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Abstract

We present a method for calculation of my�
opic value of information in in�uence dia�
grams �Howard � Matheson� ����� based on
the strong junction tree framework �Jensen
et al�� ������

An in�uence diagram speci�es a certain or�
der of observations and decisions through its
structure� This order is re�ected in the corre�
sponding junction trees by the order in which
the nodes are marginalized� This order of
marginalization can be changed by table ex�
pansion and use of control structures� and
this facilitates for calculating the expected
value of information for di�erent information
scenarios within the same junction tree� In
e�ect� a strong junction tree with expanded
tables may be used for calculating the value
of information between several scenarios with
di�erent observation�decision order�

We compare our method to other methods
for calculating the value of information in in�
�uence diagrams�

Keywords� In�uence diagrams� value of in�
formation� strong junction tree� table expan�
sion� dynamic programming�

� INTRODUCTION

In�uence diagrams were introduced by Howard �
Matheson ������ as a formalism to model decision
problems with uncertainty for a single decision maker�

An in�uence diagram can be considered a Bayesian
network augmented with decision variables and a util�
ity function� The decision variables� D�� � � � � Dn� in
the in�uence diagrams are partially ordered and the
chance variables are divided into information sets� I� �

� � � � In� The information set Ii�� is observed immedi�
ately before decision Di is made� and the information
set In consists of the chance variables that are observed
later than the n�th decision is made� if ever�

Let Vi be the set of variables preceding Di� that is�
Vi contains the past relevant for Di� The solution
of a decision problem modeled by an in�uence dia�
gram is a sequence of decisions that maximizes the
expected utility� Shachter ������ describes a method
to solve an in�uence diagram without unfolding it
into a decision tree� rather� the in�uence diagram
is transformed through a series of node�removal and
arc�reversal operations� Shenoy ������ describes an�
other approach to the problem of solving in�uence dia�
grams by conversion into valuation networks� This ap�
proach is slightly more e�cient than that of �Shachter�
������ �Shachter � Ndilikilikesha� ����� and �Ndiliki�
likesha� ����� modi�ed the node�removal�arc�reversal
algorithm and achieved a method that is equivalent to
the algorithm presented in �Shenoy� ����� with respect
to computational e�ciency�

Jensen et al� ������ describes an e�cient method for
solving in�uence diagrams using strong junction trees�
This is an extension to the junction trees used for com�
putation in pure Bayesian decision analysis� It is on
this framework we base the present work�

We are about to choose among a set of k options�
These options are packed into the decision nodeD� We
have already received some information e� and now we
can either choose among the options or we can look for
more information� The �looking for more information�
is to consult some source which will provide the state
of a chance variable� Let the chance variables in ques�
tion be the set � � fA�� � � � � Amg� We want to calcu�
late what we can expect to gain from consulting the
information source� For all the considerations in this
paper we deal with the myopic value�of�information
question� At any time� we can ask for the state of at
most one of the variables in ��



As basis for the considerations we have EU �Dje�� the
expected utilities for D given the evidence e� and the
decision d of maximal expected utility is chosen� If
Ai � � is observed to be in state a� then EU �Dje� Ai �
a� is the new basis� Now� before observing Ai we have
probabilities P �Aije�� and the expected utilities of the
optimal action after having observed Ai is

EUO�Ai� Dje� �
X
Ai

P �Aije� �max
D

EU�Dje� Ai�

The value of observing Ai is the di�erence

VOI�Ai� Dje� � EUO�Ai� Dje��max
Di

EU�Dje�

Value of information is a core element in decision anal�
ysis� and a method for e�cient calculation of myopic
value of information in Bayesian networks �augmented
with a utility function� is described by �Jensen �
Jiangmin L�� ������ Also� �Heckerman et al�� �����

describes a method for calculating the utility�based
myopic value of information�

Methods for computing the value of information in
in�uence diagrams have been described by �Ezawa�
����� based on the arc�reversal�node�removal meth�
ods� �Poh � Horvitz� ����� approach a notion of qual�
itative value of information through graph�theoretic
considerations yielding a partial order of the chance
nodes in the model�

The value of information can be viewed as the dif�
ference in expected value between two models only
di�ering in the observation�decision sequence in the
in�uence diagram� We present a single�model frame�
work for calculating the exact value of information of
a chance node�

For the considerations in this paper� the network is of
considerable size so that a propagation in the network
is a heavy �but feasible� task� This means that the
methods presented shall be evaluated in the light of
their propagation demand�

� SIMPLE SCENARIOS

We shall �rst describe a couple of simple scenar�
ios which have e�cient solutions� The �rst scenario
is standard and has been treated more detailed by
�Jensen� ������

��� ONE NON�INTERVENING DECISION

There is one decision node D which has no impact
on any of the chance nodes in the model� The utility
function U is a function ofD and the chance variableH
which may actually be a set of variables �see Figure ���

...

H

U

D

Figure �� The scenario with one non�intervening deci�
sion node�

For this scenario we have

VOI�Ai� Dje�

�
X
Ai

P �Aije� �max

�X
H

P �HjAi� e� � U �D�H�

�

�max
D

�X
H

P �Hje� � U �D�H�

�

For the calculation of VOI�Ai� Dje� we need
P �HjAi� e� for all variables Ai in �� These conditional
probabilities can be achieved through entering and
propagating each state of Ai� Using Bayes� rule� the
requirement is transformed to a need for P �AijH� e� for
all Ai in �� They can be achieved all by entering and
propagating the states of H� So� the number of propa�
gations necessary for solving the value�of�information
task for this scenario is the minimum of the number of
states of H and the sum of the states of the variables
in ��

��� THE NUMBER OF H IS LARGE

The assumptions in Section ��� are very crude and
we would like to relax them� Often D has an impact
on H and in that case we will need P �HjD�� Also�
the number of states of H as well as the sum of all
states of � may be very large �H may be a large set of
variables�� and we will look for methods requiring less
propagations �see Figure ���

The following method reduces the number of propa�
gations to the number of states in D� The method
is a modi�cation of a trick by Cooper ������� The
utility function is transformed to a normalized util�
ity NU through a linear transformation such that
	 � NU � �� NU is represented in the in�uence dia�
gram by a binary node NU with the argument vari�
ables H �which might include D� as parents and with
P �NU � yjH� � NU�H� �see Figure ���
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Figure �� A scenario where the method of Section ���
is inadequate�
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Figure �� The Cooper transformation of the scenario
in Figure ��

The normalized value of information is de�ned as

NVOI�Ai� Dje�

�
X
Ai

P �Aije� �max
D

�X
H

P �HjAi� D� e� �NU�D�

�

�max
D

�X
H

P �HjD� e� �NU�H�

�

and VOI can be calculated from NVOI by the inverse
transformation�

The expected normalized utility of a decision d� given
the evidence e can be calculated as

ENU �
X
H

NU�H� � P �Hjd� e�

�
X
H

P �NU � yjH� � P �Hjd� e�

�
X
H

P �NU � y�Hjd� e�

� P �NU � yjd� e�

Using Bayes� rule and giving D the even distribution�

ENU�Dje� can be calculated by entering and propa�
gating NU � y�

Now� let A be a variable in �� Assume that A is ob�
served to be in the state a� Then we have

ENU�Dja� e�

� P �NU � yjD� a� e�

� P �NU � yjD� e� �
P �ajNU � y�D� e�

P �ajD� e�

� ENU�Dje� �
P �ajNU � y�D� e�

P �ajD� e�

and the expected normalized utility after observing A
is
P
A�maxD ENU�DjA� e�� � P �AjD� e��

The required probabilities P �AjNU � y�D� e� and
P �AjD� e� can be achieved by entering and propagat�
ing the states ofD in a network conditioned on e and in
one conditioned on �e�NU � y�� Hence� the number of
propagations required for this calculation is twice the
number of states in D� that is� with �k propagations
we can calculate the value of observation for all vari�
ables� It should be noted that there were no structural
assumptions for this result�

In most cases the information e as well as the variables
which may be observed prior to D are not descendants
of D� In these cases P �AjD� e� � P �Aje� and the
method only requires k propagations�

� A SEQUENCE OF DECISIONS

The next scenario to consider is the following�
We have a sequence of decisions and observations
I�� D�� I�� � � � � Dn� In where each Ii is a set of chance
variables �In is the set of variables which are never
observed�� The variables are structured in an in�u�
ence diagram �see Figure � for an example�� We are
in the middle of this sequence� we have observed Ii��

and are about to decide on Di but we have a fur�
ther option of observing one variable of the set ��
Let VOI�X�Di� � jjV i� �where �i � j� denote the dif�
ference in maximal expected utility for Di between
observing chance node X immediately before deciding
on Di and immediately before deciding on Dj � That is
VOI�X�Di� jjV i� denotes the di�erence between hav�
ing X in Ii�� and in Ij�� at the time of deciding on
Di�

The standard dynamic programming technique for
solving an in�uence diagram is to perform a sequence
of marginalizations in reverse order �Shenoy� �����
Shachter � Peot� ������ Chance nodes are marginal�
ized through a summation and decision nodes are
maximized� Since summation and maximization do
not commute� the order of marginalization is impor�
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Figure �� An in�uence diagram with the observation�
decision sequence D�� C� D�� fA�Eg� D�� B� Note
that A and E may be observed in mutually arbitrary
order but both will be observed�

tant and it is performed in the following order� First
marginalize In �in any order�� then Dn� then In�� �in
any order�� etc� When Ii has been marginalized� we
have a representation of the expected utility of the
various options of Di given the past�

It is tempting to use this technique to condense the
future into a utility function over a subset of the cur�
rently unknown variables and the decision node Di

and to use this condensed future for the calculation of
value of information� However� the condensed future
contains max�expected�utility decisions� and observing
a variable from � may a�ect these decisions� This can
be avoided by assuming that the future is independent
of � given Di �and the past�� Such an assumption will
rarely hold� and instead we will introduce a technique
which does not have that kind of assumption�

In �Jensen et al�� ����� the junction tree technique is
used to solve in�uence diagrams� A so�called strong

junction tree is constructed with a so�called strong

root � This means that there is a clique C� such that
when a collect�operation to C� is performed� then all
marginalizations can be performed in the proper order
�see Figure ��� Note that the strong junction tree in
itself does not ensure that marginalizations are per�
formed in a proper order� When marginalizing in a
clique we need a control structure giving the order of
marginalizations� The  proper order need not be the
reversed temporal order� It is su�cient that each vari�
able is eliminated in reverse temporal order with re�
spect to its Markov blanket� The Markov blanket of a
node X is the minimal set of nodes covering X from
in�uence from other nodes� that is� the Markov blan�
ket for node X consists of X�s parents� children� and
children�s parents�

In Figures � and �� B is not observed �or rather� B

is not observed until after the last decision is made��
Now� assume that before deciding on D�� we observe

D1C C CD2E AED3 AEBE AE

C0

Figure �� A strong junction tree for the in�uence dia�
gram in Figure �� The strong root is the clique C� at
the far left�

the chance variableB� The model for this observation�
decision sequence is shown in Figure ��
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Figure �� An in�uence diagram with the observation�
decision sequence B� D�� C� D�� fA�Eg� D��

The di�erence in expected utility when solving the two
in�uence diagrams is VOI�B�D���jVi�� that is� the
value of observing B before D� rather than never ob�
serving B� The di�erence between the two scenarios
can be seen on the strong junction trees in Figures 
a
and 
b�

D1C

C

CD2E

AED3

AEB

E

AE

C0

BD1C

BC

BCD2E

BEA

EAD3

BE

AE

C0

BD1C
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BAE
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BAE

C0

a b c

Figure 
� Strong junction trees for the two scenarios
of Figures � and �� and a junction tree adequate for
both scenarios�

It is possible to construct a junction tree capable of



solving both scenarios and in e�ect calculate the value
of information between the two information scenarios�
The crucial thing about a strong junction tree is that
it allows marginalization in a proper �reverse� tem�
poral order and this can be done for both temporal
orders in the strong junction tree shown in Figure 
c�
This strong junction tree is obtained from the junction
tree in Figure 
a by adding B to the cliques down to
�D�� C��

This observation can be used in general� To obtain a
strong junction tree with strong root C� for calculat�
ing VOI�A�Di� jjVi�� construct a strong junction tree
for the scenario with A in Ij��� Then C� imposes a
�partial� order � for the cliques� such that C � C� if
and only if C is on the path from C� to C�� Identify
the cliques Ci and CA � Ci is the clique closest to the
C� containing Di� and CA is the clique closest to C�

containing Di� Let CiA be the !greatest lower bound 
of Ci and CA � That is� CiA is the clique furthest away
from C� such that CiA � Ci and CiA � CA �when the
temporal order is strict� then CiA � Ci�� Finally� ex�
tend all cliques on the path between CiA and CA with
the variable A�

As mentioned earlier� a control structure is associated
with the �strong� junction tree� This structure handles
the order of marginalization� and therefore we can use
the expanded junction tree �and the associated con�
trol structure� in Figure 
c to marginalize B from any
clique of our choise� After B has been marginalized
from a clique� the table space reserved for B in cliques
closer to the strong root is obsolete� Clever use of
the control structures will prevent calculations to take
place in the remaining table expansions� and the num�
ber of table operations in the remaining subtree equals
that of an ordinary strong junction tree�

��� NON�STRICT TEMPORAL ORDERS

As mentioned previously� a proper elimination order
of an in�uence diagram is an order where the elimi�
nation order of each node and its Markov blanket is a
reverse temporal order� This means that although the
in�uence diagram in the o�set requires a linear tem�
poral order of the decisions� then the actual diagram
may disclose temporal independencies which can be
exploited when solving it�

The in�uence diagram in Figure � has a temporal order
of the decision nodes with increasing index� However�
when f has been observed� then D� can be decided at
any time independently of the observations and deci�
sions on e� g� D�� and D�� This is also re�ected in
the strong junction tree in Figure �a where the branch
containing D� can be marginalized independently of
the other branches�
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d
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f
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g
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D4
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h
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k
D3

Figure �� An in�uence diagram with temporal order
from left to right �no�forgetting arcs are not included��
It discloses temporal independence between D� and
fD�� D�g� �From �Jensen et al�� ������
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h,k,jD3,h,kf,D3,h
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b,D1,e,f,d,h

e,D2,g

h,k,jD3,h,kf,D3,h

D2,g,D4,i D4,i,l

b

Figure �� Strong junction trees �derived from Figure �
illustrating the di�erence between never observing h

�a� and observing h immediately before decision D�

�b� when decisions are not strictly ordered�



The value of information technique is illustrated on
the in�uence diagram in Figure � through Figures �a
and �b� The strong junction tree in Figure �a can also
be used to solve an in�uence diagram with h observed
before deciding on D�� The di�erence between the
two scenaria is re�ected in the control structure for
the collect operation rather than in the junction tree�
A strong junction tree also being able to handle the
situation where h is observed before deciding on D� is
shown in Figure �b�

��� NOTATION

In Figure �	� we present an extended version of the in�
�uence diagram from �Jensen et al�� ������ The origi�
nal in�uence diagram notation has been extended with
triangular nodes� observation nodes� An observation
node designates that the chance node associated with
it will be observed within some interval of information
sets�
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D3

I0

I1

Figure �	� In�uence diagram from �Jensen et al�� �����

with extended notation�

Though there may not be any computational di�cul�
ties associated with observing variables at an earlier
time than modeled� there may be some conceptual
problems� It does not make sense to observe� say� the
state of a fungus attack on your crop in May before
deciding whether or not to apply fungicide in April�
In other words� We cannot observe a variable prior to
making a decision that in�uences it�

Hence� a variable is modeled in the in�uence dia�
gram as belonging to the last information set possible�
and the observation node is associated with a !lower
boundary for the observation� For node c in Figure �	
the lower boundary is I�� yielding the observation in�
terval to be "I�� I�# whereas the lower boundary for
node j is I� and hence the observation interval for j is
"I�� I�#� If associated with an observation node� node

g would have the observation interval "I�� I�#�

��� ALTERNATIVE METHODS

There are other methods for calculating the value of
information in in�uence diagrams� These can be sep�
arated into multiple�model methods and single�model

methods�

The value of information in in�uence diagrams can be
viewed as the di�erence in expected utility between a
set of in�uence diagrams each implementing a speci�c
scenario of the desired observation�decision sequences�
In that view Ezawa ������ creates and solves multi�
ple models for calculating the value of information in
in�uence diagrams� However� as the construction of
strong junction trees is a complex task it is preferable
to reduce the number of di�erent junction trees� Also�
to cover all desired observation�decision sequences the
decision analyst may be facing a considerable task in
constructing the needed in�uence diagrams�

Instead� the di�erent decision models in Figure � and
Figure � can be combined into a single in�uence dia�
gram which gives us the power to calculate whether or
not to observe B� Such a model is shown in Figure ���

U

D3

E

B

A

D2

D1 C

D0 B’

Figure ��� General model capable of handling the sce�
narios of Figures � and ��

The resulting model consists of the original model
without observation on B �from Figure �� with an ad�
ditional two nodes� a decision node� D� and the chance
node B��

D� will consist of the decisions �B� and ��B� and the
observed node� B� will have the same states as its un�
observed counterpart� B� plus an additional state� �No
observation�� If the optimal decision� d�� is �B�� then
B� is observed and set to the true state of B� if the op�
timal decision is ��B�� B� is set to �No observation��
The probability table for B is equal to the one speci�ed
in Figures � and � and the behavior of B� is speci�ed



as

B� � No observation for d� � ��B�

B� � B otherwise

This type of modeling cannot be called neither simple
nor intuitive� Furthermore� as can be seen from Figure
��� the junction tree for the general model in Figure ��
is larger than the junction tree produced by expansion
�Figure 
c��

 D0D1B’C D0B’C D0D2B’CE D0B’EAB AD3D0B’E A

C0

Figure ��� Strong junction tree constructed from the
general model of Figure ���

It is also worth noting that the model in Figure ��
and its corresponding junction tree in Figure �� are
made for the case where B is either unobserved or ob�
served before D�� The junction tree in Figure 
c is
capable of calculating the expected utility for the de�
cision problem with B belonging to any information
set� Should the model in Figure �� be extended to the
same �exibility� we are facing a larger and consider�
ably less intuitive model with little resemblance to the
original decision problem�

� CONCLUSION

For speci�c in�uence diagrams� such as scenarios with
non�intervening decisions� we have presented a simple
method for calculating the value of information� This
method is simple in construction and cheap in terms
of time and space requirements� but is restricted in
the structure of the in�uence diagram� It is based
on methods developed by �Cooper� ����� and �Jensen
� Jiangmin L�� ������ For certain� well�de�ned tasks
there may be advantages in using this method but in
the general case we propose to use the method pre�
sented for in�uence diagrams with sequences of inter�
vening decisions�

In strong junction trees constructed for decision prob�
lems formulated as general in�uence diagrams we are
able to calculate the value of information for a given
chance node� that is� the gain in expected utility
from observing variable X before making a decision
Di� In other words� we can calculate the di�er�
ence in expected utility between models that di�er in
observation�decision sequence� using the same junction
tree structure with only a number of tables expanded
but not recalculated� We �nd this method far more in�
tuitive than modeling all possible outcomes in a gen�
eral in�uence diagram as the structure of the model

will not change even when chance nodes �within lim�
its� are observed prior to the latest possible observa�
tion time� Also� modeling observations as intervening
decisions may seem unappealing to decision analysts�
In addition to this� we experienced that the junction
trees produced from the general models are larger than
those produced by table expansion�

Using our method is not for free as in its worst case
�modeling a chance node as never observed and ob�
serving it before the �rst decision D�� all tables in the
junction tree will be expanded �assuming that the de�
cisions are strictly ordered�� This means that with �

states in the node in question� the resulting junction
tree will be almost � times larger than the original
junction tree� This corresponds to performing � prop�
agations in the strong junction tree and the gain is
therefore minimal�

However� the method presented will only expand the
tables needed� that is� only part of the junction tree
becomes larger �by a factor of �� which consequently
reduces the number of operations performed during
a propagation� Also� clever use of the control struc�
tures associated with the strong junction tree will pre�
vent excess operations in the expanded tables after
marginalization of the node in question� Still� if for
example � is very large and if all A � � are placed in
In� we may very well face an intractable problem as we
expand the cliques beyond the capacity of computers�
Topics for further research include the possibility for
utilizing independence assumptions in order to further
reduce complexity�
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