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Preface

Robot teams are increasingly becoming a popular alternative to single robots for a variety of
difficult robotic tasks, such as planetary exploration or planetary base assembly. A key factor for
the success of a robot team is the ability to coordinate the team members in an effective way. Co-
ordination involves the allocation and execution of individual tasks through an efficient (preferably,
decentralized) mechanism. It is desirable to enable good decision making while communicating as
little information as possible.

Recently, there has been significant interest in using auction-based methods for robot coordina-
tion. In these methods, the communicated information consists of bids robots place on various tasks,
and coordination is achieved by a process similar to winner determination in auctions. Auction-
based methods balance the trade-off between purely centralized methods (full communication) and
purely decentralized methods (no communication) in both efficiency and quality.

The purpose of this workshop was to draw the leading researchers in this active area of research
to discuss and analyze issues related to auction-based robot coordination. This emerging field of
research has demonstrated significant progress in its few years of existence, however heretofore
there has been no official forum for involved researchers to share experience, establish foundations,
and explore future directions.

Our goal was to cover both the practical aspects of the subject (distributed implementation,
limited communication, target applications), as well as the theoretical ones (theoretical guarantees,
computational complexity, communication complexity). Even though the main focus is on auc-
tions and robots, we seeked participation from related areas, such as generic market mechanisms
and conventional robot/agent coordination with the goal of fertilizing further the common ground
between these disciplines.

We were pleased with the response to the call for papers. A total of 15 papers were selected for
presentation at the workshop spanning the breadth of the field. We are grateful to all the reviewers
in the Program Committee who invested valuable time to review the papers and provide detailed
comments to the authors. These 15 papers are included in this volume.

It is our hope that this workshop will be the beginning of more meetings in the general area of
market-based agent coordination. It seems that the critical mass needed to lay the foundations for
a new scientific community is out there and has a significant potential.

Bernardine, Sven, and Michail
May 2006
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Improving Sequential Single-Item Auctions∗

Xiaoming Zheng and Sven Koenig
Computer Science Department

University of Southern California
Los Angeles, California 90089-0781

{xiaominz,skoenig}@usc.edu

Craig Tovey
School of Industrial and Systems Engineering

Georgia Institute of Technology
Atlanta, Georgia 30332-0205

ctovey@isye.gatech.edu

Abstract

We study how to improve sequential single-item auc-
tions that assign targets to robots for exploration tasks
such as environmental clean-up, space-exploration, and
search and rescue missions. We exploit the insight that
the resulting travel distances are small if the bidding
and winner-determination rules are designed to result
in hillclimbing, namely to assign an additional target
to a robot in each round of the sequential single-item
auction so that the team cost increases the least. We
study the impact of increasing the lookahead of hill-
climbing and using roll-outs to improve the evaluation
of partial target assignments. We describe the bidding
and winner-determination rules of the resulting sequen-
tial single-item auctions and evaluate them experimen-
tally, with surprising results: Larger lookaheads do not
improve sequential single-item auctions reliably while
only a small number of roll-outs in early rounds already
improve them substantially.

Introduction
We study exploration tasks where a team of mobile robots
has to visit a number of given targets. Examples include
environmental clean-up, space-exploration, and search and
rescue missions. How to assign targets to robots is a dif-
ficult problem. Centralized control is inefficient in terms
of both the required amount of computation and communi-
cation since the central controller is the bottleneck of the
system. Market-based approaches are decentralized and
appear to perform well in many situations. Auctions, in
particular, can be efficient in terms of both the required
amount of computation and communication since informa-
tion is compressed into numerical bids that the robots can
compute in parallel (Diaset al. 2005). Consequently, sev-
eral research groups are now investigating how to use auc-
tions to coordinate teams of robots (Gerkey & Matarić 2002;
Sariel & Balch 2006). Recent theoretical and experimental
results show that sequential single-item auctions (short:SSI
auctions) are fast, yet result in small team costs (Toveyet

∗This research was partially supported by seed funding from
NASA’s Jet Propulsion Laboratory as well as NSF awards under
contracts IIS-0413196 and IIS-0412912.
Copyright c© 2006, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

al. 2005). For example, SSI auctions can provide constant-
factor performance guarantees for the sum of the travel dis-
tances of the robots even if they use approximations that
allow them to run in polynomial time (Lagoudakiset al.
2005). In contrast, complete combinatorial auctions, where
the robots bid on all possible sets of targets in a single round,
have prohibitively large computation and communication
burden but result in optimal target assignments (Berhaultet
al. 2003). In this paper, we study how to improve SSI auc-
tions by increasing their similarity to combinatorial auctions
without greatly increasing their communication and compu-
tational burden. The two kinds of auctions differ in some
salient ways. Combinatorial auctions require each robot to
bid on many overlapping bundles of items, whereas SSI auc-
tions make them bid only on single items and thereby elimi-
nate overlaps. We decrease this difference by increasing the
maximum bundle size of SSI auctions to two or three items
and permitting overlaps. We prove that this can be done
without greatly increasing the communication and compu-
tational burden. Surprisingly, our experimental results show
that this idea does not improve SSI auctions reliably. We
therefore consider another salient difference. Combinatorial
auctions evaluate complete target assignments, whereas SSI
auctions evaluate partial target assignments. We decrease
this difference by making SSI auctions greedily complete
the partial target assignments and then evaluate the result-
ing complete target assignments, a concept that we call roll-
out. Our experimental results show that this idea improves
SSI auctions substantially even if they perform only a small
number of rollouts in early rounds. Thus, it appears to be
more important to consider complete solutions a few times
than to repeatedly pack perfectly a few solution pieces at a
time - an important insight for improving auctions that as-
sign targets to robots.

Sequential Single-Item Auctions
Sequential Single-Item Auctions:During each round of a
sequential single-item auction (SSI auction), all robots are
eligible to bid on all unassigned targets. The robot that
places the overall lowest cost bid on any target is assigned
that particular target. (Ties can be broken arbitrarily.) Anew
round of bidding starts, and all robots may bid again on all
unassigned targets, and so on until all targets have been as-
signed to robots. Each robot then calculates the shortest path



for visiting all targets assigned to it from its current location
and then moves along that path. (A robot does not move if
no targets are assigned to it.) To simplify notation, we as-
sume that all targets are initially unassigned, but the auction
design can be applied if some targets are pre-assigned. In-
deed, thekth round could be thought of as the first round of
an auction in whichk − 1 targets were preassigned.

In each round, it suffices that each robot submits one
bid (its lowest cost bid) since only one bid is accepted
per round. Therefore, the communication and winner-
determination burden of all rounds of an SSI auction com-
bined is much smaller than that of a combinatorial auction,
even a severely limited combinatorial auction that restricts
bundle sizes. However, the lesser burden apparently entails
a loss in ability to consider the whole rather than the parts,
that is, the team performance rather than the individual robot
performances. Fortunately, this loss can be offset in large
part by incorporating the team objective into the bid calcu-
lations.

Team Objectives: We introduce two standard team ob-
jectives, which serve as both examples and computational
test cases. Denote the set of robots asR = {r1, . . . , rn} and
the set of targets asT = {t1, . . . , tm}. SSI auctions assign
a set of targetsTi to robotri for all ri ∈ R, where the set
{T1, . . . , Tn} forms a partition of all targets. For any robot
r and any set of targetsT ′, let TD(r, T ′) denote the min-
imum travel distance that robotr needs to visit all targets
in T ′ from its current location. The MiniSum team objec-
tive is to minimizetc(T1, . . . , Tn) :=

∑
i
TD(ri, Ti), that

is, the sum of the minimum travel distances of the robots
(corresponding, for example, roughly to their total energy
consumption). The MiniMax team objective is to minimize
tc(T1, . . . , Tn) := maxi TD(ri, Ti), that is, the largest min-
imum travel distance of any robot (corresponding roughly to
the task-completion time).

Bidding and Winner Determination: The bidding and
winner-determination rules depend on the team objective.
The winner-determination rule determines which bid should
win. The bidding rule determines how much a robot should
bid on an unassigned target (we drop the “unassigned” in
the following to improve the readability of the text) dur-
ing any round of the SSI auction. It has been shown that
the team cost (= value of the team objective) is small if
the SSI auction results in hillclimbing, namely assigns an
additional target to a robot in each round of the SSI auc-
tion so that the team cost increases the least (Toveyet al.
2005). Consider any round of the SSI auction, and assume
that each robotri ∈ R has already been assigned the set
of targetsTi in previous rounds. Then, the team cost is
currently tc(T1, . . . , Tn). If robot ri is now assigned tar-
get t with t 6∈ T1 ∪ . . . ∪ Tn, then the team cost becomes
tc(T1, . . . , Ti ∪ {t}, . . . , Tn). The idea is to assign that tar-
gett to that robotri so thattc(T1, . . . , Ti ∪ {t}, . . . , Tn) −
tc(T1, . . . , Tn) is smallest. (Toveyet al. 2005) showed that
this can be achieved by each robotri ∈ R calculating the
following bid cost on each targett ∈ T with t 6∈ Ti, which
robot ri can calculate without having to know where the
other robots are or which targets have already been assigned
to them:

1-ε 3 1
r1: t1 r1: t2 r2: t1 r2: t2

r1: t1 r1: t2 r2: t1 r2: t2

1+ε

Figure 1: Standard Hillclimbing (with Lookahead One and
without Rollouts)
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Figure 2: One-Dimensional Example 1

• TD(ri, Ti∪{t})−TD(ri, Ti) (= the increase in the min-
imum travel distance needed by robotri to visit all targets
assigned to it if targett were assigned to it as well) for
the MiniSum team objective, which is similar to previous
work on marginal-cost bidding in ContractNet (Sandholm
1996), and

• TD(ri, Ti ∪ {t}) (= the minimum travel distance needed
by robotri to visit all targets assigned to it in case tar-
get t were assigned to it as well) for the MiniMax team
objective.

Robot ri needs to calculateTD(ri, Ti ∪ {t}) for both
team objectives, which is NP-hard since the robot needs
to solve a version of a traveling salesman problem (TSP).
The robot can use polynomial-time TSP heuristics to cal-
culate the minimal travel distance (such as the three-opt or
cheapest-insertion heuristics). We use such approximations
in the experiments as described in (Toveyet al. 2005) but
assume in the theoretical part of this paper that the minimal
travel distances are not approximated.

Figure 1 shows the search performed in the first round by
the hillclimbing performed by SSI auctions. (We refer to this
version of hillclimbing as standard hillclimbing throughout
the paper.) The top of the figure shows the search for an
abstract example, while the bottom shows the search for
the example from Figure 2 in the context of the MiniSum
team objective. The robots and targets are located on the
real line. (Epsilon is a small positive tie-breaking constant.)
The search starts with the current partial target assignment
(initially the empty one). All possible target assignmentsre-
sulting from assigning one additional target to a robot are
generated and evaluated according to their team cost. Then,
the one with the smallest team cost is chosen and the pro-
cedure repeats. Each oval in the figure represents a (partial
or complete) target assignment. The resultant team cost is
adjacent to the upper left perimeter of each oval. The box
indicates which target assignments are compared. Arrows
indicate the team cost derivations. A thick line indicates the
assignment of an additional target to a robot made by stan-
dard hillclimbing. Finally, the dashed oval shows the target
assignment from which the search starts in the next round.
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Figure 3: One-Dimensional Example 2

Figure 4: Screenshot

Experimental Evaluation
Standard hillclimbing was evaluated in (Toveyet al. 2005)
for different numbers of robots and targets in eight-neighbor
planar grids of size51 × 51 that resemble office environ-
ments, as shown in Figure 4. The table in Figure 7 reports
the team cost for the MiniMax team objective, and the table
in Figure 8 reports the team cost for the MiniSum team ob-
jective. The team costs for the same number of robots and
targets are averaged over the same ten randomly generated
initial robot and (unclustered) target locations. Both tables
also report the average of the runtimes over all ten situa-
tions, measured in seconds.1 The case with two robots and
ten targets is sufficiently small to be solved optimally with
mixed-integer programming. The minimal team cost for the
MiniMax team objective is 109.34, and the minimal team
cost for the MiniSum team objective is 189.15 (Toveyet al.
2005).

Improvement: Larger Lookahead
A simple idea for improving SSI auctions is to continue to
perform hillclimbing but change the lookahead from the as-
signment of one additional target to a robot to the assignment
of k ≥ 2 additional targets to robots (either the same robot
or different robots) so that the team cost increases the least.
To be careful, we assign only one of thek targets to its robot,
namely the target that increases the team cost the least. In
the next round, another target is assigned to a robot, until all
targets have been assigned to robots.

Consider again the example from Figure 2 in the context
of the MiniSum team objective. Figure 5 shows the search
performed in the first round by hillclimbing with lookahead
two. All possible target assignments resulting from assign-
ing two additional targets to robots are generated. Each as-

1The runtime of hillclimbing for the same number of targets de-
creases as the number of robots increases because each robot then
tends to visit fewer targets. The bidding subproblems are smaller
and can be solved much more quickly.

r1: t1 r1: t2 r2: t1 r2: t2

r1: t1 r1: t2 r2: t1 r2: t2

3-ε
r1: t1 r2: t1

r1: t2t1 r1: t2; r2: t1

r1: t2 r2: t2

r1: t2; r2: t1 r2: t2t1r1: t2t1 r1: t1; r2:t2

r1: t1 r2: t1r1: t2 r2: t2

r1: t1; r2: t2 r2: t2t1
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Figure 5: Hillclimbing with Lookahead Two

signment of one additional target to a robot is then evaluated
according to the smallest team cost of all assignments of two
additional targets to robots that include it as the first step
(lookahead-two team cost). Then, the one with the smallest
lookahead-two team cost is chosen (using the team cost of
the partial target assignment to break ties) and the procedure
repeats.

We expect that hillclimbing with larger lookaheads, being
less myopic, would result in smaller team costs than stan-
dard hillclimbing. Consider, for instance, the example from
Figure 2 for both the MiniSum and MiniMax team objec-
tives. Hillclimbing with lookahead one proceeds as follows.
Robotr1 is assigned targett2 in the first round (as shown
in Figure 1 for the MiniSum team objective) and targett1 in
the second round. Then, robotr1 minimizes its travel dis-
tance by first visiting targett2 and then targett1 (we write
this asr1 → t2 → t1) and robotr2 does not move. The
resulting team cost of the MiniSum and MiniMax team ob-
jectives is3 − ǫ. Hillclimbing with lookahead two, on the
other hand, considers all targets right away and thus finds an
optimal target assignment. Robotr2 is assigned targett2 in
the first round (as shown in Figure 5 for the MiniSum team
objective) and robotr1 is assigned targett1 in the second
round. Then,r1 → t1 andr2 → t2. The resulting team cost
of the MiniSum team objective is2 + ǫ and the team cost
of the MiniMax team objective is1 + ǫ, in accord with our
expectation.

However, hillclimbing with larger lookaheads may result
in larger team costs than standard hillclimbing. Consider,
for instance, the example from Figure 3. Hillclimbing with
lookahead one results inr1 → t1 andr2 → t3 → t2. The
resulting team cost of the MiniSum team objective is2+1ǫ,
and the team cost of the MiniMax team objective is1 + 2ǫ.
Hillclimbing with lookahead two, on the other hand, results
in r1 → t1 → t2 → t3 for the MiniSum team objective,
with a team cost of3 − ǫ, andr1 → t1 → t2 andr2 → t3
for the MiniMax team objective, with a team cost of3 −
2ǫ, supporting our claim. Furthermore, this example can be
extended to hillclimbing with even larger lookaheads. If we
placem additional targets between targetst2 andt3 (for a
total of m + 3 targets) then hillclimbing with lookaheadx
finds the optimal target assignment forx = 1 andx = n+3
but finds suboptimal target assignments for1 < x < n + 3
for both the MiniSum and MiniMax team objectives. An



intuitive explanation for this perhaps counter-intuitiveresult
in the context of this example is that target assignments that
result in benefits within the lookahead but also costs beyond
the lookahead are misjudged to be better than they actually
are.

Implementation Aspects
Hillclimbing with larger lookaheads can still be imple-
mented with SSI auctions although the bidding and winner-
determination rules become more complex. In particular,
robots can now bid on sets of targets. The bid costs are
calculated in a way similar to before. The bid cost of a
robot for a given set of targets is the increase in its mini-
mum travel distance (for the MiniSum team objective) and
the minimum travel distance itself (for the MiniMax team
objective) that is needed to visit all targets assigned to itin
case the given set of targets were assigned to it as well. We
employ a unified notation for the evaluation of a combina-
tion B of bids b. Let vB := {vb : b ∈ B} denote the
set of bid costs. ThenC(vB) denotes the evaluation of the
effect on the team objective. For the MiniSum team objec-
tive, C(vB) =

∑
b∈B

vb. For the MiniMax team objective,
C(vB) = maxb∈B vb. Both the sum and the max functions
are obviously monotonic nondecreasing and neutral, that is,
independent of the ordering of the elements ofB. These two
properties, monotonicity and neutrality, will permit a num-
ber of bids per robot that isO(1) and a winner-determination
rule whose runtime isO(|R|), for each round of an SSI auc-
tion that implements hillclimbing with a fixed lookaheadk.

It is easy to see that the number of bids submitted per
robot only needs to be polynomial in the number of targets
for each round. LetT be the set of targets in the current
round. Consider the following bids by a robot: For every
setS ⊆ T with |S| ≤ k, the robot bids on a set with the
lowest bid cost among all setsS′ ⊆ T with S ∩ S′ = ∅ and
|S| + |S′| = k. These bids suffice to implement hillclimb-
ing with lookaheadk since hillclimbing with lookaheadk
assigns all other robots the targets in one of the setsS con-
sidered by the robot and by monotonicity it is then optimal
to assign the robot the targets in the corresponding setS′

that the robot bid on. In fact, the number of bids submitted
per robot can be shown to depend only on the lookaheadk,
regardless of the number of targets. Here we show that the
number of bids per robot during any round of the SSI auction
is three for hillclimbing with lookahead two and thus does
not depend on the number of robots or targets. We also show
that the runtime of the winner-determination rule is linearin
the number of robots and independent of the number of tar-
gets for hillclimbing with lookahead two. Similar results
hold for hillclimbing with lookahead three. For example,
we show in the appendix that the number of bids per robot
during any round of the SSI auction is seven for hillclimb-
ing with lookahead three. However, we omit the derivation
of the linear-time winner-determination rule for hillclimbing
with lookahead three and larger lookaheads.

For hillclimbing with lookahead two, robots bid on single
targets and pairs of targets. Each robot submits three bids
during each round of the SSI auction. It bids on a single tar-
get with the lowest bid cost of any single target (Bid a), a

single target with the lowest bid cost of any single target ex-
cept for the target of Bid a (Bid b), and a pair of targets with
the lowest bid cost of any pair of targets (Bid c). We useB to
denote the set of bids submitted by all robots. We write bids
b asb = (r, T ′, v), meaning that robotr submitted bid cost
v on the set of targetsT ′. We claim that the above three bids
submitted per robot suffice to implement hillclimbing with
lookahead two. There are two mutually exhaustive cases:

• Case 1: There is an optimal assignment that assigns two
targets to the same robot. In this case, there is an optimal
assignment that assigns that robot the targets of its Bid c.

• Case 2: There is an optimal assignment that assigns one
target each to two robots. Subcase 2.1: If those two robots
differ in the target of their Bid a, then there is an optimal
assignment that assigns each of them the target of its Bid
a. Subcase 2.2: Otherwise, there is an optimal assignment
that assigns one robot the target of its Bid a and the other
one the target of its Bid b.

Both cases make use of monotonicity. Case 2 also makes
use of neutrality. Our claim easily leads to a winner-
determination rule, whose pseudocode is given below. To
begin, select the best, that is, the lowest cost, Bid c from
among all robots. This is the Case 1 alternative (step 10).
Next, select the best two Bid a’s from among the robots
(steps 1–2). There are two subcases. Subcase 2.1: If the
targets of the two Bid a’s are distinct, those two bids are the
Case 2 alternative. Subcase 2.2: Otherwise (steps 4–9), let
the target in question bet and the two robots ber1 andr2.
It is easy to see that the winning target assignment assigns
targett to either robotr1 or r2. Thus, construct two candi-
date target assignments as follows. Target assignment 2.2.1:
Targett is assigned to robotr1 and the other target assign-
ment is the best Bid a or Bid b that is for a target other than
t, from any robot other thanr1 (step 7). Target assignment
2.2.2: Targett is assigned to robotr2, and the other target
assignment is the best Bid a or Bid b that is for a target other
than t, from any robot other thanr2 (step 9). The Case 2
alternative is the better one of the target assignments 2.2.1
and 2.2.2 (steps 6–9). Finally, select as the winning target
assignment the better one of the Case 1 and the Case 2 alter-
natives (steps 11–14).

1. (r1, {t1}, v1) := arg min(r,{t},v)∈B v.

2. (r2, {t2}, v2) := arg min(r,{t},v)∈B:r 6=r1
v.

3. If t1 = t2 then

4. (r3, {t3}, v3) := arg min(r,{t},v)∈B:r 6=r1,t6=t1 v.

5. (r4, {t4}, v4) := arg min(r,{t},v)∈B:r 6=r2,t6=t1 v.

6. if C({v1, v3}) ≤ C({v2, v4}) then

7. r2 := r3. t2 := t3. v2 := v3.

8. else

9. r1 := r4. t1 := t4. v1 := v4.

10. (r5, {t5, t6}, v5) := arg min(r,{t,t′},v)∈B v.

11. if C({v5}) ≤ C({v1, v2}) then

12. Case 1: consider the assignment oft5 andt6 to r5.

13. else

14. Case 2: consider the assignment oft1 to r1 and oft2 to r2.



The winner-determination rule assigns only one of the two
selected targets to its robot, namely the target that increases
the team cost the least. The winner-determination rule can
easily determine this target from the bids. For example, in
Case 2 in the pseudo code, ifv1 < v2, then the winner-
determination rule assigns targett1 to robot r1, otherwise
it assigns targett2 to robotr2. For efficiency in selecting
one target in Case 1, we adopt the following convention:
The target pair is ordered in increasing order of bid costs
on individual targets. For example, if(r, t, v) and(r, t′, v′)
are bids withv < v′, then the target set that consists of
targetst andt′ is written as{t, t′} rather than{t′, t}.2 This
convention allows the winner-determination rule to assign
targett5 to robotr5 in Case 1 and thus eliminates the need
for an additional round of communication with robotr5.

To summarize, each robot can determine its three bids by
enumerating and evaluating allO(|T |2) subsets of one or
two targets at worst. Thus, the amount of computation of
each robot per round is not too large. The number of sub-
mitted bids and thus the overall amount of communication
as well as the amount of computation to determine the win-
ning robots is even smaller.

Experimental Evaluation
The tables in Figures 7 and 8 show that hillclimbing with
lookaheads two and three does not reduce the team cost
reliably compared to standard hillclimbing. Also, the re-
ductions in team cost that do occur are only marginal even
though the runtimes for hillclimbing with lookahead three
are substantial, with bid generation responsible for most of
the runtime. We therefore investigate a different technique
for improving SSI auctions in the following.

