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Abstract

According to economic theory, supported by empirical and laboratory evidence, the equilibrium price of a fi-

nancial security reflects all of the information regarding the security’s value. We investigate the dynamics of the

computational process on the path toward equilibrium, where information distributed among traders is revealed step-

by-step over time and incorporated into the market price. We develop a simplified model of an information market,

along with trading strategies, in order to formalize the computational properties of the process. We show that securi-

ties whose payoffs cannot be expressed as a weighted threshold function of distributed input bits are not guaranteed

to converge to the proper equilibrium predicted by economic theory. On the other hand, securities whose payoffs

are threshold functions are guaranteed to converge, for all prior probability distributions. Moreover, these threshold

securities converge in at most n rounds, where n is the number of bits of distributed information. We also prove a

lower bound, showing a type of threshold security that requires at least n/2 rounds to converge in the worst case.

1 Introduction

The strong form of the efficient markets hypothesis states that market prices nearly instantly incorporate all information

available to all traders. As a result, market prices encode the best forecasts of future outcomes given all information,

even if that information is distributed across many sources. Supporting evidence can be found in empirical studies of

options markets [13], political stock markets [6, 7, 19], sports betting markets [2, 8, 24], horse racing markets [26],

market games [20, 21], and laboratory investigations of experimental markets [5, 22, 23].

The process of information incorporation is, at its essence, a distributed computation. Each trader begins with his

or her own information. As trades are made, summary information is revealed through market prices. Traders learn

or infer what information others are likely to have by observing prices, then update their own beliefs based on their

observations. Over time, if the process works as advertised, all information is revealed, and all traders converge to the
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same information state. At this point, the market is in what is called a rational expectations equilibrium [10, 14, 16].

All information available to all traders is now reflected in the going prices, and no further trades are desirable until

some new information becomes available.

While most markets were set up with other purposes in mind—for example, derivatives markets were instituted

mainly for risk management and sports betting markets for entertainment—recently, some markets have been created

solely for the purpose of aggregating information on a topic of interest. The Iowa Electronic Market 1 is a prime exam-

ple, operated by the University of Iowa Tippie College of Business for the purpose of investigating how information

about political elections distributed among traders gets reflected in securities prices whose payoffs are tied to actual

election outcomes [6, 7].

In this paper, we investigate the nature of the computational process whereby distributed information is revealed

and combined over time into the prices of information markets. To do so, in Section 2, we propose a model of an

information market that is both tractable for theoretical analysis and, we believe, captures much of the important

essence of real information markets. In Section 3, we present our main theoretical results concerning this model.

We prove that only Boolean securities whose payoffs can be expressed as threshold functions of the distributed input

bits of information are guaranteed to converge as predicted by rational expectations theory. Boolean securities with

more complex payoffs may not converge under some prior distributions. We also provide upper and lower bounds on

the convergence time for these threshold securities. We show that, for all prior distributions, the price of a threshold

security converges to its rational expectations equilibrium price in at most n rounds, where n is the number of bits of

distributed information. We show that this worst-case bound is tight within a factor of two by illustrating a situation

in which a threshold security requires n/2 rounds to converge.

2 Model of an information market

To investigate the properties and limitations of the process whereby an information market converges toward its

rational-expectations equilibrium, we formulate a representative model of the market. In designing the model, our

goals were two-fold: (1) to make the model rich enough to be realistic and (2) to make the model simple enough

to admit meaningful analysis. Any modeling decisions must trade off these two generally conflicting goals, and the

decision process is as much an art as a science. Nonetheless, we believe that our model captures enough of the essence

of real information markets to lend credence to the results that follow. In this section, we present our modeling as-

sumptions and justifications in detail. Section 2.1 describes the initial information state of the system, Section 2.2

covers the market mechanism, and Section 2.3 presents the agents’ strategies.

2.1 Initial information state

There are n agents (traders) in the system, each of whom is privy to one bit of information, denoted x i. The vector of all

n bits is denoted x = (x1, x2, . . . , xn). In the initial state, each agent is aware only of her own bit of information. All

agents have a common prior regarding the joint distribution of bits among agents, but none has any specific information

about the actual value of bits held by others. Note that this common-prior assumption—typical in the economics

literature—does not imply that all agents agree. To the contrary, because each agent has different information, the

initial state of the system is in general a state of disagreement. Nearly any disagreement that could be modeled

by assuming different priors can instead be modeled by assuming a common prior with different information, the

common-prior assumption is not as severe as it may seem.

1http://www.biz.uiowa.edu/iem/
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2.2 Market mechanism

The security being traded by the agents is a financial instrument whose payoff is a function f(x) of the agents’ bits.

