as the red port of the (k + 1)-cluster. These
edges both have weight L − 2k − 1.

Once we have built up the m-cluster in this manner, we
complete the network construction as follows: We add one
more node, the destination j . We also add a blue edge from
the blue port of the m-cluster to j , with weight L −2m−1 =
3, and a red edge from the red port of the m-cluster to j , with
weight L − 2m − 2 = 2. The complete network, for m = 3,
is shown in Fig. 3.

This network is sparse (each node has only two outgoing
edges) and has low diameter, as required. As in Sect. 5.2, we
can augment it with edges of lower value so that the diameter
stays low after removing one node; these edges do not affect
the analysis, and so we ignore them here. All the valuations
are in the range [1, L], where L = O(log n). The network
we have just built has two distinguished j-arborescences:
one consisting of all the blue edges and one consisting of all
the red edges. We call these two arborescences TB and TR
respectively. In each of these trees, the longest path (route)
has m + 1 = O(log n) hops. We will now show that these
two j-arborescences have greater weight than any other j-
arborescence.

Lemma 3 If T is a j-arborescence in a network of the
form shown in Fig. 3, and T has both blue and red edges,
then there is another j-arborescence T̃ such that W (T̃) ≥
W (T) + 2.

Proof Consider a minimum-sized cluster that has both red
and blue outgoing edges in T . Suppose this is a (k + 1)-
cluster, as shown in Fig. 4a. Consider the two k-clusters it is
composed of, and label the ports B1, R1, B2, R2 as shown.

Now, the (k+1)-cluster has a blue outgoing edge; it must
be from the blue port B1. All smaller clusters have only one
color of outgoing edge in T . It follows that the left k-cluster
must have only blue edges. Similarly, the red outgoing edge
must be from the port R2, and so the right k-cluster must
have all red edges. Thus, the spanning tree T must include
the blue spanning tree of the left k-cluster, the red spanning
tree of the right k-cluster, and the two outgoing edges with
weight L − 2k − 3 (or less if k = m − 1).

We now construct the tree T̃ as shown in Fig. 4b: We
replace the red spanning tree by a blue spanning tree and
replace the red outgoing edge by the blue edge within the

Fig. 4 Construction that increases the weight of a tree T with both red
and blue edges

(k + 1)-cluster, with weight L − 2k − 1. Because of the
symmetric construction of the k-clusters, the red and blue
spanning trees have the same weight. Thus, the overall
weight of T̃ is at least 2 higher than the weight of T . ��
Lemma 4 For the network and weights u as constructed in
Fig. 3, the maximum-weight j-arborescence T ∗(u) is the
blue spanning tree. Further, for any blue node Bx , T −Bx (u)
(the maximum-weight j-arborescence on N\{Bx }) is the red
spanning tree restricted to N\{Bx }.
Proof From Lemma 3, we know that the maximum weight
j-arborescence must be either entirely blue or entirely red.
At the top level, the blue edge has a higher weight than the
red edge; at all other levels of the construction, the weights
are the same. Thus, the blue spanning tree must be the maxi-
mum-weight j-arborescence T ∗(u).

The red spanning tree has Bx as a leaf and has weight
only 1 less than optimal. Any other j-arborescence with Bx
as a leaf must have both red and blue edges and hence have
weight at least 2 less than optimal, by Lemma 3. Finally, we
observe that any j-arborescence on N\{Bx } can be extended
to a j-arborescence that has Bx as a leaf, by adding the red
edge (Bx , Rx) with weight L −1. Thus, the restriction of the
red subtree to N\{Bx } must be optimal. ��

Now, consider perturbing the weights u by adding an a-
mount δe to the weight of each edge e, for any δe with ab-
solute value less than 1

n . Then, the weight of any spanning
tree cannot change by 1 or more, and so Lemma 4 still holds.
This leads us to the hardness result for this section:

302 R. Baldoni et al.

Theorem 3 For networks constructed in Fig. 3 any infini-
tesimal change in valuation must cause UPDATE messages
to be sent to at least (n −3)/2 nodes. This remains true even
if each utility value is perturbed slightly (i.e., it is true for an
open set of preference values).

Proof We start with the weight vector u. A perturbed weight
vector ũ can be constructed from u as follows: For each node
i , we add δblue

i to the weight of the blue outgoing edge from i
and δred

i to the weight of the red outgoing edge from i , where
|δblue

i |, |δred
i | < 1

n . This corresponds to picking a weight vec-
tor from an open set around u.