Improvement: Rollouts
One problem of standard hillclimbing is that the team costs
for partial target assignments do not predict the team costs
for the complete target assignments well. A different idea
for improving SSI auctions therefore is to continue to per-
form hillclimbing with lookahead one, as done by standard
hillclimbing, but to evaluate the resulting partial targetas-
signments by first using standard hillclimbing to complete
them and then using the team costs for the complete target
assignments to evaluate the partial ones, rather than using
the team costs for the partial target assignments directly.We
refer to the completion of the target assignments as rollouts,
which is standard terminology in reinforcement learning for
evaluating whole trajectories according to their true rewards
rather than estimates of their true rewards after the first move
(Sutton 1998).

Consider again the example from Figure 2 in the context
of the MiniSum team objective. Figure 6 shows the search
performed in the first round by hillclimbing with rollouts.

2Consider, for instance, the example from Figure 3 for
the MiniSum team objective. Then,B = {(r1, t1, 1 −
ǫ), (r1, t2, 1), (r1, {t2, t3}, 1 + ǫ), (r2, t3, 1 + ǫ), (r2, t2, 1 +
2ǫ), (r2, {t3, t2}, 1 + 2ǫ)}.

r1: t1 r1: t2 r2: t1 r2: t2

r1: t1 r1: t2 r2: t1 r2: t2

3-ε
r1: t1 r2: t1

r1: t2t1 r1: t2; r2:t1

r1: t2 r2: t2

r1: t2; r2: t1 r2: t2t1r1: t2t1 r1: t1; r2:t2

r1: t1 r2: t1r1: t2 r2: t2

r1: t1; r2: t2 r2: t2t1

2+ε 3-ε 4-ε 4-ε 3 2+ε 3

2+ε 3-ε 3 2+ε

Figure 6: Hillclimbing with Rollouts

Each assignment of one additional target to a robot is evalu-
ated according to the team cost of the complete target assign-
ment that results when first assigning the target to the robot
and then performing standard hillclimbing to complete the
target assignment (rollout team cost). Then, the one with
the smallest rollout team cost is chosen and the procedure
repeats.

We expect that hillclimbing with rollouts, being less my-
opic, would result in smaller team costs than standard hill-
climbing. Consider, for instance, the example from Figure 2
for both the MiniSum and MiniMax team objectives. Since
there are only two targets, hillclimbing with rollouts and
hillclimbing with lookahead two behave identically, and we
have already shown that hillclimbing with lookahead two re-
sults in smaller team costs than standard hillclimbing. Sim-
ilarly, consider again the example from Figure 3. Hillclimb-
ing with rollouts results inr1 → t1 and r2 → t3 → t2.
The resulting team costs of the MiniSum team objective is
2 + 1ǫ and the team costs of the MiniMax team objective
is 1 + 2ǫ, and hillclimbing with rollouts avoids the subop-
timality of hillclimbing with lookahead two in this exam-
ple. In fact, hillclimbing with rollouts cannot result in larger
team costs than standard hillclimbing, for the following rea-
son: Each rollout of hillclimbing with rollouts is evaluated
according to the team costs for the complete target assign-
ment that it achieves. One of the rollouts of hillclimbing
with rollouts is identical to standard hillclimbing, whichim-
plies that the first assignment of a target to a robot resulting
from hillclimbing with rollouts can be completed to a com-
plete target assignment whose team cost is no larger than
the one of the complete target assignment resulting from
standard hillclimbing. This argument can now be recur-
sively applied, supporting our claim. This guarantee dis-
tinguishes hillclimbing with rollouts from hillclimbing with
larger lookaheads, which cannot make such guarantees un-
less the lookaheads are equal to the number of targets.

Implementation Aspects

Hillclimbing with rollouts can still be implemented with SSI
auctions. However, the robots now need to run several sets
of SSI auctions rather than just one, namely one for each



Robots Targets Standard Lookahead 2 Lookahead 3 Rollouts Simplified Rollouts

Team Cost (Runtime) Team Cost (Runtime) Team Cost (Runtime) Team Cost (Runtime) Team Cost (Runtime)

2 10 125.84 (0.00) 123.73 (0.00) 118.49 (0.01) 109.97 (0.03) 112.13 (0.01)

2 20 163.37 (0.01) 156.24 (0.06) 152.80 (1.07) 142.88 (3.22) 142.76 (1.15)

2 30 185.32 (0.06) 189.93 (0.85) 189.36 (28.60) 173.83 (60.53) 174.10 (19.71)

2 40 221.83 (0.27) 214.66 (5.37) 216.67 (227.50) 191.01 (693.03) 193.42 (183.10)

4 10 73.26 (0.00) 73.15 (0.00) 66.50 (0.02) 59.39 (0.02) 62.27 (0.00)

4 20 94.61 (0.01) 90.32 (0.03) 92.63 (0.64) 81.01 (1.13) 85.12 (0.20)

4 30 105.14 (0.02) 107.94 (0.16) 103.72 (6.09) 88.16 (16.16) 96.04 (2.91)

4 40 138.12 (0.05) 137.06 (0.90) 123.58 (41.20) 102.37 (133.88) 109.09 (24.86)

6 10 55.46 (0.00) 52.33 (0.00) 51.79 (0.02) 47.28 (0.01) 49.77 (0.00)

6 20 74.35 (0.01) 73.68 (0.02) 70.17 (0.43) 60.47 (0.66) 64.41 (0.10)

6 30 88.48 (0.02) 81.53 (0.07) 78.26 (3.29) 62.39 (8.98) 70.16 (1.40)

6 40 86.70 (0.03) 87.21 (0.37) 83.70 (20.38) 71.44 (66.59) 73.18 (9.14)

8 10 44.12 (0.00) 43.80 (0.00) 42.03 (0.02) 38.81 (0.01) 38.49 (0.00)

8 20 58.71 (0.01) 58.56 (0.01) 57.85 (0.35) 47.10 (0.54) 50.17 (0.06)

8 30 60.98 (0.01) 60.99 (0.05) 57.13 (2.48) 50.08 (6.29) 56.98 (0.64)

8 40 74.54 (0.02) 75.12 (0.17) 73.25 (12.00) 58.40 (38.22) 64.28 (3.78)

10 10 36.55 (0.00) 37.09 (0.00) 36.07 (0.02) 34.24 (0.02) 34.71 (0.00)

10 20 48.25 (0.01) 45.38 (0.01) 45.33 (0.34) 36.23 (0.42) 38.29 (0.04)

10 30 55.92 (0.01) 56.22 (0.04) 55.82 (2.12) 44.09 (4.45) 47.29 (0.38)

10 40 60.70 (0.02) 59.79 (0.13) 61.72 (9.32) 48.29 (31.50) 54.60 (2.73)

Figure 7: MiniMax Team Objective

combination of round, robot and target. This can make hill-
climbing with rollouts time-consuming. We now discuss
two (non-orthogonal) ways of speeding up hillclimbing with
rollouts:

• Hillclimbing with simplified rolloutsspeeds up hillclimb-
ing with rollouts by sampling only some of the possible
rollouts (including the one that is identical to standard
hillclimbing). It runs standard hillclimbing to determine
which targett it would assign to which robotr during the
current round. Hillclimbing with simplified rollouts then
tries the rollouts for all assignments that assign targett to
some robot in the current round and for all assignments
that assign some target to robotr in the current round.
Thus, hillclimbing with rollouts performs|T ||R| rollouts
in the current round, while hillclimbing with simplified
rollouts performs only|T | + |R| − 1 rollouts.

• Hillclimbing with early rolloutsspeeds up hillclimbing
with rollouts by performing rollouts only during the first
few rounds of the SSI auction and using standard hill-
climbing in all later rounds. Rollouts can be expected
to have larger effects when they are performed in early
rounds rather than later rounds since the team costs of
partial target assignments are less predictive of the team
costs of the complete target assignments the farther away
the partial target assignments are from being completed.

Experimental Evaluation
The tables in Figures 7 and 8 show that hillclimbing with
rollouts or simplified rollouts reduces the team costs sub-
stantially over standard hillclimbing and hillclimbing with
lookaheads two and three. Hillclimbing with rollouts even
reaches the minimal team costs for two robots and ten targets
(almost) but its runtimes are larger than the runtimes of hill-
climbing with lookahead three. The table in Figure 9 con-

tains experimental results for hillclimbing with early roll-
outs. The column “No Round” is identical to standard hill-
climbing, and the column “All Rounds” is identical to hill-
climbing with rollouts. Hillclimbing with a smaller number
of early rollouts cannot result in smaller team costs than hill-
climbing with a larger number of early rollouts for the same
reason why standard hillclimbing cannot result in smaller
team costs than hillclimbing with rollouts. Hillclimbing
with rollouts in only the first round already reduces the team
costs substantially over standard hillclimbing. Hillclimbing
with rollouts in only the first three rounds achieves team
costs that are almost identical to the ones of hillclimbing
with rollouts in all rounds, for both team objectives. The
runtimes of hillclimbing with lookahead three, hillclimb-
ing with simplified rollouts and hillclimbing with rolloutsin
only the first three rounds are comparable but the team costs
of hillclimbing with rollouts in only the first three rounds are
smaller than the ones of the other two versions. For 2 robots
and 10 targets, hillclimbing with rollouts in only the first
three rounds achieves the minimal team costs within 0.6 per-
cent for both team objectives. For 10 robots and 40 targets, it
improves the team cost of standard hillclimbing by about 19
percent for the MiniMax team objective and by about 2 per-
cent for the MiniSum team objective, despite the margins for
improvement being rather small. It is NP-hard to minimize
the team cost for both team objectives (Lagoudakiset al.
2005), and the team cost of standard hillclimbing has been
reported to be roughly within 10 percent of minimal for the
MiniSum team objective and within 50 percent of minimal
for the MiniMax team objective (Toveyet al. 2005). Over-
all, it was surprising to us that rollouts improved standard
hillclimbing much more than larger lookaheads. While we
expected rollouts to have larger effects when they are per-
formed in early rounds, it was also surprising to us that one
needs to perform rollouts only for the first few rounds be-



Robots Targets Standard Lookahead 2 Lookahead 3 Rollouts Simplified Rollouts

Team Cost (Runtime) Team Cost (Runtime) Team Cost (Runtime) Team Cost (Runtime) Team Cost (Runtime)

2 10 193.50 (0.00) 193.88 (0.00) 191.42 (0.03) 189.15 (0.06) 190.32 (0.02)

2 20 264.50 (0.03) 264.51 (0.16) 267.38 (4.44) 262.05 (9.51) 262.05 (2.67)

2 30 324.61 (0.20) 329.66 (2.18) 328.27 (75.90) 315.32 (239.00) 317.15 (62.20)

2 40 367.97 (1.05) 372.31 (13.49) 370.76 (478.67) 358.82 (2529.60) 360.07 (551.77)

4 10 152.63 (0.00) 151.60 (0.00) 151.56 (0.02) 149.83 (0.05) 151.81 (0.02)

4 20 242.52 (0.01) 241.88 (0.06) 240.35 (1.13) 234.13 (5.14) 236.10 (1.16)

4 30 291.48 (0.04) 289.64 (0.48) 290.37 (10.53) 280.54 (92.35) 283.97 (23.38)

4 40 348.47 (0.32) 351.70 (7.55) 352.60 (239.48) 334.99 (695.40) 337.70 (276.36)

6 10 146.83 (0.00) 147.57 (0.00) 146.21 (0.02) 145.41 (0.04) 145.41 (0.01)

6 20 219.14 (0.01) 218.97 (0.06) 217.11 (0.71) 214.87 (4.62) 217.55 (1.39)

6 30 255.46 (0.02) 256.91 (0.31) 256.90 ( 8.31) 248.07 (35.42) 249.72 (15.30)

6 40 312.67 (0.05) 315.66 (1.33) 316.07 (42.80) 303.29 (346.01) 304.23 (78.75)

8 10 126.16 (0.00) 126.94 (0.00) 126.02 (0.02) 125.88 (0.03) 125.88 (0.00)

8 20 198.65 (0.01) 205.16 (0.03) 200.08 (0.43) 193.38 (2.19) 194.20 (0.49)

8 30 241.08 (0.02) 244.43 (0.13) 241.53 (3.66) 237.35 (32.28) 238.54 (5.97)

8 40 295.68 (0.05) 294.88 (0.82) 294.42 (19.70) 288.01 (227.61) 289.51 (40.81)

10 10 108.03 (0.00) 110.43 (0.00) 107.65 (0.02) 107.59 (0.04) 107.59 (0.01)

10 20 180.12 (0.01) 180.61 (0.02) 179.89 (0.36) 178.65 (1.49) 178.67 (0.32)

10 30 243.19 (0.02) 242.55 (0.09) 241.31 (2.74) 234.80 (20.98) 235.36 (4.15)

10 40 278.16 (0.05) 281.06 (0.72) 279.77 (21.80) 270.70 (217.09) 274.21 (46.54)

Figure 8: MiniSum Team Objective

cause additional rollouts in later rounds improve hillclimb-
ing with rollouts only marginally.

Conclusions
Sequential single-item auctions (SSI auctions), which se-
quentially allocate targets to robots, require less computing
resources but yield poorer target assignments than combi-
natorial auctions. In this paper, we have investigated tech-
niques for improving SSI auctions, in the spirit of (Dias &
Stentz 2002), although our techniques do this by improving
the evaluation of partial target assignments. We developeda
method to implement lookahead efficiently in SSI auctions,
so that the computational and communication burden still
compares favorably with combinatorial auctions. Specifi-
cally, the overall amount of computation by each robot in
SSI auctions that implement hillclimbing with lookahead
k is similar, in the worst case, to the amount of computa-
tion by each robot in case of combinatorial auctions where
each robot bids only on sets of at mostk targets. In prac-
tice, SSI auctions should require substantially less compu-
tation because branch-and-bound usually prunes much of
an enumeration tree. Moreover, SSI auctions require both
fewer submitted bids and thus less overall communication
and much less computation to determine the winning robots.
We also developed roll-outs for SSI auctions to evaluate par-
tial assignments more accurately. We described the bidding
and winner-determination rules of the resulting SSI auc-
tions and evaluated them experimentally, with surprising re-
sults: Larger lookaheads do not improve SSI auctions reli-
ably while only a small number of roll-outs in early rounds
already improve them substantially. All robots can formu-
late their bids and run the winner-determination rule in par-
allel, but it remains future work to truly distribute the de-
termination of the winning robots, which also includes syn-
chronizing the auctions and making them robust in the face

of communication errors and malfunctioning robots.
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Robots Targets MiniMax Team Objective MiniSum Team Objective

No Round Round 1 Rounds 1-2 Rounds 1-3 All Rounds No Round Round 1 Rounds 1-2 Rounds 1-3 All Rounds

Team Cost Team Cost Team Cost Team Cost (Runtime) Team CostTeam Cost Team Cost Team Cost Team Cost (Runtime) Team Cost

2 10 125.84 110.32 109.99 109.97 (0.01) 109.97 193.50 189.15 189.15 189.15 (0.03) 189.15

2 20 163.37 145.56 143.69 142.88 (0.67) 142.88 264.50 262.05 262.05 262.05 (2.75) 262.05

2 30 185.32 176.55 174.39 173.83 (9.82) 173.83 324.61 316.32 315.75 315.33 (57.15) 315.32

2 40 221.83 196.68 193.53 191.94 (117.14) 191.01 367.97 359.07 358.93 358.93 (237.33) 358.82

4 10 73.26 59.88 59.39 59.39 (0.01) 59.39 152.63 149.83 149.83 149.83 (0.02) 149.83

4 20 94.61 83.92 81.39 81.22 (0.40) 81.01 242.52 235.13 234.13 234.13 (1.12) 234.13

4 30 105.14 92.01 89.27 88.64 (3.97) 88.16 291.48 280.76 280.54 280.54 (15.49) 280.54

4 40 138.12 106.72 103.57 102.78 (26.04) 102.37 348.47 338.10 335.35 334.99 (122.20) 334.99

6 10 55.46 47.93 47.33 47.28 (0.01) 47.28 146.83 145.41 145.41 145.41 (0.02) 145.41

6 20 74.35 63.68 60.83 60.63 (0.23) 60.47 219.14 214.87 214.87 214.87 (1.64) 214.87

6 30 88.48 66.33 63.22 62.75 (1.98) 62.39 255.46 248.28 248.07 248.07 (9.43) 248.07

6 40 86.70 74.77 72.88 72.19 (12.91) 71.44 312.67 305.65 304.20 304.20 (54.42) 303.29

8 10 44.12 40.04 38.80 38.81 (0.01) 38.81 126.16 125.88 125.88 125.88 (0.02) 125.88

8 20 58.71 49.45 47.73 47.47 (0.17) 47.10 198.65 194.18 193.38 193.38 (0.68) 193.38

8 30 60.98 53.64 51.70 50.94 (1.25) 50.08 241.08 237.87 237.35 237.35 (5.93) 237.35

8 40 74.54 61.47 58.86 58.66 (6.48) 58.40 295.68 289.94 288.21 288.05 (40.48) 288.01

10 10 36.55 34.37 34.36 34.24 (0.01) 34.24 108.03 107.59 107.59 107.59 (0.02) 107.59

10 20 48.25 39.02 37.27 36.65 (0.13) 36.23 180.12 178.76 178.65 178.65 (0.51) 178.65

10 30 55.92 49.40 45.53 44.98 (0.93) 44.09 243.19 236.40 234.80 234.80 (4.74) 234.80

10 40 60.70 52.13 49.58 49.12 (5.39) 48.29 278.16 271.45 271.04 271.04 (40.94) 270.70

Figure 9: Hillclimbing with Early Rollouts

Appendix
In case of hillclimbing with lookahead three, each robot sub-
mits seven bids during each round of the SSI auction, for
both the MiniSum and MiniMax team objectives: It bids on
a single target with its lowest cost bid for any single target
(Bid a), a single target with the lowest cost bid for any single
target except for the target of Bid a (Bid b), a single target
with the lowest cost bid for any single target except for the
targets of Bids a and b (Bid c), a pair of targets with the low-
est cost bid for any pair of targets (Bid d), a pair of targets
with the lowest cost bid for any pair of targets that does not
include the first target of Bid d (Bid e), a pair of targets with
the lowest cost bid for any pair of targets that does not in-
clude the second target of Bid d (which can be identical to
the pair of targets from Bid e in which case it does not need
to submit this bid - Bid f), and a triple of targets with the low-
est cost bid for any triple of targets (Bid g). We claim that
these seven bids per robot suffice to implement hillclimbing
with lookahead three. There are three cases:

• Case 1: There is an optimal assignment that assigns one
target each to three robots: Winner determination in effect
checks all possibilities where a robot gets assigned the
target of one of its Bids a, b or c. If a robot gets assigned a
target different from the targets of its Bids a, b or c, winner
determination could instead assign that robot a target of
its Bids a, b or c because at most two of those targets
get assigned to other robots, leaving at least one of them
unassigned. The altered assignment is at least as good as
the original one, by definition of the bids.

• Case 2: There is an optimal assignment that assigns one
target to one robot and two targets to another robot: By
the same reasoning as in Case 1, the robot with the single
target can be assigned one of the targets of its Bids a, b

or c. If that target is not part of Bid d of the other robot,
then Bid d completes an optimal assignment. Otherwise
Bids e or f complete an optimal assignment. Winner de-
termination in effect thus checks all possibilities where a
robot gets assigned the target of one of its Bids a, b or c
and some other robot gets assigned the targets of one of
its Bids d, e or f.

• Case 3: There is an optimal assignment that assigns three
targets to the same robot: Winner determination then
needs to check only the lowest Bid g from among all
robots.

As in the case of hillclimbing with lookahead two, one
can construct the assignments of each case with a fixed num-
ber of passes through the set of submitted bids. The opti-
mal assignment of three targets to robots can thus be deter-
mined in linear time. In fact, we have developed a winner-
determination rule that implements hillclimbing with looka-
head three by constructing only 13 assignments of three tar-
gets to robots and choosing the best one among them. The
winner-determination rule then assigns only one of the three
selected targets to its robot, namely the target that increases
the team cost the least. This target cannot necessarily be de-
termined by the use of an ordering convention, as was used
for hillclimbing with lookahead two. However, this issue
can be solved with an extra communication round with only
the winning robots or by requiring each robot to submit a
supplementary bid on each target that is part of some set of
targets that it bids on, which increases the number of bids
per robot by only a constant. The winner-determination rule
can then use these bids to assign the target with the small-
est bid among the three selected targets to the corresponding
robot.
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Abstract

The market based approach is widely used to solve
the problem of multirobot coordination. In this
approach, communication and computation costs
are key issues, but have not been carefully ad-
dressed by the di�erent architectures in the liter-
ature. In this paper, we present a method to re-
duce these costs, by adding the capability to learn
whether a task is worth o�ering up for auction and
also whether it is worth bidding for the task, based
on previous experience about successful and un-
successful bids. We show that the method signi�-
cantly decreases communication and computation
costs, while maintaining good overall performance
of the team.

Introduction
In the past few years, the �eld of mobile robotics has be-
gun to consider problems involving groups of robots. A
team of robots can achieve tasks much more e�ciently
than using only one robot, and it has a wide range
of applications, including planetary exploration, search
and rescue, and surveillance. However, having multi-
ple robots adds complexity to the problem, since some
means of coordinating them is needed. To this end,
many researchers in the �eld have focused their e�orts
on the topic of multirobot task allocation (MRTA). The
problem posed by MRTA is: given a set of robots and
a set of tasks to be executed, which tasks should be
assigned to which robot in order to achieve the team's
goal as e�ectively as possible?
This problem can be solved using very di�erent

techniques, including those from operations research,
scheduling, combinatorial optimization, and economic-
based. In this paper we focus on the latter, the eco-
nomic or market based approach. The main idea of this
approach is to consider the tasks to be accomplished as
goods, and the robots as self-interested agents that bid
in auctions for these goods. As result of the auctions,
the tasks are distributed among the robots and, if the
robots bid rationally, the task distribution is the one
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that gets the most pro�t for the overall team. More-
over, in some of the implementations, once a robot is
assigned a task, it can auction it o� to the other robots,
and it can also bid for tasks o�ered by other robots, if
selling or getting those tasks make its pro�t increase.
Two key issues in this approach are the communica-

tion and computation costs for holding auctions and
computing bids. Communication costs refer to the
number of messages needed for running the auctions.
Obviously, the fewer number of messages, the better,
since the network resource in a team of robots is often
limited. Computation costs refer to the computational
cost of running the auctions, which consists of the bid-
der's cost of computing the bid for each task, and the
auctioneer's cost for clearing the auctions.
In this paper, we present a method to reduce these

costs, by adding the capability to learn which tasks to
include in auctions and which tasks to submit bids for.
The �rst reduces the number of tasks the bidders need
to evaluate, the number of bids for the auctions, and the
sizes of the call for bids. The second reduces the number
of messages and the number of bids the auctioneer re-
ceives, since the bidders send fewer bids. Our empirical
results demonstrate signi�cant savings in both commu-
nication and computational costs, with little e�ect on
the overall performance of the system.

