
Practically Coordinating

Edmund H. Durfee

AI Laboratory, EECS Dept.,
University of Michigan, Ann Arbor, MI 48109-2110

durfee@umich.edu

Abstract
To coordinate, intelligent agents might need to know
something about themselves, about each other, about
how others view themselves and others, and how
others think others view themselves and others, and so
on. Taken to an extreme, the amount of knowledge an
agent might possess to coordinate its interactions with
others might outstrip the agent’s limited reasoning
capacity (its available time, memory, etc.). Much of
the work in studying and building multiagent systems
has thus been devoted to developing practical
techniques for achieving coordination, typically by
limiting the knowledge available to or necessary for
agents. This article categorizes techniques for keeping
agents suitably ignorant so that they can practically
coordinate, and gives a selective survey of examples
of these techniques for illustration. *

Introduction

It has been said that ignorance is bliss. Certainly, people
who know much (or think they know much) are sometimes
subject to cockiness, confusion, paralysis, resignation, or
other unpleasant states. Artificial agents can also suffer
from knowing too much, and so it behooves us, as agent
designers, to make sure that our agents are not
overwhelmed with too much knowledge. The trick (or,
ultimately, the engineering skill) is to design agents that
have enough knowledge to act well in their environments,
and no more knowledge than that, lest the knowledge over
and above what is sufficient degrade the quality or
timeliness of the actions.

The purpose of this article is to look more deeply at
strategies for designing agents, and the strategies’ methods
of acquiring and using knowledge about agents, that make
it practical for an agent to coordinate its actions with
others. Before we begin, however, let me first be a little
clearer about what I mean by the terms “agent” and
“coordinate.” In keeping with much of the current usage of
the term, I will consider an agent to be an entity that is

* This work was supported, in part, by the National
Science Foundation under PYI award IRI-9158473, by the
NSF/DARPA/NASA Digital Library Initiative CERA IRI-
9411287, by DARPA under contract DAAE-07-92-C-R012,
and by a contract with Orincon Corp.

capable of acting in its environment to satisfy its desires.
Thus, an agent is an entity to which it is convenient to
ascribe characteristics such as: choices (capabilities for
action); awareness (beliefs about the world); and
preferences (over states of the world, often coming about
as outcomes of its (and others’) actions). In general, the set
of actions available to an agent, and the set of possible
worlds, could be infinitely large. To keep matters simpler,
however, I will discretize them. We can capture these three
characteristics in a variety of notations. For illustration
purposes, let me here just represent them in terms of a
payoff matrix, such as in Figure 1. Here, agent P can take
actions A or B, has beliefs about whether the world is in
state of affairs (SOA) 1 or 2, and prefers to take actions
that lead to higher payoffs (the numbers inside the matrix).
For example, P’s actions might be to choose one of two
doors, behind one of which is a lovely bouquet of flowers ,
the sight of which P values at 2 (Figure 1). If P guesses the
wrong door, he does not get the reward of seeing the
flowers, although he is still just as able to enjoy their
aroma, so he breaks even (a reward of 0).

When the outcomes of its choices can depend on the
choices that other agents have made, are making, or will
make, then an agent should consider the actions of those
other agents when making its own choice. I will refer to
this the taking into account the choices of others when
deciding what to do as an agent coordinating with those
others. “Coordination” is an overloaded term, possibly
meaning either the process or the result of coordinating. I
will use the former sense of the word. This has several
advantages. For one thing, it removes value judgments that

P
A

B

1 2
SOA

2 0

0 2
Agent P has a choice between doing A or B. The reward it receives is

dependent on the state of affairs (SOA).

Figure 1: A Simple Decision Situation

go along with evaluating whether a result is “coordinated.”
When such evaluations are needed to convey a sense of
agents working to their mutual benefit, for example, I
prefer a term like “cooperative” rather than “coordinated.”
By considering coordination as the process by which an
agent takes into account the possible actions of others (uses
those actions as “coordinates” to index into an outcome),
we can determine whether an agent has coordinated
without looking at other agents. Since coordination does
not imply any mutuality, cooperative or competitive, it
need not even be symmetric!

Returning to our simple example, what if P shared its
world with Q? Now, it turns out that if P and Q choose the
same door, the object (if any) behind the door is removed.
Thus, if they both choose the door with the flowers, the
flowers are removed and P is actually worse off (reward of
-1), now being unable even to smell the flowers any longer.
If Q opens the door with the flowers, then P’s view is
obstructed so P is no better nor worse off. From the
perspective of P, therefore, it might do better to consider
Q’s likely choice when making its own decision, as shown
in Figure 2, because P can benefit only when it chooses a
different action than Q!

To make its decision, P needs to determine whether the
state of affairs is 1 or 2, and whether Q is likely to do A or
B, and then P should act accordingly. The degree of detail
with which P should model Q would thus depend on how
much P needs to know about Q to make an adequate
prediction about Q’s choice. Perhaps it is enough for P to
have a probability associated with Q doing each of its
actions. If Q were a degenerate agent, such as an agent that
simply flips a coin to choose an action, then this might
suffice. If Q’s actions, however, are more dependent on

the situation, then perhaps P needs probabilities for Q’s
actions conditioned on the state of affairs. For example,
perhaps the aroma of flowers wafting from one of the
rooms is quite discernible to P, and P has some statistics of
how often Q takes action A versus B when P has sensed the
aroma from that room before.

Of course, rather than relying on past statistics, P could
use what it knows about Q's preferences. For example, if P
thinks that Q likes flowers too (that is, P thinks that Q's
preferences are just like P's in Figure 1), then P might
conclude that Q will choose door A in SOA 1, and B in
SOA2. P can use this to coordinate its decision with that of
Q. It is also possible that P and Q might have different
beliefs about the state of affairs (perhaps P thinks Q has a
cold and cannot smell very well), and so to predict Q's
likely action, P really should attempt to infer Q's
probability distribution over the states of affairs.

P could even believe that Q will consider P when making
its own decision. Thus, P will need to model what it thinks
Q's model of P is. To decide what to do, therefore, P will
need to determine what it thinks Q will do, which in turn
requires that P determines what it thinks Q will think that P
will do, which in turn could require that P determines what
it thinks Q thinks that P will think that Q will do, and so
on. In principle, such nested models that agents have of
each other could continue indefinitely.

Recursive Modeling Method

What should an agent do in such circumstances? Well,
one answer is that it should use everything that it knows to
make a good decision. Using all of its knowledge means
being able to represent the knowledge and to process it.
For example, let us say that P clearly smells the flowers
behind the door that would be opened with action A, so the
decision it faces can be reduced to the matrix at the top of
Figure 3. P is also certain that Q can smell the flowers and
that Q values outcomes as does P, so P model’s Q’s
decision situation at the second level of Figure 3. But P
also believes that Q thinks P cannot smell the flowers (P
only recently got over a cold, so does not expect Q to know
this, for example), so P thinks Q will think P’s choice will
amount to randomly picking an action, represented at the
bottom level of Figure 3 as (probability of choosing A,
probability of choosing B).

A dynamic programming strategy, as used in RMM, the
Recursive Modeling Method (Gmytrasiewicz and Durfee,
1995), can solve this decision problem by propagating
from the leaves upward. P will believe that Q will take
action A (since with P acting randomly Q will expect an
average payoff of 1/2 for action A and 0 for action B), and
so P would maximize its expected payoff by taking action
B (with payoff 0, compared to expected payoff of -1 for
action A).