Consider the payment pBx due to some node Bx . Let k
be such that Bx is the blue port of a k-cluster but not the blue
port of a (k + 1)-cluster. Then, the blue outgoing edge from
Bx has weight (L − 2k − 1). The red outgoing edge from
Bx must have weight (L − 1), and so using Lemma 4 and
Eq. (2), we get

pBx = W (T ∗) − u Bx (T ∗) − W (T −Bx)

= W (blue spanning tree) − (L − 2k − 1)

− [W (red spanning tree) − (L − 1)]
= [W (blue sp. tree) − W (red sp. tree)] + 2k

=
[

1 +
∑

i∈N

(
δblue

i − δred
i

)
]

+ 2k (3)

Note that pBx satisfies Eq. (3) for any perturbed weight
vector ũ in the given range. Now, suppose we start from
some weight vector ũ, and then there is an infinitesimal
change in δblue

a (or δred
a) for some node a. It follows from

Eq. (3) that pBx changes when this happens, and hence node
Bx must receive an update message (or else, it cannot update
its value of pBx). This is true for every blue node, and thus
an infinitesimal change in any node’s preference must cause
price updates at every blue node (a total of n−1

2 nodes). Apart
from the node a that originated the change (which may be
a blue node), every other blue node must receive an update
message, thus proving the theorem statement. ��

The proof of Theorem 3 is based on our assumption that
the payment pBx must be stored at Bx . However, we can
drop this assumption, and get a result that is nearly as strong,
as follows: pBx must be stored at some node. By property P1,
each node can store O(m) values only; thus, the payments
for all the blue nodes must be distributed across �(n/m) =
�(n

log n) nodes, which must all receive UPDATEs every time
the preferences change.

Dynamic problems with routing policies are inherently
harder for network operators to identify and correct than
static performance problems (such as the violation of 2
in Sect. 5.2). In the latter case, the operator only has to
check the local routing tables to see that, say, a long route
is being selected over a short route. However, in the exam-
ple in Fig. 3, each node’s local policy looks reasonable, and
the operator has no way of telling how a change in policy
will affect the overall stability.

6 Dynamic stability of optimization problems

Theorem 3 shows the essence of why the MDST mechanism
appears difficult for a BGP-based computational model: A
small change at any one node can cause changes that are
global, not confined to the routes the node lies on. This ap-
pears to be an inherent problem of the maximum-weight
directed-spanning-tree structure: Even if we neglected the
payment computation, the failure of any blue node would
force the red spanning tree to be used, effectively changing
the routes of all other nodes. Therefore, if each node had to
store its outgoing link locally, the communication impact of
a failed node would be severe.

We can therefore study the dynamic stability of
distributed optimization problems, independently of any
mechanism-design concerns. Consider a scenario in which
each node in a distributed system has an input xi . We wish
to run some global optimization on the inputs; after opti-
mization, each node holds a piece yi of the output. However,
the nodes may fail or leave the network. The optimization
should then be defined for variable-sized populations. We
can study how sensitive such an optimization scheme is to
changes in the input. We now present a formal development
of this idea.

Definition 1 A distributed optimization scheme is a se-
quence of tuples (Gn,X n, rn, f n), one for each positive in-
teger n, with the following properties:

– Each G ∈ Gn represents the non-numeric input of a
problem of size n.

– The set X n ⊆ �n represents the domain of numeric in-
puts under consideration; each element x = (x1, x2, . . . ,
xn) ∈ X n represents a valid numeric input.

– For any input (G ∈ Gn, x ∈ X n), the function f n :
(G, x) �→ y = (y1, y2, . . . , yn) determines the optimiza-
tion output. The yi ’s may be numeric or non-numeric.