Related work
Market-based mechanisms have been widely used in the
multiagent community, and in the past few years the
�eld of robotics has borrowed these ideas to solve mul-
tirobot problems. Examples of such architectures in-
clude those of Dias and Stentz (Dias & Stentz 2000),
Gerkey and Matari�c (Gerkey & Matari�c 2002) and Gol-
farelli et al. (Golfarelli, Maio, & Rizzi 1997). However,
as Gerkey and Matari�c (Gerkey & Matari�c 2004) point
out, few of the existing implementations have carefully
taken into account the communication and computa-
tional costs, which can have a major impact on the sys-
tem's performance. Although they give a formal anal-
ysis of the cost of di�erent implementations, they do
not address how the costs could be reduced in order to
improve the performance.
Gage and Murphy (Gage & Murphy 2004) addressed



this problem using an emotion-based approach. They
extended Parker's ALLIANCE architecture (Parker
1998) adding a shame emotion to the robots, which con-
trols the willingness of each robot to respond to a call
for help from another one. This shame level increases
as a function of the task being announced (namely, as
a function of the time needed to arrive at the task loca-
tion). However, the �nal decision of whether the robot
is going to respond is based on a �xed threshold, no
matter what task has caused the shame level to reach
this threshold. This di�ers from our approach, in which
the task characteristics directly drive the robot's deci-
sion of bidding or not.
We should point out that in our work the robots learn

when to bid and not what to bid (i.e. the amount of
the bid). The latter approach has been widely studied,
and it focuses on learning bidding strategies that lead
to maximizing the pro�t of an agent in an economic sys-
tem (Milgrom 1989; Larson & Sandholm 2001). In con-
trast, our approach focuses on learning the probability
of whether a given bid may win an auction. Similarly,
our approach also learns when to auction, by learning
the likelihood that a task being o�ered by a robot will
be awarded to any of the other robots.

The market architecture
Before describing how we have addressed the problem of
communication and computational costs, we give a brief
overview of the market based architecture on which we
have based our work (Dias & Stentz 2000).
Consider a team of robots assembled to perform a

set of tasks, each of which has a speci�c reward for
its completion, where each robot in the team is mod-
eled as a self-interested agent and the team of robots
is modeled as an economy. The goal of the team is to
complete the tasks successfully while maximizing over-
all pro�t. Each robot aims to maximize its individual
pro�t. However, since all revenue is derived from satis-
fying team objectives, the robot's self-interest is equiv-
alent to maximizing global team objectives. Moreover,
all robots can increase their pro�t only by eliminating
unnecessary costs. Hence, if the global pro�t is deter-
mined by the summation of individual robot pro�ts,
each deal made by a robot will result in global pro�t
increase, since robots make only pro�table deals.
Internally, each robot is controlled by a three-layered

architecture consisting of a Planning, an Executive and
a Behavioral layer (see Figure 1). The Behavioral layer
is responsible for the interaction with the robot's sen-
sors and actuators, the Executive layer controls the ex-
ecution of tasks and robot coordination, and the Plan-
ning layer is responsible for holding and participating in
auctions to allocate tasks. Information and control 
ow
up and down, respectively, between layers: the Plan-
ning layer sends plans to the Executive, which enables
the proper behaviors in order to execute the plan. In
addition, each layer can interact directly with the same
layer of other robots. This allows for inter-robot coor-
dination at multiple levels.

Planning

Behavior

Executive

plans status/data

status/dataconfiguration

Robot 1

Planning

Behavior

Executive

Planning

Behavior

Executive

Robot 2 Robot 3

plans

inputs
outputs

task
sync

Figure 1: Three-layered architecture

In this paper we focus on the Planning layer, which is
responsible for holding and participating in auctions to
allocate tasks. It has two main components: a Trader
that participates in the market, auctioning and bidding
on tasks (Dias & Stentz 2000), and a Scheduler that
determines task feasibility and costs for the Trader and
interacts with other layers for task execution (Cicirello
& Smith 2002).
The tasks are introduced in the system by the Op-

Traders (Operator Traders), which receive high-level
commands from human operators and translate them
into task descriptions the robots can recognize. These
tasks are then auctioned so that the robots bid for them.
Upon receiving a Call for Bids, the Trader sends the
task (or set of tasks) to the Scheduler, which computes
the cost of executing it and the bid that should be sent
back to the auctioneer. Basically, a bid is the amount
a robot is willing to pay to get the opportunity to per-
form a task and later collect the corresponding reward.
The Scheduler computes the bid as the di�erence be-
tween the pro�t obtained by including the task into the
current schedule and the pro�t obtained if the robot
does not execute this task. This calculation is compu-
tationally expensive, since the Scheduler needs to solve
a hard optimization problem (actually, it has to solve
the Travelling Salesman Problem, which is NP-hard).
Therefore, the fewer tasks it has to schedule (or resched-
ule), the faster it can compute the value of the bid. The
auctioneer awards the task to the highest bidder, as long
as that bid increases the auctioneer's overall pro�t (for
the OpTraders this is always the case, since any bid will
produce some pro�t). When the winning bidder com-
pletes the task, it informs the auctioneer and collects
the reward.

Learning the probabilities
Although each implementation of the market-based ap-
proach is di�erent and uses a speci�c auction protocol
(requiring more or less communication and computa-
tion), in many of the current implementations bidders
respond to all the tasks being announced by the auc-
tioneers. This massive response causes a large commu-



nication overhead that could be reduced if the bidders
bid only for some of the tasks being o�ered. Obviously,
if bidders are going to be selective about what bids to
make, they should bid only for those tasks that they
are most likely to get awarded.
Moreover, a robot can also try to auction the tasks

it has been assigned, but has not yet executed, in or-
der to increase its pro�t by trading them. Again, this
feature varies in each implementation, but in many of
them, the robot would try to auction all its pending
tasks, which also incurs a large communication cost.
Not only this, but it also forces the other robots to
evaluate each of these tasks (increasing their computa-
tional cost) and send their bids (increasing again the
communication load, and the computational cost for
the auctioneer to clear the auction). These costs could
be reduced if the robots o�ered only some of their re-
maining tasks. Again, one would prefer the robot to
o�er only those tasks that are most likely to be suc-
cessfully bid for by some other robot (that is, receiving
a bid that makes the trade pro�table and, therefore,
the auctioneer can award the tasks).
In the following sections, we present the heuristics

that bidders and auctioneers use to determine whether
to bid for a task and whether to o�er a task to the other
robots, respectively. These heuristics are based on the
probability of a bid being the winner of an auction, and
the probability of a bidder sending a successful bid for a
task being o�ered. These probabilities are estimated by
the robots from previous experience. Note that we are
assuming that the team of robots is performing similar
missions in similar environments over time, so that the
knowledge obtained through past experiences can be
used in future ones. If this were not the case, we could
not use the probability method we present.

Award probability
In order to reduce the communication cost, the bidder
should bid only for a few of the tasks being auctioned.
When deciding whether to bid, the bidder should take
into account the chances of the bid being awarded. To
do so, the probability of a given bid being awarded in an
auction is computed, which is then used by the bidder
to decide whether to send a bid to the auctioneer. A
random number is generated, and if it is less than or
equal to the probability of a bid of that value being
awarded, the bid is sent. Thus, even bids with a low
probability may eventually be bid for.
First, note that the auctions held by the OpTrader

(OT) are di�erent from those held by the robots (RT)
because the OT does not have a minimum bid value for
trading a task; it always makes some pro�t by accepting
any bid. Thus, bidders learn two probability distribu-
tions, AwProbOT and AwProbRT . With AwProbOT
the bidders try to learn the probability of a bid being
the winner of an auction (that is, the highest bid), while
with AwProbRT the bidders try to learn the probability
of a bid being higher than the minimum bid required
by the auctioneer to trade a task.
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Figure 2: Award and reception probabilities

These probabilities are computed as follows. Let
WBOT be the set of winning bids for OT auctions,
WBRT the set of winning bids for RT auctions, and
MLB the set of the maximum losing bid for each RT
auction (only when there is no winning bid, i.e. no bid
was above the minimum price). Since the OT always
awards a task if bid for, there is no such set for OT auc-
tions. The probability of a bid of value b being awarded
is computed as:

AwProbOT (b) =
wonOT (b)
jWBOT j

AwProbRT (b) =
wonRT (b)

wonRT (b) + lost(b)

where, wona(b) = j(x 2 WBajx � b)j and lost(b) =j(x 2MLBjx � b)j.
That is, the award probability for OT auctions is the

percentage of successful auctions whose winning bid is
below than or equal to b, while for RT auctions it is
the percentage of winning bids lower than or equal to
b, with respect to all auctions in which a bid of b would
de�nitely win or lose the auction. Note that there are
RT auctions where a bid b is below the winning bid,
but is not counted as a losing bid since it still may have
been above the auctioneer's minimum bid price (which
is private information).
Figure 2 shows the award probabilities for OT and

RT auctions computed using these formulas (the bid
values are in the interval 0-2000 because in our experi-
ments the reward of each task is 2000, thus this is the
maximum possible bid). These probabilities have been
obtained after 5 iterations of the learning process (ex-
plained below). As expected, the higher the bid, the
higher the chances of being awarded. It can also be
observed that for low bid values (below 500) the award
probability for OT auctions is much higher than that
for RT auctions, due to the fact that an OT does not
impose a minimum value for trading a task.
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Figure 3: Award probabilities for RT auctions after sev-
eral learning steps

Probability of auctioning a task
As discussed above, the number of tasks auctioned by
the robots also increases the communication load of
the system and the computational cost for the bidders.
Thus, a robot should o�er only a small percentage of its
tasks. The decision of whether to auction a given task
should be a�ected by the likelihood of the task being
�nally awarded to some other robot. A task auctioned
by a robot (the auctioneer) is awarded to another one
(the bidder) if the bid sent by the bidder is greater than
the loss incurred by the auctioneer by giving away the
task. In other words, an auctioneer trades a task only
if it gets more pro�t by doing so than by keeping the
task for itself.
Thus, the auctioneer should use the probability of

receiving a bid greater than the loss of not executing
a task to decide whether to o�er it to the rest of the
robots. Given the set B = WBRT [MLB, the proba-
bility of receiving a bid with a value greater than b is
computed as:

P (bid > b) =
j(x 2 Bjx > b)j

jBj
As with the award probabilities, the auctioneer gen-

erates a random number, and if it is less than or equal
to P (bid > b) it o�ers the task.
Figure 2 shows this probability for bids from 0 to

2000. As expected, there is a high probability of re-
ceiving a bid with a low minimum value, while this
probability decreases as the minimum required value
increases.

Iterative learning
The probabilities shown in the previous (and subse-
quent) �gures are learned o�-line. That is, we let the
system run for a �xed period of time, gather informa-
tion about auctions, bids and awards and, once the run
is �nished, we use this information and the equations
presented above to compute the award and reception

probabilities. Initially, the award and reception proba-
bilities are computed using a con�guration where robots
bid for all tasks and include all tasks in their auctions.
However, the scenario is not the same when the robots
actually use the probabilities, since there will be fewer
tasks being bid for or auctioned. Thus, we repeat the
process for several steps, updating the probabilities af-
ter each run, in order to learn better probability distri-
butions.
Figure 3 shows how the award probabilities for RT

auctions change after 1 and 5 learning steps. In the ini-
tial step all the probabilities are set to 1, which is equiv-
alent to including all tasks in auctions and sending all
bids. The �gure shows that the probability of mid-level
bids winning increases, while the probability of low-level
bids winning decreases (mainly because fewer of them
are o�ered up for auction). Similar graphs are obtained
for OT auctions and for the reception probabilities.
Note that we assume that the experimental environ-

ment does not change from run to run. That is, the
number and distribution of tasks are similar, and the
number of robots in the team remains constant. If the
environment were di�erent at each run, the probabili-
ties would be of limited help since the robots would be
facing a totally di�erent scenario.

Experimental results
We have used the FIRE (Federation of Intelligent
Robotic Explorers) multi-robot system (Goldberg et al.
2003) to evaluate how well our approach performs when
using the learned probabilities. The scenario involves
multiple robots exploring the surface of Mars. The goal
of the team is to characterize a set of rocks at di�erent
(known) locations. A task is described as the location
of the rock, the type of sensor to be used, and the re-
ward to be paid upon completion. In our experiments,
we used a scenario with 5 robots and only one type of
rock, which all the robots can characterize. Each rock
has the same reward of 2000, and the OpTrader (the
auctioneer acting on behalf of the scientists on Earth)
is constantly o�ering new tasks. That is, new tasks are
arriving while the robots are already executing other
tasks.
This scenario has been used in each of the following

con�gurations:

� No Probabilities (NP), where robots bid for all the
tasks being o�ered and they auction all their remain-
ing tasks,

� Auction Probabilities (AuP), robots use the reception
probabilities to decide whether to include a task in a
Call for Bids and bidders bid on all tasks,

� Bid Probabilities (BP), robots use the award prob-
abilities to decide whether to bid for a task and all
remaining tasks are auctioned, and

� All Probabilities (AllP), both award and reception
probabilities are used.



NP BP AuP AllP

Number of characterized rocks 437.22
(2.99)

429.57
(3.55)

437.63
(3.11)

432.78
(3.53)

Number of tasks auctioned 1259.24
(37.93)

1200.21
(52.48)

325.82
(28.38)

474.46
(46.5)

Auctions with no awards 68.8%
(1.94)

85.54%
(1.56)

53.61%
(4.7)

75.4%
(1.92)

Total number of messages 13171.42
(192.65)

4586.57
(104.33)

8506.38
(133.78)

3809.49
(95.08)

Table 1: Results for each con�guration. Average values (and standard deviations)

Table 1 shows the results obtained for each con�gu-
ration using the probabilities obtained after 5 learning
steps. The results are the average of 10 runs for each
con�guration. To evaluate them, we have focused on
the following aspects:
� number of rocks characterized by the team (i.e. per-
formance),

� number of tasks auctioned by robots,
� percentage of auctions for which no awards could be
made (including those for which there were no bids),
and

� number of task messages sent (we consider a mes-
sage o�ering a task in a Call for Bids and a bidding
message for a task to have the same cost).
Observing the results, we can see that the Auction

Probabilities con�guration performs as well as the No
Probabilities, while reducing the communication cost by
almost 40%. Although we were expecting a small de-
crease in performance when using the reception prob-
abilities (since not all the tasks would be auctioned),
the high frequency of auctions (each robot is constantly
trying to auction its tasks) makes that tasks are con-
sidered for being o�ered often enough so that they are
eventually auctioned and assigned to a better robot,
and therefore the performance is not a�ected. As for
the All Probabilities con�guration, while it uses only a
third of the number of messages used in the No Prob-
abilities con�guration, its performance degrades some-
what. This drop in performance is due to the fact that
since not all robots bid for all tasks, some of the tasks
may not be awarded to the optimal robot. An even
higher performance degradation can be observed in the
Bid Probabilities con�guration.
Regarding the number of auctions with no awards,

the �rst thing to point out is that in the No Probabil-
ities con�guration, there is a high percentage of such
auctions. The reason is that when a robot auctions any
of its pending tasks, it is sometimes already the best
suited robot for that task, and none of the bids sent by
other robots is good enough for the task to be traded.
However, the robot keeps trying to auction it over and
over. Although some of the tasks are awarded to other
robots (and this does indeed improve the performance

of the system, see (Goldberg et al. 2003) for results),
most of these auctions are a waste of communication
and computation resources. This percentage is reduced
in the Auction Probabilities, since only those tasks with
high chances of being successfully bid for (and thus,
awarded) are o�ered to the other robots. Although we
expected similar results in the All Probabilities con�g-
uration, we found that the percentage of auctions with-
out awards did not decrease but increased (actually,
almost 60% of the auctions received no bids because of
the robot's selective bidding). The problem is that the
auction and bid probabilities are \acting against each
other". On one hand, a robot usually auctions a task
if the probability of receiving a successful bid is high.
On the other hand, a bidder usually bids for those tasks
for which its bid has high probability of being awarded.
However, when a robot auctions a task for which a low
minimum bid is su�cient, it is often the case that the
bids computed by the other robots are also low, there-
fore with a low probability of being awarded, and usu-
ally not sent, and thus, the auctioneer does not receive
any bid. With the Bid Probabilities con�guration, the
increase is even higher, with 85% of the auctions having
no awards. In this case, the reason is that, while the
robots are auctioning all their remaining tasks, only a
small part of them are being bid for, and therefore most
of the auctions (64%) do not receive any bids.
Regarding the computational cost, it can be observed

that the Auction Probabilities and All Probabilities con-
�gurations drastically reduce the number of tasks be-
ing auctioned by the robots (they are o�ering only 25%
and 37% of the tasks o�ered by the No Probabilities
con�guration, respectively). This has a major impact
on the computational cost incurred by the Scheduler,
since very few bids have to be computed. As for the
Bid Probabilities con�guration, the reduction of tasks
being o�ered is minimal. Although the selective bid-
ding results in less tasks being awarded to each robot,
this has almost no e�ect on the number of tasks being
auctioned, since the robots are auctioning all of their
remaining tasks.
We have also evaluated how accurate are the learned

probabilities. For the award probabilities, each \bid
decision" a bidder faced was classi�ed as: bid sent and
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Figure 4: Right decision percentage for award proba-
bility for RT auctions

won, bid sent and lost, bid not sent but would have won,
and bid not sent and would have lost. From these four
classes, the �rst and last ones are right decisions, while
the other two are wrong decisions. Figure 4 shows the
percentage of right decisions as a function of the award
probability for RT auctions. As we can see, there is an
improvement of at least 30% (up to 60% for some proba-
bility values) of the percentage obtained when not using
probabilities. Moreover, the right decision percentage is
much higher at the ends than in the middle. This make
sense, since at both ends the bidder is very con�dent
that it will either lose or win the auction. However, in
the mid-range probabilities, it is not clear what is the
right thing to do, since the outcome of the decision is
almost 50-50. We can also observe that this percent-
age improves after 5 learning steps. Figure 5 shows
the results for OT auctions, for which the improvement
is even higher. We used a similar method to evaluate
the reception probability, computing the percentage of
tasks awarded over those being o�ered. The results
show that the probabilities also lead to a higher award
percentage, with similar improvements.

Discussion and Future work
Coordinating a team of robots is still a major issue in
the �eld of robotics. One important aspect of the co-
ordination is the multirobot task allocation problem.
Many approaches try to solve this problem, one of them
being the market-based approach. However, this ap-
proach usually has a high cost in communication and
computational resources, which has usually not been
addressed. In this paper, we have presented a method
for reducing these costs.
To do so, the robots learn whether a task is worth

bidding for and also whether it is worth o�ering any of
its pending tasks to the other robots. The robot learns
two probability functions, the award probability and
the reception probability, that are used to decide when
to bid and when to auction.
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Figure 5: Right decision percentage for award proba-
bility for OT auctions

The results show that the use of probabilities consid-
erably decreases both communication and computation
costs. Moreover, the Auction Probabilities con�gura-
tion does not a�ect the performance at all. Thus, if
performance is the main concern, this con�guration is
the most adequate. However, if the main concern is
communication cost, then the All Probabilities con�g-
uration should be chosen, since it drastically decreases
this cost, but it does a�ect the performance somewhat.
An assumption we have made is that the robots re-

peatedly perform their mission in a similar environ-
ment, so that the probabilities learned o�ine can be
used in future missions. It would be interesting to
have this learning process on-line, so that the robots
can learn the probabilities while performing the given
mission. This would allow for using the method on one-
time missions, for which no past experience would be
available, and it would also allow the robots to adapt
to dynamic environments where the distribution of bids
and tasks could change while performing the mission.
For future work, we would like to investigate if a bet-

ter model for the award probabilities can be developed,
so that its e�ect on performance can be eliminated or
minimized. We would also like to extend our proba-
bility method so that it can be used when the system
works with combinatorial auctions. The di�culty in
this case is that the bids sent by the robots are not for
single tasks, as in the work we have presented in this
paper, but they are for bundles of tasks. Thus, it is not
clear how the bids should be treated when computing
the probabilities (some of the options could be using
the absolute value or the ratio between bid and reward
of the bundle).
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Abstract

Task allocation is one of the main problems in multi-
robot systems. To get a good task allocation, we have
to take into account, among other factors, the physical
interference effect between robots, that is, when two or
more robots want to access the same point at the same
time. This paper analyzes the interference impact using
auction methods. We will show how the performance
of the auction utility function can be improved if the in-
terference impact is included in it. We will also analyze
the impact of the knowledge about the progress of the
task on the auction process. It will be shown that, using
the interference impact, the monitoring of the task pro-
cess is not so necessary. This method has been tested
using transport like tasks, where each object must be
transported to a delivery point before a deadline. This
is a simple task that allow us to isolate the interference
effect under study.

Introduction
Multi-robot systems can provide several advantages over
single-robot systems: robustness, flexibility and efficiency
among others. To benefit from these potential aspects se-
veral problems have to be solved. Among all these pro-
blems, we focus on task allocation issues, that is, selec-
ting the best robot or robots to execute a task. Some
tasks require that two or more robots cooperate to exe-
cute them creating coalitions. In this case we have to
find the best set of robots to execute the task and also
the optimum number of these robots. As it has been de-
monstrated in different studies (Lerman & Galstyan 2002;
Hayes 2002), the number of robots has an important impact
on the system performance due to the physical interference
effect, among other factors. Interference appears when two
or more robots need to reach the same point at the same time.
This factor has only been modeled and analyzed using very
simple environments and using a specific architecture, like
for example in (Lerman & Galstyan 2002). On the other
hand, our method is based on external observations of the
system behavior, and thus, it doesn’t make any assumption
about the architecture of the robots.

∗This work has been partially supported by project CICYT-
DPI2005-09001-C03-02 and FEDER fundings.
Copyright c© 2006, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

A lot of research has been done to solve the task allocation
and coalition formation problems but they are still open pro-
blems. One of the most used and well studied task allocation
solutions are auction methods (Dias & Stentz 2003; 2002;
Gerkey & Mataric 2002; Kalra, Ferguson, & Stentz 2005).
Only a few auction strategies, like (Vig & Adams 2005;
Chaimowicz, Campos, & Kumar 2002), allow to allocate
several robots to the same task, but these methods don’t
take into account the interference effect. Moreover, one
of the main problems of all auction methods is to find or
to learn a good utility function. The utility function de-
pends on a lot of factors, and very specially on the inter-
ference effect. On the other hand, several work has been
done to reduce the interference effect but without using
auction mechanisms (Zuluaga & Vaughan 2005; Goldberg
& Mataric 1997; Ostergaard, Sukhatme, & Mataric 2001;
Agassounon & Martinoli 2002).

