
The VLDB Journal (2003) 12: 303–319 / Digital Object Identifier (DOI) 10.1007/s00778-003-0104-2

Learning to match ontologies on the Semantic Web

AnHai Doan1, Jayant Madhavan2, Robin Dhamankar1, Pedro Domingos2, Alon Halevy2

1 Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
e-mail: {anhai,dhamanka}@cs.uiuc.edu

2 Department of Computer Science and Engineering, University of Washington, Seattle, WA 98195, USA
e-mail: {jayant,pedrod,alon}@cs.washington.edu

Edited by B.V. Atluri, A. Joshi, and Y. Yesha. Received: December 16, 2002 / Accepted: April 16, 2003
Published online: September 17, 2003 – c© Springer-Verlag 2003

Abstract. On the Semantic Web, data will inevitably come
from many different ontologies, and information processing
across ontologies is not possible without knowing the seman-
tic mappings between them. Manually finding such mappings
is tedious, error-prone, and clearly not possible on the Web
scale. Hence the development of tools to assist in the ontology
mapping process is crucial to the success of the Semantic Web.
We describe GLUE, a system that employs machine learning
techniques to find such mappings. Given two ontologies, for
each concept in one ontology GLUE finds the most similar
concept in the other ontology. We give well-founded proba-
bilistic definitions to several practical similarity measures and
show that GLUE can work with all of them. Another key fea-
ture of GLUE is that it uses multiple learning strategies, each
of which exploits well a different type of information either
in the data instances or in the taxonomic structure of the on-
tologies. To further improve matching accuracy, we extend
GLUE to incorporate commonsense knowledge and domain
constraints into the matching process. Our approach is thus
distinguished in that it works with a variety of well-defined
similarity notions and that it efficiently incorporates multiple
types of knowledge. We describe a set of experiments on sev-
eral real-world domains and show that GLUE proposes highly
accurate semantic mappings. Finally, we extend GLUE to find
complex mappings between ontologies and describe experi-
ments that show the promise of the approach.

Keywords: Semantic Web – Ontology matching – Machine
learning – Relaxation labeling

1 Introduction

The current World Wide Web has well over 1.5 billion pages
[19], but the vast majority of them are in human-readable for-
mat only (e.g., HTML). As a consequence, software agents
(softbots) cannot understand and process this information, and
much of the potential of the Web has so far remained untapped.

In response, researchers have created the vision of the Se-
mantic Web [3], where data has structure and ontologies de-
scribe the semantics of the data. When data are marked up

using ontologies, softbots can better understand the semantics
and therefore more intelligently locate and integrate data for
a wide variety of tasks. The following example illustrates the
vision of the Semantic Web.

Example 1.1. Suppose you want to find out more about some-
one you met at a conference. You know that his last name is
Cook and that he teaches Computer Science at a nearby uni-
versity, but you do not know which one. You also know that
he just moved to the US from Australia, where he had been an
associate professor at his alma mater.

On the World Wide Web of today, you would have trouble
finding this person. The above information is not contained
within a single Web page, thus making keyword search inef-
fective. On the Semantic Web, however, you should be able to
quickly find the answers.A marked-up directory service makes
it easy for your personal softbot to find nearby computer sci-
ence departments. These departments have marked up data
using some ontology such as the one in Fig. 1a. Here the data
is organized into a taxonomy that includes courses, people,
and professors. Professors have attributes such as name, de-
gree, and degree-granting institution (i.e., the one from which
a professor obtained his or her Ph.D. degree). Such marked-
up data make it easy for your softbot to find a professor with
the last name Cook. Then by examining the attribute “grant-
ing institution”, the softbot quickly finds the alma mater CS
department in Australia. Here the softbot learns that the data
have been marked up using an ontology specific to Australian
universities, such as the one in Fig. 1b, and that there are many
entities named Cook. However, knowing that “associate pro-
fessor” is equivalent to “senior lecturer”, the bot can select the
right subtree in the departmental taxonomy and zoom in on
the old homepage of your conference acquaintance. �

The Semantic Web thus offers a compelling vision, but it
also raises many difficult challenges. Researchers have been
actively working on these challenges, focusing on fleshing
out the basic architecture, developing expressive and efficient
ontology languages, building techniques for efficient marking
up of data, and learning ontologies (e.g., [20,5,36,28,22]).

A key challenge in building the Semantic Web, one that
has received relatively little attention, is finding semantic map-
pings among ontologies. Given the decentralized nature of the

304 A. Doan et al.: Learning to match ontologies on the Semantic Web

CS Dept US CS Dept Australia

UnderGrad
Courses

Grad
Courses

Courses StaffPeople

StaffFaculty

Assistant
Professor

Associate
Professor

Professor

Technical StaffAcademic Staff

Lecturer
Senior

Lecturer
Professor

- name
- degree
- granting-institution

- first-name
- last-name
- education

R.Cook
Ph.D.
Univ. of Sydney

K. Burn
Ph.D.
Univ. of Michigan

(a) (b)
Fig. 1a,b. Computer science department
ontologies

development of the Semantic Web, there will be an explosion
in the number of ontologies. Many of these ontologies will
describe similar domains, but using different terminologies,
and others will have overlapping domains. To integrate data
from disparate ontologies, we must know the semantic corre-
spondences among their elements [3,46]. For example, in the
conference-acquaintance scenario described earlier, in order
to find the right person, your softbot must know that “asso-
ciate professor” in the US corresponds to “senior lecturer” in
Australia. Thus, the semantic correspondences are in effect the
“glue” that holds the ontologies together into a “web of seman-
tics”. Without them, the Semantic Web is akin to an electronic
version of the Tower of Babel. Unfortunately, manually spec-
ifying such correspondences is time-consuming, error-prone
[34], and clearly not possible on the Web scale. Hence the de-
velopment of tools to assist in ontology mapping is crucial to
the success of the Semantic Web [46].

2 Overview of our solution

In response to the challenge of ontology matching on the Se-
mantic Web, we have developed the GLUE system, which ap-
plies machine learning techniques to semiautomatically create
semantic mappings. Since taxonomies are central components
of ontologies, we focus first on finding one-to-one (1-1) corre-
spondences between the taxonomies of two given ontologies:
for each concept node in one taxonomy, find the most similar
concept node in the other taxonomy.

Similarity definition: The first issue we address is the mean-
ing of similarity between two concepts. Clearly, many differ-
ent definitions of similarity are possible, each being appro-
priate for certain situations. Our approach is based on the
observation that many practical measures of similarity can
be defined based solely on the joint probability distribution
of the concepts involved. Hence, instead of committing to a
particular definition of similarity, GLUE calculates the joint
distribution of the concepts and lets the application use the
joint distribution to compute any suitable similarity measure.

Specifically, for any two concepts A and B, the joint distri-
bution consists of P (A, B), P (A, B), P (A, B), and P (A,B),

where a term such as P (A,B) is the probability that an in-
stance in the domain belongs to concept A but not to concept
B. An application can then define similarity to be a suitable
function of these four values. For example, a similarity mea-
sure we use in this paper is P (A ∩ B)/P (A ∪ B), otherwise
known as the Jaccard coefficient [47].

Computing similarities: The second challenge we address
is that of computing the joint distribution of any two given
concepts A and B. Under certain general assumptions (dis-
cussed in Sect. 5), a term such as P (A, B) can be approxi-
mated as the fraction of data instances (in the data associated
with the taxonomies or, more generally, in the probability dis-
tribution that generated the data) that belong to both A and B.
Hence the problem reduces to deciding for each data instance
if it belongs to A ∩ B. However, the input to our problem in-
cludes instances of A and instances of B in isolation. GLUE
addresses this problem using machine learning techniques as
follows: it uses the instances of A to learn a classifier for A and
then classifies instances of B according to that classifier, and
vice versa. Thus we have a method for identifying instances
of A ∩ B.

Multistrategy learning: Applying machine learning to our
context raises the question of which learning algorithm to use
and which types of information to exploit. Many different
types of information can contribute to the classification of
an instance: its name, value format, and the word frequencies
in its value, and each of these is best utilized by a different
learning algorithm. GLUE uses a multistrategy learning ap-
proach [12]: we employ a set of learners and then combine
their predictions using a metalearner. In previous work [12],
we have shown that multistrategy learning is effective in the
context of mapping between database schemas.

Exploiting domain constraints: GLUE also attempts to ex-
ploit available domain constraints and general heuristics to
improve matching accuracy. An example heuristic is the ob-
servation that two nodes are likely to match if nodes in their
neighborhood also match. An example of a domain constraint
is “if node X matches Professor and node Y is an ances-
tor of X in the taxonomy, then it is unlikely that Y matches
Assistant-Professor”. Such constraints occur frequently in

A. Doan et al.: Learning to match ontologies on the Semantic Web 305

practice, and heuristics are commonly used when manually
mapping between ontologies.

Previous works have exploited only one form or the other
of such knowledge and constraints, in restrictive settings [35,
32,26,30]. Here we develop a unifying approach to incorpo-
rate all such types of information. Our approach is based on
relaxation labeling, a powerful technique used extensively in
the vision and image processing community [21] and success-
fully adapted to solve matching and classification problems in
natural language processing [39] and hypertext classification
[6]. We show that relaxation labeling can be adapted efficiently
to our context and that it can successfully handle a wide variety
of heuristics and domain constraints.

Handling complex mappings: Finally, we extend GLUE to
build CGLUE, a system that finds complex mappings between
two given taxonomies such as “Courses maps to the union of
Undergrad-Courses and Grad-Courses”. CGLUE adapts
the beam search technique commonly used in AI to efficiently
discover such mappings.

Contributions: Our paper therefore makes the following
contributions:

• We describe well-founded notions of semantic similarity
based on the joint probability distribution of the concepts
involved. Such notions make our approach applicable to a
broad range of ontology matching problems that employ
different similarity measures.

• We describe the use of multistrategy learning for finding
the joint distribution and thus the similarity value of any
concept pair in two given taxonomies. The GLUE system,
embodying our approach, utilizes many different types of
information to maximize matching accuracy. Multistrat-
egy learning also makes our system easily extensible to
additional learners as they become available.