– For any G ∈ Gn and i ∈ {1, . . . , n} the restric-
tion function rn : (G, i) �→ G−i determines the non-
numeric input without i . Also, the restricted numeric in-
put is x−i = (x1, . . . , xi−1, xi+1, . . . , xn). The restric-
tion function should be such that f n−1(G−i , x−i) is de-
fined.7

Definition 2 The dynamic instability of a distributed op-
timization scheme S is a sequence {sn} defined as follows:
Given an input (G, x) and y = f n(G, x), let yi = (y0, y1,
. . . , yi−1, yi+1, . . . yn) be the output with the i th component
removed, and let y−i = f n−1(rn(G, i), x−i) be the output
on the restricted input. Let B denote the set of all open balls

7 It may seem like it would be more natural to require that G−i ∈
Gn−1 and x−i ∈ X n−1. However, this would make it impossible to ex-
press domain restrictions such as “the graph is biconnected” or “the
values are polylog(n)”, because we could recursively apply the re-
striction function until the input is of constant size. Instead, we al-
low the function f n−1 to be defined on a larger set of inputs than
(Gn−1,X n−1). The restriction function need not be defined on this
larger input set, and hence recursive restrictions may be invalid.

Mechanism design for policy routing 303

Fig. 5 Transformation of a single node in construction of Theorem 4

in X n . Now define

sn = max
G∈Gn

max
b∈B

{

min
x∈b

[
1

n

n∑

i=1

diff(y−i , yi)

]}

,

where diff(a, b) is a count of the number of components in
which a and b differ, i.e., the size of the set { j | a j �= b j }.

This Definition generalizes the definition of property 3
in sect. 5.3. Note that definition 1 assumes that the number
of outputs is equal to the number of numeric inputs. This
can easily be generalized to include a different number of
outputs. Further, we can also extend the definitions to in-
clude scenarios in which one “node” corresponds to more
than one numeric parameter, as in the MDST problem; the
corresponding restriction map would then generate a smaller
input instance. For simplicity, however, we restrict our atten-
tion to Definitions 1 and 2.

Theorems 3 and 5 show that the MDST scheme on the
domain of Internet-like graphs and small preferences has
�(n) dynamic instability and that the LCP scheme on a
similar domain has dynamic instability polylog(n). We now
illustrate the framework with another example, a weighted
multicommodity flow optimization scheme.

Example 1 We are given a directed graph G. For each ver-
tex i in the graph, there is a destination ti and a unit flow
demand from i to ti . Each edge in the graph has unit ca-
pacity. Each flow demand has an associated value wi > 0.
The weighted multicommodity flow optimization problem is
to select8 a subset of the demands to satisfy that maximizes

8 We can also consider a version that allows for fractional optimal
solutions. The hardness result extends to this more general setting as
well.

the total value delivered, without violating any capacity con-
straint. The output is partitioned such that each node knows
whether its flow is selected.

Theorem 4 Let Gn be the set of all n-node graphs with di-
ameter log n and constant average degree, with an identified
destination ti for each node i . Suppose X n is the space of
all value vectors such that each wi = O(log n). Consider
the natural restriction function corresponding to dropping a
single flow demand and its source node. Then the weighted
multicommodity flow optimization scheme has dynamic in-
stability �(n).

Proof The proof is based on constructing an instance that
is equivalent to the hard instance for MDST. The graph G
is constructed starting from the final cluster in Fig. 3. Each
blue node Bi with k incoming edges is replaced with a set
of (k + 3) nodes Bi1, Bi2, . . . , Bi(k+1), Biα, Biβ . The nodes
Bi1, Bi2, . . . , Bi(k+1), Biα form a directed path, and there is
an additional edge from Bik to Bi(k+1). The incoming edge
with r th highest weight is incident to Bir . Both outgoing
edges emanate from node Biα . A symmetric transformation
is done on the red nodes. The node j is kept as it is. The
transformation is shown in Fig. 5. Note that this transforma-
tion changes an N -node instance of the MDST problem to
an n = O(N) node instance of the weighted multicommod-
ity flow optimization problem, because the MDST instance
has O(N) edges.

We next identify the source-sink pairs and the values.
Consider a blue node Bi with k incoming edges in the the
original network. Corresponding to this node, we have a
“red” flow demand from Bi1 to Riα; the value of the de-
mand is the weight of the corresponding red outgoing edge

304 R. Baldoni et al.

in Fig. 3. There is also a “blue flow demand”: If the blue out-
going edge is attached to node Bhp, the blue flow demand is
from Biβ to Bh(p+1). If the blue outgoing edge is attached to
node j , there the blue flow demand is from Biβ to j . Again,
the value of this demand is picked to be the same as the
weight of the blue outgoing edge from Bi in Fig. 3. Simi-
larly, we construct red and blue flow demands correspond-
ing to each red node in the original construction. All other
nodes’ demands are picked to be irrelevant, e.g., by setting
their value to be zero.

