
Multiagent Traffic Management: A Reservation-Based Intersection Control
Mechanism

Kurt Dresner∗ and Peter Stone
University of Texas at Austin

Department of Computer Sciences
Austin, TX 78712 USA

{kdresner, pstone}@cs.utexas.edu

Abstract

Traffic congestion is one of the leading causes of lost
productivity and decreased standard of living in urban set-
tings. Recent advances in artificial intelligence suggest ve-
hicle navigation by autonomous agents will be possible in
the near future. In this paper, we propose a reservation-
based system for alleviating traffic congestion, specifically
at intersections, and under the assumption that the cars are
controlled by agents. First, we describe a custom simulator
that we have created to measure the different delays asso-
ciated with conducting traffic through an intersection. Sec-
ond, we specify a precise metric for evaluating the qual-
ity of traffic control at an intersection. Using this simulator
and this metric, we show that our reservation-based system
can perform two to three hundred times better than traf-
fic lights. As a result, it can smoothly handle much heavier
traffic conditions. We show that our system very closely ap-
proximates an overpass, which is the optimal solution for
the problem with which we are dealing.

1. Introduction

Traffic congestion is one of the leading causes of lost
productivity and decreased standard of living in urban set-
tings. Recent advances in artificial intelligence suggest that
autonomous vehicle navigation will be possible in the near
future. Individual cars can now be equipped with features
of autonomy such as cruise control, GPS-based route plan-
ning [6, 8], and autonomous steering [5]. Once individual
cars become autonomous, it is inevitable that before long
all, or most, of the cars on the road will have such capa-
bilities, thus opening up the possibility of considering au-
tonomous interactions among multiple vehicles.

Multiagent Systems (MAS) is the subfield of AI that
aims to provide both principles for construction of complex

∗ The primary author of this paper is a graduate student.

systems involving multiple agents and mechanisms for co-
ordination of independent agents’ behaviors [9]. In this pa-
per, we propose an MAS-based approach to alleviating traf-
fic congestion, specifically at intersections.

Current methods for enabling traffic to flow through in-
tersections include building overpasses and installing traf-
fic lights. However, the former is only worth the cost at the
most congested intersections, and the latter can be quite in-
efficient, often requiring cars to remain stopped even when
no cars are present on the intersecting road.

At this time, it is possible to create a system in which cars
are driven by a central computer, and humans are merely
passengers. Such a system would involve prohibitively ex-
pensive and inefficient communication and control infras-
tructure. Here we aim to maximize the efficiency of moving
cars through intersections with minimal centralized infras-
tructure. We assume that intersections can be outfitted with
a wireless communication system, and that they use our pro-
tocol for communicating with oncoming traffic and giving
permission for cars to pass.

Cars must only traverse intersections when allowed to
by the protocol (as they do today by obeying red and green
lights), but otherwise are free to decide for themselves how
to drive. That is, each car is treated as an autonomous agent,
and in particular need not surrender control to any central-
ized decision maker.

Given the above assumptions, we propose a novel
reservation-based system by which cars request and re-
ceive time slots from the intersection during which they
may pass. In this paper, we present theoretical and em-
pirical results relating the overpass, traffic signal, and
reservation-based intersection control mechanisms. Each
of these mechanisms is fully implemented in a custom traf-
fic simulator, which we introduce here. Our results indi-
cate that the reservation-based system allows traffic to flow
through the intersection much more efficiently than the traf-
fic light mechanism, and with efficiency approaching that
of the overpass mechanism.

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or
commercial advantage and that copies bear this notice and the
full citation on the first page. To copy otherwise, to republish,
to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
 AAMAS'04, July 19-23, 2004, New York, New York, USA.
 Copyright 2004 ACM 1-58113-864-4/04/0007...$5.00

2. The Model

Our model of intersection traffic is a somewhat simpli-
fied version of real-world intersection traffic. We do not al-
low cars to turn, and all cars begin traveling roughly the
same speed. These simplifications make the analysis and
implementation a lot easier, but do not detract from the fun-
damental challenges of the problem. Since we are trying to
create a system in which vehicles reach their destinations
in a minimum amount of time, it is not unreasonable to as-
sume that each vehicle is always trying to travel at the speed
limit. Additionally, almost every vehicle in production is ca-
pable of attaining the speed limit of any road, so this as-
sumption is not a far stretch.