• We introduce relaxation labeling to the ontology-matching
context and show that it can be adapted to efficiently ex-
ploit a broad range of common knowledge and domain
constraints to further improve matching accuracy.

• We show that the GLUE approach can be extended to
find complex mappings. The solution, as embodied by the
CGLUE system, adapts beam search techniques to effi-
ciently discover the mappings.

• We describe a set of experiments on several real-world do-
mains to validate the effectiveness of GLUE and CGLUE.
The results show the utility of multistrategy learning and
relaxation labeling and that GLUE can work well with
different notions of similarity. The results also show the
promise of the CGLUE approach to finding complex map-
pings.

We envision the GLUE system to be a significant piece of
a more complete ontology matching solution. We believe any
such solution should have a significant user interaction com-
ponent. Semantic mappings can often be highly subjective and
depend on the choice of target application. User interaction is
invaluable and indispensable in such cases. We do not address
this in our current solution. However, the automated support
that GLUE will provide to a more complete tool will signifi-
cantly reduce the effort required of the user and in many cases
will reduce it to just mapping validation rather than construc-
tion.

Parts of the materials in this paper have appeared in [13,
14,11]. In those works, we describe the problem of 1-1 match-
ing for ontologies and the GLUE solution. In this paper, be-
yond a comprehensive description of GLUE, we also discuss
the problem of finding complex mappings for ontologies and
present a solution in the form of the CGLUE system.

In the next section, we define the ontology matching prob-
lem. Section 4 discusses our approach to measuring similarity,
and Sects. 5–6 describe the GLUE system. Section 7 presents
our experiments with GLUE. Section 8 extends GLUE to build
CGLUEand then describes experiments with the system. Sec-
tion 9 reviews related work. Section 10 discusses future work
and concludes.

3 The ontology matching problem

We now introduce ontologies and then define the problem of
ontology matching. An ontology specifies a conceptualization
of a domain in terms of concepts, attributes, and relations [18].
The concepts provided model entities of interest in the domain.
They are typically organized into a taxonomy tree where each
node represents a concept and each concept is a specialization
of its parent. Figure 1 shows two sample taxonomies for the CS
department domain (which are simplifications of real ones).

Each concept in a taxonomy is associated with a set of in-
stances. For example, the concept Associate-Professor has
instances “Prof. Cook” and “Prof. Burn” as shown in Fig. 1a.
By the taxonomy’s definition, the instances of a concept are
also instances of an ancestor concept. For example, instances
of Assistant-Professor, Associate-Professor, and Profes-
sor in Fig. 1a are also instances of Faculty and People.

Each concept is also associated with a set of attributes. For
example, the concept Associate-Professor in Fig. 1a has the
attributes name, degree, and granting institution. An in-
stance that belongs to a concept has fixed attribute values. For
example, the instance “Professor Cook” has the value name
= “R. Cook”, degree = “Ph.D.”, and so on. An ontology also
defines a set of relations among its concepts. For example,
a relation AdvisedBy(Student,Professor) might list all in-
stance pairs of Student and Professor such that the former
is advised by the latter.

Many formal languages to specify ontologies have been
proposed for the Semantic Web such as OIL, DAML+OIL,
OWL, SHOE, and RDF [38,5,10,20,4]. Though these lan-
guages differ in their terminologies and expressiveness, the
ontologies that they model essentially share the same features
we described above.

Given two ontologies, the ontology matching problem is
to find semantic mappings between them. The simplest type
of mapping is a one-to-one (1-1) mapping between the ele-
ments, such as “Associate-Professor to Senior-Lecturer”,
and “degree maps to education”. Note that mappings be-
tween different types of elements are possible, such as “the re-
lation AdvisedBy(Student,Professor) maps to the attribute
advisor of the concept Student”. Examples of more complex
types of mapping include “name maps to the concatenation of
first-name and last-name”, and “the union of Undergrad-
Courses and Grad-Courses maps to Courses”. In general, a
mapping may be specified as a query that transforms instances
in one ontology into instances in another [7].

306 A. Doan et al.: Learning to match ontologies on the Semantic Web

In this paper, we focus on finding mappings between the
taxonomies. This is because taxonomies are central compo-
nents of ontologies, and successfully matching them would
greatly aid in matching the remaining ontologies. Extending
matching to attributes and relations is the subject of ongoing
research.

We will begin by considering 1-1 matching for tax-
onomies. The specific problem that we consider is as follows:
given two taxonomies and their associated data instances,
for each node (i.e., concept) in one taxonomy, find the most
similar node in the other taxonomy, for a predefined simi-
larity measure. This is a very general problem setting that
makes our approach applicable to a broad range of common
ontology-related problems such as ontology integration and
data translation among ontologies. Later, in Sect. 8 we will
consider extending our solution for 1-1 matching to address
the problem of complex matching between taxonomies.

Data instances: GLUE makes heavy use of the fact that
we have data instances associated with the ontologies we are
matching. We note that many real-world ontologies already
have associated data instances. Furthermore, on the Semantic
Web, the greatest benefits of ontology matching come from
matching the most heavily used ontologies, and the more heav-
ily an ontology is used for marking up data, the more data it
has. Finally, we show in our experiments that only a moderate
number of data instances is necessary to obtain good matching
accuracy.

4 Similarity measures

To match concepts between two taxonomies, we need a no-
tion of similarity. We now describe the similarity measures
that GLUE handles; but before doing that, we discuss the mo-
tivations leading to our choices.

First, we would like the similarity measures to be well-
defined. A well-defined measure will facilitate the evaluation
of our system. It also makes clear to users what the system
means by a match and helps them figure out whether the
system is applicable to a given matching scenario. Further-
more, a well-defined similarity notion may allow us to lever-
age special-purpose techniques for the matching process.

Second, we want the similarity measures to correspond to
our intuitive notions of similarity. In particular, they should
depend only on the semantic content of the concepts involved
and not on their syntactic specification.

Finally, we note that many reasonable similarity measures
exist, each being appropriate to certain situations. Hence, to
maximize our system’s applicability, we would like it to be
able to handle a broad variety of similarity measures. The fol-
lowing examples illustrate the variety of possible definitions
of similarity.

Example 4.1. In searching for your conference acquaintance,
your softbot should use an “exact” similarity measure that
maps Associate-Professor into Senior Lecturer, an equiv-
alent concept. However, if the softbot has some postprocess-
ing capabilities that allow it to filter data, then it may tol-
erate a “most-specific-parent” similarity measure that maps
Associate-Professor to Academic-Staff, a more general
concept. �

Example 4.2. A common task in ontology integration is to
place a concept A into an appropriate place in a taxonomy T .
One way to do this is to (a) use an “exact” similarity measure
to find the concept B in T that is “most similar” to A, (b) use a
“most-specific-parent” similarity measure to find the concept
C in T that is the most specific superset concept of A, (c) use
a “most-general-child” similarity measure to find the concept
D in T that is the most general subset concept of A, then (d)
decide on the placement of A, based on B, C, and D. �

Example 4.3. Certain applications may even have different
similarity measures for different concepts. Suppose that a user
tells the softbot to find houses in the range of $300–500K, lo-
cated in Seattle. The user expects that the softbot will not
return houses that fail to satisfy the above criteria. Hence, the
softbot should use exact mappings for price and address.
But it may use approximate mappings for other concepts. If
it maps house-description into neighborhood-info, that is
still acceptable. �

Most existing works in ontology (and schema) matching
do not satisfy the above motivating criteria. Many works im-
plicitly assume the existence of a similarity measure but never
define it. Others define similarity measures based on the syn-
tactic clues of the concepts involved. For example, the similar-
ity of two concepts might be computed as the dot product of the
two TF/IDF (Term Frequency/Inverse Document Frequency)
vectors representing the concepts or a function based on the
common tokens in the names of the concepts. Such similarity
measures are problematic because they depend not only on the
concepts involved but also on their syntactic specifications.

4.1 Distribution-based similarity measures

We now give precise similarity definitions and show how our
approach satisfies the motivating criteria. We begin by mod-
eling each concept as a set of instances, taken from a finite
universe of instances. In the CS domain, for example, the uni-
verse consists of all entities of interest in that world: profes-
sors, assistant professors, students, courses, and so on. The
concept Professor is then the set of all instances in the uni-
verse that are professors. Given this model, the notion of the
joint probability distribution between any two concepts A and
B is well defined. This distribution consists of the four prob-
abilities: P (A, B), P (A, B), P (A, B), and P (A,B). A term
such as P (A,B) is the probability that a randomly chosen
instance from the universe belongs to A but not to B and is
computed as the fraction of the universe that belongs to A but
not to B.

Many practical similarity measures can be defined based
on the joint distribution of the concepts involved. For instance,
a possible definition for the “exact” similarity measure men-
tioned in the previous section is

Jaccard-sim(A, B) = P (A ∩ B)/P (A ∪ B)

=
P (A, B)

P (A, B) + P (A, B) + P (A, B)
(1)

This similarity measure is known as the Jaccard coefficient
[47]. It takes the lowest value 0 when A and B are disjoint

A. Doan et al.: Learning to match ontologies on the Semantic Web 307

Relaxation Labeler

Similarity Estimator

Taxonomy O2
(tree structure + data instances)

Taxonomy O1
(tree structure + data instances)

Base Learner Lk

Meta Learner M

Base Learner L1

Joint Distributions: P(A,B), P(A,notB), ...

Similarity Matrix

Mappings for O1 , Mappings for O2

Similarity function

Common knowledge &
Domain constraints

Distribution
Estimator

Fig. 2. The GLUE architecture

and the highest value 1 when A and B are the same concept.
Most of our experiments will use this similarity measure.

A definition for the “most-specific-parent” similarity mea-
sure is

MSP (A, B) =
{

P (A|B) if P (B|A) = 1
0 otherwise

(2)

where the probabilities P (A|B) and P (B|A) can be trivially
expressed in terms of the four joint probabilities. This def-
inition states that if B subsumes A, then the more specific
B is, the higher P (A|B), and thus the higher the similarity
value MSP (A, B). Thus it suits the intuition that the most
specific parent of A in the taxonomy is the smallest set that
subsumes A. An analogous definition can be formulated for
the “most-general-child” similarity measure.

