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Abstract 

We present a formal model of negotiation between autonomous agents. The purpose of the negotiation is to reach an 
agreement about the provision of a service by one agent for another. The model defines a range of strategies and tactics that 
agents can employ to generate initial offers, evaluate proposals and offer counter proposals. The model is based on com- 
putationally tractable assumptions, demonstrated in the domain of business process management and empirically evaluated. 
© 1998 Elsevier Science B.V. All rights reserved. 

Keywords: Multi-agent systems; Automated negotiation; Business process management 

1. Introduction 

Autonomous agents are being increasingly used in a wide range of  industrial and commercial  domains [2]. 
These agents have a high degree of  self-determination - they decide for themselves what, when and under what 
conditions their actions should be performed. In most cases, such agents need to interact with other autonomous 
agents to achieve their objectives (either because they do not have sufficient capabilit ies or resources to complete 
their problem solving alone or because there are interdependencies between the agents). The objectives of  these 
interactions are to make other agents undertake a particular course of  action (e.g. perform a particular service), 
modify a planned course of  action (e.g. delay or bring forward a particular action so that there is no longer a 
conflict), or come to an agreement on a common course of  action. Since the agents have no direct control over one 
another, they must persuade their acquaintances to act in particular ways (they cannot simply instruct them). The 
type of  persuasion we consider is negotiation - a process by which a joint decision is made by two or more parties. 
The parties first verbalise contradictory demands and then move towards agreement by a process o f  concession 
making or search for  new alternatives [11]. 

Given its pervasive nature, negotiation comes in many shapes and forms. However in this work we are interested in 
a particular class of  nego t i a t ion-  namely service-oriented negotiation. In this context, one agent (the client) requires 
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a service to be performed on its behalf by some other agent (the server). 3 Negotiation involves determining a contract 
under certain terms and conditions. The negotiation may be iterative in that several rounds of offers and counter 
offers will occur before an agreement is reached or the negotiation is terminated. 

When building an autonomous agent which is capable of flexible and sophisticated negotiation, three broad areas 
need to be considered [10] - what negotiation protocol will be used?, what are the issues over which negotiation 
takes place?, and what reasoning model will the agents employ? This paper concentrates predominantly on the 
final point, although the protocol and negotiation object are briefly defined. A comprehensive reasoning model 
for service-oriented negotiation should determine: which potential agent should be contacted, whether negotiation 
should proceed in parallel with all agents or whether it should run sequentially, what initial offers should be sent 
out, what the range of acceptable agreements is, what counter offers should be generated, when negotiation should 
be abandoned, and when an agreement is reached. 

To this end, this paper presents a formal account of a negotiating agent's reasoning component - in particular 
it concentrates on the processes of evaluating incoming proposals and generating counter proposals. The model 
specifies the key structures and processes involved in this endeavour and defines their inter-relationships. The model 
was shaped by practical considerations and insights emanating from the development of a system of negotiating 
agents for business process management (see [6] and Section 2 for more details). The main contributions of our 
model are: (i) it allows rich and flexible negotiation schemes to be defined; (ii) it is based on assumptions which 
are realistic for autonomous, computational agents (see Section 3.2 for the set of requirements and Section 7 for a 
discussion of related approaches) and (iii) its main properties have been empirically evaluated (see Section 6). In 
addition, we have some initial results on the convergence of certain types of negotiation using our model (although 
this aspect is not discussed in this paper, refer to [15] for more details). 

In this paper we concentrate on many-parties, many-issues, single-encounter negotiations with an environment 
of limited resources (time among them). Section 2 gives details of the types of applications and scenarios in which 
we are interested. Sections 3-5 present the proposed model and in Section 6 the model is empirically evaluated. 
Finally, related work and some future avenues of research are outlined in Sections 7 and 8, respectively. 

2. Service-oriented negotiation 

This section characterises the context in which our service-oriented negotiations take place. The scenario is 
motivated by work in the ADEPT project [6] which developed generic negotiating agents for business process 
management applications. However, to provide a context for this work, one of the ADEPT applications, for managing 
a British Telecom (BT) process, is presented in detail (Section 2.1). This scenario is then analysed in terms of its 
key characteristics and assumptions as they relate to the process of negotiation (Section 2.2). 

2.1. BT's provide customer quote business process 

This scenario is based on BT's business process of providing a quotation for designing a network to provide 
particular services to a customer (Fig. 1). 4 The overall process receives a customer service request as its input and 
generates as its output a quote specifying how much it would cost to build a network to realise that service. It involves 
up to six agent types: the sales department agent, the customer service division agent, the legal department agent, the 
design division agent, the surveyor department agent, and the various agents who provide the out-sourced service of 

3 A service is a problem solving activity which has clearly defined start and end points. Examples include diagnosing a fault, buying a 
group of shares in the stock market, or allocating bandwidth to transmit a video-conference. 
4 The negotiations between the agents are denoted by arrows (arrow head toward client) and the service involved in the negotiation is 

juxtaposed to the respective arrow. 
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Fig. 1. Agent system for BT's provide customer quote business process. 

vetting customers. All negotiations are centred on a multi-attribute object, where attributes are, for instance, price, 
quality, duration etc. of a service (see [6]). 

The process is initiated by the sales agent which negotiates with the CSD agent (mainly over time, but also over 
the number of invocations and the form in which the final result should be delivered) for the service of providing 
a customer quote. The first stages of the Provide-Customer-Quote service involve the CSD agent capturing the 
customer's details and vetting the customer in terms of their credit worthiness. The latter sub-service is actually 
performed by one of tile VC agents. Negotiation is used to determine which VC agent should be selected - the main 
attributes negotiated over are the price of the service, the penalty for contract violation, the desired quality of the 
service and the time by which the service should be performed. If the customer fails the vetting procedure, then the 
quote process terminates. Assuming the customer is satisfactory, the CSD agent maps their requirements against a 
service portfolio. If the requirements can be met by a standard off-the-shelf portfolio item, then an immediate quote 
can be offered based on previous examples. In the case of bespoke services, however, the process is more complex. 
The CSD agent negotiates with the DD agent (over time and quality) for the service of designing and costing the 
desired network service. In order for the DD agent to provide this service, it must negotiate with the LD agent (over 
time) and perhaps with the SD agent. The LD agent checks the design to ensure the legality of the proposed service 
(e.g. it is illegal to send unauthorised encrypted messages across France). If the desired service is illegal, then the 
entire quote process terminates and the customer is informed. If the requested service is legal, then the design phase 
can start. To prepare a network design, it is usually necessary to have a detailed plan of the existing equipment at 
the customer's premises. Sometimes such plans might not exist and sometimes they may be out of date. In either 
case, the DD agent determines whether the customer site(s) should be surveyed. If such a survey is warranted, the 
DD agent negotiates with the SD agent (over price and time) for the Survey-Customer-Site service. On completion 
of the network design and costing, the DD agent informs the CSD agent, which informs the customer of the service 
quote. The business process then terminates. 
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2.2. Characteristics and assumptions 

The following negotiation characteristics can be observed in the aforementioned scenario. Moreover, it is be- 
lieved that these characteristics are likely to be common to a wide range of service-oriented negotiations between 
autonomous agents. 
- A given service can be provided by more than one agent (e.g. multiple agents can provide the vet customer service 

to the CSD agent). The available services may be identical in their characteristics or they may vary along several 
dimensions (e.g. quality, price, availability, etc.). 

- Individual agents can be both clients and servers for different services in different negotiation contexts. 
- Negotiations can range over a number of issues (e.g. price, duration, cost, etc.). Each successful negotiation 

requires a range of such issues to be resolved to the satisfaction of both parties. Agents may be required to make 
trade-offs between issues (e.g. faster completion time for lower quality) in order to come to an agreement. 