Once we make these assumptions, we next consider the
question: How do we measure whether or not one intersec-
tion is better than another? Certainly, safety is a primary
concern. An automated traffic control system will not be ac-
cepted unless the probability of collisions is extremely low.
A secondary concern however is how efficient the intersec-
tion is. To measure intersection efficiency we consider spe-
cific metrics related to throughput and delay. Throughout
this study we consider safety to be a prerequisite: all con-
trol policies we consider have 0 probability of collisions as
long as the driving agents follow the protocols correctly.

2.1. Throughput

One metric we examine briefly is the amount of traffic
that can be handled by an intersection. While this is hard
to measure precisely, we make qualitative claims regarding
the throughput of several different systems.

2.2. Delay

Delay is the primary metric we consider; what effect
does the presence of the intersection have on the overall
journey of a vehicle? Additionally, we would like to ensure
that no vehicle’s travel time is dramatically increased in or-
der to save a few seconds for some other vehicle. We want
to ensure that the average case is not bad, but we also want
to ensure that the worst case is not too bad.

2.2.1. Average Delay Consider the set of all vehi-
cles passing through an intersection in a period of
time to be C. Assume that were there no other vehi-
cles on the road, vehicle vi would have made its trip from
point A to point B in time t0(i). However, due to other cars
in the same lane and due to having to go through an in-
tersection involving other vehicles, vi arrives instead at
time t(i). Then we define the average delay of an intersec-
tion to be:

1

|C|

∑

vi∈C

t(i) − t0(i)

2.2.2. Maximum Delay The worst case delay is then:

max
vi∈C

t(i) − t0(i)

3. Overpass, Traffic Light Theory

Given these metrics, we can analyze the theoretical per-
formance of some intersection control systems.

First, note that with an overpass the cars never have to
slow down at the intersection. Thus, the average and maxi-
mum delay are both 0.

Analysis of the traffic light model is somewhat trickier.
In this model, a vehicle has a random chance (at an isolated
intersection) of making it through the intersection unim-
peded. If it does not, the vehicle must come to a complete
stop and wait, regardless of the amount of cross-traffic. The
average and maximum delays are complicated functions of
the timing of the lights (how long they are green and red),
how many cars are on the road, and what the velocities of
the other cars are, among other things. In order to analyze
this model, we first make some simplifying assumptions.

1. Cars traveling in the same direction do not interact
with one another.

By allowing cars traveling in the same direction to
pass through one another, we can remove car-car inter-
actions from the model altogether. We are looking for
a theoretical lower bound, and car-car interactions can
only increase the delay on the average vehicle.

2. Cars that have to decelerate due to a red light reach
the intersection at full speed precisely when the light
turns green again.

Again, as we are looking for a lower bound, we can
give the driver agent more information than a normal
traffic light would. This allows the driver agent to ac-
celerate at just the right time such that it loses the min-
imum amount of time due to the traffic light.

Consider the following parameters:

P — the period of the traffic light

α — the fraction of the light’s period that the light spends
on green in one direction.

From the definitions of these parameters, we can specify
two constraints:

P > 0 and 0 < α ≤ 1 (1)

Because we have assumed the cars are independent, we
can find the average delay per car by finding the expected
delay for one car traveling alone. With the assumption that
the vehicles always reach the green light at top speed, we re-
move any dependence on the acceleration or deceleration of
the vehicle. To calculate the delay for one vehicle, we find

2

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or
commercial advantage and that copies bear this notice and the
full citation on the first page. To copy otherwise, to republish,
to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
 AAMAS'04, July 19-23, 2004, New York, New York, USA.
 Copyright 2004 ACM 1-58113-864-4/04/0007...$5.00

the difference between the time the vehicle would have ar-
rived at the traffic light were it always green and the time
that the vehicle actually arrives at the traffic light.