In this paper we analyze how to introduce the interference
effect in the auction’s utility functions, extending our previ-
ous work (Guerrero & Oliver 2006). We study the impact
of this factor showing that the system performance can be
improved when the interference is taken into account. Anot-
her problem that this paper tries to analyze is how does the
monitoring of the task progress affects the system perfor-
mance. The monitoring process can be a so complex task
which requires sophisticated sensorial and communication
capacities. The first experimental results show that using
our interference model with the auction process, the robots
don’t need to monitor the task to know how to bid. This bid
only depends on the initial conditions of the task. To our
knowledge, this is the first time that this kind of analysis is
made using auction strategies.

This paper also proposes a framework to reduce the com-
plexity on finding utility functions when robots must create
coalitions. This framework divides the learning process in
three stages. During the first phase, only the knowledge of
individual robots is included in the utility function. The se-
cond phase includes the knowledge about robots that form
the coalition. Finally, the last stage includes the information
of other coalitions. One of the most importat piece of infor-
mation that should be included in the second phase is a me-
asure of the physical interference produced between robots
of the same group. To test our system we use a foraging like
task, where the robots must find a set of objects and carry



them to a delivery point. During this task, multiple robots
can cooperate to transport the same object. In this case we
have to decide how many robots and which ones we need to
transport each object according to the object weight and to
the robots characteristics. Each task, or object, must be exe-
cuted before a deadline, and the goal of our auction method
is to maximize the number of tasks executed before their
deadline. The results show that including the interference
information in the utility function, the system performance
can be significantly improved.

The rest of this paper is organized as follows: the second
section presents the task allocation algorithm used; the next
section exposes the designed framework to simplify the se-
arch of good utility functions; section ”Group utility func-
tion: interference effect” analyzes the effect of the physical
interference on the utility functions; section ”Task Alloca-
tion Experiments” shows the results of the task allocation
system using the interference effect; finally, the last section
exposes some conclusions and future work.

Task Allocation Method
Our task allocation mechanisms, including the groups’ for-
mation, membership policy and task assignment is briefly
described in the following paragraphs. This new mecha-
nism extends our previous work (Guerrero & Oliver 2004;
2006) to take into account deadlines and it also introduces
the concept of partial knowledge about the task progress.
Here we only expose in a very concise way the main aspects
of our method to understand the interference model that will
be explained in the ”Task Allocation Experiments” section.

A classical auction method has been modified to select
which robots, and very specially, how many of them are ne-
eded to execute a task. In an initial stage, each robot is lo-
oking for a task. When a robot finds a new task, it will try
to lead it. There is only one leader for each task. The details
about how a robot can be promoted to leader, can be found in
(Guerrero & Oliver 2004). If a robot is promoted to leader, it
will create, if necessary, a work group; that is, a set of robots
that will cooperate to execute this specific task. In that case,
the leader must decide which the optimum group size is and
what robots will be part of the group. To make this decision,
the leader uses an auction like mechanism. During this pro-
cess the leader will be the auctioneer and the other robots
will bid using their work capacity. The work capacity is the
amount of work that a robot can execute per time unit, thus,
this value is the utility function of our auction method or the
price that the robots want to pay to participate in the task.
The leader selects the robots with the highest work capacity
using a greedy algorithm, until it detects that the group is
able to reach its deadline, that is, until this condition is veri-
fied:

DLg =
taskWorkLoad

groupCapacity
≤ DL (1)

WheretaskWorkLoad is the amount of work required
to finish the assigned task that is calculated by the leader;
groupCapacity is the work capacity of the group, that is,
the amount of work that the group can process each time unit

and, finally,DL is the deadline of the task. As it can be seen,
DLg is the expected time required to finish the task. The-
refore, the selection process is a very simple greedy method
with a computational complexity ofO(n), wheren is the
number of robots.

If during the task execution the leader detects that the de-
adline (DL) can not be fulfilled, it starts a new auction pro-
cess to get, if it’s possible, new robots. This can happen if
the leader monitors the task execution progress, that is, it
knows at any time the current value of thetaskWorkLoad
parameter, and, also, the initialgroupCapacity has not
been correctly calculated. In general, it’s not easy to get
this value because the work capacity of the group is not
the sum of the work capacity of each single robot, that is
groupCapacity 6=

∑
1≤i≤N workCapacityi, whereN is

the number of robots of the group. This inequality is mainly
due to the interference effect. During the following secti-
ons we will propose a method to calculate the individual uti-
lity of each robot and specially the group utility. From this
point, we will consider the robot utility and the group utility
synonymous of robot’s work capacity and work capacity of
the group.

A Framework to Get Utility Functions
This section describes a framework that will help us to get a
good utility function for auction methods when robots must
create coalitions. Getting a good utility function is a difficult
process, very specially when the robots must form coalitions
or when the utility of a robot depends on the utility of other
robots. We can use learning algorithms to get this function,
but these algorithms require a lot of time, and moreover, it
is not clear what the robot has to learn. Also, in general,
utility functions are not linear, so the learning process can be
very hard. To simplify the process, some parameters can be
previously analyzed, using an ideal environment, and then
modified during the execution of the task. We will do this in
3 steps:

• Individual utility: during the first stage, we evaluate the
characteristics of each single robot without taking into ac-
count the others. Here it will be include some characteris-
tics like velocity, acceleration, etc.

• Group utility: in this step, the robot will take into account
the other ones to create a coalition or working group. Here
some parameters, like interference effect, will be inclu-
ded. That is, the robots will calculate the utility function
of the group.

• Inter-Group utility: finally, just the leaders have to take
into account that the decision of one group can affect other
groups. This inter-group dependency must be included in
the utility function during the final step.

In this paper we analyze the first and second step paying
special attention to the interference effect. As an example of
how to use the framework proposed, a transport like task will
be used. The task to be carried out by the robots is described
as follows: some randomly placed robots must locate ob-
jects, randomly placed too, and carry them to a common de-
livery point. Figure 1 shows a typical initial situation, where



Figure 1: Example of initial situation of transport task

the squares represent the objects to collect, the delivery point
is the big circle at the right of the image and the robots are
the little circles. Each object to gather has a weight and each
robot has a load capacity. The robot load capacity is the
amount of weight that it can carry at once. Thus, if a ro-
bot cannot carry the entire object at once, it takes a part of
it, goes to the delivery point and comes back to the object
for more bits. To maintain the initial conditions, when an
object is fully transported to the delivery point, immediately
appears another one, with identical characteristics in a ran-
dom place. Of course, this is a very simple environment but
it allows us to isolate the interference effect from other fac-
tors that can appear in more complex tasks. It is under study
whether a similar reasoning can be made for different kind
of tasks, like exploration, surface cleaning or mapping for
example.

Individual utility function

We will now describe the first step of our framework, called
individual utility, to find the utility function of each single
robot. The transport task explained during the last section
will be used as an example. The work capacity of a robot is
the amount of object’s weight that this robot can transport to
the delivery point per time unit. Under ideal conditions, that
is, assuming an open environment without any other obsta-
cle or robot between the object and the delivery point, the
robot’s work capacity is easy to calculate. Letri be a robot
andCi the load capacity of the robot.Vi is the maximum
velocity, d the distance between the object and the delivery
point andC the weight of the object. The number of trips
between the delivery point and the object that the robot must
do to transport the full object is2∗ C

Ci

. If the acceleration and
deceleration time is neglected, for each one of these trips the
robots will needd

Vi

time units. We also consider that a robot
needs one time unit to load and to unload each weight unit.
For example, if the robot has to load 2 weight units it will
require 2 time units to load all this weight and 2 time units
more to unload it when it arrives to the delivery point. Thus,
to load and to unload the full object, the robot will spend2C
time units. Therefore, the total time required to transport the
full object isT = 2 C

Ci

(Ci +
d
Vi

) and the work capacityC
T

is:

workCapacityi =
CiVi

2(CiVi + d)
(2)
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Figure 2: Total transported weight during the experiments to
model interference effect

Group Utility Function: Interference Effect

During this section we will analyze the second step of our
framework to get the utility function of the group. We will
also use the transport task to show how to get this function
value. The utility of the group will be defined as the ex-
pected amount of work that the set of robots can execute
per time unit. This value is not the sum of each indivi-
dual robots’ work capacity because of the interference ef-
fect, among other factors. Thus, first of all, we will model
the interference effect and then we will show how to use
this information to get the utility function of the group. All
the experiments carried out to model the interference have
been executed using a multi-robot simulator called Robo-
CoT (Robot Colonies Tool). RoboCoT is a software tool de-
veloped by the authors at the University of Balearic Islands
(Guerrero & Oliver 2001).

Interference Effect Analysis

To analyze the interference effect we have executed a task
where several robots must transport a single object and the
total weight transported by the robots after 40000 time units
is calculated. All the robots have the same load capacity (2
weight units) and the same velocity (3 distance units/time
unit), and therefore, they all have the same work capacity.
Moreover, the environment doesn’t have any obstacle but
the robots, the object and the delivery point. Seven diffe-
rent distances between the object and the delivery point have
been tested:D1 = 140 units,D2 = 180 units,D3 = 250
units,D4 = 280 units,D5 = 330 units,D6 = 360 units and
D7 = 400 units. Figure 2 shows the total transported weight
during these experiments when the number of robots varies
from 1 to 8. As it can be seen, and as has been pointed by
other authors, the relation between the number of robots and
the transported weight is not linear. The difference between
the expected transported weight, calculated as the sum of
the individual robot’s work capacity, and the real transpor-
ted weight can only be due to the interference. Figure 2
also shows that the interference effect increases as the dis-
tance between the object and the delivery point decreases.
To analyze the interference effect, a polynomial fit model
has been used.



The polynomial fit model suposes that the work capacity
of the group follows this equation:

groupCapacity =
∑

1≤i≤N

workCapacityi − I(N) (3)

whereworkCapacityi is the individual work capacity of
the ith robot of the group, calculated using equation 2;N is
the number of robots of the group andI(N) is a polynomial
of degree 2 that fits the interference effect as a function of
the number of robots. We have used this function because
of its simplicity and because it fits with a very low error the
experimental results. Moreover, due to its simplicity, only 3
parameters must be adjusted. We have also tested polyno-
mials of higher degrees, but the results do not improve sig-
nificantly the performance of the system. Thus, we assume
that this polynomial models the difference between the ex-
pected work capacity without interference and the results of
our simulations. FunctionI(N) has the following form:

I(N) = αN2 + βN + γ (4)

Table 1 shows the values of the parameters of function
I(N), and figure 3 shows the form of theI(N) function
that fits the real results. To improve the quality of the fi-
gure, only some distances have been represented (D1, D2,
D3 andD7). The crosses correspond to real data. The y
axis represents the interference effect for every 1000 time
units, that is,1000 ∗ I(N). The resulting parameters seem
to be very low, but it should be pointed out that the utility
of each robot is also very low because of the high values
of the distance value (d) of the individual utility equation,
as expressed in equation 2. However, the interference effect
can modify very significantly the group utility. For example,
when the distance isD7 and there are 8 robots, the interfe-
rence decreases the work capacity of the group down to a
58%. Moreover, as it can be seen in table 1, as the distance
between the object and the delivery point increases, the va-
lues ofα andβ decrease. For the time being, a new function
which relates the interference to the distance and the num-
ber of robots is under study. Finally, we have to note that the
errors between the real results and the interference function
fitted are, in general, very low but they increase as the num-
ber of robots is reduced. In fact, our equation is not suitable
when the distance between the object and the delivery point
is very low andN = 1.

- α β γ
D1 0.3589 7.5029 -12.3571
D2 0.3476 2.964 -4.2857
D3 0.2432 1.3347 -2.0107
D4 0.2006 1.062 -1.6321
D5 0.1619 0.4737 -0.6071
D6 0.1494 0.37337 -0.5071
D7 0.1071 0.405 -0.5

Table 1: Parameters of the interference function for each
1000 time units(I(N))
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Figure 3: Polynomial fit ofI(N) for different values of dis-
tance between the object and the delivery point

Using all this information, the utility function of a robot,
calculated in equation 2 must be modified. In fact, for a
group with N robots, this new utility measure can be defined
as the difference between the utility of the working group
with and without the Nth robot. Therefore, this equation
must be used:

utilityj = groupCapacityt(N)−groupCapacityt−1(N−1)
(5)

Where groupCapacityt−1(N − 1) is the work capa-
city of the group before the new robot is added;
groupCapacityt(N) is the group capacity with the new ro-
bot andN is the number of robots of the group including the
new one. Therefore, if this equation is calculated, we can
find that the utility of a new robot,utilityj , is:

utilityj = workCapacityj − (α(2N − 1) − β) (6)

Using the market based system vocabulary (Dias & Stentz
2003), we can say that the left side of the equation 6 is the
benefit that the robot will get if it executes the task and the
right side is the cost of this execution. We can also note that
the utility of each single robot only depends on two values,
α andβ. Thus, future learning algorithms will only need to
tune this two parameters, instead of making large searches
in unknown state spaces.

Interference and Task Allocation
This section will show how to modify the auction process
explained in ”Task Allocation Method” section to take into
account the interference effect.

As it has been explained in the second section, the leader
selects the best robots (robots with the highest bids) until the
equation 1 is verified. Now, using the interference informa-
tion, the leader of the group will only include a new robot
if this operation increases the work capacity of the group.
Therefore, the auction process will finish when the equation
1 or when this condition is verified. Thus, the bidding pro-
cess will now consist on the evaluation of 6. The first term
(workCapacityj) will be sent by each robot and the final
term will be calculated by the leader. Using this extra infor-
mation about interference, and as it will be seen during the



next section, the robot can find a better set of robots to verify
the deadline.

The Monitoring Process
During the execution of a task the leader can periodically
receive information about the remaining weight of the object
(taskWorkLoad) to be transported. If available, the leader
of the task uses this information to make a guess about the
actualtaskWorkLoad using a simple linear equation like:

WL(t) = WL(tm) − groupCapacity ∗ (t − tm) (7)

Where tm is the time when the leader receives infor-
mation about the task process andWL(t) is the expected
taskWorkLoad at instantt.

During a continual monitoring task progress execution,
the leader knows in each moment the exact value of the
taskWorkLoad, and therefore, it can start another auc-
tion process if inequality 1 is not verified. In a no mo-
nitoring task process execution, the leader only knows the
taskWorkLoad at the beginning of the task, and then it
uses equation 7 to predict thetaskWorkLoad, with a uni-
que constantWL(tm) during the whole process.

Task Allocation Experiments
In this section we will show the results of several experi-
ments performed to study the impact of the physical interfe-
rence on our auction method. We will also analyze how the
monitoring process affects to the system performance. Du-
ring all the experiments RoboCoT has been used, which is
the same simulator used in the last section. The robots must
execute the transport task explained in the second section.
The transport tasks have a deadline. The main objective is
to transport each object before its deadline. If the fulfilment
of this objective is not possible, the robots continue their
execution until the object is fully transported. The time to
deadline starts when the object appears in the environment.
Thus, we give priority to the accomplishment of the tasks’
deadline over the increment of the total transported weight.
To simplify the analysis, the robots know the situation of
each object in the environment.

During all the experiments we use 10 robots and 3 ob-
jects to gather. All the robots have the same characteristics
as in the experiments of the last section, that is, their load
capacity is 2 and the maximum velocity is 3. All the tasks
have a weight equal to 40 weight units. Three different kind
of experiments have been executed: greedy robot selection,
continual monitoring task progress and no monitoring task
progress. In all the cases the value of the deadline is equal
to 1200 time units, other deadline values have been tested in
our previous work (Guerrero & Oliver 2006). This deadline
value is the same for all the tasks, so if there is a long dis-
tance between the object and the delivery point, this task will
require more robots than a nearer one. In greedy robot selec-
tion experiments all the leaders try to create a working group
as great as possible without taking into account the deadline
value or the task characteristics, that is, the leader tries to
get as many robots as possible. Robots carry out the mission

during 30000 time units. After this period, we get the time
required to transport each object and the number of object
gathered. Despite having only 3 objects in the environment,
when an object is fully transported to the delivery point, it
immediately appears another one in a random place. There-
fore, the number of objects gathered can be greater than 3.
Each experiment has been repeated 4 times.

Figure 4 shows the percentage of tasks that fulfill a de-
adline equal to 1200 time units during the execution of the
greedy robot selection experiments. The bar with a label
0.6 represents the percentage of tasks that its execution time
exceeds a 60% of the deadline. The bar with a label 0.5 re-
presents the percentage of tasks that require less than a 60%
and more than 50% of the deadline time, etc. The negative
numbers represent the tasks that have been fulfilled the de-
adline. For example, the bar with -0.2 represents the tasks
that require to finish less than a 20% and more than a 30%
of the deadline time. During these experiments 297 objects
were fully transported to the delivery point. A 72,7% of the
tasks were executed before the deadline.
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Figure 4: Deadline fulfilment during greedy robot selection
experiments and with a deadline equal to 1200 time units

Figure 5 shows the results of the continual monitoring
task progress experiments with a deadline equal to 1200 time
units, taking into account the interference effect in the ro-
bot’s work capacity. Thus, to calculate the work capacity of
the group, equation 3 has been used. In this case a 98,8% of
the tasks have been executed before the deadline, a 26,1%
more objects than during the greedy robot selection experi-
ments. Moreover, during the experiments, 323 objects were
fully transported, a 8,8% more objects than with the last
experiments. Another set of experiments has been execu-
ted only taking into account the continual monitoring of the
task, but not using the interference effect model. The re-
sults obtained are not presented here but they are extremely
similar to these previously shown in figure 5

The results of the experiments without monitoring the
task progress can be seen in figures 6 and 7. As in the pre-
vious cases, the deadline is equal to 1200 time units. Figure
6 shows the results without modeling the interference effect,
that is to say, to calculate the work capacity of the group
equation 2 has been used. In this case only a 66,8% of the
tasks fulfilled the deadline, less tasks than during the greedy
experiments. On the other hand, the number of tasks that
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Figure 5: Deadline fulfilment during continual monitoring
task progress experiments, using interference effect and with
a deadline equal to 1200 time units

require a lot of time to finish has decreased with regard to
greedy experiments. For example, now there are no tasks
requiring more than a 50% of the deadline time to finish, but
during the greedy experiments a 5,4% of tasks required this
time. The total number of objects transported during these
experiments was equal to 286. Finally, figure 7 shows the
results of the no monitoring task progress experiments, but
taking into account the interference effect. During these ex-
periments the percentage of tasks that fulfill the deadline was
equal to 93,2%. Thus, the number of tasks that fulfill the de-
adline has been increased a 26,4% with regard to the system
that don’t use interference effect. Therefore, the interference
factorI(N) seems to be useful. On the other hand, we can
see that the monitoring process can improve the system per-
formance, but it doesn’t produce a great benefit. The number
of tasks that fulfill the deadline has been increased a 5,6%
using continual monitoring compared to the system that do
not uses it. Therefore, using an interference model the moni-
toring process can be avoided. The reader should remember
that for the continual monitoring the robots need to be con-
tinuously sensing the task state, while the interference effect
can be modeled off-line.
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Figure 6: Deadline fulfilment during no monitoring the task
progress without using interference effect and with a dead-
line equal to 1200 time units
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Figure 7: Deadline fulfilment during no monitoring the task
progress, using interference effect and with a deadline equal
to 1200 time units

Conclusion and Future Work
This paper analyzes the impact of the interference effect on
the utility function used in an auction like system. It also
studies how monitoring the task progress can affect to our
method. First of all, an auction method has been presented
that, unlike most of other auction methods, allows to assign
multiple robots to the same task creating coalitions. More-
over, our method includes the concept of deadline, that is,
the idea that a task should be executed, if possible, before a
certain period of time. One of the main problems of all the
auction systems is to find a good utility function. To sim-
plify this problem when the robots must create coalitions,
we propose a framework that divide the search in 3 steps.
The first and the second step of this framework have been
studied for the execution of transport like tasks. One of the
main aspects that we have to take into account to calculate
the utility function is the physical interference between ro-
bots. This influence has been analyzed and fitted using a
polynomial function. The experiments carried out show that,
including interference in the utility functions, the robots can
better fulfil the tasks’s deadline. Thus, the importance of in-
terference has ben showed. Moreover, it seems that using
the interference factor during the auction process, the leader
can predict better the evolution of the task and, thus, a moni-
tor system is not required. We have to take into account that
monitoring the task progress can be a very hard process.

The work presented is in progress and has some challen-
ging aspects to add and to improve. We are working to use
a preemption auction method, that is a method that allows
the exchange of robots between working groups. We will
also study the interference effect between robots that belong
to different groups, and thus, complete the last step of the
framework presented in ”A Framework to Get Utility Func-
tions” section. Also, a deeper analysis of the monitoring
effect over the system, using different deadline values, is ne-
cessary. Moreover, learning algorithms will be introduced
to find out other parameters of our system. Finally, we will
extend these experiments using real robots and other kind of
tasks, like exploration and environments with obstacles. Du-
ring these new experiments other factors, like the energy of
the robot, will be taken into account to select the best robots



for each task. We hope that some concepts from the classical
real time systems literature will help us to formalize and to
improve the system performance.
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Abstract

We present ALPHABET SOUP, a Java-based model of a multi-
vehicle warehouse that frames control and coordination is-
sues. By presenting this abstract model of an actual system,
we hope to expose the research community to the commer-
cially consequential issues of resource allocation and robot
motion planning. In ALPHABET SOUP, robots must be used
to move buckets of letters from letter receiving stations to
word-assembly stations. We discuss potential research prob-
lems, and in particular how the resource management prob-
lems are particularly well suited for auction-based resource
management.

Introduction

The energy directed towards research on autonomous agents
and multi-agent systems is fueled by the expectation that,
in the near future, environments will be populated with
hundreds or thousands of autonomous agents. The multi-
agent programming paradigm has been shown to be an ef-
fective way to build and control complex systems (Jennings
& Bussmann 2003). Combined with recent advances in
robotic components, this approach makes it feasible to build
large, complex systems of autonomous vehicles. Although
systems with as many as 100 robots have been demon-
strated, like the experimental CentiBot project (Konolige et
al. 2004), the applications—disaster recovery or terrorist
events—are not daily occurrences. Real, everyday applica-
tions with more than a few vehicles have been lacking.

Recently, the authors1 have been involved with a company
called Kiva Systems that is building low cost robots for pick-
pack-and-ship warehouses. The key innovation in the Kiva
system is the combination of inexpensive robots capable of
lifting and carrying shelving units to and from pick stations.
Workers stay at the stations, pick items off the shelves the
robots present, and put the items into shipping cartons. By
moving the inventory to the worker, rather than the other
way around, the Kiva system provides a dramatic increase
in worker productivity over competing approaches. The ap-
proach is also well suited for manufacturing or assembly op-
erations. One thing that makes the Kiva system interesting

Copyright c© 2006, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

1The second and third author on sabbaticals, and the first author
as a summer intern.

to the research community is its size: a typical installation
of a Kiva system in a large warehouse will involve several
hundred robots and tens of thousands of movable shelving
units.

Many engineering and computational challenges are as-
sociated with bringing a reliable, cost effective, massively
multi-vehicle system (MMVS) to market. There is also the
potential to apply various techniques developed by the re-
search community to the problem domain. However, al-
though there has been much research on the topics of multi-
agent coordination, a great deal of it has been presented in
the context of contrived problems. We believe the field can
benefit from the availability of detailed yet high-level simu-
lation environments that capture and focus on key elements
of real multi-vehicle applications. By decoupling low-level
physical and positional robot problems, which can be mini-
mized in an aptly engineered and controlled warehouse en-
vironment, we can focus on the high-level algorithms.