- The social context and inter-relationships of the participants influences the way agents negotiate. Some nego- 
tiations involve entities within the same organisation (e.g. between the CSD and DD agents) and hence are 
generally cooperative in nature. Other negotiations are inter-organisational and purely competitive - involving 
self-interested, utility maximising agents (e.g. between the VC agents and the CSD agent). Some groups of agents 
often negotiate with one another for the same service (e.g. the CSD and DD agents), whereas other negotiations 
are more open in nature (for example, the set of VC agents changes frequently and hence the CSD agent often 
negotiates with unknown agents). 

- As the agents are autonomous, the factors which influence their negotiation stance and behaviour are private 
and not available to their opponents (especially in inter-organisational settings). Thus agents do not know what 
utilities their opponents place on various outcomes, they do not know what reasoning models they employ, they 
do not know their opponent's constraints and they do not know whether an agreement is even possible at the 
outset (i.e. the participants may have non-intersecting ranges of acceptability). 

- Since negotiation takes place within a highly intertwined web of activity (the business process), time is a critical 
factor. Timings are important on two distinct levels: (i) the time it takes to reach an agreement must be reasonable; 
and (ii) the time by which the negotiated service must be executed is important in most cases and crucial in others. 
The former means that the agents should not become involved in unnecessarily complex and time consuming 
negotiations - the time spent negotiating should be reasonable with respect to the value of the service agreement. 
The latter means that the agents sometimes have hard deadlines by which agreements must be in place (this occurs 
mainly when multiple services need to be combined or closely coordinated). 

3 .  T h e  n e g o t i a t i o n  m o d e l  

The negotiation model in this section is based on a variation of the two parties, many issues value scoring system 
presented in [12]. That is, a model for bilateral negotiations about a set of quantitative variables. Our variation 
transforms that model into a many parties, many issues model (that is, multilateral negotiations about a set of 
variables). This is important since multilateral negotiations are common in the application domains in which we 
are interested. Our model of multilateral negotiations is based on a set of mutually influencing two parties, many 
issues negotiations. We call the sequence of offers and counter-offers in a two-party negotiation a negotiation 
thread. Offers and counter offers are generated by linear combinations of simple functions, called tactics. Tactics 
generate an offer, or counter offer, for a single component of the negotiation object (or issue) using a single criterion 
(time, resources, etc.). Different weights in the linear combination allow the varying importance of the criteria to 
be modelled. For example, when determining values of an issue, it may initially be more important to take into 
account the other agent's behaviour than the remaining time. In which case, the tactics that emphasize the behaviour 
of other agents will be given greater precedence than the tactics which base their value on the amount of time 
remaining. 
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However, to achiew~ flexibility in negotiation, the agents may wish to change their ratings of  the importance of  
the different criteria over time. For example, remaining time may become correspondingly more important than 
the imitation of  the other's behaviour as the time by which an agreement must be in place approaches. We use the 
term strategy to denote the way in which an agent changes the weights of  the different tactics over time. Thus, 
strategies combine tactics depending on the history of  negotiations and the internal reasoning model of  the agents, 
and negotiation threads influence one another by means of  strategies (see Section 5). 

Before presenting our model, we introduce a basic, multi-attribute model for bilateral negotiation [7]• 

3.1. A bilateral negotiation model 

Let i (i e {a, b}) represent the negotiating agents and j ( j  e {1 . . . . .  n}) the issues under negotiation. The set of  
issues in real world negotiations is always finite. Let xj e [min~., max,.] be a value for issue j acceptable by agent 
i. Here we limit ourselves to considering issues for which negotiation amounts to determining a value between an 
agent's defined delimited range. Each agent has a scoring function Vj : [minj, maxj] --~ [0, 1] that gives the score 
agent i assigns to a v.'due of  issue j in the range of  its acceptable values. For convenience, scores are kept in the 
interval [0, 1]. 

The next element of the model is the relative importance that an agent assigns to each issue under negotiation, wj is 

the importance of  issue, j for agent i. We assume that the weights of  both agents are normalised, i.e. ~ l  <~ j ~< n wj = 1, 

for all i in {a, b}. With these elements in place, it is now possible to define an agent's scoring function 5 for a contract 
- that is, for a value x = (Xl . . . . .  Xn) in the multi-dimensional space defined by the issues' value ranges: 

vi x)_- E wj i xj) 
l<~j<~n 

If  both negotiators use such an additive scoring function, Raiffa showed that it is possible to compute the optimum 
value of  x as an element on the efficient frontier of  negotiation 6 (see [12, p. 164]). 

For example, the selt of  negotiation issues for a server agent a may consist of  {price, volume} - the price required 
to provide the service and the number of  service instances attainable by a. In addition to this, let a have the following 

a • a a 
reservation values [minpric e, maXprice] = [10, 20] and [mlnvolume, maXvolume ] = [ 1, 5]. Also assume that a views the 

price as more importmat than the volume by assigning a higher weight to price, where [Wpric e, v3vaolume ] = [0.8, 0.2]. 

Finally, let the value of  an offer x, for an issue j ,  vja(xj), be modelled as a linear function: 

Xprice -- minpric e 
V;rice (XP rice) = a • a ' 

nlaXpric e -- mlnpric e 
• a 

Vaolume(Xvolume) = 1 - Xvolume -mlnvolume a • a " 
maXvolume - mlnvolume 

Now consider two contracts, [11, 5] and [15, 2], offered by a client b to the server a. Given the above parameters 
for a, the value for the first offered price by b is (11 - 10/20 - 10) = 0.1, while the value for the first requested 
volume is (1 - (5 - 1/5 - 1) = 0. The total value for the offered contract is the sum of the weighted values for 
each individual issue (namely, 0.8 • 0.1 + 0.2 • 0 = 0.08). By the same reasoning, the value of  the second contract 
from b, on the other hand, is 0.55. Since rational action is to maximise its utility, a therefore chooses the second 
contract offered by b and rejects the first. 

5 Nonlinear approaches to modelling utility could be used if necessary, without affecting the basic ideas of the model. 
6 Any contract not on this frontier is sub-optimal (i.e. not Pareto-optimal) in that possible mutual gains are missed. 
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3.2. Service-oriented negotiation requirements 

The above bilateral negotiation model may be valid for some service-oriented settings. However, the model 
contains several implicit assumptions that, although they permit good optimisation results, are inappropriate for our 
needs: 

(i) Privacy of  information. To find the optimum value, the scoring functions have to be disclosed. This is, in 
general, inappropriate for competitive negotiation. 

(ii) Privacy of  models. Both negotiators have to use the same additive scoring model. However, the models used to 
evaluate offers and generate counter offers are one of the things that negotiators try to hide from one another. 

(iii) Value restrictions. There are pre-defined value regions for discussion (they are necessary to define the limits of 
the scoring function). However, it is impossible to find these common regions and in many cases negotiation 
actually involves determining whether such regions even exist. 

(iv) Time restrictions. There is no notion of timing issues in the negotiation. However, time is a major constraint 
on agents' behaviour [8]. This is mainly true on the client side; agents often have strict deadlines by when the 
negotiation must be completed. For instance, a video link has to be provided at 16:00 because at that time a 
conference should start; negotiation about set up cannot continue after that time. 

(v) Resource restrictions. There is no notion of resource issues in the negotiation. However, the quantity of a 
particular resource has a strong and direct influence on the behaviour of agents, and, moreover, the correct 
appreciation of the remaining resources is an essential characteristic of good negotiators. Resources from the 
client's point of view relate directly to the number of servers engaged in the ongoing negotiation; likewise from 
the server's point of view. Thus, the quantity of resource has a similar effect on the agents' behaviour as time. 

Even just taking the first consideration alone, it is clear that optimal solutions cannot be found in our domains: it 
is not possible to optimize an unknown function. Hence, we shall propose a model for individual agent negotiation 
that seeks to find deals acceptable to its acquaintances but which, nevertheless, maximises the agent's own scoring 
function. 

3.3. A service-oriented negotiation model 

In service-oriented negotiations, agents can undertake two possible roles that are, in principle, in conflict. Hence 
we shall distinguish (for notational convenience) two subsets of agents, 7 Agents = Clients tO Servers. We use 
roman letters to represent agents; c, cl, c2, • • • will stand for clients, s, Sl, s2 . . . .  for servers and a, al ,  b, d, e . . . .  
for non-specific agents. 