Instead of trying to estimate specific similarity values di-
rectly, GLUE focuses on computing the joint distributions.
Then it is possible to compute any of the above-mentioned
similarity measures as a function over the joint distributions.
Hence GLUE has the significant advantage of being able to
work with a variety of similarity functions that have well-
founded probabilistic interpretations.

5 The GLUE architecture

We now describe GLUE in detail. The basic architecture of
GLUE is shown in Fig. 2. It consists of three main modules:
Distribution Estimator, Similarity Estimator, and Relaxation
Labeler.

The Distribution Estimator takes as input two taxonomies
O1 and O2, together with their data instances. Then it applies
machine learning techniques to compute for every pair of con-
cepts 〈A ∈ O1, B ∈ O2〉 their joint probability distribution.
Recall from Sect. 4 that this joint distribution consists of four
numbers: P (A, B), P (A, B), P (A, B), and P (A,B). Thus a
total of 4|O1||O2| numbers will be computed, where |Oi| is the
number of nodes (i.e., concepts) in taxonomy Oi. The Distri-
bution Estimator uses a set of base learners and a metalearner.

We describe the learners and the motivation behind them in
Sect. 5.2.

Next, GLUE feeds the above numbers into the Similarity
Estimator, which applies a user-supplied similarity function
(such as the ones in Eq. 1 or 2) to compute a similarity value
for each pair of concepts 〈A ∈ O1, B ∈ O2〉. The output from
this module is a similarity matrix between the concepts in the
two taxonomies.

The Relaxation Labeler module then takes the similarity
matrix, together with domain-specific constraints and heuris-
tic knowledge, and searches for the mapping configuration that
best satisfies the domain constraints and the common knowl-
edge, taking into account the observed similarities. This map-
ping configuration is the output of GLUE.

We now describe the Distribution Estimator. First, we dis-
cuss the general machine learning technique used to estimate
joint distributions from data and then the use of multistrategy
learning in GLUE. Section 6 describes the Relaxation Labeler.
The Similarity Estimator is trivial because it simply applies
a user-defined function to compute the similarity of two con-
cepts from their joint distribution and hence is not discussed
further.

5.1 The distribution estimator

Consider computing the value of P (A, B). This joint proba-
bility can be computed as the fraction of the instance universe
that belongs to both A and B. In general, we cannot compute
this fraction because we do not know every instance in the
universe. Hence we must estimate P (A, B) based on the data
we have, namely, the instances of the two input taxonomies.
Note that the instances that we have for the taxonomies may
be overlapping but are not necessarily so.

To estimate P (A, B), we make the general assumption that
the set of instances of each input taxonomy is a representative
sample of the instance universe covered by the taxonomy. We
denote by Ui the set of instances given for taxonomy Oi, by
N(Ui) the size ofUi, and byN(UA,B

i) the number of instances
in Ui that belong to both A and B.

With the above assumption, P (A, B) can be estimated by
the following equation:1

P (A, B) = [N(UA,B
1) + N(UA,B

2)] / [N(U1) + N(U2)],
(3)

Computing P (A, B) then reduces to computing N(UA,B
1)

and N(UA,B
2). Consider N(UA,B

2). We can compute this
quantity if we know for each instance s in U2 whether it be-
longs to both A and B. One part is easy: we already know
whether s belongs to B – if it is explicitly specified as an in-
stance of B or of any descendant node of B. Hence we only
need to decide whether s belongs to A.

1 Note that N(UA,B
i)/N(Ui) is also a reasonable approximation

of P (A, B), but it is estimated based only on the data of Oi. The
estimation in Eq. (3) is likely to be more accurate because it is based
on more data, namely, the data of both O1 and O2. Note also that the
estimation in Eq. (3) is only an approximation in that it does not take
into account the overlapping instances of the taxonomies.

308 A. Doan et al.: Learning to match ontologies on the Semantic Web

R

A C D

E F

G

B H

I Jt1, t2 t3, t4

t5 t6, t7
t1, t2, t3, t4

t5, t6, t7

Trained
Learner L

s2, s3 s4

s1
s5, s6

s1, s2, s3, s4

s5, s6

L s1, s3 s2, s4

s5 s6

Taxonomy O2

U2

U1

not A

not A,B

Taxonomy O1

U2
not B

U1
A

U2
B

U2
A,not B

U2
not A,not B

U2
A,B

(b) (c) (d) (e) (f)(a)

Fig. 3a–f. Estimating the joint distribution of concepts A and B

This is where we use machine learning. Specifically, we
partition U1, the set of instances of ontology O1, into the set
of instances that belong to A and the set of instances that
do not belong to A. Then, we use these two sets as positive
and negative examples, respectively, to train a classifier for
A. Finally, we use the classifier to predict whether instance s
belongs to A.

It is often the case that the classifier returns not a simple
“yes” or “no” answer, but rather a confidence score α in the
range [0,1] for the “yes” answer. The score reflects the un-
certainty of the classification. In such cases the score for the
“no” answer can be computed as 1 − α. Thus we regard the
classification as “yes” if α ≥ 1 − α, and as “no” otherwise.

In summary, we estimate the joint probability distribution
of A and B as follows (the procedure is illustrated in Fig. 3):

1. Partition U1 into UA
1 and UA

1 , the set of instances that do
and do not belong to A, respectively (Figs. 3a,b).

2. Train a learner L for instances of A using UA
1 and UA

1 as
the sets of positive and negative training examples, respec-
tively.

3. Partition U2, the set of instances of taxonomy O2, into UB
2

and UB
2 , the set of instances that do and do not belong to

B, respectively (Figs. 3d,e).
4. Apply learner L to each instance in UB

2 (Fig. 3e). This

partitions UB
2 into the two sets UA,B

2 and UA,B
2 shown in

Fig. 3f. Similarly, applying L to UB
2 results in the two sets

UA,B
2 and UA,B

2 .
5. Repeat steps 1–4, but with the roles of taxonomies O1 and

O2 being reversed, to obtain the sets UA,B
1 , UA,B

1 , UA,B
1 ,

and UA,B
1 .

6. Finally, compute P (A, B) using Formula 3. The remain-
ing three joint probabilities are computed in a similar man-

ner using the sets UA,B
2 , . . . , UA,B

1 computed in steps 4–5.

By applying the above procedure to all pairs of concepts 〈A ∈
O1, B ∈ O2〉 we obtain all joint distributions of interest.

5.2 Multistrategy learning

Given the diversity of machine learning methods, the next is-
sue is deciding which one to use for the procedure we described
above.A key observation in our approach is that there are many
different types of information that a learner can glean from the
training instances in order to make predictions. It can exploit
the frequencies of words in the text value of the instances, the

instance names, the value formats, the characteristics of value
distributions, and so on.

Since different learners are better at utilizing different
types of information, GLUE follows [12] and takes a mul-
tistrategy learning approach. In step 2 of the above estimation
procedure, instead of training a single learner L, we train a set
of learners L1, . . . , Lk, called base learners. Each base learner
exploits well a certain type of information from the training
instances to build prediction hypotheses. Then, to classify an
instance in step 4, we apply the base learners to the instance
and combine their predictions using a metalearner. This way
we can achieve higher classification accuracy than with any
single base learner alone and therefore better approximations
of the joint distributions.

The current implementation of GLUE has two base learn-
ers, Content Learner and Name Learner, and a metalearner
that is a linear combination of the base learners. We now de-
scribe these learners in detail.

The Content Learner: This learner exploits the frequencies
of words in the textual content of an instance to make predic-
tions. Recall that an instance typically has a name and a set of
attributes together with their values. In the current version of
GLUE, we do not handle attributes directly; rather, we treat
them and their values as the textual content of the instance.2

For example, the textual content of the instance “Professor
Cook” is “R. Cook, Ph.D., University of Sydney, Australia”.
The textual content of the instance “CSE 342” is the text con-
tent of this course’s homepage.

The Content Learner employs the Naive Bayes learning
technique [15], one of the most popular and effective text clas-
sification methods. It treats the textual content of each input
instance as a bag of tokens generated by parsing and stemming
the words and symbols in the content. Let d = {w1, . . . , wk}
be the content of an input instance, where the wj are tokens.
To make a prediction, the Content Learner needs to compute
the probability that an input instance is an instance of A given
its tokens, i.e., P (A|d).

Using Bayes’ theorem, P (A|d) can be rewritten as
P (d|A)P (A)/P (d). Fortunately, two of these values can be
estimated using the training instances, and the third, P (d), can
be ignored because it is just a normalizing constant. Specif-
ically, P (A) is estimated as the portion of training instances
that belong to A. To compute P (d|A), we assume that the to-
kens wj appear in d independently of each other given A (this

2 However, more sophisticated learners can be developed that deal
explicitly with the attributes, such as the XML Learner in [12].

A. Doan et al.: Learning to match ontologies on the Semantic Web 309

is why the method is called Naive Bayes). With this assump-
tion, we have

P (d|A) = P (w1|A)P (w2|A) · · ·P (wk|A)

P (wj |A) is estimated as n(wj , A)/n(A), where n(A) is the
total number of token positions of all training instances that
belong to A, and n(wj , A) is the number of times token wj

appears in all training instances belonging to A. Even though
the independence assumption is typically not valid, the Naive
Bayes learner still performs surprisingly well in many do-
mains, notably text-based ones (see [15] for an explanation).

We compute P (A|d) in a similar manner. Hence the Con-
tent Learner predicts A with probability P (A|d) and A with
the probability P (A|d).

The Content Learner works well on long textual elements,
such as course descriptions, or elements with very distinct
and descriptive values, such as color (red, blue, green, etc.). It
is less effective with short, numeric elements such as course
numbers or credits.

The Name Learner: This learner is similar to the Content
Learner but makes predictions using the full name of the input
instance, instead of its content. The full name of an instance
is the concatenation of concept names leading from the root
of the taxonomy to that instance. For example, the full name
of instance with the name s4 in taxonomy O2 (Fig. 3d) is “G
B J s4”. This learner works best on specific and descriptive
names. It does not do well with names that are too vague or
vacuous.

