
How Equitable is Rational Negotiation?

Sylvia Estivie1, Yann Chevaleyre1, Ulle Endriss2 and Nicolas Maudet1
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ABSTRACT
Notions of fairness have recently received increased attention
in the context of resource allocation problems, pushed by di-
verse applications where not only pure utilitarian efficiency
is sought. In this paper, we study a framework where alloca-
tions of goods result from distributed negotiation conducted
by autonomous agents implementing very simple deals. As-
suming that these agents are strictly self-interested, we in-
vestigate how equitable the outcomes of such negotiation
processes are. We first discuss a number of methodologi-
cal issues raised by this study, pertaining in particular to
the design of suitable payment functions as a means of dis-
tributing the social surplus generated by a deal amongst the
participating agents. By running different experiments, we
finally identify conditions favouring equitable outcomes.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial In-
telligence—Multiagent systems; J.4 [Social and Behav-
ioral Sciences]: Economics

General Terms
Economics, Theory, Experimentation

Keywords
Multiagent resource allocation, Negotiation, Social welfare,
Fair division

1. INTRODUCTION
In many applications of multiagent systems it is important
to achieve a fair, or equitable, allocation of the available re-
sources amongst the agents in the system. However, this
fairness requirement will often compete with the rational
interests of individual agents. If agents are allowed to freely
negotiate their preferred allocations of resources, the emerg-
ing allocations will typically be good on average, but give a
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rather low payoff to an unfortunate minority. In this paper,
we investigate to what degree it is possible to reconcile ratio-
nality and equitability requirements. We do this by running
a number of simulations where agents negotiate in a rational
manner and where we track the evolution of allocations in
view of their equitability.

Negotiation Problems
Take a set of (indivisible) goods R and a set of agents A. A
resource allocation is a partitioning of the resources of the
set R amongst the n agents in A (that is, every resource has
to be allocated to a unique agent). As an example, alloca-
tion A, defined through A(i) = {r1} and A(j) = {r2, r3},
would allocate resource r1 to agent i, while resources r2 and
r3 would be owned by agent j. Each agent has individ-
ual preferences regarding the bundles of resources it may
hold. We are going to model the preferences of agents by
means of utility functions mapping bundles of resources to
real numbers. Assuming that agents are only concerned with
resources they personally own, we will use the abbreviation
ui(A) for ui(A(i)), representing the utility value assigned by
i to the bundle it holds for allocation A.

Definition 1 (Negotiation problems). A negotia-
tion problem is a tuple P = 〈R,A,U , A0〉, where

• R is a finite set of indivisible resources;

• A = {1, . . . , n} is a finite set of agents (n ≥ 2);

• U = 〈u1, . . . , un〉 is a vector of utility functions, such
that for all i ∈ A, ui is a mapping from 2R to R;

• A0 : A → 2R is an initial allocation.

From a designer’s perspective, we will be interested in as-
sessing the well-being of the whole society, or its social wel-
fare [1], which is often defined as the sum of utilities of all
the agents:

swu(A) =
X

i∈A

ui(A) (1)

This is the utilitarian definition of social welfare (swu), but
other criteria of assessment exist as well. In the next section,
for instance, we are going to introduce the notion of egali-
tarian social welfare, which is a measure for the equitability
of a given allocation. In this paper, we focus in general on
equitability criteria. To decide how to (best) allocate the re-
sources amongst the agents in a system is to solve a resource
allocation problem.



Resource allocation problems are typically addressed from
a centralized point of view (this is the case for instance in
combinatorial auctions [4]). When no central authority is
available, or when the computational burden would over-
whelm a single agent, this approach is not well suited. A
different approach, advocated by several authors [15, 7, 5],
consists of distributing this process.

Distributed Approach
In the distributed perspective, instead of trying to centrally
compute the optimal allocation, we shall progress in a step-
wise manner towards an optimum. To do so, agents may
agree on a deal to exchange some of the resources they pos-
sess. It transforms the current allocation of resources A
into a new allocation A′; that is, we can define a deal as
a pair δ = (A,A′) of allocations (with A 6= A′). When
such a deal improves the utilitarian social welfare (i.e. when
swu(A′) > swu(A)), we say that it is socially beneficial.
Note that a single deal may involve the displacement of
any number of resources between any number of agents.
This level of generality is hardly realistic in practice. Sand-
holm [15] has proposed a typology of different types of deals,
such as swap deals involving an exchange of single resources
between two agents or cluster deals involving the transfer
of a set of items from one agent to another. In this paper,
we shall only consider the simplest type of deals (1-deals),
i.e. those involving only a single resource (and thereby only
two agents). The set of agents involved in the deal δ will be
denoted as Aδ.