In the end, we get an answer that is dependent only on α

and P . The car reaches the green light without having to de-
celerate and experiences no delay at all α of the time. The
remaining (1−α) of the time, the car does not reach the in-
tersection until the beginning of the next cycle. Since the
length of time for which the light is red is (1 − α)P , on
average a car that does not make the green light will wait
1

2
(1 − α)P . Thus, the total expected delay for a car is:

1

2
(1 − α)2P (2)

As α approaches 1, the expected delay approaches zero. As
α approaches zero, the expected delay approaches 1

2
P . This

is slightly counter-intuitive — common sense says the delay
should grow without bound — but it is important to remem-
ber that at the exact moment the signal turns green (even if
only for an instant), the vehicle is allowed to go. As the pe-
riod of the light increases, our expected delay increases lin-
early — the same fraction of vehicles miss the light, and
those vehicles have to wait longer.

The maximum delay can be calculated similarly. The
longest amount of time for which a driver could wait is the
length of time for which there is no green, or:

(1 − α)P (3)

4. The Simulator

To test our traffic control policies, we developed a time-
based simulator to model each car individually. The simu-
lator (not including the intersection manager) runs with two
main parameters:

1. Number of lanes traveling in each of the four direc-
tions. For all experiments reported in this paper, the
number of lanes for each direction was the same.

2. Probabilities of attempting to spawn a vehicle in each
direction (independently) at the beginning of each time
step. For almost all of our experiments, the probability
for each direction was the same.

For our simulations, the simulator models an area that
is 400 m × 400 m. Lanes are 3.5 m wide, and each vehi-
cle is 2 m wide by 4 m long. Figure 1 shows a screenshot
of the graphical display. Java applets showing the simulator
in action can be viewed at http://www.cs.utexas.
edu/users/kdresner/papers/2004aamas/. In
each cycle of the simulator (which for our experiments rep-
resents one fiftieth of a second) the following events oc-
cur:

1. In each direction, vehicles are randomly spawned with
a predefined probability. Once a vehicle is spawned,
it is placed uniformly at random in one of the lanes
traveling in that direction. If placing the vehicle in that
lane and direction would cause the vehicle to be fol-
lowing another vehicle too closely (within 1 second1

or 1 meter), the vehicle is not spawned. Our simula-
tor spawns all vehicles traveling at the speed limit and
never spawns a vehicle where it would be in danger of
colliding with another vehicle.

2. The driver of each vehicle is given the distance to the
car in front of it. This information could be sensed with
on-board sensors such as cameras and/or range-finders
and is used to avoid collisions with cars traveling in the
same direction.

3. Each driver then takes an action based on this informa-
tion: ACCELERATE (increase velocity by 3 m/s2), DE-
CELERATE (decrease velocity by 15 m/s2), or COAST

(maintain current velocity). The simulator enforces the
invariant that 0 ≤ speed ≤ top speed.

4. Each vehicle’s position and velocity are updated ac-
cording to the actions the driver took.

5. Any vehicles which have left the domain of the sim-
ulator are removed from the simulation. Each vehicle
tracks its own delay, and this value is used to update
the global value for total delay and maximum delay.
The total number of vehicles which have finished their
journey is also updated.

The behavior of the driver agent is completely indepen-
dent of the simulator, and can be different for every vehicle,
provided it adheres to our vehicle-intersection protocol. For
our experiments, we used the same driver agent in each ve-
hicle. It behaves as follows when it receives vehicle infor-
mation from the simulator.

• COAST;

• If speed < speed limit, ACCELERATE;

• If less than 1 second or 1 meter behind the vehicle in
front and speed > 0, DECELERATE;2

• If not through the intersection already, interact with the
intersection as specified separately for each intersec-
tion control policy in Section 5;

As an intial test of the simulator, we begin by verify-
ing that the empirical performance matches our theoret-
ical predictions for the cases that can be analyzed com-
pletely, namely the overpass and traffic light intersection

1 A vehicle a is considered within t seconds of vehicle b if a is behind b

and the distance between the back of b and the front of a is velocitya ·

t.
2 This is not done when vehicles are allowed to pass through one an-

other.