The form of f (the description of the security) is common knowledge 2 among agents. We sometimes refer to the xi

as the input bits. At some time in the future after trading is completed, the true value of f(x) is revealed 3, and every

owner of the security is paid an amount f(x) in cash per unit owned. If an agent ends with a negative quantity of the

security (by selling short), then the agent must pay the amount f(x) in cash per unit. Note that if someone were to

have complete knowledge of all input bits x, then that person would know the true value f(x) of the security with

certainty and so would be willing to buy it at any price lower than f(x) and (short) sell it at any price higher than

f(x).4

Following Dubey, Geanakoplos, and Shubik [3], and Jackson and Peck [12], we model the market-price formation

process as a multiperiod Shapley-Shubik market game [25]. The Shapley-Shubik process operates as follows: The

market proceeds in synchronous rounds. In each round, each agent i submits a bid b i and a quantity qi. The semantics

are that agent i is supplying a quantity qi of the security and an amount bi of money to be traded in the market. For

simplicity, we assume that there are no restrictions on credit or short sales, and so an agent’s trade is not constrained

by her possessions. The market clears in each round by settling at a single price that balances the trade in that round:

The clearing price is p =
∑

i bi/
∑

i qi. At the end of the round, agent i holds a quantity q ′
i proportional to the

money she bid: q ′i = bi/p. In addition, she is left with an amount of money b ′
i that reflects her net trade at price p:

b′i = bi − p(q′i − qi) = pqi. Note that agent i’s net trade in the security is a purchase if p < b i/qi, and a sale if

p > bi/qi.

After each round, the clearing price p is publicly revealed. Agents then revise their beliefs according to any

information garnered from the new price. The next round proceeds as the previous. The process continues until an

equilibrium is reached, meaning that prices and bids do not change from one round to the next.

In this paper, we make a further simplifying restriction on the trading in each round: We assume that q i = 1 for

each agent i. This modeling assumption serves two analytical purposes. Firstly, it ensures that there is forced trade

in every round. Classic results in economics show that perfectly rational and risk-neutral agents will never trade with

each other for purely speculative reasons (even if they have differing information) [17]. There are many factors that

can induce rational agents to trade, such as differing degrees of risk aversion, the presence of other traders who are

trading for liquidity reasons rather than speculative gain, or a market maker who is pumping money into the market

through a subsidy. We sidestep this issue by simply assuming that the informed agents will trade (for unspecified

reasons). Secondly, forcing qi = 1 for all i means that the total volume of trade and the impact of any one trader on

the clearing price are common knowledge; the clearing price p is a simple function of the agents’ bids, p =
∑

i bi/n.

We will discuss the implications of alternative market models in Section 4.

2.3 Agent strategies

In order to draw formal conclusions about the price-evolution process, we need to make some assumptions about how

agents behave. Essentially we assume that agents are risk-neutral, are myopic 5, and bid truthfully: Each agent in each

round bids his or her current valuation of the security, which is that agent’s estimation of the expected payoff of the

2“Common knowledge” is that information that all agents know, and all agents know that all agents know, and so on ad infinitum [4].
3The values of the input bits themselves may or may not be publicly revealed.
4Throughout this paper we ignore the time value of money.
5Risk-neutrality implies that each agent’s utility for the security is linearly related to his or her subjective estimation of the expected payoff of

the security. Myopic behavior means that agents treat each round as if it were the final round: They do not reason about how their bids may affect

the bids of other agents in future rounds.
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security. Expectations are computed according to each agent’s probability distribution, which is updated via Bayes’

rule when new information (revealed via the clearing prices) becomes available. We also assume that it is common

knowledge that all the agents behave in the specified manner.

Would rational agents actually behave according to this strategy? It’s hard to say. Certainly, we do not claim

that this strategy forms an equilibrium in a game-theoretic sense. Furthermore, it is clear that we are ignoring some

legitimate tactics, e.g., bidding falsely in one round in order to effect other agents’ judgments in the following rounds

(non-myopic reasoning). However, we believe that the strategy outlined is a reasonable starting point for analysis.

Solving for a true game-theoretic equilibrium strategy in this setting seems extremely difficult. Our assumptions seem

reasonable when there are enough agents in the system such that extremely complex meta-reasoning is not likely to

improve upon simply bidding one’s true expected value. In this case, according the the Shapley-Shubik mechanism,

if the clearing price is below an agent’s expected value that agent will end up buying (increasing expected profit);

otherwise, if the clearing price is above the agent’s expected value, the agent will end up selling (also increasing

expected profit).

3 Computational properties

In this section, we study the computational power of information markets for a very simple class of aggregation

functions: Boolean functions of n variables. We characterize the set of Boolean functions that can be computed in our

market model for all prior distributions and then prove upper and lower bounds on the worst-case convergence time

for these markets.