Somehow, this outcome seems unsatisfactory. After all,
P seemingly knows more about Q, and yet Q is likely to get
the higher payoff. It is to Q’s advantage that it is seen as

Q

-12P
A

B

-1

2SOA

2

0 0

00
1

A B

The payoff to P depends on its choice, the choice of Q, and the state
of affairs (SOA). To decide on its choice, it should use whatever it
knows to anticipate the choice of Q, and thus coordinate with that

choice.

Figure 2: Coordination Problem

ignorant by P!1 If P were to ignore its beliefs in Q’s
ignorance, then it might be more inclined to take action A,
but of course if P’s model is accurate, any increased
probability in its taking action A only decreases P’s
expected payoff. It also drags Q’s payoff down with it, but
we assume that P would not care about this. (If misery
loves company, then P might behave this way, but this
implies that there is more to P’s perceived payoffs that
should be represented in its matrix.)

P might be able to improve its position if it were to
(justifiably) change its knowledge state. For example, it
might tell Q that it is now able to smell the flowers, which
means that its model of Q’s model of P should change.
Now P’s model of Q’s model of P might include P’s payoff
matrix, which in turn means that P would have a model of
Q’s model of P’s model of Q (at least) to predict how Q
will think P will react to what it thinks Q will do!
Obviously, the deeper P’s knowledge about Q’s knowledge
about P’s knowledge about the more extensive the
representation and computation.

And the size of the nested models might not only be due
to depth of knowledge but also breadth of possibilities. For
example, what if some agents in the world were allergic to
flowers? For such agents, the best outcome is if both
agents choose the door with the flowers, so that the flowers
are removed from the vicinity! Perhaps P is uncertain
about whether Q is allergic or not, and about whether Q

1 This is not unlike how seemingly oblivious drivers are
given the right of way on the highway by more aware
and defensive drivers.

will think that P is allergic or not, and perhaps P even has
beliefs deeper than that, yielding a representation such as
the one in Figure 4.

The uncertainty P has (or thinks Q has, or thinks Q
thinks P has...) is represented in the branches. P believes
that Q is not allergic to flowers with probability p 1. P
believes that, if Q is not allergic, then Q will believe P is
not allergic with probability p2, but if Q is allergic, then it
will believe P is not allergic with the possibly different
probability p3. And so on. In general, the branching factor
can be much larger than 2. Moreover, the contents of the
payoff matrices and the values of the probabilities can vary
in principle, limited only by the knowledge available to an
agent (since the hierarchy summarizes an agent’s
coordination knowledge). While in theory using all of the
knowledge it has or might get will always lead to better (or
at least no worse) decisions for an agent,2 the costs of
acquiring and using the knowledge must be considered to
make the approach practical.

Keeping Coordination Practical

Using RMM as an example, consider the amount of
reasoning that an agent might have to do. To consider each
of the combinations of choices that the agents have, an
agent needs to identify the choices (actions, plans) for each

2 Recall, though, that while knowing more is better, it is
not necessarily better to be known as knowing more.
That is, it might be advantageous to be seen by others as
being ignorant. There can be power in using knowledge
that others do not know that you have! It is unlikely
that the reverse (of not using knowledge that others
know you have) will be a good idea.

Q

P
A

B

A B

-1 2

0 0

P

Q
A

B

A B

-1 2

0 0

(1/2, 1/2)
P models its decision situation (at the top), the situation it believes
that Q is facing (in the middle), and the knowledge that it thinks

that Q has of P (at the bottom). This last knowledge indicates that P
thinks that Q thinks that P is equally likely to do A or B.

Figure 3: An Example RMM Hierarchy

Q

P
A

B

A B

-1 2

0 0

P

Q
A

B

A B

2 0
0 0

P

Q
A

B

A B

-1 2

0 0

Q

P
A

B

A B

2 0

0 0

Q

P
A

B

A B

-1 2

0 0

Q

P
A

B

A B

2 0

0 0

Q

P
A

B

A B

-1 2

0 0

p2 1-p2

p1
1-p1

1-p3p3

In making its decision (top), P considers it possible that Q could see
the situation in either of 2 ways (second level), and that for each of

these Q will believe P could see the situation in either of 2 ways (third
level), and so on.

Figure 4: A Branchy Nested Model

of the agents, and the outcomes (utilities) of each
combination of choices for each of the possible
environments. If we assume each of the n agents has c
choices, then there are cn choices to identify for an
environment. Since each choice can correspond to a
planned course of action on the part of an agent, that means
there are cn plans to formulate. And for each of the cn

combinations of plans, the outcome(s) of executing the
plan combination must be predicted and assigned values
(utilities). The above calculations only correspond to one
view of the interaction by an agent. Given nested views of
how an agent thinks that others think ... that others think
about the interaction, there could be bl such models to
construct, where b is the branching factor caused by
uncertainty (such as about allergies in the running
example) and l is the depth of the nesting of models
available to the agent.

As an agent knows more, therefore, it must in general do
exponentially more computation. Since all practical agents
have limits to the resources they can apply to make
coordination decisions, it is in an agent’s (and an agent
designer’s) best interests to maintain as much ignorance
about the world and the agents that populate it as it can,
while knowing enough to coordinate acceptably well with
others. If we consider all the possible knowledge, as

outlined within the RMM framework, there are numerous
places where we could hope to trim down the knowledge
being used (Figure 5). We can be selective about the nested
knowledge we use, or even obviate its use by exploiting
communication (bottom of the figure) We can simplify the
utility calculations, trim down the number of options
evaluated for each agent, or decrease the frequency of
coordination decision making by coordinating over longer-
lived choices (middle of figure). We can even reduce the
dimensionality of an interaction by ignoring agents or
viewing groups of agents as individuals (top of figure). In
short, by considering places where an agent can simplify its
coordination task by being selectively ignorant, we can
make coordination practical. In the remainder of this
article, I examine these strategies for practical coordination
in more detail, considering examples of such methods. To
provide a framework for the discussion, I will be working
from the bottom of Figure 5 upward.

Limited Use of Nested Models

One method of keeping the computation in check is to
prune away portions of the nested models, a technique
familiar in minimax algorithms for game-playing
programs. Pruning nested knowledge is somewhat

• Treating multiple agents as
one

• Selective search among
choices

• Limiting possible choices
• Increasing longevity of

choices
• Simplifying utility

computations
• Communication to reduce

model depth and breadth
• Selectivity about knowledge

R’s choices

alternative models
of others, models
of their models,

etc.
P

’s
 c

h
o

ic
es

The outcome of P's actions depend on the actions of the other agents (Q and R in this figure, but in general this is n-dimensional). Anticipating their
actions can require nested models of how they see the situation, how they think others see the situation, how they think others think that others see
the situation, and so on. Making this tractable means limiting the number of nested models to reason over and decreasing the number of action

combinations that P must consider.

Figure 5: Strategies for Making Coordination Practical

different from game-playing reasoning, however, because
unlike the latter which hypothesizes sequential possible
physical game states, the nested knowledge captures what
amounts to simultaneous perspectives on the parts of the
agents. Thus, in game-playing, undesirable states can be
pruned because rational agents will not act to get into those
states. With nested models, however, the models exist
regardless of their desirability; ignoring an unpleasant fact
will not make it go away. For example, in the case where
P believes Q does not know that P can smell the flowers, P
might choose to ignore what it knows about Q, treating Q
as equally likely to take either action (which is a natural
way of terminating the recursive nesting when an agent is
seen to have no information at a deeper level). If this were
true, then P would take action A with an expected payoff
of 1/2. But, in reality, action A will give P a payoff of -1,
and P knew this but chose to ignore it.