The above is a condition on the structure of a deal. Other
conditions relate to the acceptability of a deal to a given
agent. We assume that agents are rational in the sense of
aiming to maximise their individual welfare. Furthermore,
agents are assumed to be myopic. This means that agents
will not accept deals that would reduce their level of welfare,
not even temporarily, because they are either not sufficiently
able to plan ahead or not willing to take the associated risk
(see also [15] for a justification of such an agent model). Also
agents will not behave strategically by, for instance, post-
poning a rational deal in the hope of finding an even better
opportunity. We will, however, permit agents to enhance
deals with monetary side payments, in order to compensate
for a possible loss a utility. This is modelled using a so-called
payment function p : A → R satisfying

P

i∈A p(i) = 0. A
positive value p(i) indicates that agent i pays money, while
a negative value means that that agent receives money. In
summary, the following rationality criterion will define the
acceptability of deals:

Definition 2 (Rationality). A deal δ = (A,A′) is
individually rational iff there exists a payment function p
such that ui(A

′)−ui(A) > p(i) for all i ∈ A, except possibly
p(i) = 0 for agents i with A(i) = A′(i).

The following result, due to Endriss et al. [7], makes the
connection between the local decisions of agents and the
global behaviour of the system explicit:

Lemma 1. A deal δ = (A,A′) is individually rational iff
swu(A) < swu(A′).

A corollary of Lemma 1, originally due to Sandholm [15],
is that any sequence of rational deals will eventually result
in an allocation of resources with maximal social welfare.

However, deals involving any number of agents and resources
may be required to do so [15, 7]. In particular, 1-deals alone
are certainly not sufficient for negotiation between agents
that are not only rational but also myopic. Of course, for
some particular negotiation problems, rational 1-deals will
be sufficient. This is, for instance, the case when all agents
are using modular utility functions [7].1

Paper Overview
The remainder of this paper is structured as follows. Section
2 presents the challenges posed by the study of egalitarian
outcomes of distributed negotiation. Different types of pay-
ment functions are then introduced (Section 3), and we dis-
cuss how the choice of a particular function would affect the
egalitarian nature of negotiation outcomes. Our experimen-
tal setup is introduced in Section 4. We then report results
on different series of tests, both in modular (Section 5) and
non-modular domains (Section 6). Section 7 concludes.

2. EGALITARIAN FRAMEWORK
While the utilitarian interpretation of the concept of social
welfare is the definition usually adopted in the multiagent
systems literature [16, 17], there are also several other formal
tools for assessing the level of welfare of a society of agents
that have been developed in the socio-economic sciences [1,
3, 12] and that have potential applications in the context of
multiagent resource allocation as well [7].

Efficiency and Fairness
The well-known Pareto condition and the utilitarian social
welfare ordering address the efficiency of an allocation of
resources. In many situations, however, the efficiency of an
outcome alone is not sufficiently accurate a criterion to as-
sess the quality of an allocation of goods. Rather, the quest
for efficiency needs to be balanced with certain fairness re-
quirements.

This is, for instance, the case when a multiagent resource
allocation system is used to automatically allocate airport
slots to different airlines [9]: we want to minimise the overall
delay of all flights (efficiency), without risking to completely
ignore the requests of a particular flight that may be difficult
to integrate into the current schedule (fairness). Another ex-
ample are reverse combinatorial auctions for industrial pro-
curement, where a single buyer solicits offers for, say, the
parts required to assemble 500 cars [8]. Here it may be in
the interest of the buyer to try to contract deals with more
than one seller, even when that agreement does not entail
the lowest possible price, in order to avoid being dependent
on the good will of a single provider. This kind of safety
constraint (from the viewpoint of the buyer) may also be
interpreted as a fairness requirement (from the viewpoint of
the competing sellers). The case of earth observation satel-
lites discussed by Lemâıtre et al. [10] offers a particularly
interesting and original example. In this application, sev-
eral stakeholder (e.g. countries) are jointly funding a satel-
lite that is circling the earth and can take photos, subject
to various technical constraints. Different stakeholders re-
quest different (and often incompatible) photos, and a solu-
tion needs to be found that is both efficient (in the sense of

1A utility function is modular iff the utility assigned to a
set of resources is always the sum of utilities assigned to its
members.



exploiting the satellite as well as possible) and fair (in the
sense of honouring an appropriate share of the requests of
each of the stakeholders). Finally, Porter et al. [13] justify
their study of fairness by invoking the following application:
In many countries, in crisis situations, the state can com-
mandeer diverse resources (e.g. aircrafts) from companies to
cope with the emergency. However, this should be done in
such a way that it minimizes the total true cost incurred by
airline carriers (and by the state), and distribute this cost
fairly amongst all carriers (so as not to penalize a carrier).