We adhere to an additive scoring system (Section 3.1) in which, for simplicity, the function ~a is either mono- 
tonically increasing or monotonically decreasing. 

In general, clients and servers have opposing interests, e.g. a client wants a low price for a service, whereas the 
potential servers attempt to obtain the highest price. High quality is desired by clients, but not by servers, and so on. 
Therefore, in the space of negotiation values, negotiators represent opposing forces in each one of the dimensions. 
In consequence, the scoring functions verify that given a client c and a server s negotiating values for issue j ,  then if 
X j ,  yj E [mini, maxj ] and xj >1 yj then (Vj c (xj) >/Vj c (39) iff 1~ s (xj) <~ Vj s (yj)). However, in a small number of cases 
the clients and service providers may have a mutual interest for a negotiation issue. For example, Raiffa cites a case 
[12, pp. 133-147] in which the Police Officers Union and the City Hall realise, in the course of their negotiations, 
that they both want the police commissioner fired. Having recognised this mutual interest, they quickly agree that 
this course of action should be selected. Thus, in general, where there is a mutual interest, the variable will be 
assigned one of its extreme values. Hence these variables can be removed from the negotiation set. For instance, 
the act of firing the police commissioner can be removed from the set of issues under negotiation and assigned the 
extreme value "done". 

7 The subsets are not disjoint; an agent can participate as a client in one negotiation and as a service provider in another. 
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Once the agents have determined the set of  variables over which they will negotiate, the negotiation process 
between two agents (a, b e Agents) consists of  an alternate succession of  offers and counter offers of  values for 
these variables. This continues until an offer or counter offer is accepted by the other side or one of  the partners 
terminates negotiation (e.g. because the time deadline is reached without an agreement being in place)• Negotiation 
can be initiated by clients or servers. 

We represent by x l ~  b the  vector of  values proposed by agent a to agent b at time t, and by Xta~b[j]  the value 
for issue j proposed from a to b at time t. The range of  values acceptable to agent a for issue j will be represented 
as the interval [min~, max,].  For convenience, we assume a common global time (the calendar time) represented 
by a linearly ordered set of  instants, namely Time, and a reliable communication medium introducing no delays in 
message transmission (so we can assume that transmission and reception times are identical). The common time 
assumption is not too strong for our application domains, because time granularity and offer and counter offers 
frequencies are not high. Then we have the following definition. 

t n  Definition 1. A N e g o t i a t i o n  T h r e a d  between agents a, b ~ Agents, at time tn ~ Time, noted Xa~__~b , is any finite 
t l  t 2  t 3  sequence of  length n of  the form (X a ~  b, X b ~  a, X a ~  b, . .  .) with tl  , t2 <<, "'" <<, tn, where: 

(i) t i+l > ti,  the sequence is ordered over time, 
• • i • • a a i + 1  • • b b (ii) For each issue j ,  Xa~b [J] e [mln., max~ ], x j  b---~a [J] ~ [mm.,  max.]  with i j  j = 1 ,3 ,5 ,  . . . ,  and optionally the 

last element of  the sequence is one of  the particles {accept, reject}. 
tn We say a negotiation thread is ac t i ve  8 if last ( X a ~ b )  ~ {accept, reject}, where last is a function returning the last 

element in a sequence. 

For notational simplicity, we assume that tl corresponds to the initial time value, that is tl = 0. In other words, 
there is a local time for each negotiation thread, that starts with the utterance of  the first offer• When agent a receives 
an offer from agent b at time t ,  x tb~a , it has to rate the offer using its scoring function. If  the value of V a (xtb__,a) is 
greater than the value' of  the counter offer agent a is ready to send at the time t '  when the evaluation is performed, 

• t ~ t r that is X a ~  b with > t, then agent a accepts• Otherwise, the counter offer is submitted. Expressing this concept 
more formally: 

Definition 2. Given an agent a and its associated scoring function V a , a ' s  in terpre ta t ion  at time t '  of  an offer Xtb_.+a 

sent at time t < t', is defined as 

reject 

Ia  (t  t, xtb._.~a ) = accept 
t t 

Xa--+ b 

a 
i f t  r > tma x, 

a t t 
i f  va(xtb...~a ) > V (Xa..+b), 

otherwise. 

I t 
where Xa___~ b is the contract that agent a would offer to b at the time of  the interpretation, and taax is a constant that 
represents the time b,.¢ which a must have completed the negotiation• 

The result of  I a (t', Xtb.._~a ) is used to extend the current negotiation thread between the agents• This interpretation 
formulation also allows us to model the fact that a contract unacceptable today can be accepted tomorrow merely 
by the fact that time has passed• 

In order to prepare a counter offer, x t ' ~ b  , agent a uses a set of  tactics that generate new values for each variable in 
the negotiation set. Based on the needs of  our business process applications (Section 2), we developed the following 
families of  tactics: 

8 We assume that any offer is valid (that is, the agent that uttered it is commited) until a counter offer is received. If the response time is 
relevant, it can be included in the set of issues under negotiation. 
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(i) Time dependent. I f  an agent has a time deadline by which an agreement must be in place, these tactics model 
the fact that the agent is likely to concede more rapidly as the deadline approaches. The shape of the curve of 
concession, a function depending on time, is what differentiates tactics in this set. 

(ii) Resource dependent. These tactics model the pressure in reaching an agreement that the limited resources - 
e.g. remaining bandwidth to be allocated, money, or any other - and the environment - e.g. number of clients, 
number of servers or economic parameters - impose upon the agent's behaviour. The functions in this set are 
similar to the time dependent functions except that the domain of the function is the quantity of resources 
available instead of the remaining time. 

(iii) Behaviour dependent or Imitative. In situations in which the agent is not under a great deal of pressure to reach 
an agreement, it may choose to use imitative tactics to protect itself from being exploited by other agents. In 
this case, the counter offer depends on the behaviour of the negotiation opponent. The tactics in this family 
differ in which aspect of their opponent's behaviour they imitate, and to what degree the opponent's behaviour 
is imitated. 

We do not claim that these family types are complete, nor that we have enumerated all possible instances of 
tactics within a given family. Rather these are merely the types of tactics we found useful in our applications. 

4. Negotiation tactics 

Tactics are the set of functions that determine how to compute the value of an issue (price, volume, duration, 
quality, etc.), by considering a single criterion (time, resources, etc.). The set of values for the negotiation issue are 
then the range of the function, and the single criterion is its domain. The criteria we have chosen, as explained in 
the previous section, are time, resources and previous offers and counter offers. 

Given that agents may want to consider more than one criterion to compute the value for a single issue, we model 
the generation of counter proposals as a weighted combination of different tactics covering the set of criteria. The 
values so computed for the different issues will be the elements of the counter proposal. 9 For instance, if an agent 
wants to counter propose taking into account two criteria: the remaining time and the previous behaviour of the 
opponent, it can select two tactics: one from the time dependent family and one from the imitative family. Both 
of these tactics will suggest a value to counter propose for the issue under negotiation. The actual value which is 
counter proposed will be the weighted combination of the two independently generated values. 

To illustrate these points consider the following example. Given an issue j ,  for which a value is under negotiation, 
an agent a ' s  initial offer corresponds to a value in the issue's acceptable region (i.e. in [min i ,  max,]). For instance, if 
a ' s  range is [£0, £20] for the price p to pay for a good, then it may start the negotiation process by offering the server 
£10 - what initial offer should be chosen is something the agent can learn by experience. The server, agent b, with 
range [£17, £35] may then make an initial counter-offer of £25. With these two initial values, the strategy of agent 
a may consist of using a (single criterion) time dependent tactic which might make a reasonably large concession 
and suggest £15 since it does not have much time in which to reach an agreement. Agent b, on the other hand, may 
choose to use two criteria to compute its counterproposal - e.g. a time dependent tactic (which might suggest a 
small concession to £24 since it has a long time until the deadline) and an imitative tactic (which might suggest a 
value of £20 to mirror the £5 shift of the opponent). If  agent b rates the time dependent behaviour three times as 
important as the imitative behaviour, then the value of the counter-offer will be (0.75 • 24) + (0.25 • 20) = £23. 
This process continues until the agents converge on a mutually acceptable solution. The origin, and subsequent 
evolution of, these relative weightings may be the result of expert domain knowledge, experience derived from 
previous negotiation cases or conditional on other factors. This is an issue which is the subject of future research. 