The Metalearner: The predictions of the base learners are
combined using the Metalearner. The Metalearner assigns to
each base learner a learner weight that indicates how much
it trusts that learner’s predictions. Then it combines the base
learners’ predictions via a weighted sum.

For example, suppose the weights of the Content Learner
and the Name Learner are 0.6 and 0.4, respectively. Suppose
further that for instance s4 of taxonomy O2 (Fig. 3d) the Con-
tent Learner predicts A with probability 0.8 and A with prob-
ability 0.2, and the Name Learner predicts A with probability
0.3 and A with probability 0.7. Then the Metalearner predicts
A with probability 0.8 · 0.6 + 0.3 · 0.4 = 0.6 and A with
probability 0.2 · 0.6 + 0.7 · 0.4 = 0.4.

In the current GLUE system, the learner weights are set
manually, based on the characteristics of the base learners and
the taxonomies. However, they can also be set automatically
using a machine learning approach called stacking [48,45], as
we have shown in [12].

6 Exploiting domain constraints and heuristic knowledge

We now describe the Relaxation Labeler, which takes the sim-
ilarity matrix from the Similarity Estimator and searches for
the mapping configuration that best satisfies the given domain
constraints and heuristic knowledge. We first describe relax-
ation labeling, then discuss the domain constraints and heuris-
tic knowledge employed in our approach.

6.1 Relaxation labeling

Relaxation labeling is an efficient technique to solve the prob-
lem of assigning labels to nodes of a graph, given a set of
constraints. The key idea behind this approach is that the label
of a node is typically influenced by the features of the node’s
neighborhood in the graph. Examples of such features are the
labels of the neighboring nodes, the percentage of nodes in the
neighborhood that satisfy a certain criterion, and the fact that
a certain constraint is satisfied or not.

Relaxation labeling exploits this observation. The influ-
ence of a node’s neighborhood on its label is quantified using
a formula for the probability of each label as a function of
the neighborhood features. Relaxation labeling assigns initial
labels to nodes based solely on the intrinsic properties of the
nodes. Then it performs iterative local optimization. In each
iteration, it uses the formula to change the label of a node
based on the features of its neighborhood. This continues un-
til labels do not change from one iteration to the next or some
other convergence criterion is reached.

Relaxation labeling appears promising for our purposes
because it has been applied successfully to similar matching
problems in computer vision, natural language processing, and
hypertext classification [21,39,6]. It is relatively efficient and
can handle a broad range of constraints. Even though its con-
vergence properties are not yet well understood (except in
certain cases) and it is liable to converge to a local maxima,
in practice it has been found to perform quite well [39,6].

We now explain how to apply relaxation labeling to the
problem of mapping from taxonomy O1 to taxonomy O2. We
regard nodes (concepts) in O2 as labels and recast the problem
as finding the best label assignment to nodes (concepts) in O1,
given all knowledge we have about the domain and the two
taxonomies.

Our goal is to derive a formula for updating the probability
that a node takes a label based on the features of the neighbor-
hood. Let X be a node in taxonomy O1 and L be a label (i.e.,
a node in O2). Let ∆K represent all that we know about the
domain, namely, the tree structures of the two taxonomies, the
sets of instances, and the set of domain constraints. Then we
have the following conditional probability:

P (X = L|∆K) =
∑
MX

P (X = L, MX |∆K)

=
∑
MX

P (X = L|MX , ∆K)P (MX |∆K)

(4)

where the sum is over all possible label assignments MX to
all nodes other than X in taxonomy O1. Assuming that the
nodes’ label assignments are independent of each other given
∆K , we have

P (MX |∆K) =
∏

(Xi=Li)∈MX

P (Xi = Li|∆K) (5)

Consider P (X = L|MX , ∆K). MX and ∆K constitutes
all that we know about the neighborhood of X . Suppose now
that the probability of X getting label L depends only on the
values of n features of this neighborhood, where each feature
is a function fi(MX , ∆K , X, L). As we explain later in this

310 A. Doan et al.: Learning to match ontologies on the Semantic Web

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

-10 -5 0 5 10

P
(x

)

x

Sigmoid(x)

Fig. 4. The sigmoid function

section, each such feature corresponds to one of the heuristics
or domain constraints that we wish to exploit. Then

P (X = L|MX , ∆K) = P (X = L|f1, . . . , fn) (6)

If we have access to previously computed mappings be-
tween taxonomies in the same domain, we can use them as the
training data from which to estimate P (X = L|f1, . . . , fn)
(see [6] for an example of this in the context of hypertext
classification). However, here we will assume that such map-
pings are not available. Hence we use alternative methods
to quantify the influence of the features on the label assign-
ment. In particular, we use the sigmoid or logistic function
σ(x) = 1/(1 + e−x), where x is a linear combination of the
features fk, to estimate the above probability. This function is
widely used to combine multiple sources of evidence [1]. The
general shape of the sigmoid is as shown in Fig. 4.

Thus:

P (X = L|f1, . . . , fn) ∝ σ(α1 · f1 + · · · + αn · fn) (7)

where ∝ denotes “proportional to” and the weight αk indicates
the importance of feature fk.

The sigmoid is essentially a smoothed threshold function,
which makes it a good candidate for use in combining evidence
from the different features. If the total evidence is below a
certain value, it is unlikely that the nodes match; above this
threshold, they probably do.

By substituting Eqs. 5–7 into Eq. 4, we obtain

P (X = L|∆K) ∝
∑
MX

σ

(
n∑

k=1

αkfk(MX , ∆K , X, L)

)

×
∏

(Xi=Li)∈MX

P (Xi = Li|∆K) (8)

The proportionality constant is found by renormalizing
the probabilities of all the labels to sum to one. Note that
this equation expresses the probabilities P (X = L|∆K) for
the various nodes in terms of each other. This is the iterative
equation that we use for relaxation labeling.

6.2 Constraints

Table 1 shows examples of the constraints currently used in
our approach and their characteristics. We distinguish between

two types of constraints: domain-independent and domain-
dependent constraints. Domain-independent constraints con-
vey our general knowledge about the interaction between re-
lated nodes. Perhaps the most widely used such constraint is
the Neighborhood Constraint: “Two nodes match if nodes in
their neighborhood also match”, where the neighborhood is
defined to be the children, the parents, or both [35,26,32] (see
Table 1).Another example is the Union Constraint: “If all chil-
dren of a node A match node B, then A also matches B”. This
constraint is specific to the taxonomy context. It exploits the
fact that A is the union of all its children. Domain-dependent
constraints convey our knowledge about the interaction be-
tween specific nodes in the taxonomies. Table 1 shows exam-
ples of three types of domain-dependent constraints.

To incorporate the constraints into the relaxation label-
ing process, we model each constraint ci as a feature fi of
the neighborhood of node X . For example, consider the con-
straint c1: “Two nodes are likely to match if their children
match”. To model this constraint, we introduce the feature
f1(MX , ∆K , X, L), that is, the percentage of X’s children
that match a child of L, under the given MX mapping. Thus
f1 is a numeric feature that takes values from 0 to 1. Next,
we assign to fi a positive weight αi. This has the intuitive
effect that, all other things being equal, the higher the value
fi (i.e., the percentage of matching children), the higher the
probability of X matching L.

As another example, consider the constraint c2: “If node
Y is a descendant of node X , and Y matches PROFESSOR,
then it is unlikely that X matches ASST-PROFESSOR”. The
corresponding feature, f2(MX , ∆K , X, L), is 1 if the condi-
tion “there exists a descendant of X that matches PROFES-
SOR” is satisfied, given the MX mapping configuration, and
0 otherwise. Clearly, when this feature takes value 1, we want
to substantially reduce the probability that X matches ASST-
PROFESSOR. We model this effect by assigning to f2 a
negative weight α2.

6.3 Efficient implementation of relaxation labeling

In this section we discuss why previous implementations of re-
laxation labeling are not efficient enough for ontology match-
ing and then describe an efficient implementation for our con-
text.

Recall from Sect. 6.1 that our goal is to compute for each
node X and label L the probability P (X = L|δK), using
Eq. 8. A naive implementation of this computation process
would enumerate all labeling configurations MX and then
compute fk(MX , δK , X, L) for each of the configurations.

This naive implementation does not work in our context
because of the vast number of configurations. This is a problem
that has also arisen in the context of relaxation labeling being
applied to hypertext classification ([6]). The solution in [6] is
to consider only the top k configurations, that is, those with
highest probability, based on the heuristic that the sum of the
probabilities of the top k configurations is already sufficiently
close to 1. This heuristic was true in the context of hypertext
classification due to a relatively small number of neighbors
per node (in the range 0–30) and a relatively small number of
labels (under 100).

A. Doan et al.: Learning to match ontologies on the Semantic Web 311

Table 1. Examples of constraints that can be exploited to improve matching accuracy

Constraint Types Examples

Neighborhood
Two nodes match if their children also match.
Two nodes match if their parents match and at least x% of their children also match.
Two nodes match if their parents match and some of their descendants also match.

D

om
ai

n-
In

de
pe

nd
en

t

Union If all children of node X match node Y, then X also matches Y.

Subsumption
 If node Y is a descendant of node X, and Y matches PROFESSOR, then it is unlikely that X matches ASSISTANT-PROFESSOR.
 If node Y is NOT a descendant of node X, and Y matches PROFESSOR, then it is unlikely that X matches FACULTY.

Frequency There can be at most one node that matches DEPARTMENT-CHAIR.

D
om

ai
n-

D
ep

en
de

nt

Nearby
 If a node in the neighborhood of node X matches ASSOCIATE-PROFESSOR, then the chance that X matches PROFESSOR
isincreased.

Unfortunately, the above heuristic is not true in our match-
ing context. Here, a neighborhood of a node can be the entire
graph, thereby comprising hundreds of nodes, and the number
of labels can be hundreds or thousands (because this number
is the same as the number of nodes in the other ontology to
be matched). Thus the number of configurations in our con-
text is orders of magnitude greater than that in the context of
hypertext classification, and the probability of a configuration
is computed by multiplying the probabilities of a very large
number of nodes. As a consequence, even the highest proba-
bility of a configuration is very small, and a huge number of
configurations have to be considered to achieve a significant
total probability mass.