This construction of the network and demands has the
following property: For any node in the original network, if
the corresponding red outgoing flow is selected, then no blue
incoming or outgoing flow can be selected. Similarly, if the
blue outgoing flow is selected, no red incoming or outgo-
ing flow can be selected. Further, it is possible to satisfy all
blue-flow demands simultaneously, or to satisfy all red-flow
demands simultaneously. Thus, the optimal set of flows cor-
responds to the blue spanning tree in Fig. 3. However, if even
one blue flow is dropped, the optimal set of demands to pick
would correspond to the red spanning tree. Thus, it follows
that the dynamic instability of this optimization scheme is
�(n). ��
Note that this dynamic instability analysis only provides a
lower bound on the communication cost of a distributed im-
plementation: The fact that a particular optimization scheme
has low dynamic instability does not imply that there is an
algorithm with low incremental communication costs. Fur-
ther, the importance of low dynamic instability depends to a
great extent on the context (as does the choice of an appro-
priate domain); while it is clearly essential for a BGP-based
algorithm, it may be irrelevant in some applications. How-
ever, this analysis appears to be fairly easy in many cases
and should provide a useful tool in comparing different op-
timization schemes.

7 Conclusion

We have presented a formulation of welfare-maximizing
policy routing in the mechanism-design framework. We
showed that, in the most general case, it is NP-hard to
maximize the overall welfare or even to approximate it
within any reasonable factor. When utility functions are
restricted to the class of next-hop preferences, an optimal
strategyproof mechanism is polynomial-time computable.
However, a BGP-based distributed implementation of this
mechanism appears to be unrealistic: It may converge
very slowly even on small-diameter networks, and it may
require messages to be sent to a large fraction of the nodes
whenever any node changes its preferences.

This raises several natural questions for further study.
We can ask whether it is possible to design a mechanism for
the next-hop preference setting that approximately max-
imizes the overall welfare and also has a low-complexity
BGP-based distributed implementation. Another approach is

to find reasonable additional restrictions on the preferences
for which an efficient exact algorithm exists.

An unusual feature of our computational model is
the use of the dynamic communication requirement as a
complexity measure. This may be relevant to other problem
domains as well: Many network protocols are designed to
operate over long periods of time, during which their inputs
frequently change. Thus, it may be useful to extend the
dynamic-stability analysis in Sect. 6 to other distributed
optimization problems.

Acknowledgements We would like to thank Tim Griffin and Vijay
Ramachandran for helpful discussions.

Appendix

We include here a proof that the lowest-cost routing mechanism
described by Feigenbaum et al. [5] satisfies the properties P1-P3 intro-
duced in this paper, and thus meets our requirements for BGP-based
algorithms.

Theorem 5 Consider the route and price computation algorithms
for the lowest-cost routing mechanism of [5], and assume that all
costs are in the range [1, r], for r = polylog(n). Then, the mechanism
satisfies properties P1-P3.

Proof We adopt the following notation from [5]: Let a k-avoiding
path be a path that does not pass through node k. Then, define

d
def= max

i, j
||LCP from i to j ||

d ′ def= max
i, j,k

||lowest-cost k-avoiding path from i to j ||,

where ||P|| denotes the number of hops in path P . Note that the
lowest-cost path may have more hops than more expensive paths. We
now prove that each property is satisfied:
(P1) The LCP route and price computation algorithm was constructed
to use space proportional to the length of the route.
(P2) The result in [5, Theorem 2] shows that the mechanism converges
in max(d, d ′) stages. For unweighted Internet-like graphs, both d and
d ′ are O(log n). If the weights are very skewed, the convergence may
take �(n) stages; however, if all the weights are in the range [1, r],
for small r , then d and d ′ are at most a factor of r greater than their
respective values in the underlying unweighted graph. (Any path with
more hops would have a cost higher than that of the corresponding
LCP or minimum-cost k-avoiding path in the underlying graph.) In
this case, the LCP mechanism converges in O(r log n) stages.
(P3) The failure of a node i only affects the nodes for which i lies
on the LCP or on the minimum-cost k-avoiding path (for some k).
For any node a, there are at most d nodes on the LCP to j ; for each
such node k, there are potentially d ′ different nodes on the lowest-cost
k-avoiding path from a to j . Thus, each node is affected by at most
dd ′ other node failures; this argument also holds for cost increases.
Similarly, when the node comes back up, only those nodes that end up
having it on their LCP or minimum-cost k-avoiding path are affected.
Finally, we note that a small change in the cost of one node does not
change the routing tree (except in the rare case that multiple paths
have the same length). Thus, a node near the root of the tree may
impact �(n) nodes, but, because most nodes are near a leaf of the tree,
a change in a single node only affects O(dd ′) other nodes on average.
In Internet-like graphs with weights in a small range, we expect d and
d ′ to be polylog(n), and so most changes trigger UPDATE messages
among only a small subset of the n ASes. ��

Mechanism design for policy routing 305

References

1. Archer, A., Tardos, É: Frugal path mechanisms. In: Proceedings
of 13th ACM-SIAM Symposium on Discrete Algorithms (SODA
’02), pp. 991–999. ACM Press/SIAM, New York (2002).

2. Clarke, E: Multipart pricing of public goods. Public Choice 11,
17–33 (1971)

3. Edmonds, J.: Optimal Branchings. Journal of Research of the
National Bureau of Standards B71, 233–240 (1967)

4. Elkind, E., Sahai, A., Steiglitz, K.: Frugality in path auctions.
In: Proceedings of the 15th ACM-SIAM Symposium on Discrete
Algorithms (SODA ’04), pp. 701–709. ACM Press/SIAM, New
York (2004)

5. Feigenbaum, J., Papadimitriou, C., Sami, R., Shenker, S.: A BGP-
based mechanism for lowest-cost routing. Distrib. Comput. 18(1),
61–72 (2005). A preliminary version appeared in the 2002 ACM
Symposium on Principles of Distributed Computing (PODC’02)

6. Feigenbaum, J., Papadimitriou, C., Shenker, S.: Sharing the cost
of multicast transmissions. Journal of Computer and System
Sciences 63, 21–41 (2001)

7. Feigenbaum, J., Sami, R., Shenker, S.: Mechanism Design for
Policy Routing. In: Proceedings of the 23rd ACM Symposium
on Principles of Distributed Computing (PODC ’04), pp. 11–20.
ACM Press, New York (2004)

8. Feigenbaum, J., Shenker, S.: Distributed algorithmic mechanism
design: Recent results and future directions. In: Proceedings
of the 6th International Workshop on Discrete Algorithms and
Methods for Mobile Computing and Communication (DIALM
’02), pp. 1–13. ACM Press, New York (2002)

9. Green, J., Laffont, J.: Incentives in public decision making. In:
Studies in Public Economics, vol. 1, pp. 65–78. North Holland,
Amsterdam (1979)

10. Groves, T.: Incentives in teams. Econometrica 41, 617–663,
(1973)

11. Håstad, J.: Clique is hard to approximate within n1−ε . Acta
Mathematica 182, 105–142 (1999)

12. Hershberger, J., Suri, S.: Vickrey prices and shortest paths: What
is an edge worth? In: Proceedings of the 42nd IEEE Symposium
on the Foundations of Computer Science (FOCS ’01), pp.
129–140. IEEE Computer Society Press, Los Alamitos (2001)

13. Humblet, P.: A distributed algorithm for minimum weight di-
rected spanning trees. IEEE Transactions on Communications
COM-31(6), 756–762 (1983)

14. Karp, R.: Reducibility among combinatorial problems. In: Miller,
R.E., Thatcher, J.W.: editors, Complexity of Computer Computa-
tions (Proceedings of a Symposium on the Complexity of Com-
puter Computations), pp. 85–103. Plenum Press, New York (1972)

15. Nisan, N., Ronen, A.: Algorithmic mechanism design. Games
and Economic Behavior 35, 166–196 (2001)

16. Sami, R.: Distributed Algorithmic Mechanism Design. PhD
thesis, Yale University (2003)

17. Spielman, D., Teng, S.: Smoothed analysis of algorithms: why
the simplex algorithm usually takes polynomial time. J. ACM 51,
385–463 (2004)

18. Vickrey, W.: Counterspeculation, auctions, and competitive sealed
tenders. Journal of Finance 16, 8–37 (1961)