What these examples show is the relevance of notions such
as fairness, equitability, or envy-freeness in many (diverse)
applications. This paper will focus on what may be consid-
ered the most “basic” measure of the equitability of given
allocations of goods, known as the egalitarian social welfare.
The egalitarian social welfare is given by the utility of the
agent that is currently worst off [1, 12]. That is, maximising
egalitarian social welfare amounts to maximising the mini-
mum utility in the system. This maxmin principle is also
called 1-efficiency in the work of Porter et al. [13].

Optimal Outcomes and Local Deals
We are going to be interested in mechanisms that allow
agents to reach an allocation with high (and ideally, max-
imal) egalitarian social welfare by means of a sequence of
locally agreed deals. These deals should be local also and
particularly in the sense that the agents should be able to
decide locally within the group of agents about to agree on
a given deal whether or not that deal should be deemed ac-
ceptable. In other words, we are not looking for just any
algorithm to optimise with respect to egalitarian social wel-
fare, but for a distributed negotiation scheme.

The first kind of deal we are going to consider are the
individually rational deals introduced earlier. It is easy to
show that individually rational deals alone are not sufficient
to allow agents to find an allocation with maximal egalitar-
ian social welfare in all cases (while, on the contrary, this is
possible in the case of utilitarian social welfare [15, 7]). This
can be seen in the following example. Assume there are two
agents and two possible allocations (i.e. there may be just
a single resource):

u1(A) = 5 u1(A
′) = 2

u2(A) = 1 u2(A
′) = 3

Then A′ has maximal egalitarian social welfare, but in case
A is the initial allocation there is no individually rational
deal leading from A to A′ (because the amount of utility
lost by agent 1 would be greater than the utility gained by
agent 2).

Another approach would be to change the notion of in-
dividual rationality and to require agents to use a different
criterion when deciding on the acceptability of a given deal.
This idea has been followed in previous work where the class
of so-called equitable deals has been proposed [7]. This crite-
rion, which requires the minimum utility within the group of
agents contracting a deal to increase, can guarantee conver-
gence to an egalitarian optimum. However, as also pointed
out in [7], this is not a precise criterion in the sense that it
is still possible to contract further equitable deals after an
allocation with maximal egalitarian social welfare has been
found. In fact, it is impossible to design a deal acceptability
criterion that would be precise in this sense. This is related
to the fact that the egalitarian social welfare ordering is not

separable [12], which means that it is not possible to decide
whether or not egalitarian social welfare has increased sim-
ply by looking at the utility levels of the agents that have
experienced a change in utility after a deal. Hence, it is also
not possible for the agents involved in a deal to locally verify
whether the deal they are about to implement would affect
egalitarian social welfare in a positive manner.

Besides such technical considerations, of course, the indi-
vidual rationality criterion is also much more realistic than
the idealised concept of equitable deals. Therefore, in the
present paper, we are going to follow a different approach.
Rather than designing agents that are “good” for egalitar-
ian social welfare, we are going to study just how “bad” the
standard utility-maximising agents are from an egalitarian
point of view. To put it differently, we are going to analyse
how egalitarian social welfare develops in a society where
agents negotiate a sequence of individually rational deals.

Egalitarian Social Welfare and Money
Before getting further in that direction, we need to address
the first challenge this approach poses. Typically, a social
welfare measure does not take a monetary component into
account. There is an obvious reason for that when utilitarian
social welfare is concerned: the payment function p has been
defined in such a way that the sum of payments is always
zero. Hence, side payments can never change the sum of
utilities, i.e. they can never affect utilitarian social welfare.
Things are different for egalitarian social welfare. Not taking
into account monetary payments would amount to assessing
buyers as being more satisfied than sellers, whatever the
price they pay to get the resource(s) may be. In the most
extreme case, an agent selling all its goods for very good
(high) prices (and thereby certainly being “happy”) would
still provoke a very low egalitarian social welfare (because
its utility function defined over bundles of resources alone
would return a zero value).