The strategy, therefore, is to prune away possible nested
knowledge that is not expected to change the strategy
choice of the agent doing the reasoning (Russell & Wefald,
1991), rather than pruning undesirable states per se. For
example, in Figure 4 at the second level right-hand side, Q,
if allergic, has a weakly dominating strategy of taking
action A (the only way it would ever do B is if it were
convinced that A was going to do B, and even then Q
would be indifferent between A and B). Thus, P might
choose to not search down deeper in that branch, since it is
unlikely that anything it discovers down there will change
what it will expect “allergic-Q” to do. Our preliminary
results employing such a strategy indicate that this
approach holds promise, even for simple application
domains. Vidal & Durfee (1995; 1996) show this in a
simple pursuit task, where four “predator” agents placed in
a grid world must surround a “prey.” Given an uneven
distribution of predators, they have to decide which will
block the prey from which direction. An individual
predator will thus seek to occupy the closest unoccupied
side, but to decide which sides are likely candidates it
needs to determine the sides that other predators are likely
to occupy. But since this in turn depends on what sides
they think others will occupy, and so on, the nesting can be
fairly complicated. By using heuristic estimates (based on
previous experience) about the impact of expanding
different parts of the nested models, the agents in this
problem domain can achieve a high level of cooperative
behavior using only a judiciously-chosen subset of the
nested models.

Using Regularities in Nested Models

Another way of simplifying the nested model
computations is to take advantage of patterns in the nested
structure to avoid rederiving the same information in
different places. Figure 4 illustrates how regularities in
knowledge can lead to patterns of similar models. Of
course, if the knowledge is finite, then eventually some
patterns must be broken. But a powerful simplifying
assumption can be to purposely project the models beyond

finitely available knowledge to infinite levels.1 When this
is done, fixpoint solutions can be discovered using often
much simpler computational means. This has been a
standard approach in game theory, for example, in
identifying equilibrium solutions. Using the simple view
of Figure 3 as an example, P might simplify its model by
assuming that it and Q model each other identically, and
that this is common knowledge (that is, that P knows that Q
knows that P knows that Q knows that ... P and Q model
each other identically, where the ... can go on infinitely
deeply). Then, in the world where P smells and wants to
see the flowers, it models Q as doing the same, and models
Q as thinking P will do the same, and so on. The
symmetric nature of this situation leads to P believing that
it and Q will come up with identical strategies. In this
case, for example, P might conclude that it and Q will have
mixed strategies of taking action A with probability 1/3
and B with probability 2/3, yielding an expected payoff to
each of 1/3.

Exploiting Observations

So far, we have considered how an agent, with its
particular nested models about the coordination situation,
can make its coordination reasoning more practical by
transforming its nested knowledge into an approximate
form that might require less reasoning effort. An
extremely common means for transforming knowledge
states, however, is to change the knowledge that agents
have through observation.

Observations, for example, can be used for plan
recognition. Based on the evidence provided by
observations of another agent's actions, an agent can
hypothesize the likely larger plans of which those actions
are part (e.g., (Huber & Durfee, 1995; 1996)). With such
hypotheses, the agent can then anticipate the future actions
of the other agent, as being those that continue the inferred
plans. When actions and plans are sufficiently
unambiguous, this can obviate the need for nested models.

Observations also provide evidence to learning
mechanisms so that agents can learn what actions others
are prone to take in various situations. The literature on this
subject is growing rapidly (e.g., (Weiss & Sen, 1996)). A
fundamental challenge in this field is correlated with the
notion of nested models: namely, while one agent is
learning about others, they in turn are learning about it.
This means that what an agent is learning is a moving
target, since every time it learns something that changes
how it responds to some situation(s), its new responses can
in turn lead others to respond differently to the situation(s).
This in turn could lead to the agent learning to respond yet
differently, and so on.

1 Of course, if the agents truly do have infinitely deep
knowledge, then this is not a simplifying assumption but
rather a model of their true knowledge state. We
address shortly the question of how such a knowledge
state might come about.

It is conceivable that, in such circumstances, the learning
never ends. In our running example, for instance, if P (who
likes flowers) is paired up with a Q who is allergic in this
game repeatedly, we can intuitively picture Q seeking to
match P's choice (to eliminate the flowers from the world)
while P seeks to make a different choice than Q. They
could chase each other around the four combinations of
actions ad infinitum, as first one changes, then the other
does.

In general, a system reaches an equilibrium where the
improvements it continues to make through learning are
offset by the degradation to what it has already learned due
to the volatility in what other agents are doing due to their
learning. This notion is illustrated in Error! Reference
source not found. which plots the error rate of an agent at
time t+1 given its error rate at time t, based on the
combined learning capability (which tends to decrease
error) and volatility (which tends to increase error). By
characterizing learning capability and volatility (based on
how coupled agents' actions are) for particular problems,
we can build expectations of how practical it will be to use
learning for coordination, as well as whether the system as
a whole can ever learn to eliminate all errors (Vidal &
Durfee, 1998).

Using Communication

Communication is commonly used to obviate the need
for nested models. For example, one approach has been for
agents to explicitly tell each other about their intended
actions (or at least about constraints on what those actions

might be). Such an approach has formed the backbone of
work in multiagent planning, for example, where agents
separately form their own plans, and then communicate to
identify possible conflicts or cooperative opportunities
(Corkill, 1979; Georgeff, 1983; Durfee, 1988; Ephrati &
Rosenschein, 1994).

The benefits of such communication are clear when
captured in a nested model framework like RMM. By
revealing information about itself, an agent simplifies its
models of others, either by reducing uncertainty about the
world (and hence reducing the branching factor) or
uncertainty about what others will be doing (hence
reducing the requisite modeling depth). For example, if P
considers telling Q “I will do A,” then P would model the
resultant mental situation as being truncated, since it knows
exactly that Q will consequently expect P to pursue A
(assuming that the message is certain to be delivered and
believed (Gmytrasiewicz & Durfee, 1993)).
 Looking at the resultant model (Figure 7), P can decide
that its expected payoff in the knowledge state after
sending the message is dependent on p1. Specifically, it is
(3p1-1). Clearly, being the first to commit to doing A is a
good idea if Q is unlikely to be allergic, and a bad idea if Q
is allergic. With probabilities in between, the question of
whether the message is good for P depends on what P’s
expected payoff was before sending it, and what it is
afterward. P should send messages that cause the largest
positive gains in its expected utility (Gmytrasiewicz et al,
1991).

Obviously, it might not be possible (or considered “fair”)
for P simply to claim action A by being first. Nonetheless,
communication can still benefit the agents if they have
correlated preferences. That is, even with some
randomization thrown in about who gets first choice, they
can still avoid mutually poor outcomes (such as both
choosing A, if neither is allergic). They could, for example,
agree to abide by the flip of a fair coin, such that each now

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

ed
itt

edit

learning
volatility

editt2

The error rate at time t+1 based on the error rate at time t
and the sum of the learning and volatility curves. The

initially high error rate decreases, but cannot fall below .44
because further learning by this agent is offset by the fact

that learning by other agents renders obsolete some things
that were previously learned.

Figure 6: Error Progression.

Q

P
A

B

A B

-1 2

0 0

P

Q
A

B

A B

2 0

0 0

P

Q
A

B

A B

-1 2

0 0

p1
1-p1

When P tells Q that it will do action A, P can now
truncate its model, since it need not reason about what

Q will think P will do.

Figure 7: Truncated Hierarchy from
C o m m u n i c a t i o n

has an expected utility of 1, which is better than 1/3 which
is what they would expect to get without communication.1

And the case is even more obvious when both agents are
allergic, where they both want to take the same action and
get the same payoff! When possible, therefore,
communication is often a very practical and effective tool
for the agent coordination process!