9 Values for different issues may be computed by different weighted combinations of tactics. 
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Fig. 2. Polynomial (left) and exponential (right) functions for the computation of or(t). Time is presented as relative to taax . 

It should be noted that not all tactics can be applied at all instants. For instance, a tactic that imitates the behaviour 
of an opponent is only applicable when the opponent has shown its behaviour sufficiently. For this reason, the 
following description of the tactics pays particular attention to their applicability conditions. 

4.1. Time dependent tactics 

In these tactics, the predominant factor used to decide which value to offer next is time, t. Thus these tactics 
consist of varying the acceptance value for the issue depending on the remaining negotiation time (an important 
requirement in our domain - Section 2.2), modelled as the above defined constant taax . We model the initial offer 
as being a point in the interval of values of the issue under negotiation• Hence, agents define a constant xj  that 
when multiplied by the size of the interval, determines the value of issue j to be offered in the first proposal by 
agent a. 

We model the value to be uttered by agent a to agent b for issue j as the offer at time t, with 0 ~< t <~ taax, by a 
function ot~ depending on time as the following expression shows: 

{ minj +~]( t ) (maxj  - minj) i f ~  a is decreasing, 
Xta~b[J] = minj +(1 -- ot](t))(maxj --mini)  if ~a is increasing. 

A wide range of time dependent functions can be defined simply by varying the way in which % (t) is com- 
puted However, functions must ensure that O<~a~(t)<<. 1, %(0)  = x a and a~(taax) = 1 That is, the offer will • j • 

always be between the value range, at the beginning it will give the initial constant and when the time dead- 
line is reached the tactic will suggest to offer the reservation value. 10 We distinguish two families of functions 
with this intended behaviour: polynomial and exponential (naturally, others could also be defined). Both families 
are parametrised by ~L value/~ E E+ that determines the convexity degree (see Fig. 2) of the curve. We chose 
these two families of functions because of the very different way they model concession. For the same large 
value of t ,  the polynomial function concedes faster at the beginning than the exponential one, then they behave 

10 The reservation value for issue j of agent a represents the value that gives the smallest score for function Vja. The reservation value for 

agent a and issue j depends on the function Vj a and the range [minj, max~ ]. If  Vj a is monotonically increasing, then the value is min~; 

if it is decreasing, the reservation value is max a. 
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similarly. For a small value of/3, the exponential function waits longer than the polynomial one before it starts 
conceding: 

- Polynomial. a] ( t )  = K] + (1 - Kj)(min(t, taax)/t~ax) 1/~, 

- Exponential. or] (t) = exp (1 -min(t,taax)/taax)~ In %a. 

These families of functions represent an infinite number of possible tactics, one for each value of/3. However, 
to better understand their behaviour we have classified them, depending on the value of/3, into two extreme sets 
showing clearly different patterns of behaviour. Other sets in between these two could also be defined: 
(i) Boulware tactics [12, p. 48]. Either exponential or polynomial functions with/3 < 1. This tactic maintains the 

offered value until the time is almost exhausted, whereupon it concedes up to the reservation value. 11 The 
behaviour of this family of tactics with respect to/3 is easily understood taking into account that 

lim exp (1  min(t '  taax))  ~ I( a ) 
1//~ 

___  lnKj.a =%.a or lim K a + ( l - j ) ( m i n ( t ' t a a x )  
/3~0 + taax / ~ 0  + J \ tm--~a x = / ¢ ; .  

(ii) Conceder [11, p. 20]. Either exponential or polynomial functions with/3 > 1. The agent quickly goes to its 
reservation value. For similar reasons as before, we have 

lim exp (1  min( t ' tmax)~ lnx j  1 or lim x a + ( 1 - K j ) ( m i n ( t ' t a a x ) )  1/~ 
# ~ + ~  taax ] ~ + ~  J \ taax 

4.2. Resource dependent tactics 

These tactics are similar to the time dependent ones. Indeed, time dependent tactics can be seen as a type of 
resource dependent tactic in which the sole resource considered is time. Whereas time vanishes constantly up to its 
end, other resources may have different patterns of usage. We model resource dependent tactics in the same way 
as time dependent ones, that is, by using the same functions, but by either: (i) making the value of taax dynamic 
(Section 4.2.1), or (ii) making the function ot depend on an estimation of the amount of a particular resource 
(Section 4.2.2). 

4.2.1. Dynamic deadline tactics 
The dynamic value of taax represents a heuristic about how many resources are in the environment. The scarcer 

the resource, the more urgent the need for an agreement. In our application domains, the most important resource 
to model is the number of agents negotiating with a given agent and how keen they are to reach agreements. On 
one hand, the greater the number of agents who are negotiating with agent a for a particular service s, the lower the 
pressure on a to reach an agreement with any specific individual. While on the other hand, the longer the negotiation 
thread, the greater the pressure on a to come to an agreement. Hence, representing the set of agents negotiating with 
agent a at time t as: N a (t) = {i ] X ~  a is active], we define the dynamic time deadline for agent a as 

taax = Iz a [ N a ( t ) l  2 

E /  t ' [Xi,~,a[ 

where #a represents the time agent a considers reasonable to negotiate with a single agent and [ X ~  a [ represents 
the length of the current thread between i and a. Notice that the number of agents is in the numerator, so quantity 
of time is directly proportional to it, and averaged length of negotiation thread is in the denominator, so quantity of 
time is inversely proportional to it. 

11 Besides the pattern of concession that these functions model, Boulware negotiation tactics presume that the interval of values for 
negotiation is narrow. Hence, when the deadline is reached and ¢(taax)  = 1, the offer generated is not substantially different from the 
initial one. 
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4.2.2. Resource estimation tactics 
These tactics generate counter-offers depending on how a particular resource is being consumed. Resources could 

be money being transferred among agents, the number of  agents interested in a particular negotiation, and also, 
in a similar way as before, time. We want the agent to become progressively more conciliatory as the quantity of  
resource diminishes, q~e limit when the quantity of  the resource approaches nil is to concede up to the reservation 
value for the issue(s) under negotiation. When there is plenty of  resource, a more Boulware behaviour is to be 
expected. Formally, this can be modelled by having a different computation for the function or: 

ot~(t) = i¢~ + (1 - t ¢ ] )  e -res°urcea(t) 

where the function resource a (t) measures the quantity of  the resource at time t for agent a. Examples of  functions are: 
(i) resourcea (t) [Na(t)], (ii) resourcea (t) lzalNa(t)[2/~_,i t a = = [ X i , _ ~ a  [ and (iii) resource a (t) = min(0, tma x - t). 
In the first example, the number of  negotiating agents is the resource. That is, the more agents negotiating the less 
pressure to make concessions. The second example models time as a resource in a similar way as in the previous 
section. The more agents, the less pressure, and the longer the negotiations the more pressure. Finally, the last case 
also models time as a :resource, but in this case the quantity of  resource decreases in a linear fashion with respect to 
time. 

4.3. Behaviour dependent tactics 

This family of  tactics compute the next offer based on the previous attitude of the negotiation opponent. 
These tactics have proved important in co-operative problem-solving negotiation settings [1], and so are use- 
ful in a subset of  ot~r contexts (see Section 2.2). The main difference between the tactics in this family is in 
the type of  imitation they perform. One family imitates proportionally, another in absolute terms, and the last 
one computes the average of  the proportions in a number of  previous offers. Hence, given a negotiation thread 
i ..tn-28 .tn-2~+l .tn-2S+2 .tn-2 .tn-I ..tn ~ _.',t. ~ > , ..._ .~:~,:___.:^L the following families of  t ' ' ' ' Z b - + a ' ' ~ a - - + b  "~'b---~a , . . . ,Zb__~a,.%__~b,.~b. ._~al,  VCl t l l  o _ 1 ,  ~ ' ~ ;  U l ~ i H l l ~ U l ~ i l l  

tactics: 
(i) Relative Tit-For-Tat. The agent reproduces, in percentage terms, the behaviour that its opponent performed 

8 _> 1 steps ago. The condition of applicability of  this tactic is n > 28. 