To circumvent this problem, payments have to be included
into agents’ utility functions. Let the balance of agent i be
defined as the sum of all the payments p(i) of that agent paid
out (or received, in the case of negative payments) during
all previous deals. By Lemma 1, if agents only negotiate
individually rational deals, no allocation can be visited more
than once. So we can index an agent’s balance with the
name of the allocation in question: balA(i) is the balance of
agent i once allocation A has been reached. Then we define
for each agent i a second utility function u′

i that combines
the utility derived from the bundle of resources it currently
holds and its monetary balance:

u′
i(A) = ui(A) − balA(i) (2)

In the literature, such utilities are often called quasi-linear
utilities, in which case u would be referred to as a valuation
and u′ as the actual utility [4]. The egalitarian social welfare
of an allocation with money is now simply defined as the
egalitarian social welfare with respect to the utilities u′

i:

swe(A) = min{u′
i(A) | i ∈ A} (3)

3. PAYMENT FUNCTIONS
For any given deal that is individually rational, there will be
a range of possible payment functions (in theory, there are
infinitely many, in practice the number will depend on the
granularity of the currency used). This raises the question



what payments to implement in a simulation context, where
agents do not actually negotiate prices with each other.
Choosing a payment function p for an individually ratio-
nal deal δ = (A,A′) means deciding how to distribute the
social surplus swu(A′) − swu(A) amongst the agents in the
system. The only condition that the payment function has
to meet is to ensure that side payments add up to zero.

Amongst these payment functions, some will ensure that
any socially beneficial deal is indeed individually rational
(and vice versa), that is that for each agent i involved in
the deal, we indeed have ui(A

′)− u(A) > p(i): we shall call
these rational-compatible payment functions.

Locally Uniform Payment Function
We begin with what we call the locally uniform payment
function, which ensures an equal payoff amongst all the
agents involved in the deal (and gives no payment to any
of the non-involved agents):

p(i) =

(

ui(A
′) − ui(A) − swu(A′)−swu(A)

|Aδ |
if i ∈ Aδ

0 otherwise

Note that these payments do indeed add up to 0 as required,
and that each agent i ∈ Aδ receives the same positive payoff

ui(A
′) − ui(A) − p(i) = swu(A′)−swu(A)

|Aδ |
.

The uniform payment function is not an arbitrary choice,
but intended to be a reasonable approximation of actual
payments that agents would agree upon in a real negotiation
context (rather than a simulation). Equally dividing the
social surplus amongst all the agents concerned also means
maximising the product of individual payoffs. In the case of
deals between just two agents, this corresponds to the result
we would get if agents were to adopt the well-known Zeuthen
strategy to negotiate the payments for a given deal [14]. This
is true, at least, if we assume that agents calculate their
“willingness to risk conflict” with respect to the payoff for
the deal at hand (which is a reasonable assumption if agents
have comparable levels of utility to begin with).

Globally Uniform Payment Function
The next type of payment that we introduce is one which
ensures an equal payoff amongst all the agents within the
society:

p(i) = ui(A
′) − ui(A) −

swu(A′) − swu(A)

|A|

Observe that this function is also rational-compatible (for
the same reason that the locally uniform one is), although
agents involved in deals will typically receive a much more
modest share of the social surplus. Note that this payment
function is not inequality reducing, but not inequality in-
creasing either. By distributing the social surplus equally
amongst all agents of the society, everyone simply benefits
with any deal and enjoys the same welfare increase.

It is easy to see that with such a payment function, the
egalitarian social welfare depends both on the gain of util-
itarian social welfare during the entire negotiation, and on
the initial satisfaction of the agents. More precisely, consider
a sequence [A0, A1, . . . , Af ] of allocations visited during a
negotiation process. For all t ∈ {0..f−1}, we have (where

pt(i) denotes the payment of agent i at time t):

ui(At+1) − ui(At) − pt+1(i) =
swu(At+1) − swu(At)

| A |

Observe that:

ui(Af ) − balAf (i) = ui(A0) +
swu(Af ) − swu(A0)

| A |

Thus, we finally have:

swe(Af ) = mini



swu(Af ) − swu(A0)

| A |
+ ui(A0)

ff

It is interesting to note that:

swe(Af ) − swe(A0) =
swu(Af ) − swu(A0)

| A |

This has two important consequences: first, the gain of egal-
itarian social welfare is proportional to the gain of utilitarian
social welfare. Also, the optimal allocation(s) w.r.t. utili-
tarian social welfare is/are the same as the optimal alloca-
tion(s) w.r.t. egalitarian social welfare.