Epistemic States for Well-Defined
Coordination

In the previous section, we saw how a communicative act
could be in the self-interest of an individual. Often,
however, designers of multiagent systems also want to be
able to claim particular properties for the collective
decisions of the agents, such as stability, efficiency, and
fairness (Durfee & Rosenschein, 1994). Thus,
communication might be expected to change the agents’
states of knowledge, as we have seen, to reach a state of
knowledge from which certain properties must emerge.

For example, a recent trend in game-theoretic research
has been to revisit notions of decision-theoretic rationality
as embodied in game-playing agents, to understand better
how rational agents would actually play a game, as
opposed to analyzing a game independently of the agents,
assuming basic rationality and common knowledge among
the agents. Aumann and Brandenberger (1995), for
example, investigate epistemic conditions for achieving
Nash equilibria that is, what must agents know if we are
to be assured that their decisions will constitute a Nash
equilibrium? While their analyses are too involved to
detail here, and introduce problematic notions of common
knowledge for cases involving more than two agents, we
can get a flavor of how their ideas dovetail into those of AI
by considering our ongoing two-agent case.

Recall that, in the previous subsection, P recognized that
by telling Q about P’s intention to take action A, P could
increase its own expected payoff. Moreover, in this case, P
got this higher payoff by doing what it had told Q it would
do (it did not need to lie). If P is correct in its knowledge
of Q’s payoff matrices, of Q’s rationality, and of Q’s
correctly receiving P’s message, then P not only will take
its part in a Nash equilibrium, but in fact knows that the
agents are in a Nash equilibrium if it has itself been
rational in choosing its action and truthful in revealing it.

A challenge of course lies in some of these nested
knowledge assumptions. For example, P’s projected
knowledge state after sending the message (Figure 7) is
predicated on knowing that, at the time of the door-opening
decision, Q will have received, decoded, and incorporated
P’s message. P could require that Q acknowledge the

1 That is, by communicating the agents can be assured
of taking complementary actions (one A, the other B), so
one is sure of opening the right door (payoff of 2) and
the other will get a payoff of 0. If each is equally likely
to be in each of these circumstances, each has an
expected (average) payoff of 1.

message, and this acknowledgment could suffice, although
more interesting kinds of coordination requiring infinitely
nested (common) knowledge might require infinitely many
acknowledgments in principle (Fagin et al, 1995).
Alternatively, P could have more models of Q (for the
combinations of hear/not-hear and allergic/not-allergic)
with their associated probabilities.

As we have seen, it is often advantageous to agents if
they can attain (and possibly help others attain) particular
states of knowledge. When particular kinds of knowledge
states tend to be advantageous repeatedly, agents can
discover patterns of communication that tend to lead to
these states. These patterns of communication form the
basis of protocols. Practical coordination that is predicated
upon communication usually embeds well-defined
protocols into the agents to streamline the process of
achieving knowledge states that are desirable for system-
wide properties. Substantial efforts on the parts of
multiagent system designers have gone into formulating,
implementing, and testing such protocols (e.g. KQML
(Cohen & Levesque, 1995, Mayfield et al, 1996)), so that
agents reach agreement on issues such as task assignments
(e.g. (Smith 1980, Rosenschein & Zlotkin, 1994)) and
coordinated plans (e. g. (Durfee 1988; Ephrati &
Rosenschein, 1994)).

Finally, is should be mentioned that overuse of protocols
can be counter-productive. A protocol that keeps agents
informed about each other is generally helpful, but it could
happen that, when one agent changes its plans due to
unexpected events, it tells others, who adjust their plans,
and tell yet others who adjust their plans, and so on.
Sometimes, this kind of chain reaction can trigger a large
amount of communication and coordination reasoning, and
therefore it only makes sense to do if the precipitating
change was significant. Thus, part of the practical use of
protocols is in deciding when it is better to say nothing at
all (Durfee and Lesser, 1988).

Constraining Choices

So far, we have focused on methods for keeping the nested
modeling tractable by using internal reasoning, learning, or
selective communication to reduce the depth and/or
breadth of the modeling space. Even if we were to reduce
these drastically, however, it would not help if what little
remained involved huge interaction representations. That
is, in the form we’ve been focusing on, reducing the
number of nested matrices will not help much if
constructing even one such matrix is intractable. Recall
that, in the worst case, every possible combination of the c
choices for the n agents must be evaluated, meaning cn

evaluations.
Certainly, if the space is to be explored exhaustively, the

set of choices must be finite. By constraining choices
available to agents further, we can simplify the
representations of interactions. In the most degenerate case,
where each agent is given a single specific capability, an
interaction is a matrix with only a single element (c=1 so cn

= 1)! This is an “assembly line” model of multiagent
systems.

Organizational Structures
The idea of constraining the choices of agents has been

part of multiagent systems for well over a decade in work
that has tried to use notions of organizations and
organizational roles as guidelines for coordinating agents
(Corkill 1983). A description of an organization captures
the preferences and responsibilities of its members,
providing strong clues to the choices of actions the
members might make. The organization might also impose
prohibitions on certain kinds of actions, both for particular
niches in the organization and for all members of the
organization.1 By embedding agents within an
organization, their decisions are simplified (they have
fewer choices and know that others have fewer options)
and their dynamic coordination activities can be better
directed. Among the challenges in designing an
organization is determining how to decompose tasks into
separate roles, so as to have reliable, inexpensive, and
effective performance on the part of the organization.

For example, consider hierarchical organizations for
tasks such as information gathering. Given a query to
answer, the query task can be decomposed and the
(independent) query subtasks assigned. Let’s define the
task granularity (γ) as the task execution time (τ) divided
by the communication delay (δ). Then, given γ, the total
number of primitive information gathering tasks (N), and
the number of tasks (m) assigned to each leaf of the
organization, we can derive the branching factor k for the
balanced tree that minimizes response time (So & Durfee,
1996):

T N k m
k l l m

l kl m
(, , ,)

() ()

()
γ

δ τ γ

δ τ γ
=

+ + + ≤

+ + >

 →

 →

1 1

2 1

In the above, l=logk (N/m), and is the number of levels in
the organization. The processing at the leaf level is simply
to execute the primitive tasks and send the results of each
back up the hierarchy. At the non-leaf levels, the agents
receive larger tasks from above, break them into k
subtasks, assign these subtasks sequentially to the k agents
below, and then as results are returned they are synthesized
(where integrating a received result requires τ time) and the
composite result is sent back up the hierarchy once it is
done.

Under this assumed organizational behavior, it is the
case that, for N=32, m=2, and any γ, k=4 outperforms k=2
and k=16. Even in the space of such simple hierarchical

1 Note that prohibitions across the entire population
equate to “conventions” or “social laws” (Shoham and
Tennenholtz, 1995) which correspond to a specialized
form of organization structure.

organizations as these, therefore, the detailed design of the
organization (the selection of parameter values for features
such as the number of subordinates per manager) balances
several considerations.

Organization and Runtime Coordination Codesign
The above organization analysis assumes that each agent

can reliably accomplish its task(s). A major challenge in
organization design, in fact, is to design reliable
organizations that can tolerate failures of some agents. To
increase reliability, we typically introduce redundancy
among the agents, so that each task is replicated at several
agents. To the degree of replication, the task can still get
done even if some agents fail. But redundancy also opens
the door to possible inefficiencies, as agents can duplicate
each others’ work in situations with few or no agent
failures. Duplication of effort can be avoided if agents are
able to coordinate dynamically at runtime, but this in turn
incurs overhead and assumes sophisticated agents. So an
important question in organization design is: How do
different organizations make demands on the sophistication
of agents that populate them?