Hence we developed a novel and efficient implementation
for relaxation labeling in our context. Our implementation re-
lies on three key ideas. The first idea is that we divide the
space of configurations into partitions C1, C2, . . . , Cm such
that all configurations that belong to the same partition have
the same values for the features f1, f2, . . . , fn. Then, to com-
pute P (X = L|δK), we iterate over the (far fewer) partitions
rather than over the huge space of configurations.

The one problem remaining is to compute the probability
of a partition Ci. Suppose all configurations in Ci have feature
values f1 = v1, f2 = v2, . . . , fn = vn. Our second key idea is
to approximate the probability of Ci with

∏n
j=1 P (fj = vj),

where P (fj = vj) is the total probability of all configurations
whose feature fj takes on value vj . Note that this approxima-
tion makes an independence assumption over the features that
is clearly not valid. However, the assumption greatly simpli-
fies the computation process. In our experiments with GLUE,
we have not observed any problem arising because of this
assumption.

Now we focus on computing P (fj = vj). We compute
this probability using a variety of techniques that depend on
the particular feature. For example, suppose fj is the number
of children of X that map to some child of L. Let Xj be the
j-th child of X (ordered arbitrarily) and nX the number of
children of the concept X . Let Sm

j be the probability that of
the first j children, there are m that are mapped to some child
of L. It is easy to see that Sm

j ’s are related as follows:

Sm
j = P (Xj = L′)Sm−1

j−1 + (1 − P (Xj = L′))Sm
j−1

where P (Xj = L′) =
∑nL

l=1 P (Xj = Ll) is the probability
that the child Xj is mapped to some child of L. This equation
immediately suggests a dynamic programming approach to
computing the values Sm

j and thus the number of children of
X that map to some child of L. We use similar techniques to
compute P (fj = vj) for the other types of features that are
described in Table 1.

7 Empirical evaluation

We have evaluated GLUE on several real-world domains. Our
goals were to evaluate the matching accuracy of GLUE, to
measure the relative contribution of the different components
of the system, and to verify that GLUE can work well with a
variety of similarity measures.

Domains and taxonomies: We evaluated GLUE on three
domains, whose characteristics are shown in Table 2. The do-
mains Course Catalog I and II describe courses at Cornell
University and the University of Washington. The taxonomies
of Course Catalog I have 34–39 nodes and are fairly similar
to each other. The taxonomies of Course Catalog II are much
larger (166–176 nodes) and much less similar to each other.
Courses are organized into schools and colleges, then into
departments and centers within each college. The Company
Profile domain uses ontologies from Yahoo.com and TheS-
tandard.com and describes the current business status of com-
panies. Companies are organized into sectors and then into
industries within each sector.3

In each domain, we downloaded two taxonomies. For each
taxonomy, we downloaded the entire set of data instances and
performed some trivial data cleaning such as removing HTML
tags and phrases such as “course not offered” from the in-
stances. We also removed instances of size less than 130 bytes
because they tend to be empty or vacuous and thus do not con-
tribute to the matching process. We then removed all nodes
with fewer than five instances because such nodes cannot be
matched reliably due to lack of data.

3 Many ontologies are also available from research resources
(e.g., DAML.org, semanticweb.org, OntoBroker [37], SHOE, On-
toAgents). However, they currently have no or very few data in-
stances.

312 A. Doan et al.: Learning to match ontologies on the Semantic Web

Table 2. Domains and taxonomies for our experiments

Taxonomies # nodes
non-leaf

nodes depth
instances

in
taxonomy

max # instances
at a leaf

max #
children
of a node

manual
mappings
created

Cornell 34 6 4 1526 155 10 34Course Catalog
I Washington 39 8 4 1912 214 11 37

Cornell 176 27 4 4360 161 27 54Course Catalog
II Washington 166 25 4 6957 214 49 50

Standard.com 333 30 3 13634 222 29 236Company
Profiles Yahoo.com 115 13 3 9504 656 25 104

0

10

20

30

40

50

60

70

80

90

100

Cornell to Wash. Wash. to Cornell Cornell to Wash. Wash. to Cornell Standard to Yahoo Yahoo to Standard

M
at

ch
in

g
ac

cu
ra

cy
 (%

)

Name Learner Content Learner Meta Learner Relaxation Labeler

Course Catalog II Company ProfileCourse Catalog I

Fig. 5. Matching accuracy of GLUE

Similarity measure and manual mappings: We chose to
evaluate GLUE using the Jaccard similarity measure (Sect. 4)
because it corresponds well to our intuitive understanding of
similarity. Given the similarity measure, we manually created,
for evaluation purposes, the correct 1-1 mappings between the
taxonomies in the same domain. The rightmost column of Ta-
ble 2 shows the number of manual mappings created for each
taxonomy. For example, we created 236 one-to-one mappings
from Standard to Yahoo! and 104 mappings in the reverse
direction. Note that in some cases there were nodes in a tax-
onomy for which we could not find a 1-1 match. This was
either because there was no equivalent node (e.g., School of
Hotel Administration at Cornell has no equivalent counterpart
at the University of Washington) or when it is impossible to
determine an accurate match without additional domain ex-
pertise.

Domain constraints: We specified domain constraints for the
relaxation labeler. For the taxonomies in Course Catalog I, we
specified all applicable subsumption constraints (Table 1). For
the other two domains, because their sheer size makes specify-
ing all constraints difficult, we specified only the most obvious
subsumption constraints (about ten constraints for each taxon-
omy). For the taxonomies in Company Profiles, we also used
several frequency constraints.

Experiments: For each domain, we performed two experi-
ments. In each experiment, we applied GLUE to find the map-
pings from one taxonomy to the other. The matching accuracy
of a taxonomy is then the percentage of the manual mappings
(for that taxonomy) that GLUE predicted correctly.

7.1 Matching accuracy

Figure 5 shows the matching accuracy for different domains
and configurations of GLUE. In each domain, we show the
matching accuracy of two scenarios: mapping from the first
taxonomy to the second and vice versa. The four bars in each
scenario (from left to right) represent the accuracy produced
by: (1) the Name Learner alone, (2) the Content Learner alone,
(3) the Metalearner using the previous two learners, and (4) the
relaxation labeler on top of the Metalearner (i.e., the complete
GLUE system).

The results show that GLUE achieves high accuracy across
all three domains, ranging from 66% to 97%. In contrast, the
best matching results of the base learners, achieved by the
Content Learner, are only 52% to 83%. It is interesting that
the Name Learner achieves very low accuracy – 12% to 15%
in four out of six scenarios. This is because all instances of
a concept, say B, have very similar full names (see the de-
scription of the Name Learner in Sect. 5.2). Hence when the
Name Learner for a concept A is applied to B, it will classify
all instances of B as A or A. In cases when this classfica-
tion is incorrect, which might be quite often, using the Name
Learner alone leads to poor estimates of the joint distributions.
The poor performance of the Name Learner underscores the
importance of data instances and multistrategy learning in on-
tology matching.

The results clearly show the utility of the Metalearner and
relaxation labeler. Even though in half of the cases the Met-
alearner only minimally improves the accuracy, in the other
half it makes substantial gains, between 6% and 15%. And in
all but one case, the relaxation labeler further improves accu-

A. Doan et al.: Learning to match ontologies on the Semantic Web 313

0

10

20

30

40

50

60

70

80

90

100

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

M
at

ch
in

g
 A

cc
u

ra
cy

 (
%

)
Cornell to Wash. Wash. To Cornell

Epsilon (∈∈∈∈)

Fig. 6. The accuracy of GLUE in the Course Catalog I domain, using the most-specific-parent similarity measure

racy by 3% to 18%, confirming that it is able to exploit the
domain constraints and general heuristics. In one case (from
Standard to Yahoo), the relaxation labeler decreased accuracy
by 2%. The performance of the relaxation labeler is discussed
in more detail below. In Sect. 7.4, we identify the reasons that
prevent GLUE from identifying the remaining mappings.

In the current experiments, GLUE utilized on average only
30 to 90 data instances per leaf node (see Table 2). The high
accuracy in these experiments suggests that GLUE can work
well with only a modest amount of data.

7.2 Performance of the relaxation labeler

In our experiments, when the relaxation labeler was applied,
the accuracy typically improved substantially in the first few
iterations, then gradually dropped. This phenomenon has also
been observed in many previous works on relaxation labeling
[21,25,39]. Because of this, finding the right stopping criterion
for relaxation labeling is of crucial importance. Many stopping
criteria have been proposed, but no general effective criterion
has been found.

We considered three stopping criteria: (1) stopping when
the mappings in two consecutive iterations do not change (the
mapping criterion), (2) when the probabilities do not change,
or (3) when a fixed number of iterations has been reached.

We observed that when using the last two criteria, the ac-
curacy sometimes improved by as much as 10%, but most of
the time it decreased. In contrast, when using the mapping
criterion, in all but one of our experiments the accuracy sub-
stantially improved, by 3% to 18%, and hence our results are
reported using this criterion. We note that with the mapping
criterion we observed that relaxation labeling always stopped
in the first few iterations.

In all of our experiments, relaxation labeling was also very
fast. It took only a few seconds in Catalog I and under 20 s in
the other two domains to finish ten iterations. This observation
shows that relaxation labeling can be implemented efficiently

in the ontology matching context. It also suggests that we
can efficiently incorporate user feedback into the relaxation
labeling process in the form of additional domain constraints.

We also experimented with different values for the con-
straint weights (Sect. 6) and found that the relaxation labeler
was quite robust with respect to such parameter changes.

7.3 Most-specific-parent similarity measure

So far we have experimented only with the Jaccard similar-
ity measure. We wanted to know whether GLUE could work
well with other similarity measures. Hence we conducted an
experiment in which we used GLUE to find mappings for tax-
onomies in the Course Catalog I domain, using the following
similarity measure:

MSP (A, B) =
{

P (A|B) if P (B|A) ≥ 1 − ε
0 otherwise

This measure is the same as the the most-specific-parent sim-
ilarity measure described in Sect. 4, except that we added an
ε factor to account for the error in approximating P (B|A).

Figure 6 shows the matching accuracy, plotted against ε.
As can be seen, GLUE performed quite well on a broad range
of ε. This illustrates how GLUE can be effective with more
than one similarity measure.