It should also be pointed out that in the case of two agents,
locally uniform payment functions are of course equivalent
to globally ones. As reported later on in this paper, we
carried out experiments to find out from what number of
agents on do locally uniform payment functions give rise to
negotiations exhibiting significantly different outcomes (see
Fig. 3).

Fully Locally Equitable Payment Function
In theory, it is possible to conceive an equitable payment
function which would, at each step, compute a payment such
that each agent (involved in the deal) would enjoy the same
utility level after the deal has been achieved. This idea is
very similar to that of fair imposition proposed in [13]. Such
a payment would take the following form:

p(i)=

(

ui(A
′)−balA(i) −

P

j∈Aδ (uj(A′)−balA(j))

|Aδ |
if i ∈ Aδ

0 otherwise

Note that here, the balance balA(i) refers to the balance
of the previous allocation (A). The above must be read as
follows: compute the restricted social welfare divided it by
the number of agents involved (that would be the optimal
repartition), then subtract the payment such that each agent
reaches exactly that level of satisfaction. This is exemplified
on the following example (assuming this is the first deal
taking place, hence a balance of 0 for each agent):

u1(A) = 3 u1(A
′) = 2

u2(A) = 1 u2(A
′) = 6

The final allocation exhibits a restricted (utilitarian) social
welfare of 8, hence 4 for each agent would be the optimal sit-
uation. This is obtained by computing the payment function
which pays +2 to agent 1 and -2 to agent 2. However, such a
payment would not always be rational: in many situations,
the payment would be such that at least a self-interested
agent would have no interest in implementing the deal. This
is for instance the case on the following example:

u1(A) = 3 u1(A
′) = 2

u2(A) = 1 u2(A
′) = 3



In this case, the computed payment is +/- 0.5, and it is easy
to see that agent 1 would not rationally accept such a deal.
In general, a deal is only rational if every agent enjoys before
the deal takes place a utility that is strictly lower than the
mean of the restricted social welfare after the deal. This
is then an example where a socially beneficial deal would
not be individually rational for agents if they were to use
this payment function, i.e. this proves that this payment
function is not rational-compatible. The consequence is that
it will change the structural properties of the framework: by
restricting the number of feasible deals, certain sequences
of deals (that could be rational with a different payment
function) would not be explored. Clearly, this can be a good
thing in some situations, as exemplified below:

u1({r1}) = 2 u1({r2}) = 2 u1({r1, r2}) = 104
u2({r1}) = 100 u2({r2}) = 0 u2({r1, r2}) = 100
u3({r1}) = 0 u3({r2}) = 101 u3({r1, r2}) = 101

We first suppose that agents use any rational-compatible
payment function, and that a2 initially holds the bundle
{r1, r2} (initial social welfare is 100). Now the following
deal sequence takes place: (i) a2 gives r2 to a1 (leading to
a social welfare of 102), (ii) a2 gives r1 to a1 (leading to
a social welfare of 104). No more rational deal is possible
(giving any resource would result in a loss of 102).

Of course, a social welfare of 201 would have been attain-
able, by simply offering r2 to a3 as a first deal. Equitable
deals (payment 0.5) would indeed have discarded the deals
implemented in the suboptimal sequence, leaving only this
deal possible. Whether this is a good thing or not in general,
i.e whether this payment function behaves as a good heuris-
tic in this context will be experimentally evaluated later on
in this paper (see Fig. 2 and 4).

Rational Locally Equitable Payment Function
What would be the “most equitable” payment function that
would still be rational-compatible? A slight modification of
the previous payment function would in fact suffice to make
it rational-compatible: compute the payment function such
that it makes every agent marginally better off, then allocate
the remaining payments induced by the deal so as to reduce
inequalities as much as possible (that is, give the remaining
social surplus to the agent currently worse off).