To begin answering this question, we have defined o-
redundancy task assignment by a parent to child in a
tree-like organization as an assignment that tolerates the
failure of o children. For example, 1-redundancy task
assignment means that the organization is still assured of
succeeding even if one of the “children” agents of each of
the non-leaf agents fail. In a binary organization (k=2), 1-
redundant task assignment means that all of the agents are
responsible for all of the tasks, because in the worst case
(when only one of every two children survives), there is a
single “live” path to a single leaf! Since the failures are
random, every single such path must lead to success, so
every leaf agent will have every subtask. (See Figure 8 with
tasks label with letters a, b, c... Note that tasks get grouped
into subsets at deeper levels, where the ordering of subsets
might imply a preferred ordering of subtask execution.)
Fortunately, for larger values of k, redundancy need not be
quite so total! (See Figure 9, where a leaf agent does not
have all of the subtasks.)

For different levels of o-redundancy, along with the
previously described parameters, we can measure an
organization’s response time given that particular agents
fail. We here define the agent failure rate as the proportion
of agents that fail (although a richer model of independent
failures is used elsewhere (Durfee & So, 1997)). Thus,
with a failure rate of .4, an organization with 5 agents will
have 2 failed agents. Whether the organization succeeds
can depend on which of the agents fail (note that any
simple hierarchical organization like the ones we have
examined will fail if the top agent fails), and in some cases,
the failure rate might force the violation of the degree of
redundancy in the organization, and so the organization
will be assured of failing to respond at all.

Thus, a particular organization will not have a
deterministic response time, but rather will have a
distribution over performance times, depending on which

agents fail and how the surviving agents order their tasks.
If we assume random task ordering, we get behavior
exemplified in Figure 8 and Figure 9. (These figures do not
include response times for failed instances of
organizations; for more on this see (Durfee & So, 1997).)
Note how, in the first case (Figure 8), the distribution over
runtimes (shaded region) narrows with increasing failure
rate. This is because, as more agents fail, the differences in
performance due to alternative orderings disappears since
ultimately enough agents are gone that the remaining ones
must complete all of their tasks anyway. This is not so in
the second case (Figure 9); having less redundancy at the
leaf agents means the performance distribution will be
narrower, but it tends to widen with failures since there can
be more reliance on results from agents who get their tasks
later (assignments are made left to right). Broader
distributions represent opportunities for improvements
through runtime coordination (Durfee & So, 1997), which
helps agents coordinate their orderings to do better than
“random.” The second case also has a higher probability of
completion for low agent failure rates, but does not degrade
as gracefully as the first case as agent failure rate increases,
as shown by the solid line in the graph giving completion
probability (scale on the right side of the graphs).

The design of organizations is thus a balancing act
between factors such as reliability, response time, and
investment in runtime coordination technologies for the
agents that populate the organization (Durfee & So, 1997).
Again, recall that by embedding agents within an
organization, their decisions are simplified (they have
fewer choices and know that others have fewer options)
and their dynamic coordination activities can be better
directed.

Preference Simplification and Selective Search

As we have seen, overly constraining choices will impact
the flexibility of agents to accommodate less than ideal
circumstances, such as the failure of some agents within an
organization. There are therefore limits to how much we
want to make coordination practical by tying the hands of
our agents - by keeping c small so that cn stays small.

In this section we consider alternative strategies, such as
only selectively examining some of the cn combinations, or
even just keeping n small. If some agents can be safely
ignored, for example, the interaction can be greatly
simplified. To say that an agent can be ignored means that
the choices made by the agent have no (or negligible)
impact on the perceived payoff that another gets from its
choice of actions. Obviously, one way of realizing this is
to structure the multiagent system in a way that maximizes
independence, such as creating organizations with
independent roles (e.g. no redundancy) so that agents
would not need to consider what others had or would be
doing when making their own decisions. Such systems
have been called completely accurate, independent systems
(Lesser & Corkill, 1981).

In more open systems, imposing such structure can be
problematic, so alternative means are needed. One
fundamental approach is to simplify the agents’ preference
structure. Consider, for example, the following. In a robot
delivery task, a robot R is indifferent to where other robots
are, except when they are trying to be in the same place as
R is at the same time. Thus, if we consider R’s interaction
space, for most of the choice combinations, the payoff of
the choice combination is the same as R’s payoff for its

For: N=8, k=2, m=2, o=1, γ=2
((a-h))

((a-d)(e-h))

((ab)(cd)(ef)(gh))

((e-h)(a-d))

failure rate

completion prob
time

25

20

15

10

5

75

50

25

0

0 .2 .4 .6 .8

The organization (upper right) with 8 tasks overall (N=8), each non-leaf
has 2 children (k=2), each leaf does 2 tasks (m=2), tasks are assigned so

that even if 1 out of every pair of children fails, all the tasks still get
done (o=1). The graph shows how variance in execution time decreases
with greater agent failure rates, and how the probability of successful

overall task completion decreases (scale on right side of graph).

Figure 8: Binary Tree Organization

For: N=8, k=4, m=2, o=2, γ=2
((a-h))

((ab)(cd)(ef))

failure rate

time

25

20

15

10

5

75

50

25

0

0 .2 .4 .6 .8

The organization (upper right) with 8 tasks overall (N=8),
the one non-leaf has 4 children (k=4), each leaf does 2
tasks (m=2), tasks are assigned so that even if 2 out of
the four children fails, all the tasks still get done (o=2).

The graph shows how variance in execution time
decreases with greater agent failure rates, and how the

probability of successful overall task completion
decreases (scale on right side of graph).

Figure 9: Flat Tree Organization

individual choice, except for a few points where R’s payoff
is strongly negative (a collision!). Reasoning about its
choice of action, thus, could be viewed as prohibiting the
bad combinations and acting independently otherwise. The
notion of social laws (Shoham & Tennenholtz, 1995), for
example, has this flavor of prohibiting actions that lead to
failure states and otherwise allowing agents to ignore each
other.

Satisficing
An even greater simplification can arise if each agent has

only two levels of preference over outcomes of
choices good and no good. In effect, this reduces the
search for an optimal choice of action to a satisficing
search: as soon as a choice is found that is good, it is
pointless to enumerate and evaluate other choices.

These strategies presuppose that agents know what
choices to avoid. In some cases, off-line analyses of an
application domain can yield a set of prohibitions, as has
been done with social laws (Shoham & Tennenholtz,
1995). But runtime methods for searching for coordinated
choices can exploit simplified preferences greatly. For
example, in coordination approaches based on plan
merging (e.g., Georgeff, 1983;, Ephrati & Rosenschein,
1994; Durfee & Lesser, 1991), agents begin by assuming
that their choices are independent and thus each searches
for plans that look best locally. These are then merged to
detect conflicts, and if conflicts are found some agents
might replan or simply revise (such as insert
synchronization actions into) their original plans to remove
the problem. Thus, rather than enumerating the whole
interaction space (matrix), the agents selectively enumerate
portions of the space until a satisfactory combination of
local plans is found. Often, they perform a hill-climbing
search, beginning from their combination of
independently-derived local plans, and searching through
successive perturbations of those plans until a satisfactory
(conflict-free) combination is found (e.g., Durfee & Lesser,
1991).

This satisficing simplification of preferences to being
good (enough) and no good, reduces the coordination
process to a distributed constraint satisfaction problem
(Yokoo et al, 1992, Conry et al, 1991, Sycara et al, 1991),
where all satisfactory solutions are equally good. Much
work in multiagent systems has benefited from this kind of
simplification, taking advantage of algorithms for
constraint satisfaction search to solve, for example,
problems in distributed resource allocation and scheduling.
There might be many possible strategies for conducting
such a search, however, and the quality and cost of
coordination might well depend on adopting an appropriate
strategy given the current problem-solving context.