Thus, we developed an abstraction of an MMVS approach
to pick-pack-and-ship warehouses. We call it ALPHABET

SOUP because the underlying task involves moving buckets
of letters around a warehouse in order to assemble words.
We have developed a Java-based simulation of ALPHABET

SOUP
2 that is designed to provide a platform on which to

study some of the key research questions entailed by a real
MVS. The platform is designed to support two key research
areas: 1) the coordination of multi-vehicle systems, and 2)
resource allocation. This paper focuses more on the resource
allocation problems entailed in the platform. Among the rich
research resource allocation questions that can be studied in
ALPHABET SOUP are:

• Where to store the buckets in the warehouse

• Which buckets to bring to which stations

• Which buckets to store new letters

• Which stations to assign words to

• Which stations to assign incoming letters

In the rest of the paper we present ALPHABET SOUP and
the details of the testbed. We then discuss the above research
questions in greater depth.

2Available at research.csc.ncsu.edu/alphabetsoup



Figure 1: Conceptual drawing of ALPHABET SOUP

The Alphabet Soup Testbed

ALPHABET SOUP is analogous to the real-world problem of
order fulfillment in a warehouse environment, or assembly
in a manufacturing environment. The objective of the AL-
PHABET SOUP warehouse is to assemble specific words out
of component letters. The inventory of the system are the
letter tiles, which are stored in moveable buckets with fixed
capacity. The buckets can be picked up and driven around
the warehouse by bucketbots. The bucketbots are used to
move buckets to and from stations to accomplish the overall
system objectives. The letter station is used to put letter tiles
into buckets, while the word station is used to take letters out
of buckets and compose words. Stations can interact with
the letter tiles in a bucket when the bucketbot has centered
the bucket on the location of the station (within a tolerance).
Stations are typically located on the borders of the map.

A letter tile is a combination of an English letter and a tile
color, and a word is a sequence of letter tiles. The letters in
a word do not need to have the same tile color. The testbed
takes a word file–any text file of English words will do–and a
color profile, and constructs a set of words. These words can
then be distributed to the word stations as jobs that have to
be completed. Each word station has a finite number of jobs
it may be actively working on at any one time. Note that a
station cannot take a letter out of a bucket that is not required
for any of its active words. The act of taking a letter tile out
of a bucket and putting it into position in a word takes a fixed
amount of time. When a word is completed, the station puts
it into the completed list and can accept a new word. The
policy that is used to assign word jobs to stations is one area
that can be studied in ALPHABET SOUP.

In order to build words, there must be an adequate in-
ventory of letter tiles. New letters are received at the letter
stations in homogeneous bundles of a fixed size. To get the
letter tiles into inventory, one or more bucketbots must bring
one or more buckets to the letter station. Obviously, the
bucket must have enough free capacity to accept the num-

ber of letters the station attempts to store in it. Like the limit
on the number of active words in a word station, each let-
ter stations has a limit on the maximum number of bundles
which may be simultaneously staged. The act of putting a
letter into a bucket takes a fixed amount of time. The policy
to assign letter bundles to letter stations, and to select which
buckets in which to store the letters, are also areas that can
be studied in ALPHABET SOUP.

In order to start a simulation run with enough inventory to
immediately build words, the testbed includes an option to
seed the buckets with letters. The initial inventory level is set
as a fraction of the total warehouse capacity, and the profile
of letter tiles in the buckets is drawn from the distribution of
letters in the word file and colors in the color profile.

The final component of the system is the bucketbots, as
conceptually illustrated in Figure 1. Each bucketbot has lim-
ited capabilities; it can grab a bucket, release a bucket, ac-
celerate, decelerate, and tell a station to take a letter from, or
put a letter into, the bucket it is carrying. A robot can pick
up only one bucket at a time, and likewise a bucket may
be attached only to one robot at a time. Robots may pass
over/under buckets freely when they are not carrying an-
other bucket. However, robots should not collide with other
robots, and buckets should not collide with other buckets.
When a collision occurs, all robots involved are completely
stopped and penalized.

Figure 2 depicts the ALPHABET SOUP user interface. In
the center of the figure is the graphic representation of the
map, containing the letter stations on the left, word sta-
tions on the right, both as shaded circles. Bucketbots are
shown as circles with lines indicating their orientation, and
buckets are depicted as thicker, empty circles. Bucketbots
which are straying from their desired path to evade a colli-
sion with another bucketbot—or another bucket if they car-
rying a bucket—are rendered with a thicker outline.

The mouse can be used to inspect the objects on the screen
by selecting them. The left column of Figure 2 shows the
contents of a selected letter station and a selected bucket.
The selected letter station is highlighted on the center of the
left side of the map, and the selected bucket is highlighted
near the middle on the right side. The right column shows
the list of completed words on the top, the open words in the
selected word station in the middle, and the next words in
the open word list in the bottom.

By releasing ALPHABET SOUP, we hope to make it easy
for researchers to study algorithms and techniques that max-
imize sustainable word completion rate while minimizing
the number of bucketbots, stations, and the total distance
traveled.

Simulation Parameters and Metrics

ALPHABET SOUP has a number of configurable parameters
to create a wide variety of problem scenarios. We expect that
researchers focused on different subproblems will choose
different combinations of parameters.

A warehouse has a configurable number of buckets, buck-
etbots, letter and word stations, all of which affect through-
put. Additionally, the capacity of buckets and the size of
letter bundles (placed into buckets by letter stations) are



Figure 2: Screenshot of ALPHABET SOUP Testbed

also configurable. The choice of word dictionary and let-
ter color distribution affects the number and profile of let-
ters that must be stored as inventory in the warehouse. For
instance, with a uniform distribution of colors and letters,
each letter in every bucket is equally likely to be used. How-
ever, most sets of words will make more use of some letters
(e.g., the letter ‘e’) than others (e.g. the letter ‘z’). Fur-
ther, a non-uniform color distribution will create even more
variety in the frequency with which certain letter-color com-
binations are required. A profile with five hundred colors
in a Pareto distribution would create 13,000 different letter
tiles—on the order of the number of unique products in a
large warehouse—with a letter tile profile something like the
classic 80/20 curve.

The variations create some interesting opportunities. For
instance, when using English words, buckets with the letter
‘q’ would benefit from also from having the letter ‘u’. These
associations between letters is analogous to associations be-
tween products which are frequently ordered together in a
warehouse, such as cameras and camera cases. Addition-
ally, one may want to store the popular colors together, and
the unpopular colors together, so that more than one letter
can be picked out of a bucket during most station visits.

The size of the physical objects, namely the warehouse,
bucketbots and buckets, can be set in the configuration file.
The latter directly affects how many are needed to store the
inventory. These relative sizes affect bottlenecks of the sys-
tem. Larger bucketbots and buckets, relative to the map

size, restrict the available space to maneuver. With less
available space, path planning, congestion avoidance, and
spatial resource allocation are emphasized. On the other
hand, smaller bucketbots and buckets emphasize bucketbot,
bucket, and letter allocation strategies. Similarly, the config-
uration file also specifies how close a bucketbot must be to a
bucket to pick it up, and how close it must be to a station to
be considered present.

With regard to the numbers and capacities of physical ob-
jects, ALPHABET SOUP exhibits some basic relations. To
achieve steady-state behavior utilizing available capacity,
the throughput of the set of word stations should be bal-
anced to the throughput of the letter stations. The number
of bucketbots should be great enough such that stations do
not sit idle, but also small enough such that bucketbot idle
time is kept low and bucketbots are not continuously getting
in the way of each other. The optimal number of buckets
is obviously dependent on the size of the warehouse. For a
large number of letter tile colors, more buckets are needed to
make sure all letter tiles are represented, such that the letter
stations do not become the bottleneck. As the bundle size in-
creases, more total bucket capacity is needed to ensure that
the system does not run out of storage space for new letters
entering the system.

The temporal costs of various actions are also config-
urable. Key temporal actions include the amount of time
that a bucketbot requires to pick up or set down a bucket,
the amount of time that it takes to remove a letter tile, or



add one, to a bucket, and the amount of time it takes to
move a finished word out of a word station and prepare for
the next word. Bucketbot motion is described by its veloc-
ity and acceleration, both of which are configurable. These
parameters, in turn, affect the bucket allocations for tasks,
bucket storage, and letter placement strategies. The tempo-
ral penalty for bucketbot collisions is also configurable.

The testbed can run with or without a graphic display. En-
abling graphics helps a developer visually test and debug
algorithms, as well as gain intuition as to how algorithms
are behaving. For running batch simulations, disabling the
graphics reduces the overhead of real-time rendering and al-
lows the testbed to run on remote terminals without requir-
ing graphic support.

To easily support extensions, ALPHABET SOUP loads
modules specified in its configuration file at runtime. These
modules, which must inherit core classes and interfaces, al-
low the ALPHABET SOUP researcher to supply advanced be-
havior without modifying or needing to recompile any of the
core modules.

To determine the effectiveness of a technique, ALPHABET

SOUP tracks and reports of a number of statistics, includ-
ing: the number of words completed, total number of letters
in words completed, number of letters dispensed by letter
stations, total and average distances driven by bucketbots,
number of bucket grabs and releases, number of bucketbot
and bucket collisions, bucketbot idle time, average bucket
capacity utilization, average number of letter transfers per
word/letter station visit, and station idle time.

Depending on the policies being studied, various compo-
nents may become the bottleneck. If buckets can be deliv-
ered faster than stations can add or remove letters, then the
maximum throughput is a function of the add/remove time
and the number of letters per word. In such a case, the sys-
tem is evaluated by how effectively it uses its bucketbots.
However, if there are not enough bucketbots, they may not
be able to deliver enough buckets to the stations to keep them
busy. In that case, the throughput is the metric that measures
overall system performance.

A potentially realistic scenario can be expressed with the
following example parameters. Using the units of distance
to mean meters and time to mean seconds, our modest-sized
example warehouse is 250 meters by 350 meters. Bucket-
bots and buckets are each 2 meters in diameter. Bucketbots
can accelerate at 20m/s2 up to a maximum speed of 4m/s.
This example warehouse contains 25 word stations, 25 letter
stations, 250 bucketbots, and 850 buckets. With a bucket ca-
pacity of 40 letters, bundle size of 4, station time to move let-
ters at 5.0 seconds, and bucket grab/release time at 1

2
second,

4 colors with a distribution of ( 4

5
, 1

10
, 1

20
, 1

20
), a dictionary of

jargon with an average of 9.2 letters per word, and the ex-
ample minimal coordination, we see throughputs of around
one word per 20 seconds (based on elapsed time within the
simulation). The minimal coordination simply assigns tasks
first in, first out, requires buckets to be returned to storage
between every task, and each task only involves one letter at
a time. Bucketbot congestion and non-optimal task alloca-
tions are very obvious when watching the simulation. Based
on observations and our experience in an industrial setting,

coordination algorithms should be able to offer at least one
to two orders of magnitude of improvement.

Bucketbot Movement

In the idealized ALPHABET SOUP environment, bucketbots
have perfect traction, meaning that they cannot skid or slide.
Besides collisions, the only movement constraints bucket-
bots have are maximum speed, V , and maximum acceler-
ation, A. Given the bucketbot position (x, y), these con-
straints may be represented as,

ẋ2 + ẏ2 ≤ V 2, and (1)

ẍ2 + ÿ2 ≤ A2. (2)

To control bucketbot motion, bucketbot controls set a tar-
get velocity. The target velocity is comprised of components
vx and vy . If the magnitude of the target velocity exceeds the
maximum speed via equation 1, the target velocity vector is
normalized to the maximum speed. Once this normaliza-
tion has been performed, the acceleration constraint (equa-
tion 2) must be checked. As ALPHABET SOUP uses discrete
time intervals, we will denote the time between updates as t.
Given the current velocity, (ẋ0, ẏ0), we can find the acceler-
ation constrained velocity after the time interval, (ẋt, ẏt), by
first finding the actual magnitude of acceleration undertaken,
at, to be

at =

√

(

vx − ẋ0

t

)2

+

(

vy − ẏ0

t

)2

. (3)

If this magnitude of acceleration, at, does not exceed the
maximal acceleration, A, then (vx, vy) will be used as the
velocity of this timestep. However, if at > A, then the
velocity of the this time step should be constrained to the
maximal acceleration as

ẋt = ẋ0 +
A

at

(vx − ẋ0) , and (4)

ẏt = ẏ0 +
A

at

(vy − ẏ0) . (5)

To minimize the simulation time required, the testbed
only recomputes new positions and state transitions when
an event occurs that could alter a bucketbot’s acceleration or
direction, or change the state of a letter, bucket, or station.
The testbed is thus able to skip uneventful times of the sim-
ulation. The time to the next event is taken as the minimum
possible time to the next event. To avoid situations similar
to Zeno’s Paradox3, the time to next event is clamped with
a lower bound of the time it would take any bucketbot to
move the distance of its radius. Time until the next event
is the minimum amount of time for any bucketbot to poten-
tially collide, finish accelerating or decelerating, complete a

3If two bucketbots are about to collide, but continually change
their directions and accelerations such that they will collide at a
marginally later time, the next event will be a very short amount of
time later. These increasingly small intervals of time prior to a col-
lision increase the simulation time dramatically. With a minimum
time to next event, the worst case is still reasonable.



turn, grab or release a bucket, finish transferring a letter, fin-
ish a specified amount of cruising time, or get close enough
to another object such that the bucketbot may wish to change
its plans.

When two or more bucketbots collide, their velocities and
accelerations are immediately set to 0, and are given a time-
out penalty. While the testbed could be extended to simu-
late elastic or inelastic collisions, we feel it is reasonable to
assume, based on the coordinated and engineered environ-
ment, that bucketbots should not normally collide. Thus, we
model collisions as extremely costly, negative events.

Bucketbot Sensing and Control

In ALPHABET SOUP a bucketbot potentially has perfect
sensing capabilities; it can obtain all information about all
other bucketbots and buckets within a specified distance.
These sensing capabilities are due to the nature of the en-
vironment. Bucketbots can communicate with any other en-
tity, and the entire system is engineered to maximize avail-
able information and precision. In many foreseeable practi-
cal applications of ALPHABET SOUP , the system is a con-
trolled warehouse environment. To aid in sensing precision
and information sharing, environments may be built with
features such as wireless communication facilities, specially
designed markings in the environment, and indoor position-
ing systems. Additionally, when any component exhibits an
error or failure, the system can be paused for repair.

When the bucketbot “sees” another object, it can retrieve
any information the system has about it, including direc-
tion, velocity, and bucket contents. The bucketbot also has
full information about any bucket, bucketbot, or station that
a separate managing process may provide. The bucketbot
also knows its exact location, direction, and velocity. While
bucketbots in ALPHABET SOUP are error-free, perfect sens-
ing, and locally omniscient, these capabilities may be con-
strained for experimental applications by disregarding cer-
tain information.

A bucketbot must determine the length of time to accel-
erate and decelerate in to arrive at a specified location. Per-
haps the simplest movement paradigm is for the bucketbot to
stop between direction changes, maximally accelerating and
decelerating when changing velocities. Our example mini-
malistic model uses this logic and only turns while in tran-
sit when evading another bucketbot or bucket. Because the
bucketbot must decelerate back to a speed of 0 after mov-
ing, the speed reached during the acceleration phase must
equal the speed at which the bucketbot can decelerate back
to the speed of 0 during the deceleration time. From this,
we can find the total acceleration time, taccel, in terms of the
maximum acceleration, A, distance to the goal, g, and initial
velocity, v0. For simplicity, taccel need only be calculated
on the axis with maximal acceleration as

taccel =

√
2

2a

√

2ag + v2

0
−
√

2v0. (6)

If the bucketbot will reach maximum velocity en route, it
will need to cruise before beginning its deceleration. This
maximum-velocity cruise time may be easily found after
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Figure 3: Architecture of ALPHABET SOUP Testbed

subtracting the acceleration and deceleration distances from
the distance to the goal.

Architecture

ALPHABET SOUP has been designed to be easily extend-
able and useable by a wide audience. We chose Java and
LWJGL4 because they meet the following criteria: easy to
build and run on most major platforms, fast execution and
rendering, and the have wide acceptance and strong com-
munities. The ALPHABET SOUP testbed itself is released
under the GPL.5

To allow ALPHABET SOUP to run in batch mode and on
machines without graphical rendering (such as many super-
computers), we have implemented a way to run the testbed
in a “headless” mode. When running in headless mode, none
of the classes that utilize the LWJGL library are loaded. The
classes that perform rendering inherit from the base classes
that perform the actual ALPHABET SOUP simulation. This
inheritance scheme not only allows the rendering classes to
display information based on the classes they extend, but
also allows the rendering functionality to be distinctly sepa-
rate from the simulation functionality.

Alphabet Soup Architecture

The basic ALPHABET SOUP Testbed architecture is summa-
rized in Figure 3. SimulationWorld contains and constructs
the rest of the framework. If ALPHABET SOUP is run with a
graphic display, SimulationWorld loads RenderWindow and
also loads all of the corresponding renderable classes for ev-
ery object. SimulationWorld constructs everything accord-
ing to the configuration parameters.

The map functions as a container for all of the physical
objects and manages their interactions. The bucketbots and
buckets are stored in a quadtree to optimize simulation per-
formance. Quadtrees are a method of recursively dividing a
space into regions based on the number of objects in each
region. Our implementation uses a point-region quadtree;
when the number of objects in a region exceed a maximum
threshold, it divides the region into four equal areas with two

4Lightweight Java Game Library: www.lwjgl.org
5GNU General Public License: www.gnu.org/copyleft/gpl.html
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cuts, and remerges subdivided regions when a minimal num-
ber of objects is reached. The quadtree greatly reduces algo-
rithmic complexity of both detecting collisions and report-
ing bucketbots and buckets within a vicinity. To make sure
adjacent regions are not discounted when searching for po-
tential collisions or viewable objects, regions are expanded
such that they have sufficient overlap.

The three major managers in the example ALPHABET

SOUP controller implementation are the word manager, let-
ter manager, and bucketbot manager. While the framework
does not impose this manager architecture on implementa-
tions, we feel that this is a sensible approach. The word
manager takes care of allocating words to stations, and com-
municates with the bucketbot manager about the allocations.
The letter manager is similar to the word manager in that it
controls which letters the letter stations produce, as well as
communicates letter allocations to the bucketbot manager.
The bucketbot manager coordinates all of the bucketbots, by
manufacturing, prioritizing, and assigning tasks to bucket-
bots, buckets, letter stations, and word stations. In our de-
fault testbed, the bucketbots only keep track of one task at
a time, and all planning other than avoiding obstacles and
navigating to destinations is done in the bucketbot manager.

All of the managers can communicate with each other and
also with the bucketbots, word stations, and letter stations
using defined and extendable interfaces. If an object per-
forms an action, other entities must ask the object to perform
the action, rather than make the object perform the action it-
self. ALPHABET SOUP comes with some default example
managers, which are intended to be extended or replaced.
In terms of execution, all of the managers and objects have
methods that are called when either their environment has
changed or their timers have expired.

Extendable Interfaces

While any component of ALPHABET SOUP may be ex-
tended or modified, those best suited for studying control
and allocation algorithms are the bucketbot behavior, word
station policy, letter station policy, bucketbot manager, word
manager, and letter manager. These particular entities may
be changed by simply changing the configuration file.

Each of the physical objects held in the map extend a class
called Circle which implements basic location and collision
functionality. The object base classes also implement an in-
terface named Updateable, which allows them to operate in
the event driven model. Figure 4 illustrates this relation-

ship, how the objects are extended to render themselves to
the screen, and also one way a user of the testbed could ex-
tend these objects. The base functionality can be replaced or
extended. Likewise, users may also override the way objects
are rendered, or even leave out the rendering altogether.

With regard to resource management, such as bucket and
letter selection and bucketbot coordination, the managers
are the primary entities to modify. Several implementation
schemes are possible. The bucketbot manager, letter man-
ager, and word manager could each share equally prominent
roles. A different solution would be to have one manager,
such as the bucketbot manager, contain the majority of the
logic and drive the other two lighter-weight managers. A
further alternative would be to have all managers employ
minimal logic and only function to keep track of resource
utilization, while using the bucketbots (and potentially buck-
ets) to perform distributed resource management.

All of the physical entities offer interfaces to operate with
the world. The word and letter stations have controls to
move letters and will block further actions until the current
actions are complete. As the bucketbots have richer inter-
actions with the environment, the bucketbot base class has
more functionality. The bucketbot base interfaces include
functionality to accelerate and stop at a specified point, ac-
celerate until maximum speed is reached, turn to a specific
angle and notify when the turning is complete, grab and
release a bucket, and find bucketbots and buckets within a
vicinity. The bucketbot base class also contains a base task
system.

ALPHABET SOUP also has a waypoint implementation
which may be utilized and extended to constrain bucketbot
motions and bucket storage to an arbitrary graph. It is partic-
ularly useful as the number of buckets and bucketbots scale
up, as it aids in managing navigation and defining coordi-
nated paths or highways.

Research Challenges in Alphabet Soup
ALPHABET SOUP contains many challenging topics for fur-
ther study. While all of the problems are interrelated, most
of them can be abstracted to either architectural or resource
management issues. Among the architectural issues is the
dichotomy between a system with centralized or decentral-
ized control. ALPHABET SOUP is an excellent environment
in which one can study the tradeoffs between the two ap-
proaches. In this section, we highlight some of the research
problems, and follow it with a discussion of how decentral-
ized market-based solutions could be employed to address
the research problems.

Among the first questions to address is how many buck-
ets are needed and how they should be arranged on the
floor. One can imagine neat, orderly rows of buckets, with
pathways for the bucketbots to travel when burdened with
a bucket. One can also imagine dense blocks of storage
that entail a tile problem in order to extract the inner buck-
ets (Gue 2006). It is easy to imagine the warehouse laid out
on a grid, but because the buckets in ALPHABET SOUP are
round, non-linear packing choices are also an option. Fur-
ther, the layout need not be fixed; instead, it could adapt to
the patterns of word creation and bucketbot motion.



The lowest level of coordination is among the bucketbots
moving on the warehouse floor. Although the bucketbots
are entirely predictable, coordinating their motion to prevent
collisions and congestion is a challenge. Controlling the mo-
tion of the bucketbots could be done by a central planner, or
it could be done through peer-to-peer communication.

As we move into higher levels of abstraction, we find sev-
eral key resource allocation issues. Foremost, is the prob-
lem of task assignment. On the receiving side, when do let-
ters need to be put into inventory, and which bucketbot(s),
bucket(s), and station will be chosen to accomplish the task?
Similarly, when a word needs to be built, the bucketbot(s)
and bucket(s) need to be scheduled for deliveries to a sta-
tion. The dynamic nature of the system leads to challeng-
ing research questions in the areas of queueing theory and
scheduling, and the large number of degrees of freedom ad-
mit a wide variety of solutions.