For a deal δ = (A,A′), formally, this payment can be
defined as the function p maximizing

mini∈Aδ

n

ui(A
′) − balA(i) − p(i)

o

where balA(i) is the balance of agent i before the deal, and
under the two following constraints: p has to be a payment
function (

P

i∈A p(i) = 0) and the deal must be rational

(∀i ∈ Aδ, ui(A
′)− ui(A) > p(i)). Obtaining an analytic for-

mulation for p in the general case is difficult. However, in the
case of bilateral negotiation, the solution to the above con-
straint equation for any socially beneficial deal δ = (A, A′)
involving agents i and j, can easily be computed. First
note that in case the deal is rational with the fully locally
equitable payment, this defines our payment function. Oth-
erwise, observe that there is necessarily a single agent, say i,
such that ui(A) ≥ (ui(A

′) + uj(A
′))/2. This is so, because

if both agents met this condition, then the deal would be
fully equitable, while if neither of them met the condition,

the deal would clearly not be be individually rational. Now
we fix the payment for that agent i, in such a way that this
agent is just marginally better off, in order to make the deal
rational. That is, p(i) = ui(A

′)−ui(A)−ε for some suitably
small constant ε > 0. Note that p(i) could be a positive or
negative value; the payoff for i will be +ε either way. Then
we define the other payment as p(j) = −p(i).

We take again our previous example (that proved fully
equitable payment functions not to be rational-compatible),
to show how this works. Agent 1 has been better off before
the deal than the average utility after the deal. Its payment
will p(1) = 2 − 3 − ε, i.e. it receives an amount of 1 + ε
from agent 2. After the deal, we have the following utilities
(assuming there have been no earlier payments):

u′
1(A

′) = 3 + ε
u′

2(A
′) = 2 − ε

Whether this payment function outperforms other functions
(as far as egalitarian social welfare is concerned) will be
evaluated experimentally in this paper (see Fig. 1 and 5).

4. EXPERIMENTAL METHODOLOGY
Our experimental results are based on the following method-
ology: we first create the system (agents’ utility functions
and the initial allocation of goods), we then compute the
optimal utilitarian social welfare, and we finally run negoti-
ations (that is, let agents negotiate until no more deals are
possible). Agents typically desire to hold several bundles
(the details of how these utility functions are generated de-
pends on the domain studied, and will be given later on).
To avoid favouring a specific agent, the negotiation protocol
is randomized: we pick an agent at random, and try to iden-
tify one rational deal involving this agent. Remember that
as soon as one such rational deal meets the rationality con-
straints of the seller and the buyer, the deal is implemented
and the allocation is updated. The results are averaged over
500 negotiation runs.

The reason why we compute the optimal utilitarian social
welfare is that it serves to derive a (very generous) upper
bound on optimal egalitarian social welfare: The best you
can do is to optimize overall utility (=swu) and then use pay-
ments to distribute the overall wealth as evenly as possible
(it is then simply 1/n times the maximal utilitarian social
welfare). In the restricted negotiation framework that we
investigate here, this optimal value will seldom be attained.
What will be highly significant will be the value of the final
utilitarian social welfare, which would represent an upper
bound under the constraints of the negotiation framework
(e.g. restrictions to 1-deals, rationality constraints). Note
that affecting the class of acceptable deals by employing
a non-rational-compatible payment function falls into that
category. Again, distributing the overall wealth as evenly
as possible would be the optimal egalitarian outcome (recall
that a theoretical equitable payment function would allow
to attain this value).

To sum up, the experimental results reported in this paper
will typically mention the following outcome values:

(1) the value of the optimal utilitarian welfare (swopt
u /n),

upper bound in unrestricted negotiation frameworks;

(2) the value of the final utilitarian welfare (swu/n), up-
per bound under the constraints imposed during this
negotiation;



(3) the value of the final egalitarian welfare (swe), after
negotiation took place.

The difference between (1) and (2) is an indicator for what
we shall call the protocol bias. The difference between (2)
and (3), more interesting to us, permits to appreciate the
payment function bias. Comparison with the initial value
of the egalitarian welfare proved to present very little inter-
est in our experiments: it has been omitted for the sake of
readability.

Figures presented in the next two sections exhibit curves
defined by the following parameters: (1) the type of so-
cial welfare measured (SWe or SWu/n); (2) whether the so-
cial welfare shown is the optimal value or the final value;
(3) the payment function used; and (4) the type of distribu-
tion used.