The information structure we assume is as follows: There are n agents, and each agent i has a single bit of private

information xi. We use x to denote the vector (x1, · · · , xn) of inputs. All the agents also have a common prior

probability distribution P : {0, 1}n → [0, 1] over the values of x. Our aim is to determine the value of a Boolean

aggregate f(x) : {0, 1}n → {0, 1}. Note that x, and hence f(x), is completely determined by the combination of all

the agent’s information, but it is not known to any one agent. The agents trade in a Boolean security F , which pays

off $1 if f(x) = 1 and $0 if f(x) = 0. So an omniscient agent with access to all the agents’ bits would know the true

value of security F—either exactly $1 or exactly $0. In reality, risk-neutral agents with limited information will value

F according to their expectation of its payoff, or E i[f(x)], where Ei is the expectation operator applied according to

agent i’s probability distribution.

For any function f , trading in F may happen to converge to the true value of f(x) by coincidence if the prior

probability distribution is sufficiently degenerate. More interestingly, we’d like to know for which functions f does

the price of the security F always converge to f(x) for all prior probability distributions P . In Section 3.2, we prove

a necessary and sufficient condition that guarantees convergence. In Section 3.3 we address the natural follow-up

question: we derive upper and lower bounds on the worst-case number of rounds of trading required for the value of

f(x) to be revealed.

3.1 Equilibrium price characterization

Our analysis is based on a characterization of the equilibrium price of F that follows from a powerful result on common

knowledge of aggregates due to McKelvey and Page [15], later extended by Nielsen et al. [18].

Information markets aim to aggregate the knowledge of all the agents. Procedurally, this occurs because the agents

learn from the markets: the price of the security conveys information to each agent about the knowledge of other

agents. We can model the flow of information through prices as follows:
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Let Ω = {0, 1}n be the set of possible values of x; we shall say Ω denotes the set of possible “states of the world”.

Because we assume that everyone acts as a perfect Bayesian, the common knowledge after any stage is completely

described by the set of states an external observer (with no information besides the sequence of prices observed)

considers possible; the relative probabilities of the possible states are fixed by the prior P . Similarly, the knowledge

of agent i at any point is also completely described by the set of states she considers possible. We use the notation S r

to denote the common knowledge possibility set after round r, and S r
i to denote the set of states that agent i considers

possible after round r.

Initially, the only common knowledge is that the input vector x ∈ Ω; in other words, the set of states considered

possible by an external observer before trading has occurred is the set S 0 = Ω. However, each agent i also knows the

value of her bit xi; thus, her knowledge set S0
i is the set {y ∈ Ω|yi = xi}. Agent i’s first-round bid is her conditional

expectation of the event f(x) = 1 given that x ∈ S 0
i . All the agents’ bids are processed, and the clearing price p1 is

announced. An external observer could predict agent i’s bid if he knew the value of x i. Thus, if he knew the value of

x, he could predict the value of p1. In other words, the external observer knows the function price 1(x) that relates the

first round price to the true state x. Of course, he does not know the value of x; however, he can rule out any vector x
that would have resulted in a different clearing price from the observed price p1.

Thus, the common knowledge after round 1 is the set S 1 = {y ∈ S0| price1(y) = p1}. Agent i knows the

common knowledge and, in addition, knows the value of bit x i. Hence, after every round r, the knowledge of agent i

is given by Sr
i = {y ∈ Sr|yi = xi}. Note that, because knowledge can only improve over time, we must always have

Sr
i ⊆ Sr−1

i and Sr ⊆ Sr−1. Thus, only a finite number of changes in each agent’s knowledge are possible, and so

eventually we must converge to an equilibrium after which no player learns any further information. We use S ∞ to

denote the common knowledge at this point, and S ∞
i to denote agent i’s knowledge at this point.

Informally described, McKelvey and Page [15] show that, if n people with common priors but different information

about the likelihood of some event A agree about a “suitable” aggregate of their individual conditional probabilities,

then their individual conditional probabilities of event A occurring must be identical. (The precise definition of “suit-

able” is described below.) There is a strong connection to Rational Expectation Equilibria (REE) in markets, which

was noted in the original McKelvey-Page paper: The market price of a security is common knowledge at the REE

point. Thus, if the price is a “suitable” aggregate of the conditional expectations of all the agents, then in equilibrium

they must have identical conditional expectations of the event that the security will pay off. (Note that their information

may still be different.)

Definition 1 A function g : �n → � is called stochastically monotone if it can be written in the form g(x) =∑
i gi(xi), where each function gi : � → � is strictly increasing.