3

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or
commercial advantage and that copies bear this notice and the
full citation on the first page. To copy otherwise, to republish,
to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
 AAMAS'04, July 19-23, 2004, New York, New York, USA.
 Copyright 2004 ACM 1-58113-864-4/04/0007...$5.00

Figure 1. A screenshot of the graphical dis-
play of our simulator with 2 lanes in each di-
rection. Cars traveling in the East/West direc-
tions are stopped at a red light.

controllers. We ran some simulations to determine both the
average3 and maximum delays as functions of both α and P .
Figure 2 shows the average and maximum values which we
obtained running the simulator for 1,000,000 steps with 1
lane in each direction, spawning cars with probability .002,
letting α be .45, and varying P from 10 to 200 in steps of .1.
Similarly, Figures 3 shows the average and maximum val-
ues obtained by fixing the period at 30, while allowing α to
vary from .01 to .89 with steps of .001.4 Because α is de-
fined as the fraction of the time the light is green in the
North/South directions, we only run the simulator with cars
spawning in the North/South directions. The graphs for the
East/West directions are just a horizontal reflections of these
data.

Notice that the empirical data is consistent with our theo-
retical predictions modulo the fact that our driver agent does
not have the ability to reach every green light at full speed.
The discrepancies between the lines are consistent with our
expectations — they can be attributed to the time it takes
for a vehicle to come to a stop at the light and then acceler-
ate again to full speed. Thus we conclude that the simulator
and driving agents operate correctly.

5. Intersection Control Policies

Using our simulator, we evaluated the performance of
three different intersection control policies: the overpass,
the traffic light, and the reservation system.

3 Unless otherwise stated, all averages are over all cars spawned in one
run of the simulation.

4 Java applets of showing our experiments can be viewed at http://
www.cs.utexas.edu/users/kdresner/2004aamas/

0

5

10

15

20

25

30

35

0 20 40 60 80 100 120 140 160 180 200

Traffic Light Period (P)

A
ve

ra
ge

 D
el

ay

Empirical

(lower bound)
Theoretical

0

20

40

60

80

100

120

0 20 40 60 80 100 120 140 160 180 200

Traffic Light Period (P)

M
ax

im
um

 D
el

ay

Theoretical
(lower bound)

Empirical

Figure 2. Average (left) and maximum (right)
delay as a function of P for 1,000,000 steps
of the simulation, spawning cars with proba-
bility .001.

0
2
4
6
8

10
12
14
16
18
20

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
A

ve
ra

ge
 D

el
ay

% Green N/S (alpha)

Empirical

 bound)
(lower

Theoretical
0

5

10

15

20

25

30

35

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

% Green N/S (alpha)

M
ax

im
um

 D
el

ay

(lower

Empirical

Theoretical
 bound)

Figure 3. Average (left) and maximum (right)
delay as a function of α for 1,000,000 steps of
the simulation, spawning cars with probabil-
ity .001.

5.1. Overpass

The overpass is by far the simplest of the three policies:
it lets vehicles through all the time. While there is no ex-
plicit third dimension in the simulator, by allowing vehicles
traveling in orthogonal directions to pass through one an-
other, the same results can be achieved. If the ability to turn
is not required (as in our current study) the overpass is an
optimal solution. The only delays are caused by cars trav-
eling the same direction, which would happen even if there
were not an intersection through which to travel.

5.2. Traffic Light

The traffic light model is a close approximation of actual
traffic signals used on real roads. The model has three pa-
rameters: the period of the light system, the time between
green lights in which all four directions’ lights are red (ex-
pressed as a fraction of the period), and the time for which
the North/South lights are green (again as a fraction of the
period). North and South lights are always identical, as are
East and West lights. Yellow lights are not necessary in our
system. In real-world traffic signals, yellow lights alert the
drivers as to when the next red light is coming. However in

4

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or
commercial advantage and that copies bear this notice and the
full citation on the first page. To copy otherwise, to republish,
to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
 AAMAS'04, July 19-23, 2004, New York, New York, USA.
 Copyright 2004 ACM 1-58113-864-4/04/0007...$5.00

our model, the drivers can actually query the light to deter-
mine in which state the light will be at a given time. This
improves the ability of the traffic light to direct the vehicles
through the intersection. It is important to note that simpli-
fying assumption 2 from Section 3 does not apply to this
model — it is specific to the driving agent and not a prop-
erty of the intersection control mechanism. Our driver agent
does not time the green lights perfectly, although with the
traffic light system we implemented, such a driver agent
could be created.