7.4 Discussion

The accuracy of GLUE is quite impressive as is, but it is nat-
ural to ask what limits GLUE from obtaining even higher
accuracy. There are several factors that prevent GLUE from
correctly matching the remaining nodes. First, some nodes
cannot be matched because of insufficient training data. For
example, many course descriptions in Course Catalog II con-
tain only vacuous phrases such as “3 credits”. While there
is clearly no general solution to this problem, in many cases

314 A. Doan et al.: Learning to match ontologies on the Semantic Web

1. Let the initial set of candidates C be the set of all nodes of O2. Set highest sim = 0.
2. Loop

(a) Compute similarity score between each candidate of C and A.
(b) Let new highest sim be the highest similarity score of candidates of C.
(c) If |new highest sim − highest sim| ≤ ε, for a prespecified ε, then stop, returning the candidate with the highest similarity

score in C.
(d) Otherwise, select the k candidates with the highest score from C. Expand these candidates to create new candidates. Add the

new candidates to C. Set highest sim = new highest sim.

Fig. 7. Finding the best mapping candidate for a node A of taxonomy O1

it can be mitigated by adding base learners that can exploit
domain characteristics to improve matching accuracy.

Second, the relaxation labeler performed local optimiza-
tions and sometimes converged to only a local maxima,
thereby not finding correct mappings for all nodes. Here the
challenge will be in developing search techniques that work
better by taking a more “global perspective” but still retain the
run-time efficiency of local optimization.

Third, the two base learners we used in our implementa-
tion are rather simple general-purpose text classifiers. Using
other leaners that perform domain-specific feature selection
and comparison can also improve accuracy.

We note that some nodes cannot be matched automati-
cally because they are simply ambiguous. For example, it is
not clear whether “networking and communication devices”
should match “communication equipment” or “computer net-
works”. A solution to this problem is to incorporate user in-
teraction into the matching process [34,12,49].

Finally, GLUE currently tries to predict the best match for
every node in the taxonomy. However, in some cases such a
match simply does not exist (e.g., unlike Cornell, the Univer-
sity of Washington does not have a School of Hotel Adminis-
tration). Hence, an additional extension to GLUE is to make
it be aware of such cases and not predict an incorrect match
when this occurs.

8 Extending GLUE to complex matching

GLUE finds 1-1 mappings between two given taxonomies.
However, complex mappings are also widespread in practice.
Hence, we extend GLUE to find such mappings. As earlier,
we focus on complex mappings between taxonomies such as
“Courses of the CS Dept Australia taxonomy maps to the
union of Undergrad-Courses and Grad-Courses of the CS
Dept US taxonomy” (Fig. 1). Finding other types of complex
mappings (e.g., “attribute name maps to the concatenation of
first-name and last-name”) is the subject of future research.

We consider the following specific matching problem: for
each node A of a given taxonomy O1, find the best map-
ping over the nodes of another taxonomy O2, be it a 1-1
or complex mapping. A 1-1 mapping has the form A = X
where X is a node of O2. A complex mapping has the form
A = X1 op1 X2 op2 . . . opn−1 Xn, where the Xi are nodes
of O2 and the opi are predefined operators. (In future work,
we shall consider many-to-many complex mappings such as
A1 op1A2 = X1 op2 X2 op3 X3.) Since a taxonomic node is
usually interpreted as a set of instances, we shall take the opi to

be set-theoretic operators: union, difference, complementary,
etc.

In our matching context, we shall refer to a “composite
concept” such as X1 op1 X2 op2 . . . opn−1 Xn as a mapping
candidate. Since any set-arithmetic expression can be rewrit-
ten using only the union and difference operators, it follows
that for any node A of O1 we only need to consider mapping
candidates that are built using these two operators.

Further, in the rest of this section we make the assumption
that the children of any taxonomic node are mutually exclu-
sive and exhaustive. That is, the children C1, C2, . . . , Ck of
any node D (of O1 or O2) satisfy the conditions Ci ∩ Cj =
∅, 1 ≤ i, j ≤ k and i
= j, and C1 ∪ C2 ∪ . . . ∪ Ck = D.
In Sect. 8.4, we discuss removing this assumption, but here
we note that the assumption holds for many real-world tax-
onomies in which the further specialization of a node usually
provides a partition of the instances of that node. In many
other real-world taxonomies, such as the “course catalog” and
“company profiles” domains we have considered in this pa-
per, very few sibling nodes share instances, and the set of such
instances is usually small. Thus for these domains we can also
make this approximating assumption.

With the above assumption, it is easy to show that any
mapping candidate can be rewritten to be a union of nodes.
Thus for each node A of taxonomy O1, our goal is to find
the most similar mapping candidate from the set of candidates
that are unions of nodes of taxonomy O2.

8.1 The CGLUE system

To find the best mapping candidate for node A of taxonomy
O1, we can simply enumerate all “union” candidates over tax-
onomy O2, compute for each candidate its similarity with re-
spect to A using the learning methods described in Sect. 5,
and then return the candidate with the highest similarity. How-
ever, since the number of candidates is exponential in terms
of the number of nodes of O2, the above brute-force approach
is clearly impractical. Thus we consider an approximate ap-
proach that casts the matching problem as that of searching
through the huge space of candidates. To conduct an efficient
search, we adapt the beam search technique commonly used
in AI. The basic idea of beam search is that at each stage in the
search process, we limit our attention to only k most promising
candidates, where k is a prespecified number.

The adapted beam search algorithm to find the best map-
ping candidate for a node A of O1 is described in Fig. 7. Here,
in step 2a the algorithm computes the similarity score between

A. Doan et al.: Learning to match ontologies on the Semantic Web 315

Table 3. Domains and taxonomies for experiments with CGLUE

manual mappings created
Taxonomies # nodes # non-leaf

nodes
depth # instances

in taxonomy

max #
instances
at a leaf

max #
children
of a node complex 1-1 total

Cornell 34 6 4 1526 155 10 11 23 34 Course Catalog
I Washington 39 8 4 1912 214 11 7 32 39

Standard 48 10 3 2441 353 10 7 41 48 Company
Profiles I Yahoo 22 6 3 2461 656 12 9 13 22

Standard 248 23 3 11079 557 24 20 228 248 Company
Profiles II Yahoo 95 11 3 8817 656 25 43 3 46

a mapping candidate and node A using the learning method
described in Sect. 5. This computation has been implemented
on top of the current GLUE system. In step 2c, ε is currently
set at zero. In step 2d, for each candidate C in the set of se-
lected k candidates, the algorithm unions C with nodes of
O2, thus generating |O2| potential new candidates. Next, it re-
moves previously seen candidates as well as those that contain
duplicate nodes. Since each candidate is just a union of nodes
of O2, the removal process could be implemented efficiently.

We have extended GLUE to build CGLUE, a system that
employs the above beam search solution to find complex map-
pings. While CGLUE exploits information in the data and
the taxonomic structures for matching purposes, it has not
yet exploited domain constraints (and so does not use relax-
ation labeling). In Sect. 8.4, we briefly discuss future work on
exploiting domain constraints. In what follows, we describe
experiments with the current CGLUE system.

8.2 Empirical evaluation

We have evaluated CGLUE on three real-world domains
whose characteristics are shown in Table 3. The first domain
is “Course Catalog I” that we used in our GLUE experiments
for 1-1 matching. This domain was described in Table 2 and
reproduced in rows 1–2 of Table 3. We found that this domain
has a fair number of complex mappings (7–11 out of 34–39
mappings) and that we could find the correct complex map-
pings fairly quickly. The domain therefore is well suited for
our purpose.

In contrast, we found that domain “Company Profiles” for
the 1-1 matching case (Table 2) contains few complex map-
pings and that the correct complex mappings were extremely
difficult to detect. Without knowing the correct complex map-
pings (i.e., the “gold standard”), however, we would not be
able to evaluate CGLUE.

Therefore, we modified the domain so that we could find
the set of all correct complex mappings. Our goal is to use these
mappings to evaluate the mappings that CGLUE returns. We
removed and merged certain nodes and created two smaller
versions – “Company Profiles I” and “Company Profiles II”,
which are described in rows 3–6 of Table 3. The latter domain
is much larger than the former (95–248 vs. 22–48 nodes). Both
of them contain a fair number of complex mappings (7–43).

Like the 1-1 matching case, we chose to evaluate CGLUE
using the Jaccard similarity measure. Given this measure,
we manually created the correct mappings between the tax-
onomies. The last three columns of Table 3 show the number

of complex and 1-1 mappings (and the total number of map-
pings) that we created for each taxonomy. The domains and
manual mappings will be made available at the Illinois Se-
mantic Integration Archive
(http://anhai.cs.uiuc.edu/archive).

8.3 Matching accuracy

For each domain, we applied CGLUE to find semantic map-
pings. For “Course Catalog I”, for example, we applied
CGLUE to find mappings from Washington to Cornell, then
from Cornell to Washington. Thus for the three domains we
have a total of six matching scenarios.

Accuracy for complex mappings: Figure 8a shows the
matching accuracies for the six scenarios. These accuracies
were evaluated on complex mappings only, excluding 1-1
mappings. Consider the first scenario, W2C (shorthand for
“from Washington to Cornell”), which has four accuracy bars.
The first bar shows the percentage of complex mappings that
CGLUE predicted correctly. Specifically, it says that CGLUE
correctly produced 57% of complex mappings for Washing-
ton (4 out of 7). We will explain the meaning of the remaining
three bars shortly.

For now, focusing on the first accuracy bars of the six
matching scenarios, we can draw several conclusions. First,
CGLUE achieved an accuracy of 50% to 57% on half of the
matching scenarios: the W2C and the two S2Y ones. This is
significant considering that each complex mapping involves
four to five nodes and yet CGLUE managed to predict these
nodes correctly in more than half of the cases, choosing from
a very large pool of mapping candidates.