Bergin and Brandenburger [1] proved that this simple definition of stochastically monotone functions is equivalent to

the original definition in McKelvey-Page [15].

Definition 2 A function g : �n → � is called stochastically regular if it can be written in the form g = h ◦ g ′, where

g′ is stochastically monotone and h is invertible on the range of g ′.

We can now state the McKelvey-Page result, as generalized by Nielsen et al. [18]. In our context, the following simple

theorem statement suffices; more general versions of this theorem can be found in the cited articles [15, 18].

Theorem 1 (Nielsen et al. [18]) Suppose that, at equilibrium, the n agents have a common prior, but possibly different

information, about the value of a random variable F , as described above. For all i, let p ∞
i = E(F |x ∈ S∞

i ). Let g

be any stochastically regular function. If g(p∞
1 , p∞2 , · · · , p∞n ) is common knowledge, then we must have

p∞1 = p∞2 = · · · = p∞n = E(F |x ∈ S∞)
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In a round of the simplified Shapley-Shubik trading model we considered, the announced price is the mean of

the conditional expectations of the n agents. The mean is a stochastically regular function; hence, Theorem 1 shows

that, at equilibrium, all agents have identical conditional expectations of the payoff of the security. It follows that the

equilibrium price p∞ must be exactly the conditional expectations of all agents at equilibrium.

Theorem 1 does not in itself say how the equilibrium is reached. McKelvey and Page, extending an argument due

to Geanakoplos and Polemarchakis [9], show that repeated announcement of the aggregate will eventually result in

common knowledge of the aggregate. In our context, this is achieved by announcing the current price at the end of

each round; this will ultimately converge to a state in which all agents bid the same price p∞.

However, reaching an equilibrium price is not sufficient for the purposes of information aggregation. We also want

the price to reveal the actual value of f(x). It is possible that the equilibrium price p∞ of the security F will not be

either 0 or 1, and so we cannot infer the value of f(x) from it.

Example 1: Consider two agents 1 and 2, with private input bits x1 and x2 respectively. Suppose the prior probability

distribution is uniform, i.e., x = (x1, x2) takes the values (0, 0), (0, 1), (1, 0), and (1, 1) with probability 1
4 each. Now,

suppose the aggregate function we want to compute is the XOR function, f(x) = x 1 ⊕ x2. To this end, we design a

market to trade in a Boolean security F , which will eventually payoff 1 iff x 1 ⊕ x2 = 1.

If agent 1 observes x1 = 1, she estimates the expected value of F to be the probability that x2 = 0 (given x1 = 1),

which is 1
2 . If she observes x1 = 0, her expectation of the value of F is the conditional probability that x 2 = 1, which

is also 1
2 . Thus, in either case, agent 1 wll bid 0.5 for F in the first round. Similarly, agent 2 will also always bid 0.5

in the first round. Hence, the first round of trading ends with a clearing price of 0.5. From this, agent 2 can infer that

agent 1 bid 0.5, but this gives her no information about the value of x 1 - it is still equally likely to be 0 or 1. Agent

1 also gains no information from the first round of trading, and hence neither agent changes her bid in the following

rounds. Thus, the market reaches equilibrium at this point. As predicted by Theorem 1, both agents have the same

conditional expectation (0.5) at equilibrium. However, the equilibrium price of the security F does not reveal the value

of f(x1, x2).

3.2 Characterizing computable aggregates

We now give a necessary and sufficient characterization of the class of functions f such that, for any prior distribution

on x, the equilibrium price of F will reveal the true value of f . We show that this is exactly the class of (weighted)

threshold functions:

Definition 3 A function f : {0, 1}n → {0, 1} is a weighted threshold function iff there are real constants w1, w2, · · · , wn

such that

f(x) = 1 iff
n∑

i=1

wixi ≥ 1

Theorem 2 If f is a weighted threshold function, then, for any prior probability distribution P , the equilibrium price

of F is equal to f(x).

Proof:

Let S∞
i denote the possibility set of agent i at equilibrium. As before, we use p∞ to denote the final trading price

at this point. Note that, by Theorem 1, p∞ is exactly agent i’s conditional expectation of the value of f(x), given her

final possibility set S∞
i .
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It is enough to show that, if f is a weighted threshold function, then p∞ is either 0 or 1: Because the true x

is always in the possibility set of all agents and has nonzero prior probability, this would imply that f(x) is 0 or 1
respectively.