Negotiation
For example, in the application domain of distributed

meeting scheduling, there could be several strategies for
how agents go about searching through (negotiating over)

possible meeting times to propose to each other (Sen &
Durfee, 1995). Two (of many) possible strategies are to
simply move through the available times chronologically
and schedule a meeting as early as possible, or to find
larger portions of the calendar that are relatively free, and
then iteratively narrow down the times to find a meeting
time. These strategies lead to calendars that look different,
the latter tending to distribute meetings more evenly. In
turn, the evolution of a calendar with one of the strategies
eventually reaches a point where the other strategy
becomes the better (more cost-effective) choice for further
scheduling. As the calendar gets full toward the front from
as-soon-as-possible scheduling, a fit-in-sparse-space
strategy works better. As the fit-in-sparse-space strategy
tends to make the calendar evenly dense (so there really are
no spaces appreciably more sparse than others), the simpler
soon-as-possible strategy becomes more cost-effective.
Thus, not only does an agent’s choice of strategy for
searching the options impact the quality and cost of its
schedule, but the agent also must be capable of adapting its
strategy as circumstances change.

The iterative search through the space of joint decisions
that we have described has many of the features that most
people associate with the concept of negotiation. There are
many possible strategies for making negotiation practical
depending on the needs of an application, ranging from
simplifying the preferences and adapting the search
strategy (as outlined above), to simplifying the proposals
(for example, using prices to summarize agents’
current/future plans as in (Wellman, 1993; Lee & Durfee,
1995)), to using heuristics or past cases to generate new
proposals based on feedback about prior proposals as in
(Sycara 1989)), to exchanging intervals of proposals and
narrowing down to solutions, and so on. In fact, because
the term “negotiation” has been used to encompass so
many more specific strategies like those just mentioned,
the term has become much less technically meaningful; a
challenge for the community is to more carefully
characterize the different kinds of negotiation that have
been studied, possibly (as suggested in this article) by
focusing on how each kind attempts to make the
coordination problem tractable.

Hierarchical Elaboration of Choices

So far, we have discussed approaches where agents can
search through the space of individual actions to find good
joint actions, such as working their way through proposed
meeting times, and approaches where agents work within
longer-term organizational guidelines that focus their
behaviors. In fact, these strategies for coordination involve
agents making commitments at different levels (at the
schedule level versus at the organization level). Generally
speaking, agents can make commitments along a spectrum
of levels, which are differentiated mostly in terms of the
lifetime of the commitment (or the frequency with which
new commitments must be made) and in terms of the
number of agents involved in the commitment, as broadly

summarized in Figure 10. The frequency of coordination
decisions is conveyed in the left column (darker is more
frequent), along with the type of commitment and the time
scale and number of agents involved. The emphasis in
multiagent systems research is mostly in the areas “boxed”,
with the gray areas being less fully explored. The choice
of what kinds of commitment(s) agents should make to
each other depends on the frequency of coordination
activity, the requirements for coordination precision, the
tolerance of coordination costs, and the flexibility that
agents need to individually retain to cope with
environmental changes.

An ongoing objective of our work is to represent the
continuous spectrum of commitments in a single search

space, to allow agents to move among models of individual
and joint activity at different levels of (temporal)
abstraction. Thus, the search for coordinated activity
involves not only a search among alternatives at a
particular abstraction level for specifying choices, but in
fact a search through alternative levels of abstraction to
find models of agents/actions that balance the costs and
benefits of coordination appropriately.

For example, consider 2 robots doing deliveries as in
Figure 11 (left side). Since R1 always delivers to the top
destination, and R2 to the bottom one, one strategy for
coordinating is to statically assign resources (in this case,
regions that contain the doors are most important). This
leads to Figure 11 (right side), where R2 is always running
around the long way. This “organizational” solution
avoids any need for further coordination, but it can be
inefficient, especially when R1 is not using its door, since
R2 is still taking the long route.

For a particular delivery, R1 and R2 might consider their
time/space needs, and identify that pushing their activities
apart in space or time would suffice (Figure 12, left side).
With temporal resolution, R2 waits until R1 is done before
beginning to move to and through the central door. Or the
robots could use information from this more abstract level
to focus communication on exchanging more detailed
information about the trouble spots. They could resolve
the potential conflict at an intermediate level of abstraction;
temporal resolution has R2 begin once R1 has cleared the
door (Figure 12, middle column bottom). Or they could
communicate more details (Figure 12, right side), where
now R2 moves at the same time as R1, and stops just
before the door to let R1 pass through first. Clearly, this
last instance of coordination is crispest, but it is also the
most expensive to arrive at and the least tolerant of failure,
since the robots have less distance between them in
general, so less room to avoid collisions if they deviate
from planned paths.

Commitment Type

Permanent

Biology

Law

Organization

Plan

Schedule

Control

Number of Agents

Species

Societies

Groups

Individuals

Time Scale

Forever

Millennia

Centuries

Decades

Years

Months

Days

Hours

Minutes

Seconds
Subindividuals

As we work our way down, the time scale of
commitments decreases, as does the number of agents

participating in the commitment. The marked areas are
the parts of commitment space focused on in this article.

Figure 10: Commitment Spectrum

1

2

1

2

Robot 1 delivers objects between the solid square locations (it is at one of those in the figure). Robot 2 similarly delivers between the shaded
regions. One coordination decision could be to partition the space once and for all, such that each robot has complete control over its region

(shown on the right).

Figure 11: An Organizational Solution

This example illustrates that coordination can go on at
different abstraction levels, and that which level is right
can be very situation-dependent. Thus, it is important to
develop coordination techniques that can find the right
level of detail. Moreover, in terms of the framework laid
out in this paper of thinking about strategies for limiting
the knowledge being considered during coordination the
ability to represent situations abstractly is another way of
reducing the number of choices (and choice combinations)
being considered (lowers c in our earlier formulations).
Protocols that allow the incremental elaboration of choices,
moreover, can be based on such a representation, as
another means for selectively exploring (and ignoring)
options of agents (Durfee & Montgomery, 1991).

Of course, there are even more strategies for
coordination even in a simple domain such as the robot
delivery task. One interesting strategy is for the robots to
move up a level to see their tasks as part of a single, team
task. By doing so, they can recognize alternative
decompositions. For example, rather than decompose by
items to deliver, they could decompose by spatial areas,
leading to a solution where one robot picks up items at the
source locations and drops them off at the doorway, and
the other picks up at the doorway and delivers to the final

destination. By seeing themselves as part of one team, the
agents can coordinate to their mutual benefit (they can
cooperate).

Using Teams to Simplify Coordination

We turn to one final strategy for keeping coordination
practical that builds on both the ideas of using hierarchical
abstractions and of ignoring agents or treating multiple
agents as a single agent. Abstraction is a powerful tool for
reducing complexity; for tasks that admit to abstraction
such that subtasks can be elaborated independently,
hierarchical distributed problem solving can solve an
exponential problem in logarithmic time. That is, some
problems admit to hierarchical decomposition, such as the
Tower of Hanoi problem where solving the problem of
moving a stack of disks off of the disk that needs to be
moved can be solved separately from the problem of
restacking smaller disks on top of the moved disk (Korf,
1987; Knoblock, 1991). Multiagent problem solving can
construct a plan in logarithmic time,as long as the number
of agents to solve the problem can grow with increasingly
large problem sizes (Montgomery & Durfee, 1993).