5. MODULAR DOMAINS
We start with very simple domains of negotiation, where
no synergies can occur between different items of the bun-
dles agents hold. In this case agents’ utility functions are
said to be modular. We generate these functions by simply
picking 50 resources for each agent, and assigning random
coefficients between 0 and 100. Note that in this case the
optimal utilitarian social welfare can be easily computed: It
suffices to assign each item to the agent who values it the
most. (This allows in particular to run experiments with
a large number of items). A recent (somewhat surprising)
complexity result, due to Bouveret and Lang [2], shows that
the difficulty of the corresponding problem largely differs
for egalitarian frameworks without money: Optimising the
egalitarian social welfare is an NP-hard problem, even when
agents use modular functions (this is even true when they
all use the same utility function). This is not the case in our
setting though, because of the use of money (which allows
us to separate the process of maximising overall utility and
then distributing that utility evenly amongst the agents). A
final important point to note is that the complexity of the
overall negotiation process remains polynomial in this case,
because the length (number of deals) of rational negotiations
in modular domains is known to be linear [6].

Locally Uniform vs. Rational Locally Equitable
The first set of experiments has been run with 5 agents us-
ing modular utility functions, deals enhanced with rational-
compatible payment functions. The number of resources
varies between 50 and 150. Recall that in this case, we know
that the optimal utilitarian social welfare will be reached
(i.e. there is no “protocol bias”): the experiment will really
measure the “payment function bias”. To put it another
way, if there were such a thing as a rational-compatible fully
equitable payment function, both curves would be equiva-
lent.

Fig. 1 shows the final egalitarian social welfare attained
when locally uniform or rational equitable payments are
used. It is striking that, first, both payment functions per-
form reasonably well (the ratio (swe/swopt

u ) is constantly
higher than 70% and improves when the number of resources
increases). The rational equitable payment is, as expected,
significantly above the locally uniform one (84% vs. 70%
for 60 resources, 93% vs. 80% for 120 resources, 96% vs.
83% for 150 resources). However, given that this latter pay-
ment is, as argued before, the “most equitable” conceivable
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Figure 1: Modular Domains (I)

rational-compatible payment function, it is still surprising
to see how close the “strategically justified” locally uniform
payment stands.

Fully Locally Equitable
The second series of experiments (Fig. 2) carried out in mod-
ular domains tests the assumption that fully equitable deals
can be a good heuristic in our negotiation setting, despite
reducing the number of feasible deals. The results are un-
ambiguous: in modular domains, this is far from being the
case. The protocol bias (which exists in this case), is illus-
trated by the ratio between the optimal value and the final
swu/n reached when allowing only fully equitable deals. For
50 resources already, the figure is around 75%, and drops to
50% for 150 resources. This really measures the loss due
to the restriction put on the framework. Worse than that,
the final swe exhibits a figure (swe/swopt

u ) of 45% for 50
resources, shrinking down to 16% for 150 goods. Actually,
the final egalitarian social welfare hardly increases in this
setting. This really proves that this restriction is simply too
hard to be met, and almost freezes the negotiation process.
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6. NON-MODULAR DOMAINS
In many situations, the assumption that resources have no
synergies between them will be highly unrealistic. It is then
very important to investigate the outcome of negotiation in
such (non-modular) domains. The first experiments that we



envisaged were produced using a uniform distribution for the
generation of the structure of utility functions. The results
(not reported here), regarding the final egalitarian welfare,
turned out to be very good. This simply reflected the fact
that uniform distributions tended to distribute evenly the
participants’ needs: agents were seldom in conflict.

Realistic Distributions
In order to get realistic agent preferences we decided to make
use of the CATS bid generator [11], primarily designed for
the use with combinatorial auctions. The output of the
CATS software is a set of bids, taking the form of XOR de-
mands 〈b1, p1〉 . . . , 〈bn, pn〉, where bi stands for the bundle
of resources, and pi stands for the value the agent assigns to
this bundle. One problem that we faced when using CATS is
the fact the output file contains only anonymous bids. This
is perfectly suited for the case of studies of algorithms for
the Winner Determination Problem in combinatorial auc-
tions [4], because then you are not really concerned with
associating resources with agents who claimed them, but
only with computing the optimal solution. What we did to
deal with this was to generate a (large) number of bids in
a single shot (interacting in the same domain, it is likely
that agents share a common dependency structure between
goods). However, by allowing dominated bids to be gener-
ated, we permit agents to express different degree of pref-
erences over the same bundles of goods. And finally, by
picking (at random) only a subset of these generated bids,
we allow agents to demand different bundles and admit that
they may only partially share this common structure. The
experiments reported in this section have been conducted
using the CATS arbitrary distribution.