We prove this by contradiction. Let f(·) be a weighted threshold function corresponding to weights {w i}. Assume

that the equilibrium price p∞ is some value other than 0 or 1. Then, by Theorem 1, we must have:

P (f(y) = 1|y ∈ S∞) = p∞ (1)

∀i P (f(y) = 1|y ∈ S∞
i ) = p∞ (2)

Recall that S∞
i = {y ∈ S∞|yi = xi}. Thus, Equation (2) can be written as

∀i P (f(y) = 1|y ∈ S∞, yi = xi) = p∞ (3)

Now define

J+
i = P (yi = 1|y ∈ S∞, f(y) = 1)

J−
i = P (yi = 1|y ∈ S∞, f(y) = 0)

J+ =
n∑

i=1

wiJ
+
i

J− =
n∑

i=1

wiJ
−
i

Because p∞ 	= 0, 1, both J+
i and J−

i are well-defined (for all i): Neither is conditioned on a zero-probability

event. From Eqs. 1 and 3, using Bayes’ law, we can derive J +
i = J−

i , for all i. Hence, we must also have J + = J−.

But using linearity of expectation, we can also write J + as

J+ = E

([
n∑

i=1

wiyi

]∣∣∣∣∣y ∈ S∞, f(y) = 1

)
,

and, because f(y) = 1 only when
∑

i wiyi ≥ 1, this gives us J+ ≥ 1. Similarly,

J− = E

([
n∑

i=1

wiyi

]∣∣∣∣∣y ∈ S∞, f(y) = 0

)
,

and thus J− < 1. This implies J− 	= J+, a contradiction. �

Perhaps surprisingly, the converse of Theorem 2 also holds:

Theorem 3 Suppose f : {0, 1}n → {0, 1} cannot be expressed as a weighted threshold function. Then there exists a

prior distribution P for which the price of the security F does not converge to the value of f(x).

Proof: We start from a geometric characterization of weighted threshold functions. Consider the Boolean hypercube

{0, 1}n as a set of points in �n. It is well known that f is expressible as a weighted threshold function iff there is a

hyperplane in �n that separates all the points at which f has value 0 from all the points at which f has value 1.

Now, consider the sets

H+ = Conv(f−1(1))

and

H− = Conv(f−1(0)),
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where Conv(S) denotes the convex hull of S in �n. H+ and H− are convex sets in �n, and so, if they do not intersect,

we can find a separating hyperlane between them. This means that, if f is not expressible as a weighted threshold

function, H+ and H− must intersect. In this case, we show how to construct a prior P for which f(x) is not computed

by the market.

Let x∗ ∈ �n be a point in H+ ∩ H−. Because x∗ is in H+, there exists some points z1, z2, · · · zm and constants

λ1, λ2, · · · , λm, such that the following constraints are satisfied:

∀k zk ∈ {0, 1}n, and f(zk) = 1

∀k 0 < λk ≤ 1
m∑

k=1

λk = 1

m∑
k=1

λkzk = x∗

Similarly, because x∗ ∈ H−, we can find points y1,y2, · · ·yl and constants µ1, µ2, · · · , µl, such that

∀j yj ∈ {0, 1}n, and f(yj) = 0

∀j 0 < µj ≤ 1
l∑

j=1

µj = 1

l∑
j=1

µjyj = x∗

We now define our prior distribution P as follows:

P (zk) =
λk

2
for k = 1, 2, · · · , m

P (yj) =
µj

2
for j = 1, 2, · · · , l,

and all other points are assigned probability 0. It is easy to see that this is a valid probability distribution. Under this

distribution P , first observe that P (f(x) = 1) = 1
2 . Further, for any i such that 0 < x∗

i < 1, we have

P (f(x) = 1|xi = 1) =
P (f(x) = 1 ∧ xi = 1)

P (xi = 1)

=
x∗

i

2

x∗
i

=
1
2

and

P (f(x) = 1|xi = 0) =
P (f(x) = 1 ∧ xi = 0)

P (xi = 0)

=
(1−x∗

i )
2

(1 − x∗
i )

=
1
2

8



For indices i such that x∗
i is 0 or 1 exactly, i’s private information reveals no additional information under prior P , and

so here too we have P (f(x) = 1|xi = 0) = P (f(x) = 1|xi = 1) = 1
2 .

Hence, irrespective of her private bit xi, each agent i will bid 0.5 for security F in the first round. The clearing

price of 0.5 also reveals no additional information, and so this is an equilibrium with price p ∞ = 0.5 that does not

reveal the value of f(x). �

The XOR function is one example of a function that cannot be expressed as weighted threshold function; Exam-

ple 1 illustrates Theorem 3 for this function.

3.3 Convergence time bounds

We have shown that the class of Boolean functions computable in our model is the class of weighted threshold func-

tions. The next natural question to ask is: How many rounds of trading are necessary before the equilibrium is reached?

We analyze this problem using our simplified Shapley-Shubik model of market clearing in each round. We first prove

that, in the worst case, at most n rounds are required.