Second, CGLUE did not do as well on the remaining three
scenarios, achieving an accuracy of 16% to 27%. Upon close
examination, we found that in each of these scenarios, there
were several “errant” nodes that appeared in numerous pre-
dictions made by CGLUE, thus rendering these predictions
incorrect. For example, in the C2W scenario, the node Greek-
Courses appears in 45% of the complex mappings made by
CGLUE. Such nodes appear to contain very little or vacu-
ous data, leaving little room for learning techniques to clas-
sify them correctly. We observed that “errant” nodes could
be easily detected by the user from a quick inspection of the
mappings produced by CGLUE. Once detected, they can be
removed and CGLUE rerun to produce more accurate map-
pings. Indeed, for the above three matching scenarios, after
detecting “errant” nodes (we currently define these nodes to be

316 A. Doan et al.: Learning to match ontologies on the Semantic Web

0

20

40

60

80

100

M
at

ch
in

g
 a

cc
u

ra
cy

 (
%

)

0

20

40

60

80

100

M
at

ch
in

g
 a

cc
ur

ac
y

(%
)

W2C C2W S2Y Y2S S2Y Y2SW2C C2W S2Y Y2S S2Y Y2S

Company
Profiles I

Company
Profiles II

Company
Profiles I

Company
Profiles II

Course
Catalog I

b a

Course
Catalog I

PR50C-GLUE (PR100) PR25PR75

Fig. 8a,b. Matching accuracy of CGLUE. a Complex matching. b One-to-one matching

those that appear in more than 40% of the mappings), remov-
ing them, and reapplying CGLUE, we obtained accuracies of
50% to 51%, an improvement of 23% to 29% over the initial
accuracies.

Relaxing the notion of correct matching: While experi-
menting, we observed that our definition of matching accuracy
is in fact a pessimistic estimation of the usefulness of CGLUE.
Suppose the correct mapping for node A is A = (B ∪C ∪D).
Then CGLUE may predict A = (B ∪ C ∪ E), which we so
far have discarded as incorrect. However, often when CGLUE
produces such a mapping, the user can immediately tell (from
the names of the nodes) that B and C should be included in
a mapping for A and that E should be excluded. Thus even a
partially correct mapping such as the one above could prove
very useful for the user.

To examine the extent to which CGLUE produces partially
correct mappings, we consider looser notions of correctness.
Suppose that the correct (manual) mapping for A is the set of
nodes Mc and that CGLUE predicts the set of nodes Mp. We
define the precision of this prediction to be |Mp ∩ Mc|/|Mp|
and its recall to be |Mp ∩ Mc|/|Mc|. Then we say that under
correctness level t, a predicted mapping is correct if both its
precision and recall are greater or equal to t%. We use “PRt”
to refer to the matching accuracy that is computed using cor-
rectness level t.

Returning to Fig. 8a, we have discussed the first bar of
each matching scenario, which corresponds to accuracy level
PR100. The remaining three bars of each scenario correspond
to accuracy levels PR75, PR50, and PR25, respectively.As can
be seen, excluding the 50% to 57% of mappings that CGLUE
predicted correctly (as we discussed earlier), CGLUE also
was partially correct for an overwhelming majority of the re-
maining mappings. At PR25, CGLUE was partially correct
for 90% to 100% of the remaining mappings.

Accuracy for 1-1 mappings: Since CGLUE can mistak-
enly issue complex-mapping predictions for nodes whose cor-
rect mappings are 1-1, we wanted to know how well CGLUE
makes predictions for such nodes. Figure 8b shows matching
accuracies in a way similar to that of Fig. 8a, except that here
the accuracies are evaluated over the 1-1 mappings. For ex-

ample, the first bar of this figure says that out of 32 one-to-one
mappings of taxonomy Washington (see Table 3), CGLUE
correctly predicted 25, achieving an accuracy of 78%.

As can be seen from the figure, CGLUE achieves high
accuracy in half of the matching scenarios (W2C and the two
S2Ys), ranging from 50% to 85%. It achieves lower accura-
cies of 0in the remaining scenarios. (Though the accuracy 0%
of the last S2Y scenario should be discounted because here
we have only three 1-1 mappings; excluding this scenario the
accuracy is 17% to 35%.) Again, this low accuracy is largely
due to the fact that several “errant” nodes appear in numerous
mappings, rendering them incorrect. Removing these “errant”
nodes yields accuracies of 46% to 52%, thus resulting in an
improvement of 17% to 29%.

Figure 8b further shows that at PR25 CGLUE achieves
accuracy of 52% to 84%. By definition, any prediction that
CGLUE makes that is correct at PR25 would contain at most
four nodes and must contain the correct matching node. As
such, the prediction would be useful to the user because he
or she often could quickly identify the correct matching node.
Thus the above result is significant because it suggests that
CGLUE could help the user locate the correct node for 52%
to 84% of the 1-1 mappings.

8.4 Discussion

The above experiments show that with the current simple
solution that uses beam search, CGLUE already achieves
good results for both 1-1 and complex matching. These re-
sults can be improved in a variety of ways, one of which is
to incorporate domain constraints. For example, we observed
that many mappings made by CGLUE include semantically
unrelated nodes such as “Oil-Utilities = Oil-Equipments-
Companies ∪ Food-Companies”. Clearly, if we can exploit
the constraint “concept Oil-Utilities is semantically unrelated
to Food-Companies”, we should be able to “clean” the above
mapping by removing the node Food-Companies, thus im-
proving the overall matching accuracy.

We now discuss removing the assumption that the chil-
dren of any taxonomic node are mutually exclusive and ex-
haustive. Without this assumption we must consider the space

A. Doan et al.: Learning to match ontologies on the Semantic Web 317

of candidates that are built using both union and difference
operators. Our beam search approach can be extended to han-
dle the difference operator. The only key difficulty is in the
implementation of step 2a of the algorithm in Fig. 7.

Consider a mapping candidate that is the difference of two
nodes B and C. Step 2a computes the similarity between this
candidate and the input node A. This can be done only if we
can compute the difference between B and C, which in turn
requires solving the object identification problem: deciding if
any two given instances from B and C match. Object identifi-
cation is a long-standing and difficult problem in databases and
AI. We note that this problem is not peculiar to our approach.
Indeed, it appears that any satisfactory solution to complex
matching for taxonomies must address this problem.

In many specialized cases, the object identification prob-
lem can be solved by exploiting domain regularities. For ex-
ample, in the “company profiles” domains we can infer that
two companies match if their URLs match. In the “course cat-
alog” domains, two courses match if the sets of their course
IDs overlap. In such cases, our beam search solution can be
implemented without any difficulty.

Finally, we note that CGLUE (and in fact the vast majority
of automatic ontology/schema matching tools) only suggests
mappings to the user. Developing techniques to help the user
efficiently postprocess such suggested mappings to arrive at
the final correct mappings would be an interesting and impor-
tant topic for future research.

9 Related work

We now describe related work to GLUE from several perspec-
tives.

Ontology matching: Many works have addressed ontology
matching in the context of ontology design and integration
(e.g., [8,29,34,33]). These works do not deal with explicit
notions of similarity but use a variety of heuristics to match
ontology elements. They do not use machine learning and
do not exploit information in the data instances. However,
many of them [29,34] have powerful features that allow for
efficient user interaction or expressive rule languages [8] for
specifying mappings. Such features are important components
of a comprehensive solution to ontology matching and hence
should be added to GLUE in the future.

Several recent works have attempted to further automate
the ontology matching process. The Anchor-PROMPT sys-
tem [35] exploits the general heuristic that paths (in the tax-
onomies or ontology graphs) between matching elements tend
to contain other matching elements. The HICAL system [44]
exploits the data instances in the overlap between the two tax-
onomies to infer mappings. In [23], the similarity between
two taxonomic nodes are computed based on their signature
TF/IDF vectors, which are computed from the data instances.

Schema matching: Schemas can be viewed as ontologies
with restricted relationship types. The problem of schema
matching has been studied in the context of data integration
and data translation (e.g., [16,2,17,9,43]; see also [42] for a
survey). Several works [32,26,30] have exploited variations
of the general heuristic “two nodes match if nodes in their

neighborhood also match” but in an isolated fashion and not
in the same general framework we have in GLUE.

GLUE is related to LSD, our previous work on schema
matching [12]. LSD illustrated the effectiveness of multi-
strategy learning for schema matching. However, it assumes
that we can use a set of manually given mappings on several
sources as training examples for learners that predict map-
pings for subsequent sources. In GLUE since our problem is
to match a pair of ontologies, there are no manual mappings
for training, and we need to obtain the training examples for
the learner automatically. Further, since GLUE deals with a
more expressive formalism (ontologies vs. schemas), the role
of constraints is much more important, and we innovate by
using relaxation labeling for this purpose. Finally, LSD did
not consider in depth the semantics of a mapping, as we do
here.

Notions of similarity: The similarity measure in [44] is
based on κ statistics and can be thought of as being defined
over the joint probability distribution of the concepts involved.
In [24], the authors propose an information-theoretic notion of
similarity that is based on the joint distribution. These works
argue for a single best universal similarity measure, whereas
GLUE allows for application-dependent similarity measures.

Ontology learning: Machine learning has been applied to
other ontology-related tasks, most notably learning to con-
struct ontologies from data and other ontologies and extract-
ing ontology instances from data [36,28,40]. Our work here
provides techniques to help in the ontology construction pro-
cess [28]. A comprehensive summary of the role of machine
learning in the Semantic Web effort is given in [27].

One-to-one and complex matching: The vast majority of
current works focus on finding 1-1 semantic mappings. Sev-
eral works (e.g., [32]) deal with complex matching in the sense
that such matchings are hard coded into rules. The rules are
systematically tried on the elements of given representations,
and when such a rule fires, the system returns the complex
mapping encoded in the rule. The Clio system [31,49,41] cre-
ates complex mappings for relational and XML data. Clio,
however, relies heavily on user interaction and does not use
machine learning techniques. Thus our work with CGLUE is
in a sense complementary to that of Clio.

10 Conclusion and future work

With the proliferation of data sharing applications that involve
multiple ontologies, the development of automated techniques
for ontology matching will be crucial to their success. We have
described an approach that applies machine learning tech-
niques to match ontologies. Our approach, as embodied by
the GLUE system, is based on well-founded notions of se-
mantic similarity, expressed in terms of the joint probability
distribution of the concepts involved. We described the use of
machine learning and, in particular, of multistrategy learning
for computing concept similarities.