To illustrate the complexities of these issues, consider
bucketbot A, which may be close to half-empty bucket B
and to station S. When letter L needs to be stored, it could
be put into bucket B. A may be the closest free bucketbot,
but, bucketbot D is setting down a bucket right next to B, and
will be free to grab B in a moment. Which bucketbot should
be assigned the task? Now consider the case where the letter
to be put away is a ‘u’, and bucket C has a ’q’. Although C
is farther away than B, it may be worth the effort to bring it
to station S because of the increased likelihood that ‘q’ and
‘u’ will be pickable at the same time.

Similarly, when building words, bucket E may have two
letter tiles needed, while buckets F and G may have only
one, but may be much closer. Which is the better allocation?
Further, when it is time to assign the word, there may be
more than one station that could do the job, and the best
choice of station may be dependent on the proximity of the
letter tiles needed for that word. One’s ability to optimize
these types of decisions will depend upon how dynamic the
environment is. In some real-world situations, all of the jobs
are known the night before, while in companies with same-
day delivery, the jobs are dropping on the warehouse in real
time.

Potential Auction-Based Solutions

Because the primary problems in ALPHABET SOUP are
based on resource management, it is a prime ground for
testing auction-based resource allocation strategies in real-
world warehouse management problems. Although the AL-
PHABET SOUP warehouse is a cooperative environment,
there may be benefits to decentralizing aspects of the deci-
sion making, particularly if the bucketbots are relatively au-
tonomous. A suitable “currency” would need to be created
for the market economy, with either energy or time being a
natural first step.

One market-based approach would be for stations to bid
on jobs while subcontracting the letter tile delivery to buck-
etbots who contract with buckets. This approach would cre-
ate interesting task dependency networks (Walsh & Well-
man 1998). The ContractNet protocol (Davis & Smith 1983;
Sandholm 1993) is a natural approach to attempt.

Alternatively, word stations could employ combinatorial
auctions as a means of obtaining letters. The nature of the
allocation problem is combinatorial because a word consists
of a certain number of letter tiles, and the system prefers the
cheapest solution to the entire word. A closer bucket may be
passed up if the only free bucketbot in the area is needed for
a different bucket.

A different approach would be to assign tasks in an ar-
bitrary or round-robin manner and let a market re-allocate
the assignments. Based on this initial allocation, bucket-
bots, stations, and buckets could auction off their tasks, and
choose to perform a task when it is most profitable. Bucket-
bots, buckets, and stations could gain compensation for both
the completion of tasks and from selling tasks, evaluating
the utility of having each task based on how much utility it
would gain versus expend from completing the task.

Determining when to hold task assignment auctions and
which entities to include is also an important issue. With
hundreds of open tasks, hundreds of buckets and bucketbots
to perform those tasks, and allocation efficiency being de-
pendent on combinatorial effects, the bidding space is too
large to be tractable. To solve this problem, some heuristics
are needed to limit participation in auctions. Using physical
locality for gathering participation for an auction and propa-
gating task information might offer some usefulness. How-
ever, it will not help cases when two buckets are far apart
but one could accomplish the other’s task more efficiently.
Rather, adding some other metric of similarity would be
more useful, such as using cosine similarity on bucket con-
tents to group buckets for auctions based on their ability to
accomplish similar tasks.

An interesting research direction is evaluating how the
choice of bidders and resources affects throughput. Given
the numerous ways of applying auctions to ALPHABET

SOUP, which bidder and resource choices most improve
throughput, and are any seemingly different auction resource
management implementations functionally equivalent?

Other Potential Solutions

While centralized planning can make optimized solutions
more straightforward to obtain, many of ALPHABET SOUP’s
central optimization problems are NP-hard. This level of
computational complexity does not scale well with purely
centralized or exhaustive solutions with near-realtime de-
mands. Myopic best-first techniques, as well as traditional
planning techniques, may prove useful either in terms of task
assignment or in bucketbot motion planning.

Related Work
Large scale, multi-robot systems have been used to solve
problems such as search and surveillance (Konolige et al.
2004) and assembly (Simmons et al. 2002). To the best
of our knowledge, ALPHABET SOUP is the first testbed
for multi-robot warehouse and physical distribution/routing
problems.

ALPHABET SOUP has a higher-level focus than most
other robot simulators, as its goal is to provide a framework
for studying resource allocation in physical routing. Frame-
works such as Player/Stage (Collett, MacDonald, & Gerkey



2005) and CARMEN (Montemerlo, Roy, & Thrun 2003)
focus on robot sensing capabilities, localization, and envi-
ronment discovery, whereas ALPHABET SOUP resides in a
highly controlled environment which fosters ease of posi-
tion determination and communication. Other simulators do
not easily support a dual-layered environment where robots
can pick up buckets and freely drive above or beneath them,
without adding computationally costly 3D environments.

Market-based and auction control techniques are an
effective resource allocation method in multi-agent sys-
tems (Wellman & Wurman 1998), and have been im-
plemented in many different capacities and environ-
ments (Gerkey & Matarić 2002; Dias et al. 2004; Sim-
mons et al. 2002). As it contains resource allocation prob-
lems, ALPHABET SOUP is a particularly good candidate for
auction-based approaches.

ALPHABET SOUP is also a useful model of a practical
problem for validating robot motion planning techniques,
such as those devised by Clark (2005). Likewise, ALPHA-
BET SOUP is valuable for studying more general distributed
coordination techniques including those surveyed by Jen-
nings (1996) and that implemented by Parker (1998).

As testbeds for multi-robot control make it easier to ex-
plore high level algorithms, they have been built for many
other problems as well. One of the authors implemented a
software testbed for “Capture the Flag” style coordination
robot games (D’Andrea & Babish 2003). Hardware testbeds
are useful for investigating real-world complications that are
not always obvious in simulations, such as the Caltech multi-
vehicle wireless testbed (Cremean et al. 2002).

Conclusions and Future Work

We present ALPHABET SOUP as a model of emerging robot-
assisted warehouses. The model captures many of the key
coordination and allocation challenges faced in real systems,
but does so at a level of abstraction that facilitates study.
The ALPHABET SOUP platform includes a detailed model
of bucketbot behavior and realistic work profiles. It is also
highly configurable, which allows researchers to direct their
studies at particular aspects of warehouse management.

We hope the platform will be of use to researchers study-
ing multi-agent systems, resource allocation, vehicle coor-
dination in MMVS, and operations research.
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Abstract

This paper presents an approach for layering lower-level
coalition formation with higher-level, traditional task alloca-
tion. At the lower level, coalitions to solve multi-robot tasks
are formed using our ASyMTRe approach that maps envi-
ronmental sensors and perceptual and motor schemas to the
required flow of information in the robot team, automatically
reconfiguring the connections of schemas within and across
robots to form efficient solutions. At the higher level, a tra-
ditional task allocation approach is used to enable individ-
ual robots and/or coalitions to compete for task assignments
through time-extended task allocation. We present a motivat-
ing example of site clearing and formalize the problem. We
then present the proposed approach of layering ASyMTRe
with task-allocation. As this is still a work in progress, we
outline planned experiments we intend to develop to validate
our approach.

Introduction

Traditionally, task allocation approaches in multi-robot
teams have dealt with the assignment of single-robot tasks,
which are tasks (or collections of tasks or subtasks) that can
be accomplished independently by a single robot. Another
important type of task in multi-robot teams is the multi-robot
task. Typically, a multi-robot task requires a strongly co-
operative solution (Brown & Jennings 1995), meaning that
the task is not trivially serializable, so that it cannot be
decomposed into subtasks that can be completed by indi-
vidual robots operating independently; instead, it requires
robots to act in concert to achieve the task. Sometimes,
this type of task is also called tightly-coupled or tightly-
coordinated. Robots that join together to solve this type
of multi-robot task are referred to as coalitions by some re-
searchers (Gerkey & Mataric 2004). In this paper, we also
form coalitions for accomplishing these strongly coopera-
tive multi-robot tasks. Even though we are not using the
traditional definition of coalition by calculating payoffs as
in game theory (Luce & Raiffa 1957), we share the same
motivation behind coalition formation as mentioned in (She-
hory & Kraus 1995); that is, robots in a coalition should
work together to share resources and cooperate on task ex-
ecution due to their decision that they would benefit more
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from working together as a coalition than they would work-
ing individually.

Many researchers have addressed the allocation of single-
robot tasks (Parker 1998; Werger & Mataric 2000; Botelho
& Alami 1999; Gerkey & Mataric 2002; Dias 2004; Zlot
& Stentz 2006). Some recent work also addresses the al-
location of multi-robot tasks (Jones et al. 2006; Kalra,
Ferguson, & Stentz 2005; Lin & Zheng 2005). Our ap-
proach is different in that we are addressing the multi-
robot tasks through the dynamic configuration of low-level
behavioral building blocks instead of predefined plans or
roles. A few researchers have addressed the formation
of coalitions for multi-robot tasks (Parker & Tang 2006;
Vig & Adams 2005). However, approaches are lacking that
combine these techniques into a single system. The objec-
tive of this paper is therefore to define an approach that
enables the allocation of both types of tasks into a single
framework. Our approach layers the ASyMTRe coalition-
formation system that we have previously developed (Parker
& Tang 2006) with an auction-based mechanism for achiev-
ing the allocation of single-robot and/or independent sub-
tasks. Our proposed approach enables robots to form coali-
tions at the lower level to solve a single multi-robot task
(with a strongly cooperative solution). Coalitions, and possi-
bly individual robots, then compete for tasks (or collections
of tasks) at the higher level, using the more traditional task
allocator.

In the remainder of this paper, we first provide additional
background on our approach and its relationship to related
work. We then describe an application example to motivate
this work. We formalize the problem and outline our pro-
posed approach. Since this work is preliminary, we outline
planned experiments to validate our approach. We conclude
with a summary and a description of our future work.

Background and Related Work

The task allocation problem is the problem of determin-
ing a suitable mapping between robots and tasks. The
majority of work in task allocation for multi-robot sys-
tems (Parker 1998; Werger & Mataric 2000; Botelho &
Alami 1999; Gerkey & Mataric 2002; Dias 2004; Zlot &
Stentz 2006) focuses on allocating single-robot tasks to
single-task robots with either instantaneous assignment or
time-extended assignment (using the taxonometric terms of



(Gerkey & Mataric 2004). Typically, a task is decomposed
into independent subtasks (Parker 1998), hierarchical task
trees (Zlot & Stentz 2006), or roles (Simmons et al. 2000)
either by a general autonomous planner or by the human de-
signer. Independent subtasks or roles can be achieved con-
currently, while subtasks in task trees are achieved in order
according to their precedence constraints. The work of (Zlot
& Stentz 2006) also addresses ”tightly-coupled” multi-robot
tasks, however, their task can be decomposed into multiple
single-robot tasks and thus is different from our approach. A
formal analysis comparing the computation, communication
requirements and solution qualities of several well-known
approaches is presented in (Gerkey & Mataric 2004).

Some recent work in task allocation (Jones et al. 2006;
Kalra, Ferguson, & Stentz 2005; Lin & Zheng 2005) be-
gin to address multi-robot task allocation, where team mem-
bers need to tightly cooperate with each other to accom-
plish the task. The Hoplites approach (Kalra, Ferguson,
& Stentz 2005) focuses on the selection of an appropriate
joint plan for the team to execute by incorporating joint rev-
enue and cost in the bid. The work in (Jones et al. 2006)
achieves multi-robot task allocation through matching roles
with robot capabilities. The work in (Lin & Zheng 2005)
also matches task required capabilities with robot capabili-
ties and accomplishes multi-robot tasks through combinato-
rial bids. Our approach of task allocation on the higher level
is similar to the above approaches, but is different in the way
that coalitions (subgroups) are formed to accomplish a sin-
gle multi-robot task. Our approach forms a coalition through
configuring the sensors and preprogrammed schemas on ev-
ery team member so that they share sensory or computa-
tional information with each other in order to accomplish the
task. We are generating the coalitions “on the fly” instead of
using predefined plans, roles, etc.

Role-based approaches, such as the work of (Simmons et
al. 2000), also assume a pre-defined coordination among
robots, according to their roles. In contrast, our ASyMTRe
approach can automatically configure new coalition strate-
gies (such as which combination of sensors and low-level
schemas to activate, based on the available robots), without
pre-defining how the robots will interact.

Multi-robot coalition formation for multi-robot tasks
deals with the issue of how to organize robots into subgroups
to accomplish multi-robot tasks, using a strongly cooper-
ative solution approach. The motivation behind coalition
formation for multi-robot tasks is to enable team members
to work together as a group to accomplish tasks that cannot
be handled by individual robots working independently (i.e.,
tasks that are not trivially serializable, as defined by Brown
and Jennings (Brown & Jennings 1995)). Since robots have
different sensor, effector and computational capabilities, a
team of resource-bounded robots may not individually pos-
sess all of the required capabilities to accomplish a task.
However, they could work with other robots as a coalition
to effectively accomplish the task objectives.

In the area of coalition formation, we are particularly
interested in flexible techniques for automating the forma-
tion of coalitions to solve a multi-robot task, which may
involve the sharing of sensory, perceptual, and computa-

Figure 1: The site clearing application. Red flags represent
collection points. Different shapes represent the heterogene-
ity of the robots.

tional capabilities across heterogeneous team members. In
our recent work (Parker & Tang 2006), we have developed
the ASyMTRe approach to address this issue of coalition
formation. However, although ASyMTRe provides a way
of generating robot coalitions, it can only handle a single
multi-robot task at a time. For missions of multiple tasks,
we would like to achieve task allocation amongst coalitions
and/or individual robots, thus combining the benefits of low-
level coalition formation with those of higher-level, more
traditional, task allocation. Our idea in this paper is to layer
ASyMTRe for low-level coalition formation (for solving a
single multi-robot task), with a higher level, traditional task
allocator (for solving a set of tasks). We believe the resulting
approach would be a flexible mechanism for a broad range
of realistic multi-robot applications, with the ability to gen-
erate both strongly cooperative and weakly cooperative so-
lution strategies, as appropriate.

Motivating Example: The Site Clearing
Application

To motivate the need for the combination of coalitions and
more traditional task allocators, we define a representative
application, called the site clearing application. The site
clearing application is a simplified version of the site prepa-
ration task (Parker et al. 2000), which has been identified by
NASA as an important prerequisite for human missions to
Mars. The site clearing application, illustrated in Figure 1,
requires a specific area to be cleared of obstacles, which we
simplify to be boxes with different weights or sizes. The ob-
jective of the application is to clear the site in as little time
as possible while minimizing the cost to the robots (e.g., en-
ergy consumption or computational requirements). For the
purposes of this discussion, we assume that a map is avail-
able to enable the robot team to determine the positions of
the obstacles in the area. We assume that the obstacles to be
removed from the site can either be pushed outside the area,
or can be pushed to a common collection point, as indicated



Figure 2: A partial-order plan for the site clearing applica-
tion.

by a beacon. We further assume that a partial-order plan-
ner exists to determine the ordering constraints of removing
the obstacles, in case certain obstacles need to be removed
before other other obstacles can be cleared.

We define a number of constraints to make the site clear-
ing problem challenging, such as:

• Limited team size: The number of obstacles is greater than
the number of robots, thus requiring robots to iteratively
move obstacles for several rounds to clear the site.

• Varying weights/sizes of obstacles: Robots have different
weight/size requirements for the kind of obstacle they can
manipulate. Thus, the weight or size of an obstacle de-
termines the number of robots required to transport it.
Robots working on the same obstacle need to cooperate
with each other.

• Heterogeneous robots: Robots may differ in their capa-
bilities, thus requiring the allocation approach to appro-
priately map robots to tasks.

• Resource-bounded robots: Robot team members may be
resource-bounded, and thus unable to transport an obsta-
cle independently, or navigate in the site independently.
Robot coalitions may therefore be needed to share sen-
sory, perceptual, computational, or effector resources to
enable the team as a whole to accomplish the required
task(s). Although sometimes these interactions can be
trivially serializable (e.g., as in the box pushing example
of (Parker 1994)), in the general case of resource-bounded
robots, they cannot. Thus, this constraint illustrates the
need for expanding current task allocation approaches to
include coalition formation for multi-robot tasks.

• Uncertainty: The uncertainty of the environment and
robot team capabilities (due to sensor or robot failures)
requires that team solutions should be based on current
team capabilities instead of predefined solutions.

The site clearing application can be decomposed into a
series of tasks with ordering constraints. Each task is aimed
at removing one obstacle from the site, which we call “Re-
move Obstacle”. For example, the task shown in Figure 1

can be accomplished through the partial-order plan in Fig-
ure 2. Since only some tasks have ordering constraints, the
system can allocate a subset of the tasks to the robots for
concurrent execution. Thus, when making a task alloca-
tion decision, robots are considering more than one task at
a time. In addition, because of the application challenges
mentioned earlier, a “Remove Obstacle” task may require
multiple robots to form a coalition to accomplish the task
in a manner that efficiently uses the available robot capabil-
ities. Additionally, when multiple coalitions are available,
the system must determine which coalition is the best fit to
the current task.

Note that from our perspective, an individual task (such as
those defined in Figure 2) cannot be categorized in advance
as a multi-robot task or a single-robot task. Instead, whether
or not the task requires single or multiple robots depends
upon the capabilities of the robot team members. Some
robots may be able to perform a given task on their own
(thus making the task a single-robot task), while other robots
may require help from teammates to accomplish that same
task (thus making that same task a multi-robot task). Our
ASyMTRe approach is able to find combinations of robot
capabilities that can accomplish the task in either the single-
robot case or the multi-robot case, depending upon the team
capabilities.

Formalism of the Problem

The multi-robot task we address can be formally defined as
follows:

• R = {R1, R2, · · · , Rn} is a collection of n robots, where
each robot Ri is represented by its available environmen-
tal sensors (ES), and its corresponding perceptual (PS),
motor (MS), and communication schemas (CS). For a
complete definition of R, please refer to (Tang & Parker
2005a).

• T is the team-level task to be accomplished, which is de-
noted as T = {t1, t2, t3, · · ·}.

– A set of ordering constraints defines a proper partial
order of tasks. ti ≺ tj means that task ti must be exe-
cuted sometime before task tj .

– A set of open preconditions. A precondition is open if
it is not achieved by some task in the plan.

– A subset T i of T can be allocated to robots concur-
rently if the tasks in T i do not have ordering constraints
and their preconditions are not open.

– Each task ti is further defined as a set of motor schemas
that need to be activated in certain ways in order to ac-
complish this task.

• To accomplish a subset of tasks T i, a collection of m
coalitions, denoted Ci = {Ci

1
, Ci

2
, · · · , Ci

m}, needs to be
generated based on the task requirements of T i and the
robot capabilities (Tang & Parker 2005b).

• With multiple solutions available, we define a cost func-
tion for each robot, specifying the cost of the robot per-
forming a given task, and then estimate the cost of a coali-
tion performing the given task. We consider two types of
cost:



Figure 3: The relationships between tasks, coalitions and
robots.

– A robot-inherent cost measures the inherent cost (e.g.,
in terms of energy consumption or computational re-
quirements) of using particular capabilities on the robot
(such as a laser or a mapping algorithm). We denote
robot Ri’s inherent cost by robot cost(Ri).

– A task-specific cost measures cost according to task-
related metrics, such as time, distance, success proba-
bility, etc. We denote the cost of Ri performing task tj
by task cost(Ri, tj).

– The cost function of Ri performing tj is represented by
cost(Ri, tj), which is a weighted combination of both
the robot-inherent cost and task-specific cost, normally
in the form of a linear function. Other type of costs can
also be easily incorporated when necessary.

– The cost of a coalition Ci performing a task tj is the
sum of individual cost of robots that are in the coalition,
which is denoted as:

cost(Ci, tj) =
∑

Rk∈Ci

cost(Rk, tj) (1)

The problem we address here is: Given (T , R), assign a
set of tasks T i to coalitions of R such that the sum of the
coalition costs

∑
tk∈T i,Cj∈Ci cost(Cj , tk) are minimized.

The Approach: Layering Coalition Formation

with Task Allocation

To allocate multi-robot tasks to a team of robots, we pro-
pose an approach encompassing four main steps as shown
in Table 1. Figure 3 describes a general procedure that first
decomposes a team-level task to a set of tasks with ordering
constraints. At the lower level, coalitions from the team of
robots are formed to address the given tasks. These coali-
tions are not distinct, but may share same team members.
The coalitions then compete for the assignment of tasks us-
ing a traditional task allocation approach.

Lower-Level Coalition Formation

We now describe the lowest level of this layered approach
– the coalition formation strategy, based on ASyMTRe
(which stands for Automated Synthesis of Multi-robot Task

Table 1: Allocating Multi-Robot Tasks to a Team of Robots

Input: (T, R)

1. Find the set of tasks T i up to a constant numbera, such that
both the ordering constraints and the preconditions of tasks
are satisfied.

2. Configure solutions for each task tj in T i by forming a set
of coalitions Ci, based on tj’s objective and the current team
capabilities.

3. Allocate tasks in T i to coalitions in Ci, such that:

• The task-specific cost and the robot-inherent cost are min-
imized for the set of tasks.

• A coalition can win at most one task at a time. Assuming
C′ ⊆ Ci is the set of coalitions selected to perform the
tasks in T i, then the following condition must be satisfied:
∀C′

i
,C′

j
∈C′,i6=j , C

′
i ∩ C′

j = Ø.

4. Monitor the execution of tasks. If the entire task is not com-
plete, start the allocation process (go to step 1) when robots
are within ∆t time to complete their current tasks. Other-
wise, exit.

aNote that the maximum number of tasks allowed for allo-
cation is limited to a constant number b to decrease the compu-
tational complexity of the allocation of multiple tasks at once.

solutions through software Reconfiguration, pronounced
“Asymmetry”). The ASyMTRe approach (Tang & Parker
2005a; 2005b; Parker & Tang 2006) has been developed for
addressing the formation of heterogeneous robot coalitions
that solve a single multi-robot task. More generally, this ap-
proach deals with the issue of how to organize robots into
subgroups into a strongly cooperative solution that accom-
plishes a task collaboratively based upon their individual ca-
pabilities.

The fundamental idea of ASyMTRe is to change the
abstraction that is used to represent robot competences
from the typical “task” abstraction to a biologically-inspired
“schema” abstraction and providing a mechanism for the
automatic reconfiguration of these schemas to address the
multi-robot task at hand. To achieve this, we view robot ca-
pabilities as a set of environmental sensors that are available
for the robot to use, as well as a set of perceptual schemas,
motor schemas, and communication schemas that are pre-
programmed into the robot at design time.