1

2

1

2

decomp decomp

Treating coordination for only the next delivery, the agents represent their plans abstractly in terms of an x-y region over time. The most abstract
representations (upper left) overlap, leading either to moving their activities apart in space or time (working downward in the figure), or

exchanging more detailed views (moving to the right in the figure) to isolate more precisely where the conflicts could arise. At the most extreme
right, the agents exchange detailed movement plans, and coordinate by shifting one of them very slightly in time to avoid collision in the doorway.

Figure 12: Alternative Levels of Abstraction

Even when strong assumptions of subtask independence
do not hold, moreover, the use of abstraction can be
beneficial. For example, in coordinating 20 delivery
robots, having each communicate and coordinate with all
of the others directly can lead to paralysis as each is
overwhelmed with information. An alternative strategy is
to have the agents break into teams, such that team leaders
coordinate to divide (space and time) resources among the
teams, and team members divide their allotment among
themselves (Figure 13).

Because team members must summarize their requests
for team leaders, and then team leaders must pass revised
team constraints back to the members, the property of
subtask independence does not hold. Yet, despite this, as
illustrated for a particular case in Figure 14, the use of
team-level abstraction can allow coordination costs to grow
more slowly as the task becomes harder than if the
individuals had to coordinate with every other agent
(Montgomery & Durfee, 1993).

Summary and Future Work

To summarize, what we have seen is that, considering all
of the knowledge that an agent might have, completely
thoughtful coordination might be impractical for most
applications. Making coordination practical therefore
means finding ways to not use some of the possible
knowledge---to either be, or pretend to be, blissfully
ignorant about some aspects of the multiagent situation
(Figure 15). I would claim, in fact, that the bulk of
coordination research has been in developing techniques to
do exactly that. The large number of techniques out there
seems to me to be a reflection of the number of ways that
people have found to ignore, simplify, or implicitly design
away aspects of agent models to make coordination
tractable. Different application domains have tended to be
sensitive to ignorance of different things; hence, in general

coordination techniques appear to be tied to application
domains.

My hope is that this is really not the case, but that the
coordination techniques are tied instead to what is safe to
ignore in different domains. By characterizing
coordination techniques in terms of how they reckon with
the potential intractability of the coordination task, as I
have done here with a small (shamelessly biased) subset of
techniques, I hope to encourage further examination of
previous and ongoing work (of which there is too much to
comprehensively list) to understand it not in terms of how
techniques match a particular application domain, but
rather how they fit a class of domains that admit to---or
even thrive on---certain kinds of ignorance that allow
coordination to be practical.

1

3

2

54

7

9

8
1 0

6 1 1
1 2

1 3

1 4

1 8

1 6
1 7

1 9

1 5

2 0

Nodes are clustered into 4 teams, and one member of each team acts as
a "leader" and coordinates with the leaders of the other teams.

Figure 13: Example Team Hierarchy

B
B

B

B
B

B
B

B

B

B

J
J

J
J

J

J J J J
J

1 2 3 4 5 6 7 8 9 10
0

100

200

300

400

500

600

T
o

ta
l T

im
e

Number of Packages

B Individuals
J Teams

The total time to complete deliveries is plotted as the number of packages
to be delivered (where their start and destination locations are randomly

generated) grows. With a small number of deliveries, it is faster for agents
to coordinate as individuals, since the number of potential conflicts

(collisions) is small, than to incur the overhead of working through a team
hierarchy. However, as the number of deliveries rises, it eventually

becomes more cost effective to decouple much of the search by using
teams despite the added overhead.

Figure 14: Experimental Results on Team
D e l i v e r i e s

Further Reading

Computational approaches to coordination among artificial
intelligence systems have been a focus of work in the
distributed artificial intelligence and multi-agent systems
community for many years. Numerous collections of
research results in the field exist, ranging from classic
papers (Bond & Gasser, 1988) to the papers in the
International Conferences on Multi-Agent Systems (Lesser,
1995; Takoro, 1996; Demazeau, 1998) and the
Autonomous Agents conferences (Johnson, 1997; Sycara
& Wooldridge, 1998). There are in-depth treatments on the
design of mechanisms that lead to multiagent systems that
exhibit desirable properties (e.g., Rosenschein & Zlotkin,
1994), on computational organization theory, (e.g.,
Prietula, et al, 1998), and on theories of nested agent
knowledge (Fagin, et al., 1995). Recently, the field has
matured to the point where textbook-level treatments have
begun to appear (O'Hare & Jennings, 1996; Weiss, 1998),
and a journal entitled Autonomous Agents and Multi-
Agent Systems is now being published.

Acknowledgments

My thanks to my current and former students, whose
investigations have contributed important pieces to the
overall puzzle still taking shape in this article. Their names
are sprinkled liberally in the references that follow. Piotr
Gmytrasiewicz and Sandip Sen specifically gave helpful
suggestions about this article. This article is a revised and
extended version of an invited paper presented at the
International Conference on Multi-Agent Systems
(ICMAS) in 1995. I would like to thank my colleagues in
Israel---Jeff Rosenschein, Sarit Kraus, and Moshe
Tennenholtz---for feedback on the early formulation of this
paper, and members of the MAS community at large since
ICMAS-95 for their thoughts.

References

Aumann, R. and Brandenberger, A. 1995. Epistemic
Conditions for Nash Equilibrium. Econometr ica
63(5):1161-1180.

Q’s
 c

hoic
es

P
’s

 c
h

o
ic

es

R’s choices
Restrictions imposed on choices
(organizational constraints)

Meta-level reasoning to prune nested models

Messages to truncate hierarchy

Messages to reduce uncertainty

Messages to assure epistemic state

Selective construction of choices
through adaptive search bias

selective
enumeration
of outcomes/
utilities

 simplified
preferences

Selective expansion of choice sets
using hierarchical communication

Reduction in dimensionality
through team abstractions

alternative models
of others, models
of their models,

etc.

A summary of the techniques described for making coordination more practical, indicating what parts of the coordination problem they affect .

Figure 15: Strategies for Practical Coordination

Bond, A. H. and Gasser, L. (editors) 1988. Readings in
Distributed Artificial Intelligence. Morgan Kaufmann, San
Mateo, CA.

Cohen, P. R. and Levesque, H. J.. 1995. Communicative
Actions for Artificial Agents. Proceedings of the First
International Conference on Multi-Agent Systems, pages
65-72, San Francisco, CA. AAAI Press.

Conry, S. E., Kuwabara, K., Lesser, V. R., and Meyer, R.
A. 1991. Multistage Negotiation for Distributed Constraint
Satisfaction. IEEE Transactions on Systems, Man, and
Cybernetics SMC-21(6):1462-1477, November 1991.

Corkill, D.D. 1979. Hierarchical Planning in a Distributed
Environment. Proceedings of the Sixth International Joint
Conference on Artificial Intelligence, pages 168-175,
Cambridge, MA.

Corkill, D. D. 1983. A Framework for Organizational
Self-Design in Distributed Problem Solving Networks. Ph.
D. thesis, University of Massachusetts, 1983.

Demazeau, Y. (editor) 1998. Proceedings of the Third
International Conference on Multi-Agent Systems. Paris,
France. IEEE Computer Society Press.

Durfee, E. H. 1988. Coordination of Distributed Problem
Solvers. Kluwer Academic Publishers, Boston MA.

Durfee, E. H. and Lesser, V. R. 1988. “Predictability
Versus Responsiveness: Coordinating Problem Solvers in
Dynamic Domains.” In Proceedings of the Seventh
National Conference on Artificial Intelligence , pages 66--
71, August.

Durfee, E. H., and Lesser, V. R. 1991. Partial Global
Planning: A Coordination Framework for Distributed
Hypothesis Formation. IEEE Transactions on Systems,
Man, and Cybernetics, Special Issue on Distributed Sensor
Networks, SMC-21(5):1167-1183, September 1991.