The interaction between the driver agent and the traf-
fic light is straightforward. First, the driver calculates when
it will reach the traffic light given its current velocity. The
driver then sends a message to the intersection informing it
of the time at which the driver expects to arrive. The inter-
section then responds with the range of times during or af-
ter the time specified by the driver, at which the lights will
be green. The driver can then make any adjustments neces-
sary to ensure that the vehicle enters the intersection when
the lights are green.

5.3. Reservation System

In creating the reservation system we defined both the
behavior of the system as well as the behavior of the driver
agent when interacting with the system.

5.3.1. Behavior of the System The reservation system,
which we introduce here, allows the driver agents to “call
ahead” and reserve the spaces they will need. The intersec-
tion is divided into an n× n grid of reservation tiles, where
n is called the granularity of the reservation system. Each
tile can be reserved by one car per time step.

To use the reservation system, the car sends a message
containing several parameters.

1. The time the vehicle will arrive
2. The velocity at which the vehicle will arrive
3. The direction the vehicle will be facing when it arrives
4. The vehicle’s maximum velocity
5. The vehicle’s maximum and minimum acceleration
6. The vehicle’s length and width

From these parameters, the intersection simulates the
journey of the vehicle through the intersection with the pa-
rameters provided, noting which cells will be occupied by
the vehicle at each time step (as well as a few time steps be-
fore and after, for safety). If any of these cells is already
reserved, the intersection rejects the driver’s request. Other-
wise, it accepts the driver’s request.

5.3.2. Behavior of the Driver Agent At the beginning of
every cycle, the driver agent determines when it expects to
reach the intersection, where it will be when it first enters
the intersection, and how fast it will be going.

If the driver has not yet made a reservation, it sends the
intersection a message (as described above). If the intersec-
tion accepts the request, the driver agent notes that a reser-
vation has been made (along with the parameters). If the in-
tersection rejects the request, the driver decelerates and tries
again at the next time step.

If the driver has made a reservation, it determines
whether or not it can keep the reservation. reserva-
tion. If it determines that it can not meet the reservation,
it cancels the reservation and the reservation-making pro-
cess begins again.

6. Empirical Results

In this section, we evaluate the performance of our reser-
vation system against both the overpass and traffic signal
systems for varying amounts of traffic, numbers of lanes,
and granularities of the reservation system.

First, it is important to note the amount of traffic that
each system can handle. The overpass system can handle as
much traffic as we can generate with our simulator, since it
does not cause the cars to slow down at all. It is interesting,
though to examine the throughput of the traffic signal sys-
tem. One problem we had was that if we create traffic faster
than we can move it through the intersection, it builds up un-
til the simulator cannot simulate it all. For this reason, the
simulator stops adding vehicles when it gets full.

Qualitatively, the reservation-based system is able to sus-
tain a much higher throughput than any of the traffic signal
systems before causing the system to become full.

Secondly, and more precisely, we compare the average
and maximum delays when using the different intersection
control policies.

6.1. Overpass: The Lower Bound

In our simulator, the overpass is as ideal as possible —
it never requires any vehicle to slow down at the intersec-
tion. Furthermore, since all vehicles travel at the speed limit,
vehicles traveling the same direction are never required to
slow down for each other. For this reason, every vehicle us-
ing the overpass system experiences 0 delay. We ran many
trials with the overpass system again to verify that our simu-
lator worked as expected. By varying the top speeds of vehi-
cles, we can produce delays with the overpass system, but in
real-world situations, vehicles’ top speeds are much higher
than the speed limit.

6.2. Traffic Light

To evaluate the delay of the traffic light model, we set
several different periods and ran a million steps of the sim-
ulator for an increasing car spawning probability — from
.001 to .02. The graph in Figure 4 shows that for lighter traf-
fic, a shorter period is strictly better. This is already known

5

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or
commercial advantage and that copies bear this notice and the
full citation on the first page. To copy otherwise, to republish,
to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
 AAMAS'04, July 19-23, 2004, New York, New York, USA.
 Copyright 2004 ACM 1-58113-864-4/04/0007...$5.00

and is used daily in many cities, where late at night the
period of traffic lights is reduced. As the traffic increases,
higher periods are more efficient. Eventually, however, they
cannot handle the traffic, and the delay begins to increase
very rapidly. In Figure 4, the delay levels off because at this
point the cars are so backed up that the simulation can not
create any more of them.