The ASyMTRe approach extends prior work on schema
theory (Arkin 1987; Lyons & Arbib 1989) by autonomously
connecting schemas at run time instead of using pre-defined
connections. According to information invariants theory
(Donald 1995), the information needed to activate a certain
schema or to accomplish a task remains the same regardless
of the way that the robot may obtain or generate it. We can
therefore label inputs and outputs of all schemas with a set
of information types, such as laser range data, self global
position, etc. Two schemas can be connected if their input
and output information labels match. Thus, schemas can
be autonomously connected within or across robots based
upon the flow of information required to accomplish a task.
With the run time connection capabilities, task solutions can



Figure 4: An example of “GoToObstacle” task. The connec-
tions between schemas are dynamically generated through
ASyMTRe.

be configured in many ways to solve the same task or can
be reconfigured to solve a new task. Additionally, robots
can share information to assist each other in accomplishing
a task. As an example, two robots required to remove an
obstacle in the site clearing task must first navigate to where
the obstacle is located. If we assume a robot R2 is unable
to determine its own position, then another robot could help
it by providing localization information (see (Parker & Tang
2006) for many more details on these capabilities). Figure 4
gives an example of the schema connections on two robots
for the “GoToObstacle” task, where robot R1 provides posi-
tion information to R2 to guide its navigation.

We have implemented the ASyMTRe approach using a
distributed negotiation protocol (Tang & Parker 2005b) in-
spired by the Contract Net Protocol (Smith 1980). We val-
idated this approach through simulation and physical ex-
periments and analyzed its performance in terms of robust-
ness, scalability, and solution quality. These experimental
results allowed us to conclude that the ASyMTRe approach
provides beneficial mechanisms for multiple robots to: (1)
synthesize task solutions using different combinations of
robot sensors and effectors, (2) share information across dis-
tributed robots and form coalitions as needed to assist each
other in accomplishing the task, and (3) reconfigure new task
solutions to accommodate changes in team composition and
task specification, or to compensate for faults during task
execution. Thus, the ASyMTRe approach can serve as the
lower-level solution generator in our approach.

Task Trees

Previously, we defined a task in ASyMTRe as a set of mo-
tor schemas that need to be activated to accomplish this task
(Tang & Parker 2005a). Multiple motor schemas are related
through AND and OR logical operator. However, these re-
lationships are not rich enough for multiple tasks, since, for
some applications, two motor schemas may need to be exe-
cuted one after another. Therefore, to better characterize the
relationships between motor schemas, we plan to use task
trees to represent tasks, similar to the tree generated by TDL
(Simmons & Apfelbaum 1998). The root of the task tree
is the most abstract task description. Each successive level
of the tree represents a refinement of the tasks in the im-
mediate upper level. The tree will be refined until all the
leaf nodes can be represented by motor schemas that are
preprogrammed on the robots. The task tree embeds par-

Figure 5: An example task tree for the Remove Obstacle
task.

ent/child relationships and synchronization constraints be-
tween nodes, including: sequential, meaning that the tasks
associated with the nodes need to be executed in a sequential
order (such as from the leftmost child node to the rightmost
child node); and concurrent, meaning that the tasks asso-
ciated with the nodes can be executed at the same time, or
roughly the same time. An example task tree for the “Re-
move Obstacle” task is shown in Figure 5, which involves
the following sequential tasks: (1) navigating to the obsta-
cle, (2) pushing the obstacle to the goal, and (3) navigating to
the closest home base and waiting for new tasks. Given the
task tree, each robot can then use the distributed ASyMTRe
negotiation protocol to decide how to form coalitions to ac-
complish a task, while maintaining the synchronization con-
straints during task execution.

Higher-Level Task Allocation through Auction

Although ASyMTRe provides the mechanism for a hetero-
geneous robot team to accomplish a task by forming coali-
tions, it can only handle one multi-robot task at a time.
We therefore propose the use of an auction mechanism to
provide a higher-level task allocation approach on top of
ASyMTRe for handling multiple tasks. Note that the in-
tent of this approach is not to develop a new auction mecha-
nism, but instead to layer existing auction mechanisms with
the ASyMTRe approach for allocating multi-robot tasks to
robot coalitions. The following higher-level auction process
is similar to (Jones et al. 2006), although the techniques for
coalition formation is different. Additionally, we allow the
allocation of multiple tasks at a time instead of one.

The auction process is described as follows:

1. Task announcement: Initially, the human operator intro-
duces the site clearing task T to the system. Each task
ti in T is embedded with task-specific information, such
as the size and the position of the obstacle to be removed.
The human operator has an interface “Auctioneer” that in-
teracts with the other robots in the system (similar to Op-
Trader in (Dias 2004)). This auctioneer holds the partial-
order plan for T, selects a subset of tasks T i that satisfies
the ordering constraints and the preconditions, and makes
an auction call of T i to all robots.

2. Coalition formation: Robots that receive T i start negoti-
ating with others to generate solutions for accomplishing
tasks in T i. For each task tj in T i:

(a) Each robot tries to find a list of coalitions (up to a con-



stant number c) that it can join to accomplish tj . The
revised ASyMTRe negotiation protocol returns the top
c coalitions per task. The size of a coalition is limited
to a max coalition size d assuming robots work in a
non-super-additive environment (Shehory 1998)1.

(b) Coalitions are not arbitrarily formed, but are selected
based on the combination of the robot-inherent cost and
the task-specific cost (please refer to Formalism of the
Problem Section for details of cost estimation.).

3. Bid submission: Once coalitions are formed for each task
tj , a randomly selected coalition leader submits a bid to
the auctioneer, including information such as the list of
coalition members, the cost of this coalition performing
tj , the leader of the coalition, etc.

4. Winner determination: Once bids for all tasks in T i are
collected or a timeout has expired, the auctioneer then de-
termines the winner coalition for each task. The goal for
the auctioneer is to find a coalition Cj for each task tj ,

such that the total cost of performing the tasks in T i is
minimized and there is no overlapping of coalition mem-
bers assigned to the tasks. If no such coalition Cj exists
for task tj and Ck for tk such that Cj ∩Ck 6= Ø, then one
of the tasks (either tj or tk) is auctioned again in the next
round. The problem of determining the winner is equiv-
alent to the combinatorial auction where multiple tasks
are offered and each coalition can bid a subset of tasks.
Existing combinatorial auction clearing algorithms (such
as (Sandholm et al. 2005)) can be applied here with a
constraint that the assigned coalitions do not overlap for
different tasks.

5. Award acceptance: Once winner coalitions are deter-
mined, the auctioneer awards each task to the leader of
the selected coalition. The leader robot then contacts the
other coalition members to get ready for the task. Once
responses from other coalition members are received, the
leader robot accepts the award by sending a task accep-
tance message to the auctioneer and the coalition mem-
bers commit themselves to the task until the task is com-
plete. Otherwise, the award is rejected and the task needs
to be auctioned again.

Experiments

As this work is still preliminary, we have not yet conducted
an implementation or experiments to validate our proposed
approach. This section outlines our plans for this validation.
We will demonstrate the site clearing task both in simulation
and on a physical robot team. The physical robot team will
be composed of three Pioneer robots. The possible sensors
on the robots are: laser scanner, sonar, and camera. In this
task scenario, the team needs to remove several boxes with
different sizes from a specific area and return to the home
base.

1Due to the similarity between our configuration algorithm and
the coalition formation algorithm presented in (Shehory 1998), we
plan to analyze the bounds on our solution quality in future work.
It has been proved in (Shehory 1998) that similar algorithms are of
low logarithmic ratio bounds to the optimal solution.

The underlying box pushing protocols we use are adapted
from the protocols developed in (Donald 1995; Parker
1998). We have implemented the following main perceptual
and motor schemas that are essential to the application:

• A robot with a laser range scanner can calculate the ori-
entation of the box relative to itself.

• A robot with a laser range scanner or a ring of sonars can
determine whether the robot needs to align with the box
so that it will not lose control of the box.

• A robot with a ring of sonars can move along the side of
a box and push both ends of the box in turn.

• A robot with a camera can perceive the red marker repre-
senting the collection points.

• Motor schemas are programmed enabling robots to push
the box towards a goal position.

We have applied the ASyMTRe-D negotiation protocol to
the box pushing scenario, showing that the team solutions
are generated autonomously based on different team capa-
bilities and/or compositions, as shown in Figure 6.

Our ongoing work includes layering ASyMTRe-D with
auction-based task allocation approach so that multiple
multi-robot tasks are handled. We will vary the application
setup (e.g., robot team capabilities, the number and sizes of
boxes, etc.) to collect data on the task completion time and
the solution quality, and compare them with the single-task
auction.

Conclusion and Future Work

We have described preliminary plans for building multi-
robot coalitions to perform multi-robot tasks. The lower-
level ASyMTRe approach automatically forms coalitions
according to the task objective. The higher-level auction-
based task allocation provides the mechanism for the team
to allocate sets of tasks, holding auctions to assign tasks to
the best-fitting individual robots or coalitions.

Our ongoing work includes developing the higher-level
auction-based approach that enables a set of multi-robot
tasks to be allocated simultaneously, incorporating the
higher-level task allocation with the lower-level coalition
formation, and performing experiments to validate our ap-
proach.

We also believe that the ASyMTRe approach for coalition
formation can be merged with other, non-auction-based ap-
proaches to task allocation, such as the motivation-based ap-
proach of ALLIANCE (Parker 1998). We believe it would
be interesting to investigate the combination of ASyMTRe
and ALLIANCE, as an alternative approach for achieving
the merging of coalitions for multi-robot tasks with tradi-
tional task allocation techniques.
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Abstract

We describe some very preliminary ideas and work on
the problem of allocated UAVs on a multiagent pursuit
and evasion problem; these ideas are presented here
solely for the purposes of stimulating discussion (and
not for publication) on auction-based resource alloca-
tion in complex environments at the AAAI-06 work-
shop on auction systems. The system modeled consists
of unmanned air vehicles (UAVs) embedded in complex
3D environments populated by intelligent adversaries.
We discuss three technical problems that arise in such
problem settings: incompleteness of information, effi-
cient representation of space for navigation and task in-
ference, and the dynamic allocation of tasks during ex-
ecution. We also briefly discuss an alternative approach
that makes use of simulated annealing.

Problem
Over the last several years we have been developing dis-
tributed robotic systems that can autonomously perform
tasks, such as surveillance and exploration, at theteamlevel.
As we have previously remarked, distributed robotic sys-
tems represent an attractive testbed for the exploration of
problems in multiagent systems: perceptions, beliefs and ac-
tions are grounded in the real world. Notable in this regard
has been our work on the Centibots robotic system which in-
volved the coordination of large numbers of robotic ground
vehicles (Ortiz, Vincent, & Morisset 2005). Among the re-
sults from that work was the observation that some process
of task inferenceis necessary for spatially-centered prob-
lems such as surveillance. The difficulty is that a group task
such as surveillance involves many smaller tasks that are not
knowna priori and that depend on how one carves up a con-
tinuous space. In this paper, we address a similar problem
but in a more complex 3D urban environment involving the
collaboration of teams of UAVs acting as a mobile sensor
network. Unlike Centibots, however, physical testbeds are
much more difficult to support as flight in urban environ-
ments is severely restricted. The work reported here is in-
stead based on simulations using a veridical spatial model.

Copyright c© 2006, American Association for Artificial Intelli-
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Figure 1: Sample world model taken from downtown San
Francisco. The problem is to allocate UAVs to the pursuit
and tracking of a car, traveling at a higher speed than the
UAVs.

The sensor assets controlled by the UAVs are to support
missions involving the pursuit of one or more mobile intel-
ligent ground adversaries. Since sensor information is typ-
ically incomplete, UAVs must be able to collaborate to co-
ordinate sensor assignments. The environments targeted for
eventual deployment are spatially complex, introducing ad-
ditional problems from perceptual occlusions and the like.
Figure 1 represents a typical environment in which a team of
approximately six UAVs is tasked with the mission of pur-
suing a car driving through the city. The car is driving faster
than the UAVs and, hence, the UAVs must plan for handing
off the target to another UAV before it escapes its field of
view. In addition, just as in Centibots, any resource alloca-
tion must respect the communications limitations on agents
stemming from line-of-sight and power restrictions.

Approach
The starting point for our approach involves three steps:

1. Spatial representation and reasoning, including path plan-
ning. Space is discretized into a distribution of UAV con-



Figure 2: Configuration space: the world is carved up dis-
cretely into a collection of variable-size cubes.

figurations and projections of adversaries over time are
computed. We make use of 3D data of San Francisco ob-
tained from Planet 9 Studios. The data is geo-referenced
using SRI geo-VRML (geo VRML 2001).

2. Simulation environment for experimentation. We have
developed a simulation, called OpenSim, in which alter-
native initial resource and target arrangements can be de-
fined and in which computed flight paths can be displayed
during resource allocation.

3. Task allocation approaches. We have been considering
two alternative approaches: one is auction-based and the
other is an MDP-style approach.

Spatial representation
We are working with models of cluttered urban environ-
ments that are 567 x 595 meters in size with a maximum
altitude of 269 meters. The space is discretized into a regu-
lar distribution of configurations called aroadmap(Latombe
1991), where a configuration is any valid position in that
space for a UAV. We make use of an irregular distribution
of cubes to discretize the space: the intuition is that there
is more clutter the lower one is to the ground. We are able
to generate 1,237 collision-free configurations in less than
one second in computing a ”roadmap” of navigatable paths.
Figure 2 illustrates the result of the computation.

Next, we compute a spanning tree. An edge is added be-
tween two configurations, c1 and c2, in the spanning tree,
only if a local path can be found between c1 and c2 (using
a local path planner) . The resulting spanning tree results in
one component with approximately 12,372 edges. Compu-
tation time for this step is approximately 20 seconds. Figure
4 illustrates the result of this computation.

The final step involves path planning. For any two posi-
tions, P1 and P2, a path is computed in the following way:

• A connection between P1 and P2 to the roadmap is found
using a local path planner. The results are the pair of clos-
est reachable configurations, c1 and c2.

• A path is computed between c1 and c2 in the roadmap is
computed usingA∗.

Figure 3: Variable granularity configuration space. The in-
tuition is that there is more clutter the lower one is to the
ground.

• A smoothing algorithm is used to optimize the path.

The computation time for each path is only a few seconds.
The results are shown in Figure 5.

Task inference Recall that the motivation for the spatial
representation presented so far was to be able to identify a
relevant set of tasks that needed to be performed relative to
some stage in a mission. For example, suppose that a par-
ticular UAV Is currently in pursuit of the car. Before the
car escapes its field of view it must enlist the help one of
its teammates who must position itself at some observation
point near the projected path of the car. As we will discuss
shortly, this task hand-off is accomplished by auctioning off
the task to other agents. In our model, a task corresponds to
some point in the configuration space. That is, a pursuing
UAV will auction off some point or set of points near the
projected path to other agents, who then bid on those points.
This parallels the approach taken in Centibots with the ex-
ception that the spatial configurations and interconnections
are much more complex.

Simulation environment for experimentation. We have
developed a rich simulation environment, which we call
OpenSim, for testing and displaying experiments in such 3D
environments. A movie of the simulation in action is avail-
able at the site:www.ai.sri.com/opensim. The simu-
lation allows a developer to create an arbitrary initial layout
of UAV resources as well as define the location, velocity,
and path of the evader vehicle. The simulation then displays
the movements of UAV resources as well as the evader while
allowing the user to pan and zoom through the model to ob-
serve progress from different perspectives.

Approaches to task allocation Figure 6 illustrates the
idea behind the auction-based approach we are considering.
The red circle represents the evader; two levels of configura-
tion space are shown: the yellow cubes represent the space
closest to the ground. If we assume that a UAV is currently
occupying the cube drawn with an “X” through it, then it is



Figure 4: Computed spanning tree of the area of interest.

Figure 5: Route planning.

clear that the evader is about to exit its field of view, given
the UAV sensor range estimated by the circle. At that point,
the UAV needs help and will announce an auction for the set
of points that fall within the projected path of the car.

A look-ahead process determines the appropriate set of
points for the auction; that process is depicted in Figure
8 and involves computing a set of valid visibility points
(VVP). The algorithm followed by the auctioneer (i.e., the
UAV seeking help) is:

1. The set VVP is computed, corresponding to the set of
points such thattin < ETA < tout

2. The set VVP is auctioned off to the team. Each team
member bids in terms of how much time will be needed
to reach those points.

3. The vehicle, Vi, with the lowest bid is picked. Vi is then
removed from the vehicle list.

4. Points inside the chasing distance are removed from VVP.

A coordinator/auctioneer can be chosen dynamically and
announces the set of future time points that need to be cov-
ered. This protocol demonstrates some interesting behavior:
from one simple negotiation protocol, 3 unique behaviors
(handoff, tracking and helping) emerge. None of these three
behaviors are explicitly represented or reasoned about by
any of the UAVs in the system; however, someone observ-
ing the system can clearly observe the occurrence of these
events.

We are also considering probabilistic, MDP-style ap-
proaches. We found that a sequential auction system for al-

locating the best resource at each round may lead to a bad
solution: for instance, the choice of the first best resource
can make the last resource impossible to allocate. A combi-
natorial auction might eliminate this problem. We will dis-
cuss these two alternatives in the workshop.

Summary
This paper has discussed some very preliminary ideas on the
problem of resource allocation in multiagent systems involv-
ing teams of UAVs embedded in cluttered 3D environments.
We discussed a simulated pursuit and evasion problem and
discussed two possible approaches to the collaborative pur-
suit problem: an auction-based approach and an MDP-based
approach. Both approaches were dependent on a prelim-
inary spatial reasoning/task inference process which iden-
tified potential tasks which came under consideration dur-
ing the auctioning process. We hope to generate systematic
comparisons between the two systems in the future.
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Figure 6: The auctioneer in action.



Figure 7: Overhead view showing the look-ahead range (red
cubes) of a UAV in pursuit.

Figure 8: Look ahead: blue cubes represent visibility points.
The set of Valid Visibility Points (VVP) istin < ETA <

tout.

Figure 9: Side-view showing the look-ahead and the config-
uration levels.

Figure 10: Resource allocation: securing a building.
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Abstract

We address the problem of optimally coordinating a group of
loosely-coupled autonomous robots with private state infor-
mation, when each robot is self-interested and acts only to
maximize its own personal reward stream. The general solu-
tion we propose makes honest reporting of private informa-
tion a best-response strategy and leads to the system-optimal
outcome in equilibrium, while assuming the existence of a
currency so that payments can be collected. We also provide
a specialized mechanism for the case in which local robot
models are Markov chains, using Gittins allocation indicesto
compute the system-optimal policy in time linear in the num-
ber of robots. The majority of the computation is distributed
amongst the agents, with the coordinator primarily playingan
enforcement role.

Introduction
To begin to address the problem of coordinating the behavior
of individual robots in a group, one must first consider the
circumstances under which that group has come into being,
and the purpose each robot was created to serve. Currently,
physical robots—to the extent that they exist—are almost
always designed to serve very specific functions (e.g., “print
the circuit”, “vacuum the floor”, etc.), and interaction with
other robots is usually limited to purely cooperative settings.
For instance, various rovers on Mars may be programmed to
fulfill different goals, but in the end they are all there to do
the bidding of the same group of scientists back on Earth.

Design of mechanisms for robot coordination has thus,
naturally, focused on finding means of efficient communica-
tion and decision-making, with the assumption that individ-
ual robots are programmed to share information and perform
tasks as the broader system-designer would like.

However, it is not difficult to call to mind current real-
world scenarios involving software robots, or hypothetical
future scenarios involving physical ones, in which a group
of robots have been designed to serve very different pur-
poses. That is, in addition to the typical interdependence
that can exist between individual robots, there may also be
competitionwithin the group, leading to the possibility that
individual robots will be programmed to behave strategically

Copyright c© 2006, American Association for Artificial Intelli-
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to maximize a utility function that is distinct from that of a
broader system-designer (if present).

The problem of optimally coordinating the behavior of
individuals in a group often essentially amounts to efficient
communication (and perhaps determination) of relevant pri-
vate information, so that local decisions can be made in a
way that optimizes some global metric. Markets have been
used throughout modern history to coordinate a wide array
of human interactions: efficient allocation of food, hiringof
labor, construction of municipal infrastructure, etc.

In robotics, markets have been used to minimize com-
munication costs while achieving, e.g., desirable allocation
of tasks to individuals (Zlot & Stentz 2006; Dias & Stentz
2001). But this “efficient communication” property of mar-
kets is actually just one of their key positive attributes. Cer-
tain markets also have the property of being robust against
potential manipulation by self-interested agents; i.e., they
act to align incentives of individuals with overall system-
wide design goals. For example, coordination mechanisms
with well aligned incentives can promote cooperative be-
havior amongst self-interested agents, with agentschoosing
to faithfully implement distributed planning algorithms and
choosingto share truthful information about their local prob-
lem.

In this work we examine the design and application of
truthful coordination mechanisms for multi-robot environ-
ments. We applymechanism designto a multi-agent, se-
quential decision-making scenario, and we use the formal-
ism of Markov decision processes(MDPs) to characterize
agent models of the world. A significant portion of the paper
is devoted to presenting work described in (Cavallo, Parkes,
& Singh 2006), recast and specialized for robot domains.

In the next section we describe the problem we address
in detail, and provide some necessary background in mecha-
nism design and MDPs. We then present an optimal coordi-
nation mechanism for a general setting, and discuss the sig-
nificant computational challenges that can arise. We present
an important special case, that in which agent worlds can
be modeled as Markov chains, for which computation can
be (almost) completely distributed amongst the agents and
optimal solutions are tractable. Finally, we make some con-
cluding remarks.



Related Work
Brafman and Tennenholtz (1996) provide an early moti-
vating scenario for self-interested robots, in the contextof
partially-controlled multi-agent systems. The authors con-
sider a shared warehouse in which different robots, designed
by different designers, need to coordinate on movements
around the warehouse and placement of equipment.

Auction-based coordination mechanisms have been
adopted for the coordination ofcooperativemulti-robot sys-
tems (Berertonet al. 2003; Toveyet al. 2005; Rabideauet
al. 1999; Gerkey & Mataric 2002), adopting the perspective
of using auctions as efficientalgorithmsfor distributed plan-
ning and not for their incentive properties. This use paral-
lels Wellman’s seminal work onmarket-oriented program-
ming (Wellman 1993), in which markets were adopted for
distributed problem solving because of their ability to sus-
tain optimal joint solutions while dealing with distributed
private information. Prices provide concise aggregate sum-
maries of the marginal effect of an agent’s local action on
the rest of the system.

A number of decomposition techniques for planning in
stochastic domains, including methods specialized to multi-
agent planning, are described in the literature (Kushner
& Chen 1974; Boutilier 1999; Guestrin & Gordon 2002).
These methods often work in the linear-programming for-
mulation of the MDP planning problem, and leverage
decomposition methods for large-scale linear programs,
such as Benders and Dantzig-Wolfe decomposition (Lasdon
1970; Bradley, Hax, & Magnanti 1977).

Earlier work on online mechanism design (OMD) has
considered dynamic environments, but with dynamic agent
arrivals and departures, a single global state, and privatein-
formation about agent rewards (Friedman & Parkes 2003;
Parkes & Singh 2003). The persistence of agents coupled
with the need for continued information from agents about
their private state is what distinguishes the problem of co-
ordinated planning from OMD. Dolgov and Durfee (2006)
have studied resource allocation to self-interested agents
with local problems modeled as MDPs, but in their setting
this allocation is static and made in the initial period, and
thus the incentive challenges are the same as those in stan-
dard (static) mechanism design.