Locally Uniform vs. Globally Uniform
Fig. 3 shows the egalitarian social welfare reached when an
increasing number of agents negotiate over 15 resources us-
ing locally uniform payments. Each agents claims 10 bun-
dles. Recall that, as mentioned in the previous section, when
there are no more than two agents, the locally uniform pay-
ment and the globally uniform payment coincide.
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First notice that, as expected, the final swu/n decreases
exactly as a 1/n curve. Intuitively, we could have expected
the final swe to decrease at the same speed. This turns out
not to be the case: from 2 to 3 agents, swe decreases by 65%,
whereas a 1/n decrease rate would have been of 33%. This

observation can be explained in the light of the locally uni-
form payment function singularity: when there are no more
than two agents, the locally and globally uniform payment
are identical, in which case the inequalities between both
agents will not increase during the negotiation. In other
words, as explained in the previous section, the gain of swe

between the beginning and the end of the negotiation will
be equal to the gain of swu divided by n. This explains why
the final swe for two agents is close to the final swu.

On the contrary, for more than 2 agents, each bilateral
deal will only favor the two agents involved in it, and will
thus potentially increase inequalities between agents con-
tracting many deals, and others. This allows us to explain
the rapid decrease of swe at the beginning of the curve.

Fully Locally Equitable vs. Locally Uniform
Next we compare fully locally equitable payment functions
and locally uniform payment functions (Fig. 4). The re-
sults show that negotiation using fully equitable payments
is notably less equitable than negotiation with uniform pay-
ments. This is so because the criterion is, again, too restric-
tive and prevents agents from contracting deals that could
be rational (and hence improve social welfare). The fact
that this function helps to select highly beneficial deals does
not compensate for the loss incurred by these missed oppor-
tunities. This completes the answer to the question we left
pending in Section 5: this payment function does not behave
as a good heuristic, in this type of domains neither. The
reason why the difference is far less important with uniform
payment functions in these domains lies mainly in the fact
that, typically, much fewer deals are contracted, and that
values assigned to bundles are typically higher than those
assigned to single resources (augmenting the probability to
contract a fully equitable deal).
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Rational Locally Equitable vs. Locally Uniform
In this last series of experiments, we show that rational eq-
uitable payments slightly outperform uniform payments as
far as the satisfaction of the poorest agent is concerned.
(Remember that feasible deals being the same for these two
types of payments, and payment functions adding up to zero
at the end of a given negotiation, the fact that final values
of averaged utilitarian welfare are similar should come as no
surprise.) In Fig. 5, we observe that the difference with uni-
form payments is marginal for small number of resources,



but becomes slightly larger when this number increases.
This is explained as follows: when there are few resources
to be distributed, the number of deals that will take place
during a negotiation will typically be very small. Each con-
tracted deal increases the probability of redistributing some
wealth to the poorest agent, the more deals contracted the
happier that agent should get (on average).
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7. CONCLUSION
This paper has investigated the egalitarian properties of
some distributed resource allocation processes. An impor-
tant aspect of the framework, that has radical consequences
on egalitarian outcomes, is the choice of a specific payment
function (i.e. the way to redistribute the social surplus in-
duced by any given deal). We have discussed a variety
of payment functions, and shown in particular that a per-
fectly equitable payment function is not rational-compatible.
Our study has been complemented with several experiments,
that have allowed us to identify conditions favourable to
egalitarian outcomes. In particular, we should stress that:

• In modular domains, we observed that locally uniform
payments give rise to reasonably equitable outcomes,
which becomes comparatively more equitable as the
number of resources grows. This remains significantly
below (but closer than expected) to what could be
achieved at best within the class of rational-compatible
payments.

• It is typically not beneficial to enforce agents to obey to
implement a fully equitable payment function, because
this would conflict with rationality principles and pre-
vent agents from conducting socially beneficial deals.
This is striking in modular domains, less obvious in
non-modular domains where there are typically fewer
deals taking place during the negotiation.

• Locally uniform payment functions significantly dif-
fer from globally uniform payment functions for more
than 2 agents. More generally, as the number of agents
grows, we cannot expect any local payment to compen-
sate for the inequalities.

A possible extension of this work will be to investigate how
the conclusions drawn here will vary for other “standard”
CATS distributions. A longer-term issue will be the study of

other equitability measures: the maximin egalitarian princi-
ple is but one (admittedly rough, because it only takes into
account the poorest agent) equitability measure. To refine
our study, we plan to investigate other measures, such as
Gini-like indexes for instance [12], which give a more global
measure of a society’s wealth distribution.
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