0
10
20
30
40
50
60
70
80
90

100

0.004 0.008 0.012 0.016 0.02

A
ve

ra
ge

 D
el

ay

% Chance to Spawn Car

Period 10

Period 30

Period 50

Reservation

Figure 4. Average delays for traffic light sys-
tems with period 10, 30, and 50 seconds plot-
ted against varying traffic levels along with a
1-tiled reservation-based system. Each direc-
tion has 1 lane.

An interesting thing to note is that even with only one
tile, the reservation-based system does not break down until
reaching a much higher level of traffic. An overloaded reser-
vation system is chaotic: exactly when and how it breaks
down varies wildly with when cars are spawned and which
directions they are traveling. For that reason, running the
simulation for a fixed number of steps can produce very dif-
ferent amounts of total delay. This explains why the line in
Figure 4 representing the single-tile reservation system be-
comes so jagged.

6.3. Reservation System

To demonstrate the drastic improvement in throughput
with the reservation system, we ran the same traffic amounts
as in the traffic signal case, but this time used reservation
systems with granularity one and two. In Figure 5, we show
just how much of an improvement we can obtain over the
single-tile case by increasing the granularity to just two. The
amount of traffic handled by this system is much higher, and
the associated delays are much lower. Note that with a gran-
ularity of two, it is permissible to have more than one car in
the intersection at the same time: just not in the same quad-
rant.

After determining that the reservation system could man-
age as much traffic as a traffic light, we experimented along
two main dimensions. First, we investigated the ability of

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.004 0.008 0.012 0.016 0.02

A
ve

ra
ge

 D
el

ay

% Chance to Spawn Car

Period 10

Period 30

Period 50

Reservation

Granularity 1

Granularity 2

Figure 5. The average delay for 1- and 2-tile
reservation systems with 1 lane per direction
and varying traffic levels. Each data point
represents 1,000,000 steps of simulation.

our system to scale up to wider roads (i.e. multiple lanes
going in each direction). Second, we studied the impact of
the main parameter in our approach, namely the granularity
used on the part of the intersection when assigning reserva-
tions. In particular, we characterize the tradeoff in terms of
computational complexity vs. performance level.

6.3.1. More lanes One question that arises is whether or
not this system scales up to a larger number of lanes. We
tested it up through a 6× 6 intersection (6 lanes traveling in
each direction), and it performed well in all the cases, av-
eraging less than one half of one percent the delay with the
traffic light system. We present these results in Figure 6. Re-
call that the overpass system, representing the lower bound,
leads to 0 delay.

Reservation Light
Lanes Gran. Avg Max Avg Max

1 1 0.016 0.912 5.847 15.526
2 2 0.017 0.925 5.488 15.536
3 3 0.023 1.435 5.482 15.506
4 4 .019 1.590 5.351 15.536
5 5 0.031 1.902 5.439 15.506
6 6 0.025 1.926 5.378 15.517

Figure 6. Statistics for different numbers of
lanes and granularities of the reservation-
based system along with numbers from a
traffic light system with period 20 seconds.
The simulation was run for 1,000,000 steps
with a car-spawning probability of .001.

6.3.2. Reservation Granularity The only parameter cur-
rently accepted by the reservation system is the side length
of the grid representing the intersection, the granularity. A

6

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or
commercial advantage and that copies bear this notice and the
full citation on the first page. To copy otherwise, to republish,
to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
 AAMAS'04, July 19-23, 2004, New York, New York, USA.
 Copyright 2004 ACM 1-58113-864-4/04/0007...$5.00

granularity of 1 means a 1 × 1 grid of reservation tiles. A
granularity of 2 means a 2× 2 grid, and so forth. This leads
to another tradeoff - computation complexity and fault-
tolerance versus efficiency. With fewer reservation tiles, the
intersection is more exclusive. With only 1 tile, for example,
only one car may be in the intersection at a time, however
with an extremely large number of tiles, the intersection re-
serves only enough space for the car, leaving little room for
mistakes. As we will show, having only one tile can also
lead to deadlock problems, whereas having a large number
of tiles gives the intersection more flexibility with which
to guide the cars. As for computation complexity, both the
amount of calculation needed to process a single reserva-
tion and the space needed to hold the reservation grid in-
crease as the square of the granularity.

Delay
Gran. Avg. Max Std Dev.