The idea of the proof is to consider the sequence of common knowledge sets Ω = S 0, S1, · · ·, and show that, until

the market reaches equilibrium, each set has a strictly lower dimension than the previous set.

Definition 4 For a set S ⊆ {0, 1}n, the dimension of set S is the dimension of the smallest linear subspace of �n

that contains all the points in S; we use the notation dim(S) to denote it.

Lemma 1 If Sr 	= Sr−1, then dim(Sr) < dim(Sr−1).

Proof: Let k = dim(Sr−1). Consider the bids in round r. In our model, agent i will bid her current expectation for

the value of F ,

br
i = E(f(y) = 1|y ∈ Sr−1, yi = xi).

Thus, depending on the value of x i, br
i will take on one of two values h

(0)
i or h

(1)
i . Note that h

(0)
i and h

(1)
i depend only

on the set Sr−1, which is common knowledge before round r. Setting d i = h
(1)
i −h

(0)
i , we can write br

i = h
(0)
i +dixi.

It follows that the clearing price in round r is given by

pr =
1
n

n∑
i=1

(h(0)
i + dixi) (4)

All the agents already know all the h
(0)
i and di values, and they observe the price pr at the end of the rth round. Thus,

they effectively have a linear equation in x1, x2, · · ·xn which they use to improve their knowledge by ruling out any

possibility that would not have resulted in price pr. In other words, the common knowledge set after r rounds, S r, is

the intersection of Sr−1 with the hyperplane defined by Equation (4).

It follows that Sr is contained in the intersection of this hyperplane with the k-dimension linear space containing

Sr−1. If Sr is not equal to Sr−1, this intersection defines a linear subspace of dimension (k− 1) that contains S r, and

hence Sr has dimension at most (k − 1). �

Theorem 4 Let f be a weighted threshold function, and let P be an arbitrary prior probability distribution. Then,

after at most n rounds of trading, the price reaches its equilibrium value p∞ = f(x).

Proof: Consider the sequence of common knowledge sets S 0, S1, · · ·, and let r be the minimum index such that S r =
Sr−1. Then, the rth round of trading does not improve any agent’s knowledge, and thus we must have S ∞ = Sr−1
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and p∞ = pr−1. Observing that dim(S0) = n, and applying Lemma 1 to the first r − 1 rounds, we must have

(r − 1) ≤ n. Thus, the price reaches its equilibrium value within n rounds. �

Theorem 4 provides an upper bound of O(n) on the number of rounds required for convergence. We now show that

this bound is tight to within a factor of 2 by constructing a threshold function with 2n inputs and a prior distribution

for which it takes n rounds to determine the value of f(x) in the worst case.

The functions we use are the carry-bit functions. The function Cn takes 2n inputs; for convenience, we write the

inputs as x1, x2 · · · , xn, y1, y2, · · · yn or as a pair (x,y). The function value is the value of the high-order carry bit

when the binary numbers xnxn−1 · · ·x1 and ynyn−1 · · · y1 are added together. In weighted threshold form, this can

be written as

Cn(x,y) = 1 iff
n∑

i=1

xi + yi

2n+1−i
≥ 1.

For this proof, let us call the agents A1, A2, · · ·An, B1, B2, · · ·Bn, where Ai holds input bit xi, and Bi holds input

bit yi.

We first illustrate our technique by proving that computing C 2 requires 2 rounds in the worst case. To do this, we

construct a common prior P2 as follows:

• The pair (x1, y1) takes on the values (0, 0), (0, 1), (1, 0), (1, 1) uniformly (i.e., with probability 1
4 each).

• We extend this to a distribution on (x1, x2, y1, y2) by specifying the conditional distribution of (x2, y2) given

(x1, y1): If (x1, y1) = (1, 1), then (x2, y2) takes the values (0, 0), (0, 1), (1, 0), (1, 1) with probabilities 1
2 , 1

6 , 1
6 , 1

6

respectively. Otherwise, (x2, y2) takes the values (0, 0), (0, 1), (1, 0), (1, 1) with probabilities 1
6 , 1

6 , 1
6 , 1

2 respec-

tively.