( ..tn+l r : ,  / Xb---~a[J] tn-I r . ,  
Xa~b t j i  = min max | t~-28+2r . lXa~b IJj' mi , m . 

\ X b ~ a  t J l  

(ii) Random Absolute Tit-For-Tat. The same as before but in absolute terms. This means that if the other agent 
decreases its offer by £2, then the next response should be increased by the same £2. Moreover, we add a 
component that modifies that behaviour by increasing or decreasing (depending on the value of parameter s) 
the value of the ~mswer by a random amount. (This is introduced as it can enable the agents to escape from 
local minima.) M is the maximum amount by which an agent can change its imitative behaviour. The condition 
of applicability is again n > 28. 

' . + ,  ~ ; ~  (maX(xa~b[ j ] -q - (Xb~a[ j ] - -  % ~  a t j j )  W ( - 1 ) S R ( M ) , m i n ~ ) , m a x ~ )  Xa. .~b[ j]  = I n l n  tn-1 • tn-2,$ • ~ t n - 2 8 + 2 r  : i x  

where 

[ ~  if Vj a is decreasing 
s = if Vj a is increasing. 

and R ( M )  is a function that generates a random integer in the interval [0, M]. 
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(iii) Averaged Tit-For-Tat. The agent computes the average of  percentages of changes in a window of size y > 1 
of  its opponents history when determining its new offer. When y = 1 we have the relative Tit-For-Tat tactic 
with 8 = 1. The condition of  applicability for this tactic is n > 2y.  

/ tn+l r .'1 IXb--+a [J] tn-I r .1 
Xa__~btJl = min max  I xt-7,-,-~7-,-,7.~Xa~btJ 1, mi  , ma . 

\ b-+a t J] 

5. Negotiation strategies 

The aim of  agent a ' s  negotiation strategy is to determine the best course of  action which will result in an agreement 
on a contract x that maximises its scoring function V a. In practical terms, this equates to how to prepare a new 
counter offer. 

In our model, we consider that the agent has a representation of  its mental state containing information about its 
beliefs, its knowledge of  the environment (time, resources, etc.), and any other attitudes (desires, goals, obligations, 
intentions, etc.) the agent designer considers appropriate. 12 The mental state of  agent a at time t is noted as MS t.  
We denote the set of  all possible mental states for agent a as MSa. 

When agent a receives an offer from agent b, it becomes the last element in the current negotiation thread 
between both agents. If  the offer is unsatisfactory, agent a generates a counter offer. As discussed earlier, different 
combinations of  tactics can be used to generate counter offers for particular issues. An agent's strategy determines 
which combination of  tactics should be used at any one instant. 

t n Definition 3. Given a negotiation thread between agents a and b at time tn, Xa~.>b, over domain D = D1 x . - .  × Dp, 

with last(X~ob) = Xb~a't" and a finite set of  m tactics. 13 T a = {ri l zi : MSa  --> D}i~[1,m], a weighted counter 

proposal,  x t"+l is a linear combination of  the tactics given by a matrix of  weights F tn+~ a---~b' a----~b 

Y l l  Y 1 2  • • • Y l m  

F, tn+ l ~t21 Y22 • • • ~2m 

a ~ b  = • . 

Ypl Yp2 ' ' '  ~/pm 

defined in the following way: 

tn+l r ., trtn+l Ta (MS~+I ) ) [ j ,  j ] ,  
Xa---~blJ]  = ~," a---~b * 

where (Ta(MS~+I))[i, j] = (r/(MS~+I))[j] ,  Vii ~ [0, 1] and for all issues j ,  E i m = l  ~/ji = 1. 
The weighted counter proposal extends the current negotiation thread as follows (• is the sequence concatenation 

operation): 

xtn+l tn tn+l 
a~-~b = X a + ~ b  • Xa--~b" 

An example of  when this weighted combination is useful is when modelling a smooth transition from a behaviour 
based on a single tactic (e.g. Boulware, because the agent has plenty of  time to reach an agreement) to another one 
(e.g. Conceder, because time is running out). Smoothness is obtained by changing the weight affecting the tactics 
progressively (e.g. from 1 to 0 and from 0 to 1 in the example). 

12 We do not prescribe a particular mental state, but rather aim towards an architecturally neutral description to ensure maximum generality 
for our model. 
13 This definition uses the natural extension of tactics to the multi-dimensional space of issues' values. 
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We model many-parties negotiations by means of a set of  interacting negotiation threads. The way this is done is 
by making a negotiation thread influence the selection of  which matrix F is to be used in other negotiation threads. 
Thus, we have: 

Definition 4. Given a, b E Agents, a negotiation strategy for agent a is any function f such that, given a ' s  mental 
state at time tn, MSta n , and a matrix of  weights at time tn, Fta~b , generates a new matrix of  weights for time tn+l, i.e. 

tn r'tn+] = f(Fa_~, b, MS~).  
* a---~ b 

A simplistic example of  the application of our model would be to have a matrix F built up of  O's and l ' s  and 
having p t + l  t " a - * b  ~ 1 - ' a ~ . b  for all t. This would correspond to using a fixed single tactic for each issue at every instant 
in the negotiation (see [9] for more details of  the evolution of strategies). 

6. Experimental evaluation of the negotiation model 

The model we have presented defines and formalises a range of negotiation behaviours. However, we cannot 
predict f rom the theoretical model alone which of these behaviours will be successful in which negotiation contexts 
(there are too many interrelated variables and too wide a range of  situations to consider). Therefore our approach 
is to empirically evaJtuate the main parameters of  the model with the final aim of determining the most successful 
behaviours in various types of  situations. At this stage, however, our investigation is focused on determining 
the behaviour and inter-dependencies of  the model 's  basic constituent elements. This analysis will then lay the 
foundation for subsequent experimental work. To this end, we concentrate solely on the behaviour of  pure tactics 
(i.e. we exclude strategies that combine several tactics). 

The experiments involve selecting a particular tactic, generating a range of random environments, then allowing 
the agent to negotiate using the chosen tactic against an opponent who employs a range of other tactics. Various 
experimental measures related to the negotiations are then recorded. In particular, Section 6.1 defines the experi- 
mental environments and the tactics, Section 6.2 describes the experimental measures, and Section 6.3 describes 
the experimental hypotheses, the procedures and discusses of  the results. 

6.1. Environments and tactics 

Environments are characterised by the number of  agents they contain, the issues which are being discussed, the 
deadlines by when alveements must be reached, and the expectations of  the agents. Since there are infinitely many 
potential environments, we need to find a means of selecting a representative and finite subset in which we can 
assess an agent 's negotiation performance. 