2 0.109 1.698 0.239
3 0.131 2.750 0.274
4 0.043 1.026 0.134
5 0.071 1.812 0.185

Figure 7. Simulation statistics for a reserva-
tion system with varying granularity. There
are 2 lanes in each direction and the car-
spawning probability is .001.

One problem we discovered occurs whenever cars trav-
eling in the inside lanes, but in opposite directions are com-
peting for the same tiles. This happens usually when the
granularity is an odd number. If one car has to slow down
because it can not obtain a reservation, when it finally does
get a reservation it will occupy those tiles for a longer pe-
riod of time. This makes it more likely that the next car com-
ing in the opposite direction will have to slow down even
more. This process eventually slows the cars down more and
more. For small to average amounts of traffic, this causes
larger delays. For very heavy traffic, it will eventually dead-
lock the intersection. As shown in Figure 7, with 2 lanes go-
ing in each direction it is better to have a 2 × 2 grid rather
than a 3 × 3 grid. Increasing to a 4 × 4 grid is better than
2 × 2, but increasing it to 5 × 5 is again worse. The dead-
locking effect is hard to measure quantitatively, because if
the cars start to deadlock, they begin to make reservations
for very long periods of time — so long, in fact, that they
overflow the memory of the computer system.

Because of this last problem, the reservation system
should always be run with a granularity at least as high as
the number of lanes, and ideally a multiple of the number
of lanes. To test the effect of higher granularities, we ran
the simulator with varying numbers of lanes and granulari-
ties. As Figure 8 demonstrates, more lanes require a higher

granularity (though even with low granularity, this system
out-performs the traffic light system). However, once the
granularity is greater than the number of lanes traveling in
each direction, subsequent increases in granularity provide
only a marginal benefit, if any. Figure 9 shows a typical mo-
ment during a simulation with 6 lanes going in each direc-
tion and a granularity of 48.

Granularity
Lanes 1 2 6 12 48

1 0.016 0.005 0.007 0.005 0.007
2 0.059 0.017 0.010 0.008 0.003
3 0.142 0.038 0.009 0.011 0.013
6 0.132 0.025 0.011 0.006

Figure 8. Average delays for the reservation
system with independently varying numbers
of lanes and granularity. All simulations run
for at least 500,000 steps. 6 lanes with 1 tile
breaks down and overflows the system mem-
ory before 500,000 steps can complete.

Figure 9. A screenshot of with 6 lanes in each
direction and a granularity of 48. Note that
there are cars traveling all four directions in
the intersection simultaneously.

7. Discussion and Related Work

As shown in the previous section, the reservation-based
approach drastically outperforms the traffic light system.
However, there would be many challenges associated with
creating such a system for the real world. Additionally,
within the simulator, there are assumptions in the work re-
ported here that can be relaxed in future work.

7

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or
commercial advantage and that copies bear this notice and the
full citation on the first page. To copy otherwise, to republish,
to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
 AAMAS'04, July 19-23, 2004, New York, New York, USA.
 Copyright 2004 ACM 1-58113-864-4/04/0007...$5.00

7.1. Transfer to the Real World.

Our simulator functions partially on the idea that the
driver agent for each vehicle is using whichever intersec-
tion management policy is in place. This isn’t much differ-
ent from the real world — if someone wants to run a red
light, there is nothing in the vehicle to stop them from do-
ing so. However, it is in everyone’s best interest for each
driver to obey the traffic signals that he or she sees. A chal-
lenge that remains, however, is modifying the system such
that a human driver could use it. Currently, the margins for
error in the system are too small for a human to be able to
control the vehicle. The margins of error could be enlarged,
but the efficiency benefits associated with the system stem
directly from the ability of a computer driver agent to pre-
cisely control the vehicle. Were there a few human drivers
mixed in with the rest, a signal could be sent ahead to let the
intersection know a human driver was approaching. The in-
tersection could then make some extra room for the driver
to maneuver through the intersection. However, with a large
percentage of human drivers, a traffic light would probably
be more appropriate.