We introduced relaxation labeling to the ontology match-
ing context and showed that it can be adapted to efficiently
exploit a variety of heuristic knowledge and domain-specific
constraints to further improve matching accuracy. Our exper-
iments showed that GLUE can accurately match 66% to 97%

318 A. Doan et al.: Learning to match ontologies on the Semantic Web

of the nodes on several real-world domains. Finally, we have
extended GLUE to build CGLUE, a system that finds complex
mappings between ontologies. We described experiments with
CGLUE that show the promise of the approach.

Aside from striving to improve the accuracy of our meth-
ods, our main line of future research involves extending our
techniques to handle more sophisticated mappings between
ontologies, such as those involving attributes and relations.

Acknowledgements. We thank Phil Bernstein, Geoff Hulten, Natasha
Noy, Rachel Pottinger, Matt Richardson, Pradeep Shenoy, and the re-
viewers for their invaluable comments. This work was supported by
NSF Grants 9523649, 9983932, IIS-9978567, IIS-9985114, a UIUC
Start-Up Grant, and an NCSA ResearchAssistantship. Pedro Domin-
gos is also supported by an IBM Faculty Partnership Award. Alon
Halevy is also supported by a Sloan Fellowship and gifts from Mi-
crosoft Research, NEC, and NTT. Part of this work was done while
AnHai Doan was at the University of Washington.

References

1. Agresti A (1990) Categorical data analysis. Wiley, New York
2. Berlin J, Motro A (2002) Database schema matching using

machine learning with feature selection. In: Proceedings of
the conference on advanced information systems engineering
(CAiSE), Toronto, 27–31 May 2002, pp 452–466

3. Berners-Lee T, Hendler J, Lassila O (2001) The Semantic Web.
Sci Am 284(5):35–40

4. Brickley D, Guha R (2000) Resource Description Framework
Schema Specification 1.0 http://www.w3.org/TR/rdf-schema/

5. Broekstra J, Klein M, Decker S, Fensel D, van Harmelen F,
Horrocks I (2001) Enabling knowledge representation on the
Web by Extending RDF Schema. In: Proceedings of the 10th
international World Wide Web conference, Hong Kong, 1–5
May 2001, pp 467–478

6. Chakrabarti S, Dom B, Indyk P (1998) Enhanced Hypertext
Categorization Using Hyperlinks. In: Proceedings of the ACM
SIGMOD conference on management of data, Seattle, 2–4 June
1998, pp 307–318

7. Calvanese D, Giuseppe DG, Lenzerini M (2001) Ontology of
integration and integration of ontologies. In: Working notes of
the 2001 international description logics workshop (DL-2001),
Stanford, CA, 1–3 August 2001

8. Chalupsky H (2000) Ontomorph: A translation system for sym-
bolic knowledge. In: Proceedings of the 7th international confer-
ence on principles of knowledge representation and reasoning
(KR2000), Breckenridge, CO, 11–15 April 2002, pp 471–482

9. Clifton C, Housman E, Rosenthal A (1997) Experience with
a combined approach to attribute-matching across heteroge-
neous databases. In: Proceedings of the 7th IFIP conference
on database semantics (DS-7), Leysin, Switzerland, 7–10 Oc-
tober 1997, pp 428-456

10. www.daml.org
11. Doan A (2002) Learning to map between structured represen-

tations of data. PhD thesis, University of Washington
http://anhai.cs.uiuc.edu/home/thesis.html

12. Doan A, Domingos P, Halevy A (2001) Reconciling schemas
of disparate data sources: a machine learning approach. In:
Proceedings of the ACM SIGMOD conference on management
of data, Santa Barbara, 21–24 May 2001, pp 509–520

13. Doan A, Madhavan J, Domingos P, Halevy A (2002) Learning
to map ontologies on the Semantic Web. In: Proceedings of the

11th international World Wide Web conference, Honolulu, 7–11
May 2002, pp 662–673

14. Doan A, Madhavan J, Domingos P, Halevy A (2003) Ontology
matching: a machine learning approach. In: Staab S, Studer R
(eds) Handbook on ontologies in information systems. Springer,
Berlin Heidelberg New York

15. Domingos P, Pazzani M (1997) On the optimality of the simple
Bayesian classifier under zero-one loss. Mach Learn 29:103–
130

16. Do H, Rahm E (2002) Coma: a system for flexible combination
of schema matching approaches. In: Proceedings of the 28th
international conference on very large databases (VLDB), Hong
Kong, 20–23 August 2002, pp 610–621

17. Embley D, Jackman D, Xu L (2001) Multifaceted exploita-
tion of metadata for attribute match discovery in information
integration. In: Proceedings of the international workshop on
information integration on the Web (WIIW), Rio de Janeiro,
9–11 April 2001, pp 110–117

18. Fensel D (2001) Ontologies: silver bullet for knowledge man-
agement and electronic commerce. Springer, Berlin Heidelberg
New York

19. www.google.com.
20. Heflin J, Hendler J (2001) A portrait of the Semantic Web in

action. IEEE Intell Sys 16(2):54–59
21. Hummel RA, Zucker SW (1983) On the foundations of relax-

ation labeling processes. PAMI 5(3):267–287
22. Fensel D, Musen M (eds) (2001) IEEE Intell Sys 16(2) March–

April 2001
23. Lacher M, Groh G (2001) Facilitating the exchange of explicit

knowledge through ontology mappings. In: Proceedings of the
14th international FLAIRS conference, Key West, 21–23 May
2001, pp 305–309

24. Lin D (1998)An information-theoritic definiton of similarity. In:
Proceedings of the international conference on machine learning
(ICML), Madison, WI, 24–27 July 1998, pp 296–304

25. Lloyd S (1983) An optimization approach to relaxation labeling
algorithms. Image Vision Comput 1(2)

26. Madhavan J, Bernstein PA, Rahm E (2001) Generic schema
matching with cupid. In: Proceedings of the international
conference on Very Large Databases (VLDB), Rome, 11–14
September 2001, pp 49–58

27. Maedche A (2001) A machine learning perspective for the Se-
mantic Web. Semantic Web Working Symposium (SWWS)
Position Paper, Stanford University, Stanford, CA, 30 July–1
August 2001

28. Maedche A, Staab S (2001) Ontology learning for the Semantic
Web. IEEE Intell Sys 16(2)

29. McGuinness D, Fikes R, Rice J, Wilder S (2000) The chimaera
ontology environment. In: Proceedings of the 17th national
conference on artificial intelligence (AAAI), Austin, TX, 30
July–3 August 2000, pp 1123–1124

30. Melnik S, Molina-Garcia H, Rahm E (2002) Similarity flooding:
a versatile graph matching algorithm. In: Proceedings of the
international conference on Data Engineering (ICDE), San Jose,
26 February–1 March 2002, pp 117–128

31. Miller R, Haas L, Hernandez M (2000) Schema mapping as
query discovery. In: Proceedings of the international conference
on very large databases (VLDB), Cairo, Egypt, 10–14 Septem-
ber 2000, pp 77–88

32. Milo T, Zohar S (1998) Using schema matching to simplify
heterogeneous data translation. In: Proceedings of the interna-
tional conference on very large databases (VLDB), New York,
24–27 August 1998, pp 122–133

A. Doan et al.: Learning to match ontologies on the Semantic Web 319

33. Mitra P, Wiederhold G, Jannink J (1999) Semi-automatic in-
tegration of knowledge sources. In: Proceedings of Fusion’99,
Sunnyvale, CA, July 1999

34. Noy NF, Musen MA (2000) PROMPT: Algorithm and tool
for automated ontology merging and alignment. In: Proceed-
ings of the national conference on artificial intelligence (AAAI),
Austin, TX, 30 July–3 August 2000, pp 450–455

35. Noy NF, Musen MA (2001) Anchor-PROMPT: using non-local
context for semantic matching. In: Proceedings of the work-
shop on ontologies and information sharing at the international
joint conference on artificial intelligence (IJCAI), Seattle, 4–10
August 2001

36. Omelayenko B (2001) Learning of ontologies for the Web: the
analysis of existent approaches. In: Proceedings of the interna-
tional workshop on Web dynamics, London, 3 January 2001

37. http://ontobroker.semanticweb.org
38. http://www.w3.org/tr/owl-ref
39. Padro L (1998) A hybrid environment for syntax-semantic tag-

ging. PhD thesis, Universitat Polit‘ecnica de Catalunya (UPC),
Barcelona

40. Pernelle N, Rousset MC, Ventos V (2001) Automatic construc-
tion and refinement of a class hierarchy over semi-structured
data. In: Proceedings of the IJCAI workshop on ontology learn-
ing, Seattle, 4–10 August 2001

41. Popa L, Velegrakis Y, Hernandez M, Miller RJ, Fagin R (2002)
Translating Web data. In: Proceedings of the international con-
ference on very large databases (VLDB), Hong Kong, 20–23
August 2002, pp 598–609

42. Rahm E, Bernstein PA (2001) On matching schemas automati-
cally. VLDB J 10(4):334–350

43. Rosenthal A, Seligman L (2001) Scalability issues in data in-
tegration. In: Proceedings of the AFCEA federal database con-
ference, 2001

44. Ryutaro I, Hideaki T, Shinichi H (2001) Rule induction for con-
cept hierarchy alignment. In: Proceedings of the 2nd workshop
on ontology learning at the 17th international joint conference
on artificial intelligence (IJCAI), Seattle, 4–10 August 2001

45. Ting KM, Witten IH (1999) Issues in stacked generalization. J
Artif Intell Res 10:271–289

46. Uschold M (2003) Where is the semantics in the Semantic Web?
AI Mag (in press)

47. Van Rijsbergen CJ (1979) Information retrieval, 2nd edn. But-
terworths, London

48. Wolpert D (1992) Stacked generalization. Neural Netw 5:241–
259

49. Yan LL, Miller RJ, Haas LM, Fagin R (2001) Data driven under-
standing and refinement of schema mappings. In: Proceedings
of theACM SIGMOD conference on management of data, Santa
Barbara, 21–24 May 2001, pp 485–496