Durfee, E.H., and Montgomery, T.A. 1991. Coordination
as Distributed Search in a Hierarchical Behavior Space.
IEEE Transactions on Systems, Man, and Cybernetics,
SMC-21(6):1363-1378

Durfee, E. H., and Rosenschein, J.S. 1994. Distributed
Problem Solving and Multi-Agent Systems: Comparisons
and Examples. Proceedings of the Thirteenth International
Distributed Artificial Intelligence Workshop, pages 94-104,
July 1994.

Durfee, E. H., and So, Y-P. 1997. The Effects of Runtime
Coordination Strategies Within Static Organizations.
Proceedings of the Fifteenth International Joint

Conference on Artificial Intelligence (IJCAI97), August
1997.

Ephrati, E. and Rosenschein, J. S. 1994. Divide and
Conquer in Multi-Agent Planning. Proceedings of the
Twelfth National Conference. on Artificial Intelligence,
pages 375-380.

Fagin, R., Halpern, J. Y., Moses, Y., and Vardi, M. Y.
1995. Reasoning about Knowledge. The MIT Press,
Cambridge, MA.

Georgeff, M. 1983. Communication and Interaction in
Multi-Agent Planning. Proceedings of the Third National
Conference on Artificial Intelligence, pages 125-129,
Washington DC.

Gmytrasiewicz, P. J., Durfee, E. H., and Wehe, D. K. 1991.
The Utility of Communication in Coordinating Intelligent
Agents. Proceedings of the Ninth National Conference on
Artificial Intelligence, pages 166-172.

Gmytrasiewicz, P.J., and Durfee, E.H. 1993. Toward a
Theory of Honesty and Trust Among Communicating
Autonomous Agents. Group Decision and Negotiation
2:237-258.

Gmytrasiewicz, P.J., and Durfee, E. H. 1995. A Rigorous,
Operational Formalization of Recursive Modeling.
Proceedings of the First International Conference on
Multi-Agent Systems, pages 125-132, San Francisco, CA.
AAAI Press.

Huber, M., and Durfee, E. H. 1995. Deciding when to
commit to action during observation-based coordination.
Proceedings of the First International Conference on
Multi-Agent Systems, pages 163-170, San Francisco, CA.
AAAI Press.

Huber, M., and Durfee, E. H. 1996. An Initial Assessment
of Plan-Recognition-Based Coordination for Multi-Agent
Teams. Proceedings of the Second International
Conference on Multi-Agent Systems, pages 126-133,
Kyoto, Japan. AAAI Press.

Johnson, W. L. (editor) 1997. Proceedings of the First
International Conference on Autonomous Agents. Marina
del Rey, CA. ACM Press.

Knoblock, C. A. 1991. Search reduction in hierarchical
problem solving. In Proceedings of the National
Conference on Artificial Intelligence , Anaheim CA. AAAI
Press.

Korf, R. E. 1987. Planning as search: A qualitative
approach. Artificial Intelligence 33(1):65-88.

Lee, J., and Durfee, E. H. 1995. A Microeconomic
Approach to Intelligent Resource Sharing in Multiagent
Systems. Proceedings of the First International
Conference on Multi-Agent Systems , page 457, San
Francisco, CA. AAAI Press.

Lesser, V. R. (editor) 1995. Proceedings of the First
International Conference on Multi-Agent Systems. San
Francisco, CA. AAAI Press.
Lesser, V. R., and Corkill, D. D. 1981. Functionally
Accurate, Cooperative Distributed Systems. IEEE Trans.
on System, Man, and Cybernetics SMC-11(1):81-96.

Mayfield, J., Labrou, Y., and Finin, T. 1996. Evaluation of
KQML as an Agent Communication Language. In M.
Wooldridge, J. Muller, and M. Tambe (eds.) Intelligent
Agents, volume II,, Springer-Verlag, 1996.

Montgomery, T.A., and Durfee, E.H. 1993. Search
Reduction in Hierarchical Distributed Problem Solving.
Group Decision and Negotiation 2:301-317.

O'Hare, G. M. P. and Jennings, N. R. (editors) 1996.
Foundations of Distributed Artificial Intelligence. Wiley.

Prietula, M. J., Carley, K. M., and Gasser, L. (editors)
1998. Simulating Organizations. AAAI Press/MIT Press.

Rosenschein, J. S., and Zlotkin, G. 1994. Rules of
Encounter: Designing Conventions for Automated
Negotiation among Computers. The MIT Press,
Cambridge, MA.

Russell, S., and Wefald, E. 1991. Do The Right Thing.
Cambridge, MA: The MIT Press.

Sen, S., and Durfee, E. H. 1995. Unsupervised Surrogate
Agents and Search Bias Change in Flexible Distributed
Scheduling. Proceedings of the First International
Conference on Multi-Agent Systems, pages 336-343, San
Francisco, CA. AAAI Press.

Shoham, Y., and Tennenholtz, M. 1995. On Social Laws
for Artificial Agent Societies: Off-Line Design. Artificial
Intelligence 73(1):231-252.

Smith, R. G. 1980. The Contract Net Protocol: High-Level
Communication and Control in a Distributed Problem
Solver. IEEE Transactions on Computers, C-29(12):1104-
1113.

So, Y-P., and Durfee, E.H. 1996. Designing Tree-
Structured Organizations for Computational Agents.
Computational and Mathematical Organization Theory
2(3):219-246.

Sycara, K. 1989. Multiagent Compromise via Negotiation.
Distributed Artificial Intelligence, Vol II, L. Gasser and M.
Huhns (eds.), Pittman, London.

Sycara, K., Roth, S., Sadeh, N., and Fox, M. Distributed
Constrained Heuristic Search. IEEE Transactions on
Systems, Man, and Cybernetics SMC-21(6):1446-1461,
November 1991.

Sycara, K. P., and Wooldridge, M. (editors) 1998.
Proceedings of the Second International Conference on
Autonomous Agents. Minneapolis, MN. ACM Press.

Takoro, M. (editor) 1996. Proceedings of the Second
International Conference on Multi-Agent Systems. Kyoto,
Japan. AAAI Press.

Vidal, J. M., and Durfee, E. H. 1995. Recursive Agent
Modeling Using Limited Rationality. Proceedings of the
First International Conference on Multi-Agent Systems,
pages 376-383, San Francisco, CA. AAAI Press.

Vidal, J. M., and Durfee, E. H. 1996. Using Recursive
Agent Models Effectively. In M. Wooldridge, J. Muller,
and M. Tambe (eds.) Intelligent Agents, volume II, pages
171-186, Springer-Verlag, 1996.

Vidal, J. M., and Durfee, E. H. 1998. The moving target
function problem in multi-agent learning. Proceedings of
the Third International Conference on Multi-Agent
Systems, pages 317-324, Paris, France. IEEE Press.

Weiss, G. (editor) 1998 (to appear). Multiagent Systems. A
Modern Approach to DAI. MIT Press.

Weiss, G., and Sen, S. (Editors). Adaptation and Learning
in Multi-Agent Systems. Lecture Notes in AI, volume 1042,
Springer-Verlag, 1996.

Wellman, M. P. 1993. A Market-Oriented Programming
Environment and Its Application to Distributed
Multicommodity Flow Problems. Journal of Artificial
Intelligence Research, 1:1-23.

Yokoo, M., Durfee, E. H., Ishida, T., and Kuwabara, K.
1992. Distributed Constraint Satisfaction for Formalizing
Distributed Problem Solving. Proceedings of the Twelfth
International Conference on Distributed Computing
Systems, pages 614-621, June 1992.