Now, suppose x1 turns out to be 1, and consider agent A1’s bid in the first round. It is given by

b1
A1

= P (C2(x1, x2, y1, y2) = 1|x1 = 1))

= P (y1 = 1|x1 = 1).P ((x2, y2) 	= (0, 0)|x1 = 1, y1 = 1)

+P (y1 = 0|x1 = 1).P ((x2, y2) = (1, 1)|x1 = 1, y1 = 0)

=
1
2
· 1
2

+
1
2
· 1
2

=
1
2

On the other hand, if x1 turns out to be 0, agent A1’s bid would be given by

b1
A1

= P (C2(x1, x2, y1, y2) = 1|x1 = 0))

= P ((x2, y2) = (1, 1)|x1 = 0)

=
1
2

Thus, irrespective of her bit, A1 will bid 0.5 in the first round. Note that the function and distribution are symmetric

between x and y, and so the same argument shows that B1 will also bid 0.5 in the first round. Thus, the price p1

announced at the end of the first round reveals no information about x 1 or y1. The reason this occurs is that, under this

distribution, the second carry bit C2 is statistically independent of the first carry bit (x1 ∧ y1); we will use this trick

again in the general construction.

Now, suppose that (x2, y2) is either (0, 1) or (1, 0). Then, even if x2 and y2 are completely revealed by the first-

round price, the value of C2(x1, x2, y1, y2) is not revealed: It will be 1 if x1 = y1 = 1 and 0 otherwise. Thus, we have

shown that at least 2 rounds of trading will be required to reveal the function value in this case.
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We now extend this construction to show by induction that the function C n takes n rounds to reach an equilibrium

in the worst case.

Theorem 5 There is a function Cn with 2n inputs and a prior distribution Pn such that, in the worst case, the market

takes n rounds to reveal the value of Cn(·).

Proof: We prove the theorem by induction on n. The base case for n = 2 has already been shown to be true. Starting

from the distribution P2 described above, we construct the distributions P3,P4, · · · Pn by inductively applying the

following rule:

• Let x−n denote the vector (x1, x2, · · ·xn−1), and define y−n similarly. We extend the distribution Pn−1

on (x−n,y−n) to a distribution Pn on (x,y) by specifying the conditional distribution of (xn, yn) given

(x−n,y−n): If Cn−1(x−n,y−n) = 1, then (xn, yn) takes the values (0, 0), (0, 1), (1, 0), (1, 1) with proba-

bilities 1
2 , 1

6 , 1
6 , 1

6 respectively. Otherwise, (xn, yn) takes the values (0, 0), (0, 1), (1, 0), (1, 1) with probabilities
1
6 , 1

6 , 1
6 , 1

2 respectively.

Claim: Under distribution Pn, for all i < n,

P (Cn(x,y) = 1|xi = 1) = P (Cn(x,y) = 1|xi = 0).

Proof of claim: A similar calculation to that used for C2 above shows that the value of Cn(x,y) under this distribution

is statistically independent of Cn−1(x−n,y−n). For i < n, xi can affect the value of Cn only through Cn−1. Also,

by contruction of Pn, given the value of Cn−1, the distribution of Cn is independent of xi. It follows that Cn(x,y) is

statistically independent of xi as well. Of course, a similar result holds for yi by symmetry.

Thus, in the first round, for all i = 1, 2, · · · , n− 1, the bids of agents A i and Bi do not reveal anything about their

private information. Thus, the first-round price does not reveal any information about the value of (x −n,y−n).
On the other hand, agents An and Bn do have different expectations of Cn(x) depending on whether their input

bit is a 0 or a 1; thus, the first-round price does reveal whether neither, one, or both of x n and yn are 1. Now, consider

a situation in which (xn, yn) takes on the value (1, 0) or (0, 1). We show that, in this case, after one round we are left

with the residual problem of computing the value of Cn−1(x−n,y−n) under the prior Pn−1.

Clearly, when xn + yn = 1, Cn(x,y) = Cn−1(x−n,y−n). Further, according to the construction of Pn, the event

(xn + yn = 1) has the same probability (1/3) for all values of (x−n,y−n). Thus, conditioning on this fact does not

alter the probability distribution over (x−n,y−n); it must still be Pn−1.

Finally, the inductive assumption tells us that solving this residual problem will take at least n− 1 more rounds in

the worst case and hence that finding the value of Cn(x,y) takes at least n rounds in the worst case. �

4 Discussion

Our results have been derived in a simplified model of an information market. In this section, we discuss the applica-

bility of these results to more general trading models.

Assuming that agents bid truthfully, Theorem 2 holds in any model in which the price is a known stochastically

monotone aggregate of agents’ bids. While it seems reasonable that the market price satisfies monotonicity properties,

the exact form of the aggregate function may not be known if the volumes of each user’s trades is not observable;

this depends on the details of the market process. Theorem 3 and Theorem 5 hold more generally; they only require

that an agent’s strategy depends only on her conditional expectation of the security’s value. Perhaps the most fragile
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result is Theorem 4, which relies on the linear form of the Shapley-Shubik clearing price (in addition to the conditions

for Theorem 2); however, it seems plausible that a similar dimension-based bound will hold for other families of

non-linear clearing prices.