To this end, the first simplification involves limiting ourselves to bilateral negotiation between a single client and 
server over the single issue of  price. Given this situation, the experimental environment is uniquely defined by the 

c s - c __  c m i n  s maXprice]. We compute the negotiation interval following variables: [tmax, tmax, K c , K s , mlnpric e, lniiXprice, price '  s 

(the difference between the agent 's minimum and maximum values) for price using two variables: 0 a (the length 
of the reservation interval for an agent a)  and • (the degree of intersection between the reservation intervals of  the 
two agents; ranging between 0 for full overlap and 0.99 for virtually no overlap). In this case, for each environment, 
we assigned rmnpric e '  c = 10, set • = 0, randomly selected 0 a between the ranges of  { 10, 30} for both agents and 

computed the negotiation intervals as max c = rain c +OC; rain s = Oc~ + minC; max s = min s +0 s. 14 

14 Note that the server's minimum reservation value is never lower than the client's minimum. This is because we are not interested in 
degenerate negotiations m which offers are immediately accepted. This method of generating reservation values also means that a deal is 
always possible since there is always some degree of overlap. 
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Tactic Family +oc,,+ T +,,,+.,+,,,o,+o,, T Toc,,c "o,,,,- -I 
T i m e - d e p e n d e n t  Boulware  

T i m e - d e p e n d e n t  L inea r  

T i m e - d e p e n d e n t  C o n c e d e r  

R e s o u r c e - d e p e n d e n t  h n p a t i e n t  

R e s o u r c e - d e p e n d e n t  .Steady 

R e s o u r c e - d e p e n d e n t  Pa t  lent  

B e h a v i o u r - d e p e n d e n t  R e l a t i v e  t i t  for t a t  

B e h a v i o u r - d e p e n d e n t  R a n d o m  t i t  for t a t  

B e h a v i o u r - d e p e n d e n t  Ave rage  t i t  for t a t  

B 

L 

C 

IM 

S T  

PA 

RE 

RA 

AV 

Description 

ae {o.oi, o.2} 
3 = 1 . 0  

E {2o.o, 4o.o} 

~ - - - - - l , n = l  

.u E , [ 1 ,  B } . n =  1 

,u E {5, I 0 } ,  n = I 

Inc reased  r a t e  of  a p p r o a c h  to  

reservat ion as D inc reases  

Decrea.s lng r a t e  of a p p r o a c h  to 

r e s e r v a t i o n  as ~ inc reases  

6 = 1 P e r c e n t a g e  i m i t a t i o n  of las t  two offers 

6 ----- I m (~ { 1, 3} F l u c t u a t i n g  a b s o l u t e  i m i t a t i o n  of last  two offers 

3" ----- 2 A v e r a g e  i m i t a t i o n  of l a s t  four  offers 

Fig. 3. Experimental tactic key. 

The second simplification involves selecting a finite range of  tactics since the model allows for an infinite set (e.g. 
the range of  fl is infinite which means there are infinitely many time dependent tactics). For analytical tractability, 
we divided the tactics into nine groups (see Fig. 3); three each from the time, resource and behaviour dependent 
families. We chose an equal number for each family to ensure that the results are not skewed by having more 
encounters with a particular type of  tactic. 

Each tactic group is then sampled for e v e r y  environment since we are interested in the behaviour of  tactic families 
rather than single, concrete tactics. For each environment ek, k indexes the environments, we define two matrices 
representing the outcomes of  the client, game ek , and the server, games ek , when playing particular tactics. We index 
the client's tactics by the rows i and the server's by the columns j ,  so gamec ek [i, j ]  is the outcome of  the client when 
playing tactic i against a server playing tactic j .  Each tactic plays against all other tactics in each environment, 
hence 1 ~< i, j ~< 9. 

6.2. E x p e r i m e n t a l  m e a s u r e s  

To evaluate the effectiveness of  the tactics, we consider the following measures which calibrate: (i) the intrinsic 
benefit of  the tactic family to an agent (Section 6.2.1); (ii) the cost adjusted benefit which moderates the intrinsic 
benefit with some measure of  the cost involved in achieving that benefit (Section 6.2.2) and (iii) the performance 
of  the intrinsic utility relative to a game of  perfect information (Section 6.2.3). 

6.2.1.  I n t r i n s i c  a g e n t  u t i l i t y  

The intrinsic benefit is modelled as the agent's utility for the negotiation's final outcome, in a given environment, 
independently of  the time taken and the resources consumed [14]. This utility, U ek, is calculated for each agent for 
a price x using a linear scoring function: 15 

¢ ' S 
U ek (x) = maXpric e - x  U ek ( x )  = x - mlnpric e 

c • c , m s • s • 
maXpric e -- mlnprice aXprice -- mlnpric e 

If  no deal is made in a particular negotiation, then we assign zero to both U ek and U ek. However, by defining the 
utilities in this manner we cannot distinguish between deals made at reservations and no deals. Therefore in certain 
experiments we compute the intrinsic utility only for cases in which deals are made. 

The outcome of  the negotiations, as presented in Section 6.1, is represented in the matrix game ek . Hence the utility 
for a client c when negotiating using a tactic i against a server s using tactic j in environment ek is" U cek (gamecek If," j ] ) .  

I5 We acknowledge that this is a simple utility function, but our intention here is to investigate the properites of the model and not the 
utility functions per se. 
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6.2.2. Cost adjusted benefit 
In addition to knowing the intrinsic utility to an agent, we are also interested in knowing the relationship between 

an outcome's utility and the costs involved in achieving it. Therefore the cost adjusted benefit (B) of tactic pairs i 
and j in environment ,.°k is defined as follows: 

Bek[i, j ]  = vek[f,  j]  -- cek[i, j] .  

To define the cost function, C, we introduce the notion of a system. A system in these experiments is a set of 
resources that can be used by the agents during their negotiations. The usage of these resources is subject to a tax 
7" which is levied on each message communicated between the agents. Therefore, the greater the communication 
between the agents, the greater the cost to the agents. So 

Cc e* [i, j ]  = C ek [i, j ]  = tanh(IXci~sj I * 7"). 

where IXci~sj I is the length of the thread at the end of negotiation between a client using tactic i and and a server 
using tactic j ,  tanh is an increasing function that maps the real numbers into [0, 1] and 7" determines the rate of 
change of tanh0. We sampled 7" between the ranges of [0.001, 0.1]. In short, the greater the taxation system, the 
more costly the communication, and the quicker the rate at which the cost rises to an agent for each message. 

The system utility, on the other hand, is coarsely defined as the total number of messages in negotiation which 
indirectly measures the communication load the tactics incur at the agent level. 

6.2.3. Experimental controls: the perfect information game 
The aforementioned measures calibrate the relative performance of the tactics within our model. However, we also 

need to calibrate the tactic's performance with respect to some control conditions. Game Theory, Economics, Social 
Choice and Voting Theory have all proposed desirable properties and solution criteria that can be used to characterise 
an agent's negotiation. Typically, these properties and criteria are concerned with the influence of the individual 
agent on the outcome or, conversely, the influence of the outcome on the individual. Specific measures include: 
Pareto optimality, syrlmaetry, fairness and individual rationality [4]. We chose to compare the outcome attained by 
a pair of our tactic families with that suggested by a protocol in which agents declare their true reservation prices 
at the first step of negotiation and then share the overlap in the declared reservation values. This choice is both fair 
and Pareto optimal (in that the outcome is beneficial to both agents and any deviation results in an increase in utility 
for one at the cost of a decrease in utility to the other [3]). For example, consider a client agent c and a server agent 
s having price reservation values [minprice, maXprice] and [minprice, maxSrice ] respectively and maXpric e/> minpric e. 
We then define the control outcome O for a given environment ek as e 

C " $ 

Oek _____ maXp rice + mln~ric e 

2 

Applying the definitions of utility presented earlier, we can compute the utility of the control game, U e~ ( 0  ek), for 
agent a. Given this, we define the comparative performance of agents using our model with respect to the one shot 
protocol, as the difference between the intrinsic agent utility and the utility the agent would have received in the 
control protocol: 

Gain e~ [i, j ]  = ek ek • U a (game a [t, j ] )  - -  Uek(oek). 

6.2.4. Average utilities 
To produce statistically meaningful results, we average the utilities over a number of environments and sum them 

against all other tactics for each agent. Therefore our analysis is based on the performance of a tactic family across 
all other tactic families. The precise set of environments is sampled from the parameters specified in Section 6.1 
and the number of environments used is 200. This ensures that the probability of the sampled mean deviating by 
more than 0.01 from the true mean is less than 0.05. 
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6.3. H y p o t h e s e s  a n d  resul ts  

The experiments considered here relate to two main components of the negotiation model: (i) the amount of time 
available to make an agreement, taax and (ii) the relative value of the initial offer, K a. To test the effects of varying 
deadlines on agreements, we classify the experiments into environments where the time to reach an agreement is 
large (Section 6.3.1) and those where it is small (Section 6.3.2). Likewise for initial offers; there are environments in 
which the initial offer is near the minimum of the agent's reservation values and those where it is near the maximum 
(Section 6.3.3). The reservation values were computed as described in Section 6.1 with O c = 0 s = 30 and • = 0. 
The reader is referred to Fig. 3 for the key to the experimental tactics. Each abbreviation is further postfixed by the 
agent's role (e.g. BC and BS denote a client and a server playing tactic B, respectively). 