7.2. Related Work

Most study of intersection management has been from
a theoretical perspective, reducing the problem to schedul-
ing jobs that may be competing for mutually exclusive re-
sources. Irani and Leung create what they call “conflict
graphs” in which nodes competing for the same resources
share an edge. They then search these graphs for indepen-
dent sets [1]. Later, they present a probabilistic approach to
the problem, and report actual simulated results using this
approach [2]. Their approach, however does not aim to im-
prove the underlying system of traffic signals, but rather to
tune them more effectively.

As far as multiagent approaches, most prior work has fo-
cused on increasing the throughput and decreasing delays
for traditional traffic light systems. For example, Rooze-
mond allows intersections to act autonomously, sharing the
data they gather [7]. The intersections then use this infor-
mation to make both short- and long-term predictions about
the traffic and adjust accordingly. This approach still as-
sumes human-controlled vehicles — the agents in this case
are only the intersection controllers themselves.

Coming from the other direction, agent-based controllers
have been designed for mechatronic systems, which are
defined as “complex technical systems whose motion be-
haviour is actively controlled with the help of computer
technology” [4]. They point to intersection management as
one application of such controllers.

Finally, Kolodko and Vlacic describe a primitive system
for intersection control which is very similar to the reser-
vation system with granularity 1 [3]. This system has been
successfully implemented on real autonomous vehicles.

8. Conclusion

This paper makes two main contributions. First, it de-
scribes and specifies a custom intersection simulator for
modeling intersection control policies along with precise
metrics for measuring the efficiency of these policies. Sec-
ond, it proposes a reservation-based multiagent control pol-
icy that dramatically out-performs a traffic light policy and
approaches the theoretical optimum in simulation. This pol-
icy is fully implemented and tested in simulation.

Current limitations include the inability of vehicles to
turn and the constraint that vehicles may not change their
velocity while in the intersection. Relaxing these limitations
is a part of our on-going research agenda. Once autonomous
vehicles are common, this mechanism may be useful for
managing real traffic.

Acknowledgments
This research was supported in part by NSF CAREER award

IIS-0237699.

References

[1] Irani and Leung. Scheduling with conflicts, and applications
to traffic signal control. In SODA: ACM-SIAM Symposium on
Discrete Algorithms (A Conference on Theoretical and Exper-
imental Analysis of Discrete Algorithms), 1996.

[2] Irani and Leung. Probabilistic analysis for scheduling with
conflicts. In SODA: ACM-SIAM Symposium on Discrete Algo-
rithms (A Conference on Theoretical and Experimental Anal-
ysis of Discrete Algorithms), 1997.

[3] J. Kolodko and L. Vlacic. Cooperative autonomous driving
at the intelligent control systems laboratory. IEEE Intelligent
Systems, 18(4):8–11, July/August 2003.

[4] O. Oberschelp, T. Hestermeyer, B. Kleinjohann, and L. Klein-
johann. Design of self-optimizing agent-based controllers.
In Proceedings of the 3rd International Workshop on Agent-
Based Simulation, 2002.

[5] D. A. Pormerleau. Neural Network Perception for Mobile
Robot Guidance. Kluwer Academic Publishers, 1993.

[6] S. Rogers, C.-N. Flechter, and P. Langley. An adaptive in-
teractive agent for route advice. In O. Etzioni, J. P. Müller,
and J. M. Bradshaw, editors, Proceedings of the Third Interna-
tional Conference on Autonomous Agents (Agents’99), pages
198–205, Seattle, WA, USA, 1999. ACM Press.

[7] D. A. Roozemond. Using intelligent agents for urban traf-
fic control control systems. In Proceedings of the Interna-
tional Conference on Artificial Intelligence in Transportation
Systems and Science, pages 69–79, 1999.

[8] T. Schonberg, M. Ojala, J. Suomela, A. Torpo, and A. Halme.
Positioning an autonomous off-road vehicle by using fused
DGPS and inertial navigation. In 2nd IFAC Conference on In-
telligent Autonomous Vehicles, pages 226–231, 1995.

[9] P. Stone and M. Veloso. Multiagent systems: A survey from a
machine learning perspective. Autonomous Robots, 8(3):345–
383, July 2000.

8

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or
commercial advantage and that copies bear this notice and the
full citation on the first page. To copy otherwise, to republish,
to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
 AAMAS'04, July 19-23, 2004, New York, New York, USA.
 Copyright 2004 ACM 1-58113-864-4/04/0007...$5.00