Up to this point, we have described the model with the same number of agents as bits of information. However, all

the results hold even if there is competition in the form of a known number of agents who know each bit of information.

Indeed, modeling such competition may help alleviate the strategic problems in our current model.

Another interesting approach to addressing the strategic issue is to consider alternative markets that are at least

myopically incentive compatible. One example is a market mechanism called a market scoring rule, suggested by

Hanson [11]. These markets have the property that a risk-neutral agent’s best myopic strategy is to truthfully bid

her current expected value of the security. Additionally, the number of securities involved in each trade is fixed and

publicly known. If the market structure is such that, for example, the current scoring rule is posted publicly after

each agent’s trade, then at equilibrium there is common knowledge of all agents’ expectation, and hence Theorem 2

holds. Theorem 3 also applies in this case, and hence we have the same characterization for the set of computable

Boolean functions. This suggests that the problem of eliciting truthful responses may be orthogonal to the problem of

computing the desired aggregate; while it is conceivable that the market designer could compute some functions only

by eliciting specific dishonest bids, this seems like a far-fetched approach in practice.

In this paper, we have restricted our attention to the simplest possible aggregation problems, that of computing

Boolean functions of Boolean inputs. The proofs of Theorems 3 and 5 also hold if we consider Boolean functions

of real inputs, where each agent’s private information is a real number. Further, Theorem 2 also holds provided the

market reaches equilibrium. With real inputs and arbitrary prior distributions, however, it is not clear that the market

will reach an equilibrium in a finite number of steps.

5 Conclusions and future work

Summary We have framed the process of information aggregation in markets as a computation on distributed in-

formation. We have developed a simplified model of an information market that we believe captures many of the

important aspects of real agent interaction in an information market. Within this model, we prove several results

characterizing precisely what the market can compute and how quickly. Specifically, we show that the market is guar-

anteed to converge to the true rational expectations equilibrium if and only if the security payoff function is a weighted

threshold function. We prove that the process whereby agents reveal their information over time, and learn from the

resulting announced prices, takes up to n rounds to converge to the correct full-information price in the worst case.

We show that this bound is tight within a factor of 2.

Future work We view this paper as a first step towards understanding the computational power of information

markets. Some interesting and important next steps include gaining a better understanding of the following:

• The effect of price accuracy and precision: We have assumed that the clearing price is known with unlimited

precision; in practice this will not be true. Further, we have neglected influences on the market price other than

from rational traders; the market price may also be influenced by other factors such as misinformed or irrational

traders. It is interesting to ask what aggregates can be computed even in the presence of noisy prices.

• Incremental updates: If the agents have computed the value of the function and a small number of input bits are

switched, can the new value of the function be computed incrementally and quickly?
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• Distributed computation: In our model, distributed information is aggregated through a centralized market

computation. What if the computation was also distributed, through trading in a decentralized market?

• Agents’ computation: We have not accounted for the complexity of the computations that agents must do to

accurately update their beliefs after each round.

• Strategic market models For reasons of simplicity and tractability, we have directly assumed that agents bid

truthfully. A more satisfying approach would be to assume only rationality, and solve for the resulting game-

theoretic solution strategy, either in our current model or another model of an information market.

• The common prior assumption: Can we say anything about the market behavior when agents’ priors are only

approximately the same, or when they differ greatly?

• Average-case analysis: Our negative results (Theorems 3 and 5) examine worst-case scenarios, and so involve

very specific prior probability distributions. It is interesting to ask if we would get very different results for

generic prior distributions.
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[21] David M. Pennock, Steve Lawrence, Finn Årup Nielsen, and C. Lee Giles. Extracting collective probabilistic

forecasts from web games. In Proceedings of the 7th ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining, pages 174–183, 2001.

[22] C. R. Plott, J. Wit, and W. C. Yang. Parimutuel betting markets as information aggregation devices: Experimental

results. Technical Report Social Science Working Paper 986, California Institute of Technology, April 1997.

[23] Charles R. Plott and Shyam Sunder. Rational expectations and the aggregation of diverse information in labora-

tory security markets. Econometrica, 56(5):1085–1118, 1988.

[24] Carsten Schmidt and Axel Werwatz. How accurate do markets predict the outcome of an event? the euro 2000

soccer championships experiment. Technical Report 09-2002, Max Planck Institute for Research into Economic

Systems, 2002.

[25] Lloyd Shapley and Martin Shubik. Trade using one commodity as a means of payment. Journal of Political

Economy, 85:937–968, 1977.

14



[26] Richard H. Thaler and William T. Ziemba. Anomalies: Parimutuel betting markets: Racetracks and lotteries.

Journal of Economic Perspectives, 2(2):161–174, 1988.

15