6.3.1. Long  t e rm dead l ines  

Our hypotheses about the effect of long term deadlines can be stated as follows: 

Hypothesis 5. In environments where there is plenty of time for negotiation, tactics which slowly approach their 
reservation values will gain higher intrinsic utilities than those which have a quicker rate of approach. However, 
they will make fewer deals. 

Hypothesis 6. The utility to the system will be high when tactics have long deadlines since large numbers of offers 
will be exchanged. Consequently, there will be a large difference between a deal's intrinsic and cost adjusted utilities. 

To evaluate these hypotheses we need to provide concrete values for the experimental variables. In this case, we 
define an environment with long term deadlines as one in which the values of tCax and tSax are sampled within 
thirty and sixty ticks of a discrete clock. Note that we allow tCax >/tSax and tCax < tSax . Since high values of K a 
overconstrain the true behaviour of tactics, we set K = 0.1 for both agents. In each environment, the order of who 
begins the negotiation process is randomly selected. 16 

Consider Hypothesis 5 first. We predicted that a tactic which approaches reservations at the slowest rate (i.e., a 
Boulware) should attain the best deals. However, from Fig. 4(A) we observe that the most successful tactics are 
Linear, Patient and Steady. These tactics are characterised by the fact that they concede at a steady rate throughout 
the negotiation process. The next most successful group are the behaviour dependent tactics. Note, these imitative 
tactics never do better than other tactics; the best they do is gain equal utility to the best tactic [1]. The worst 
performing tactics are Conceder and Impatient, both of which rapidly approach their reservation values. 

To help explain Boulware's unexpectedly poor performance, we note that these tactics make significantly fewer 
deals than all the other tactic families (Fig. 4(C)). Taking this into account, we examined the average intrinsic utility 
for only those cases in which deals are made (Fig. 4(B)). This shows that when Boulwares do make deals, they do 
indeed receive a high individual utility (as predicted). 

We hypothesised that the reason why Boulware tactics perform poorly may be caused by the imitating responses 
of the behaviour dependent tactics, thereby effectively increasing the numbers of Boulwares in the population. To 
test this, we compared final average intrinsic utility for deals only of Boulware tactics across: (i) al l  other tactics and 
(ii) all other tactics a p a r t  from behaviour dependent tactics. We found that the success of Boulware tactics increased 
by 10% in the latter case. 

From these observations, we conclude that our initial hypothesis does not hold because of the composition of the 
tactic population. We predicted that in an environment in which there is plenty of time to reach a deal, Boulware 

16 The initiator of a bid is randomly chosen because in our earlier experiments we found that the agent which opens the negotiation 
fairs better, irrespective of whether the agent is a client or a server. This is because the agent who begins the negotiation round reaches 
ot a , = 1 before the other agent, hence deriving more intrinsic utility. 

price 
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Fig. 4. (A) Average intrinsic utility for both deals and no deals. (B) Average intrinsic utility for deals only. (C) Percentage of deals made. 
(D) Average intrinsic utility for both deals and no deals for increasing values of/L 

should rank higher than tactics that approached reservation values quickly. However, for Boulwares to prosper in 
our experimental environment, they should adopt a value for/~ which is between 0.7 and 1.0 (Fig. 4(D)). 

Moving onto Hypothesis 6. Fig. 5(A) confirms the results for the first part of this hypothesis; the tactic that uses 
the most system resource is Boulware, and the least is Conceder. In addition, although Boulware tactics have higher 
intrinsic agent utilities than concilatory tactics (Conceder and Impatient), when the the cost of communication 
is taken into consideration the converse is true (Fig. 5(B)). This accords with our intuitions in the second part 
of Hypothesis 6. The cost adjusted utilities of the remaining tactics are approximately similar. The reason for 
this is that cost adjusted benefit, which is the product of the intrinsic utility and a function of the number of 
exchanged messages, is sensitive to large fluctuations in the product and assigns similar utilities to non-extreme 
values. 

Finally, we observe that the comparison of our tactics with respect to the controls follows the same broad pattern 
as the intrinsic agent utility (Fig. 5(C)). Steadily conceding type tactics (Linear, Steady and Patient) perform better 
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than the controls, the concilatory types (Conceder and Impatient) perform worse. This is to be expected, since the 
closer the tactic's selected deal to the deal which is the mid-point of the reservation intersection (intrinsic utility 
of 0.5 - because of the complete overlap of the reservation values), the closer to zero the differential between the 
intrinsic utility and the control utility becomes. As we see from Fig. 4(A), the only tactics which approach or exceed 
an average intrinsic utility of 0.5 are those which concede at a steady rate. 

6.3.2. Shor t  t erm dead l ines  

Changing the environmental setting can radically alter the successfulness of a particular family of tactics. There- 
fore, we carried out an experiment to investigate the behaviour of tactics in cases where deadlines are short. For this 
case, our hypotheses are: 

Hypothesis 7. When there is a short time frame to negotiate, tactics which quickly approach their reservation values 
will make more deals. 

Hypothesis 8. Since deadlines are short, the number of messages exchanged to reach a deal will be small. Conse- 
quently the system utility will be low. 

In this context, short term deadlines are obtained by sampling values for tCax and tSax between two and ten ticks 
of a discrete clock. The remainder of the experimental setup is as before. 

Fig. 6 shows the results obtained for these experiments. The first observation is that for most tactics, the overall 
intrinsic utility, the system utility and the number of deals made (Figs. 6(A), (C) and (B), respectively) are signif- 
icantly lower than the respective measures for the long deadline experiments. A lower system utility is expected 
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since fewer messages can be exchanged in the allocated time. Note that since Conceder and Impatient are quick 
to reach agreements, their utilisation of system resources is independent of the time constraints. Also, because 
fewer messages are exchanged, the agents pay less tax and, consequently, keep a greater percentage of their derived 
intrinsic utility (Fig. 6(D)). These findings are all in line with the predictions in Hypothesis 8. However, the other 
measures require further analysis. 

With long term deadlines, most tactics, apart from Boulware, make deals approximately 90-95% of the time, 
whereas with short teirn deadlines only Conceder makes anything like this number. This reduction is either because 
the tactics are insensitive to changes in their environment (e.g. resource dependent tactics) or because they have a 
slow rate of approach to reservation values (e.g. Boulware). Time insensitivity means the other tactics fail to make 
many deals when interacting with these tactics. Because the length of the thread is independent of the deadline, the 
resource dependent tactics cannot distinguish between short and long term deadlines. This claim is supported by 
the observation that Impatient gains equivalent intrinsic utility independently of deadlines (Fig. 6(A)). Furthermore, 
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resource dependent tactics are differentiated with respect to/z ,  the amount of  time an agent considers reasonable 
for negotiation. If  an agent does not reason about deadlines a n d  erroneously assumes a value for /z  which is close 
to or above tmax, then it will be unsuccessful in environments where deadlines are important. The relatively low 
intrinsic utility of  Patient and Steady (ranked 9th and 7th respectively - Fig. 6(A)) supports this claim. When 
the deadline is long, resource dependent tactics with ~ > 1 gain large intrinsic utility because they approach 
reservation values in a steady way. However, the same behaviour in short term deadlines is less successful. The 
imitative tactics also exhibit a reduction in an averge intrinsic utility. This is to be expected since these tactics 
imitate the relatively larger rate of  concession of other tactics (especially time dependent tactics) when the deadline 
is shorter. 

Hypothesis 7 is supported by the relative reductions in intrinsic utility for Boulware, Steady and Patient and by 
the comparate increase for Conceder and Impatient. Whereas in long term deadlines, Boulware, Steady and Patient 
ranked higher than the concilatory tactics, the reverse is true for short term cases. With short term deadlines, tactics 
that quickly approach their reservation values gain higher intrinsic utility than those which are slower. 

Again, we discovered that the dominant tactic is one which concedes at a steady rate (i.e. Linear), suggesting 
that the best tactic, independent of  time deadlines, is one that approaches reservation values in a consistent fash- 
ion. The behaviour dependent tactics also gain relatively high utilities in both cases, ranking third and fourth for 
short and long term deadlines, respectively. Thus, whereas most tactics have large fluctuations in rankings across 
environments, the behaviour dependent family maintains a stable position, indicating its general robustness and 
usefulness in a wide range of contexts. This is because these tactics stick firm to avoid expolitation and reciprocate 
concession. 

6.3.3. In i t ia l  of fers  

In our model, an agent 's reservation values are private. This means no other agent has any knowledge of where 
in the range of acceptable values an opponent begins its bidding process, nor where it is likely to end. Given this 
constraint, an agent must decide where in its reservation ranges it should begin its negotiation offers. That is, what 
should be the value of K a in the face of  this uncertainty? To help answer this question, we formed the following 
hypothesis: 17 

Hypothes is  9. When the deadline for agreements is not short, making initial offers which have values near the 
maximum of Uarice leads to deals which have higher intrinsic agent utilities than initial offers near the minimum of p 

s Upace . In other words, a server that starts bidding close to maXpric e is more likely to end up with deals that have a 

higher utility than a server who starts bidding close to minpric e. The converse is true for the client. 

To test this hypothesis, we let both agents have reasonably long deadlines, tCax = tSax = 60, and made r c a 
constant at 0.1 (i.e the client is cautious in it 's first offer). Therefore, the single independent variable was K s, which 
we sampled between the values [0.01, 0.2] for high initial price offers and [0.8, 0.99] for low initial offers. All other 
environmental variables were chosen as in previous experiments. 

Fig. 7 confirms our prediction that a server which begins bidding at values near the maximum of UpSce (Fig. 7(A)) 

has a higher average intrinsic utility than a server that begins bidding at values near the minimum of  Upric e (Fig. 7(B)). 
Moreover, if  r s is close to K c (the client starts bidding at low values and the server begins with high offers), then 
both agents gain equivalent utility in most cases and take many rounds of  negotiations before a deal is found (7(C)). 
This is because the tactics begin their negotiation at some distance from the point in the negotiation space where 
bids have values which have a mutually acceptable level. 

Conversely, if ~c s is not close to K c (both the client and server start bidding at low values), then the client benefits 
substantially more than the server. This is because the initial offers of  the server are now immediately within the 

17 Note: U~ric e increases and Upric e decreases with increasing price offers. 
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acceptance level of  the client (confirmed by the number of messages exchanged before a deal is reached (Fig. 7(D)). 
Thus, the client gains relatively more utility than a server, since the initial offers of  both agents are low and deals 
are made at low values. 18 

We can further explain the influence of K on the behaviour of tactics from the observations shown in Fig. 8. K a is 
used by all tactics for generating the initial offer but, for exposition purposes, we only discuss the results with respect 
to the Boulware tactic family (since this offers the greatest difference in behaviour). When K s is low, Boulwares 
have a lower percentage of deals relative to other t ac t i c s  (F ig .  8(A)). Conversely, when K s is  high, Boulware a l m o s t  
e q u a l s  all other t ac t i c s  i n  the percentage o f  deals they make (F ig .  8 (B) ) .  T h i s  is  b e c a u s e  a t  low values o f  K s,  the 
shape of  the acceptance level for Boulware is  a l m o s t  a s t ep  f u n c t i o n ,  whereas when t¢ ~ i s  h i g h  i t  is  a s t r a i g h t  line 

18 When K s is distinctly ~ e r e n t  from r c there is little differention among intrinsic utilities. This is why we set K a = 0.1 for both agents 
in Sections 6.3.1 and 6.3.2, 
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near to or at rain s. Thus a server playing a Boulware tactic makes a small number of high utility deals when the 
acceptance levels tend towards being a step function (compare Figs. 8(A) and 7(A)), but makes larger number of 
lower utility deals when the acceptance level is almost a straight line (Figs. 8(B) and 7(B)). Therefore, as the value 
of tc increases, the likelihood of a deal increases, but the utility of the deal decreases. 

7. Related work 

Research in negotiation models has been pursued in different fields of knowledge: game theory, social sciences 
and artificial intelligence. Each field has concentrated on different aspects of negotiation, making the assumptions 
that were pertinent for the goal of their study. In game theory, researchers have been interested in mechanism design: 
the definition of protocols that limit the possible tactics (or strategies) that can be used by players. For instance, 
they are interested in defining protocols that give no benefit to agents that mis-represent or hide information [13]. In 
this work disclosure of information is acceptable, because by doing so it will benefit the agent in finding an optimal 
solution for itself. Contrary to our model, and as we discussed in Section 2, this is an inappropriate assumption from 
the point of view of real applications. As has been argued elsewhere [17], these and other assumptions limit the 
applicability of game theory models to solve real problems. In a paper in this issue, Wellman and Wurman present 
a justification of the adoption of mechanism design to situations in which disclosure of information is not possible 
or acceptable [16]. They present market price systems as institutions that can be used to model resource allocation 
in general. Our approach agrees with this point of view concerning disclosure of information, and complements it 
in that we concentrate more on the internal decisions of negotiating agents given a particular protocol, and not on 
the process of mechanism design. 

Our interests lie in investigating the process of negotiation among agents and not only on the outcome. Hence, 
our study, and those forthcoming, are much more in the experimental line of [5]. Although we do not concentrate 
on learning, some similarities can be found with the formalism by Zeng and Sycara [17]. We have not concentrated 
however on the description of negotiation protocols that has been an important focus of attention for the community 
of distributed artificial intelligence (see [ 10] for extensive references). 
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8. Discussion and future  work  
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This paper presented a formal model of  an autonomous agent's decision function as it relates to the process of  
service-oriented negotiation. The model defines a number of  tactics which agents can employ during negotiations 
and it indicates how an agent can change these tactics over time to give various forms of  strategic behaviour. The 
form of the model, and the assumptions it makes, has been guided by our experiences in developing real-world 
agent applications for the domain of  business process management. For this reason, the model is well suited for 
practical agent applications. 

In earlier work [ 15], we proved that agents negotiating using our model were guaranteed to converge on a solution 
in a number of  well-defined situations. In this paper, we sought to extend these results and to evaluate the model in 
a wider range of  circlmastances. To this end, we defined a number of  basic hypotheses about negotiation using our 
model and sought to validate them empirically. In particular, with respect to tactics we discovered that: (i) irrespective 
of  short or long term deadlines, it is best to be a linear type tactic, otherwise an imitative tactic; (ii) tactics must be 
responsive to changes in their environment; and (iii) there is a tradeoff between the number of  deals made and the 
utility gained which is regulated by the initial offers. 

The aforementioned results confirmed (and rebuted!) a number of  basic predictions about negotiation using our 
model. Our aim for the future is to extend this evaluation to cover a wider range of  phenomena. In particular, 
we intend to: (i) extend the analysis to other types of  environments (for example, we predict that an increase in 
the number of  agent.,; will affect resource dependent tactics and dramatically influence the dynamics of  all tactic 
interactions); (ii) inw,'stigate the effects of  strategies - weighted combination of  tactics may outperform pure tactics 
in certain environments (see [9] for some results); (iii) investigate the tactic "pool" which makes up the population 
(for example, we predict that the number and value of  deals made between members of  a society that is made up 
solely of  Boulwares will be significantly different to societies where the population has a mixture of  Boulwares and 
imitators). Finally, to gain further explanatory power, we intend to analyse the behaviour of  tactics, in these and 
future environments, at the level of  palrwise interactions. 
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