Finally, (Parkes & Shneidman 2004) and (Shneidman &
Parkes 2004) describe methods for distributing computa-
tion amongst self-interested agents in non-dynamic environ-
ments, while providing incentives so that agents will choose
to faithfully perform the intended computation.

Set-Up and Background
A motivating story
Imagine a scenario, not too far in the future, in which a group
of gold prospectors discovers that a particular 1-mile stretch
of riverbed has significant gold deposits. At this point in
time extraction of gold from riverbed has become highly
automated via specialized robots. Each prospector owns a
gold-searching robot and sends it to the river, at which point
it acts autonomously until returning back to “the base” with
its bounty. Certain portions of the riverbed are known to

be more gold-laden than others, and robots are essentially
in competition to work in the most desirable sections. To
maintain order, a government enforcement agency seeks to
coordinate the actions of the robot population. Moreover,
the agency sees it as desirable that any chosen coordination
scheme lead to the greatest possible gold harvest, with the
specialisms of each robot matched to fit characteristics of
different extraction tasks. How can these goals be achieved?

The problem we address, formally
We consider a scenario in which a group ofn agents (we use
“agent” and “robot” interchangeably)I = {1, . . . , n} inter-
act with the world in various ways, each extracting reward
at a rate dependent on the nature of its interaction, and each
seeking to maximize its own reward over time.

More precisely, we assume each agenti’s world model
is represented as a Markov Decision Process (MDP)Mi =
<Si, Ai, ri, τi>, where:

• Si is the set of all states of the world as it pertains toi

• Ai is the set of actionsi is capable of executing

• ri : Si×Ai → R≥0 is a function specifying a real-valued
reward for taking a particular action in a particular state

• τi : Si × Ai × Si → [0, 1] is a transition function rep-
resenting the probability that taking a given action in a
given state will bring the world to any other state in the
state space

Notice that there is uncertainty about the world, as rep-
resented in the potentially non-deterministic state transition
function. A simple MDP example is portrayed in Figure 1.
Here, the action space has just a single element (a single-
action MDP is also called aMarkov chain). There are three
states, and transitions are non-deterministic.

C

B

D

0
.5

2
.2

.8

.2

1

.5

1

1

Figure 1: Example of a 3-state, single-action MDP (a
Markov chain) with non-deterministic state transitions. Re-
wards are in bold font and transition probabilities in italics.

We assume an exponentially time-discounted valuation
model in which a reward ofx receivedt steps in the future is
valued atγtx, where0 ≤ γ ≤ 1 is the discount factor. The
goal of each agent is to maximize the expected discounted
sum of rewards it receives over an infinite time-horizon. If
the agent MDPs were completely independent, each agenti
would then seek to execute a policyπ∗

i : Si → Ai such that:

π∗
i ∈ arg max

π
E

[

∞
∑

t=0

γtri(s
t
i, π(st

i))
∣

∣

∣
π
]

(1)



wherest
i is i’s state at timet. Each agenti could determine

π∗
i by, for instance, using value-iteration (see, e.g., Sutton&

Barto 1998) to compute the optimal value functionV ∗
i for

its MDP, from which the optimal action-choice can simply
be read off:

π∗
i (s) ∈ arg max

a∈Ai

E

[

ri(s, a) + γ
∑

s′∈Si

τ(s, a, s′)V ∗
i (s′)

]

,

(2)

However, in a multi-agent setting there may be depen-
dencies that exist between sets of agent behaviors. We con-
sider a loose coupling in which interdependencies exist only
through restrictions on joint actions (c.f. Singh & Cohn
1998). A natural example of joint-action feasibility con-
straints is when there is a shared resource required for ex-
ecution, or when actions are location-dependent and only a
single robot can be present in a given location at once.1

Taking maximization of system reward as our goal, aco-
ordinator would like to enforce a policy that is optimal for
the joint MDP M , which incorporates each of the com-
ponent agent MDPs. Considering joint state spaceS :
S1 × . . . × Sn and action spaceA : A1 × . . . × An, we
can define joint transition functionτ and reward functionr,
whereτ(s, a, s′) is the probability that taking joint actiona
in joint states brings the world to joint states′, andr(s, a)
is the total reward received by all agents whena is executed
in s.2 Assuming agents have a common discount factor, the
coordinator’s task at any timet0 is to determine and execute
the joint policy π∗ that maximizes the discounted infinite
sum of expected total system reward:

π
∗(s) ∈ arg max

π∈Πf

E

h

∞
X

t=t0

X

i∈I

γ
t−t0ri(s

t
i, π(st))

˛

˛

˛
π, s

t0 = s
i

,

for all statess ∈ S, searching across everyπ in Πf , the set of
all feasible joint policies (i.e., those that respect constraints
on the joint actions).

Even when a coordinator capable of enforcing prescrip-
tions for agent behavior is present, significant complications
can arise if agents areself-interested. Agents typically hold
someprivate information, knowledge of which is essential
for optimal planning; for instance, the state that each agent
is in at any point in time may not be publicly observable.3

Thus the problem of coordinating a group of self-interested
agents consists of providing appropriate incentives so that
agents will choose to make truthful reports of local private

1Another kind of interdependency, not considered here, could
be through rewards, in settings in which one agent taking an action
changes the reward to another agent for an action (consider another
robot retrieving the gold before your robot).

2The actions adopted in this joint MDP to model interde-
pendencies could be “macroactions” such as “go to section 1”,
with agents retaining autonomy on the sequence of actions that
are interspersed in between macroactions (Suttonet al. 1999;
Hauskrechtet al. 1998).

3One can similarly consider environments in which state is pub-
lic but the reward functions (valuation information) are private.

information, in addition to the computational challenge of
planning. This is the problem that can be addressed with an
appropriate coordinationmechanism.

Mechanism design for sequential environments

The field of mechanism design is concerned with bringing
about globally-desirable outcomes, despite individuals in a
system acting only to bring about locally-desirable ones.
This requires finding a way to align the interests of each
individual in the group with the welfare of the system as
a whole. A typical way to do this is through transfer pay-
ments, assuming the existence of a currency.4

In a one-shot (i.e., single time-step) setting, a mechanism
will typically consist of making some query to each agent re-
garding its private information, followed by selection of an
outcome and determination of transfer payments according
to the information that is reported. For instance, the basic
Groves mechanism (Groves 1973) chooses the outcome that
is optimal according to the information agents report, and
sets the transfer payment for each agent equal to the value
that all other agents (reportedly) reap from that selected out-
come. The goals of all agents are completely aligned as
each receives total payoff equivalent to the reward reportedly
achieved by the entire group, so agents will report valuation
information truthfully to allow the center to be successfulin
maximizing system reward.

The sequential environment we consider is more complex:
here, at every time-stept an “outcome” decision must be
made (i.e., a joint actionat must be selected) and transfers
may be executed, all of which can potentially depend on the
entire execution history throught. We describe asequential
coordination mechanismΓ = <π, T, µ>. which specifies a
joint execution policyπ, a transfer policyT = T1× . . .×Tn

defining payments made to each agent, and a joint message
spaceµ = µ1 × . . . × µn defining possible modes of com-
munication from agents to coordinator. In the environments
we consider, each agent’s world model is considered com-
mon knowledge,5 but there is private information consisting
of each agent’s local state; thus at every time-step a claim
about each agent’s current state will be solicited by the co-
ordinator.

Each agenti has a strategyσ that maps a historyh of the
agent’s state trajectory and transfer payments, and the cur-
rent statest

i, to a message. That is, at timet agenti executes
a strategyσi(h, st

i) ∈ µi. In our coordination mechanism,
truth revelation (in all states) is aMarkov Perfect Equilib-
rium (MPE) (Maskin & Tirole 2001). The following is an
informal definition.

4This need not be a “real” currency (such as dollars) as long
as it enjoys the important properties of a currency (for instance as
long as it is secure, transferable, and (relatively) stable).

5As discussed in the related paper (Cavallo, Parkes, & Singh
2006), this can be relaxed by including an initial step in which
agents report their models to the center (which they will do truth-
fully in equilibrium), or finessed by distributing computation to
agents.



Definition 1. (Markov Perfect Equilibrium) A strategy
profile (σ∗

1
, . . . , σ∗

n) is an MPE if:
a) (Perfect)no agent can improve its expected utility by de-

viating in any state reachable either on or off the equi-
librium path, given the other agents’ strategies and the
agent’s belief about the other agents’ private state and
local MDP models;

b) (Bayesian updating)each agent updates its beliefs ac-
cording to Bayes’ rule where possible (e.g., while on the
equilibrium path);

c) (Markov) an agent’s strategy is conditioned only on the
local state of the agent, and is history independent.
In our environments Bayesian updating is unimportant

because we bring truthful reporting into an MPE for all
states,whateverthe state, and thus for any private state of
other agents. Moreover, since MPE is ‘perfect’, each agent
can maximize its expected utility by truthful reporting even
when other agents have previously deviated from truthful re-
porting.

We will refer to mechanisms that, like the basic Groves,
achieve equilibrium outcomes that maximize total system
reward assystem-optimal. In a truthful mechanism, agents
report true information in equilibrium. If a mechanism guar-
antees that no agent will be worse off (i.e., obtain negative
net utility) from having participated, it is termedex post in-
dividual rational (IR); if the mechanism achieves this only in
expectation, it isex ante IR. Ex ante IR is a minimal require-
ment for inducing agents to participate in the mechanism.
When the net payment made from the coordinator to the
agents is guaranteed non-negative, a mechanism is termed
ex post budget balanced; when this holds in expectation it is
ex ante budget balanced; when net payments are exactly 0,
a mechanism isstrongly budget balanced.

Coordination in the General Setting
In this section we examine coordination mechanisms that are
applicable to the general setting in which each agent’s local
problem is modeled as an MDP.

The first mechanism we describe is an extension of the
basic Groves mechanism, introduced above, to a sequential,
multi-agent coordination environment. Since agent MDPs
are publicly known, optimal policyπ∗ can be computed; the
challenge is that in order for the execution to be optimal de-
cisions must reflect thetrue joint state at every time period.

Mechanism 1. (Sequential-Groves)

• The planner computes an optimal joint policyπ∗.
• At every time-stept:

1. Each agenti reports to the planner a claim about its
current statêst

i.
2. The planner implements the joint action

at = π∗(ŝt).
3. The planner pays each agenti a transfer:

Ti(ŝ
t) =

∑

j∈I\{i}

rj(ŝ
t
j , a

t
j)

Payments made by the coordinator to the agents are re-
ceived immediately and as “reward”, so an intrinsic reward
of x plus a transfer payment ofy at timet is valued equiva-
lently to a reward ofx + y at t.

Theorem 1. The Sequential-Groves mechanism is truthful,
system-optimal, and ex post IR in Markov Perfect Equilib-
rium when agents have a common discount factor.

Proof Sketch.6 Let νt0
i equal agenti’s expected payoff at

any timet0 going forward, given the set of (known) agent
MDPsM = (M1, . . . , Mn) and current joint statest0 when
all agents are reporting truthfully:

νt0
i (st0 , M) = EM

[

∞
∑

t=t0

{

γt−t0ri(s
t
i, π

∗(st))+

∑

j∈I\{i}

γt−t0rj(s
t
j , π

∗(st))
}

∣

∣

∣
π∗, st0 = s

]

= EM

[

∞
∑

t=t0

∑

j∈I

γt−t0rj(s
t
j , π

∗(st))
∣

∣

∣
π∗, st0 = s

]

This quantity is maximized, for all statesst0 at all times
t0, by agenti reporting its true state when other agents do,
because the joint policy will then maximize the expected
utility to agenti (which is equal to the MDP value achieved
by the joint policy). It is clear that this utility cannot be
made greater by misreportingst

i, for anyt, since the coordi-
nator would then implement a policy that is based on faulty
information, and thus potentially suboptimal.

The mechanism is trivially ex post IR, as each agent re-
ceives non-negative intrinsic reward from the world, and a
grossly positive transfer payment from the coordinator.

In the above, truthfulness and system-optimality follow
from the fact that every agent’s payoff is exactly equal to
the payoff of the entire system. Since the coordinator’s pol-
icy is designed to maximize this quantity, and since its only
challenge in achieving this maximum is having access to ac-
curate state information, agent payoffs are maximized when
they report their current states truthfully.

If budget properties were of no concern, theSequential-
Grovesmechanism would be quite satisfying; however, it
will typically be extremely unrealistic to assume that a bud-
get large enough to execute the specified payments will be
available. Think of the gold-prospecting scenario: the coor-
dinator would be making out massive payments on the order
of n times the total value of the gold in the riverbed.

While the payments inSequential-Groves(“Groves pay-
ments”) are required in order to align the interests of all
agents in the system, the Groves scheme fortunately also al-
lows for imposition of achargeon each agent that can be
used towards balancing the budget; this will do nothing to
weaken the desirable equilibrium incentive properties of a
coordination mechanism so long as the charge computed for
each agenti is completely beyondi’s influence.

The Vickrey Clarke Groves (VCG) mechanism for static
settings specifies the charge for each agenti to be the total

6See (Cavallo, Parkes, & Singh 2006) for full proofs of all the-
orems in this paper (and other related ones).



reward that agents other thani would have receivedif i were
not present (see, e.g., Jackson 2000); VCG thus has the ap-
pealing property that each agent’s net payoff will equal its
marginal contribution to total system welfare. Complica-
tions arise, however, when one tries to directly apply VCG
to a sequential environment, as there are dependencies that
exist between decisions made at one time-step and the space
of possible outcomes that will be possible in future time-
steps. Specifically, to preserve incentive properties we can-
not use reported state information from agenti at any time-
step throughout execution of the mechanism in determining
i’s charge. We propose the following variation on VCG for
sequential coordination problems7:

Mechanism 2. (Sequential-VCG) Identical to the
Sequential-Groves mechanism, except at every timet,
transfer payments are computed as follows:

Ti(ŝ
t) =

∑

j∈I\{i}

rj(ŝ
t
j , a

t
j) − (1 − γ)V ∗

−i(s
0)

Here, V ∗
−i(s

0) is the expected discounted sum of total
value extracted for all agentsexcepti, from time 0 under
the system-optimal policyπ∗, given modelsM . That is,

V
∗
−i(s

0) = EM

h

∞
X

t=0

X

j∈I\{i}

γ
t
rj(s

t
j , π

∗(st))
˛

˛

˛
π
∗
i

Theorem 2. The Sequential-VCG mechanism is truthful,
system-optimal, ex ante IR, and ex ante strong budget-
balanced in Markov Perfect Equilibrium when agents have
a common discount factor.

Proof. Truthfulness and system-optimality hold by truthful-
ness and system-optimality ofSequential-Grovesplus the
fact that each agent’s charges are completely independent
of reports that it makes. The expected payoff for each agent
from time 0 (given modelsM ) is as follows:

ν
0

i (s, M) = EM
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t
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˛
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0 = s
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(6)

The Groves payments (4) and the VCG charges (5) per-
fectly cancel out in expectation when agents report truth-
fully. As a result, net payments from the coordinator to the
agents are 0, yielding ex ante strong budget-balance; total

7The Sequential-VCGmechanism diverges from a direct se-
quential analog of VCG in that charges computed for each agent
i include hypothetical reward thati receives; this leads to stronger
budget balance than would be achieved otherwise, and is possible
here because we assume agent world models are public knowledge.

expected payoff for each agenti is exactly the (non-negative)
intrinsic reward extracted byi under the system-optimal pol-
icy, so the mechanism is ex ante IR.

Realize that the flavor of IR achieved with this mechanism
(and the specialized mechanism presented in the next sec-
tion) is weak, that ofex anteIR. This is the cost that comes
from performing mechanism design in these rich, dynamic
environments where the “charge-back” payments collected
from agents cannot be conditioned on theactual sequence
of visited states.

However, in some domains a stronger form of IR will be
possible. TheSequential-VCGmechanism will actually be
ex ante IR fromany time at which the agent MDPs are in a
joint state (known to the planner) that is independent of any-
thing that’s ever been reported. Consider worlds in which
a certain known-state is guaranteed to be visited repeatedly,
for instance worlds that start in the same state every morn-
ing. In such cases we can provide ex ante IR periodically,
rather than just once—agents will willingly “sign up” for the
mechanism repeatedly, regardless of the interim execution,
every time the known-state is visited.

Similar examples can be provided if periodic “monitor-
ing” is possible, so that the joint state is known for sure from
time to time. In some robot environments this will be partic-
ularly relevant. One can imagine scenarios in which semi-
autonomous robots are sent out in the field daily to perform
some behaviors and make reports about their current loca-
tion, physical state, etc.; sending a human observer out to
verify the legitimacy of their claims may be expensive, but
could be executed, say, once a day in order to realign the
mechanism into ex ante IR for each agent going forward.

An example
We now illustrate why a coordination mechanism may be
necessary, and how the one we propose works. Figure 2 de-
picts a 2-agent scenario, where each agent’s world model
has 3 states and 2 actions, and the initial states areB andE.
We take discount factorγ = 0.9, and consider the coordina-
tion problem that arises when actionsa0 anda2 cannot be
performed simultaneously. We first construct the joint MDP,
as in Figure 3, and then compute the system-optimal policy,
given in Table 1.

TheSequential-VCGmechanismpaysagent1 the reward
agent2 reports having achieved each period, and vice versa.
Under the system-optimal policy, with high probability for
many time-steps from the beginning of execution agent1’s
payment will be 4 and agent2’s payment will be 1. Each pe-
riod the mechanism charges agent1(1−γ)·V ∗

−2
(BE) = 3.8,

and charges agent2(1−γ) ·V ∗
−1

(BE) = 1.1. The payments
and charges cancel out exactly in expectation, leaving each
agent with payoff equal to the intrinsic reward extracted un-
der the system-optimal policy.

Now consider the case where the true joint state isCG.
It is clear that the system-optimal policy executes joint ac-
tion a0a3, as with very high probability reward 5 will be
yielded each period going forward, while alternativea1a2
will yield reward 4 in all periods going forward. But no-
tice thata1a2 would yield greater intrinsic reward for agent2
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Figure 2: MDPs for a 2-agent world, each with 3 states.
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Figure 3: Joint MDP constructed from component MDPs il-
lustrated in Figure 2. Joint stateXY denotes agent1’s MDP
in stateX and agent2’s in stateY ; joint actionaxay denotes
x taken by agent1 andy taken by agent2. Incompatibility of
actionsa0 anda2 is reflected by omission ofa0a2.

state π∗ V ∗ V ∗
−1

V ∗
−2

BE a0a3 49 11 38
CG a0a3 49 11 38
DF a1a2 40 20 20
DG a1a3 31 11 20
CF a1a2 40 20 20

Table 1: Optimal policy for joint MDP, and optimal value
functions, with discount factorγ = 0.9.

than woulda0a3, and if the system were in stateCF then
a1a2 would be the only possibility (sincea0a2 is infeasi-
ble). If we did not make the Groves payments, aligning the
interests of agent2 with that of the system as a whole, agent2
would have incentive to report being in stateF rather than
G when agent1 is in stateC. Thus one can observe even in
this simple example the essential role that the payments play
in enabling realization of an optimal joint plan.

Efficiently solving groups of interdependent MDPs
In Sequential-VCG, we have a coordination mechanism that
achieves system-optimality in equilibrium, while (in expec-
tation) requiring no external budget to implement. The pri-
mary remaining challenge is computational tractability of
determining an optimal policy. We explore in detail one gen-
erally tractable domain (Markov chains) in the next section,
and here briefly describe promising solution methodologies
that have been proposed for problem decomposition with co-

operative agents. There are two important considerations in
applying these methods in our setting with self interest:

a) are the decomposition methods already factored, or can
they be re-factored, to ensure that agents have correct in-
centives to choose to follow them?

b) can the decomposition methods be leveraged to allow for
planning without each agent in turn, in order to enable
computation of payments?

Following Guestrin and Gordon (2002) we can divide
prior work into that onserial decompositionin which one
agent is active at any given time (Kushner & Chen 1974),
andparallel decompositionin which multiple agents can be
active at the same time (Singh & Cohn 1998; Meuleauet al.
1998).

Parallel decomposition is more relevant to multi-robot co-
ordination. Singh and Cohn (1998) consider the same cross-
product representation for the global MDP as we adopt,
and place constraints on joint actions. Admissible estimates
from subproblems are used to accelerate planning, however
their algorithm is not fully factored in that it requires an
explicit representation of the joint state space. Meuleau et
al. (1998) specialize to settings in which the only coupling
is via resource constraints, and are able to find approximate
solutions to large problems through a combination of offline
and online computation. Approximations can pose some
new challenges in the context of self-interested agents, for
instance causing the strong truthful equilibrium properties
to unravel. Future work will need to explore these issues.

More recently, Guestrin and Gordon (2002) describe de-
composition methods based on linear-programming decom-
position techniques, such as those due to Benders and
Dantzig-Wolfe (Lasdon 1970; Bradley, Hax, & Magnanti
1977, see). Dantzig-Wolfe decomposition methods of-
ten have a market interpretation, with complicating con-
straints between subproblems priced by a coordinator and
used to modify local agent problems such that an optimal
joint solution can be constructed (Dantzig & Wolfe 1960;
Dantzig 1963). Indeed, Bererton et al. (2003) have re-
cently provided an auction interpretation of the Dantzig-
Wolfe decomposition for MDPs. None of these methods
are incentive-compatible in our sense, and an important next
step will investigate the integration of these methods into
Sequential-VCGin order to handle self-interest.

Coordination in Markov Chain Settings
We now examine the case in which all local agent models
are Markov chains (i.e., all are MDPs in which just a sin-
gle action per agent is available for every local state), and
in which only one can be activated at a time. In a Markov
chain setting agents do not face an action-selection problem,
but the coordination problem remains as a decision must be
made at every time-step regarding which chain to activate.
This setting is appealing because it allows a tractable coor-
dinated planning algorithm based on index policies.

It is not hard to imagine settings in which robots have
been programmed to behave deterministically given any par-
ticular state of the world; in such cases world models are



Markov chains. Consider, for instance, software robots that
are using a super-computer to perform computational tasks
on behalf of their designers; the way computation should
proceed for any robot’s task is completely known, but a deci-
sion (coordination) regarding which robot should be granted
access to the super-computer must be made at every point in
time. The state of each robot reflects the (non-deterministic)
partial results from the computation performed so far.

We can formalize the specifics of this environment by
positing that each agenti has an MDP with action space
Ai = {ai, anull}, and that any admittable policyπ specifies,
at any timet, a joint actionat in which all but one agent’s
action isanull. For convenience we writeπ(s) = i to de-
note that policyπ activates agenti’s Markov chain when the
world is in joint states. We let r(si) denote the rewardi
receives when its chain is activated in statesi.

Gittins (1974) showed that in this setting (minus the
self-interest) optimal planning is tractable. Specifically,
he showed that one can compute an index (which we will
call theGittins index) independently for each Markov chain
given its current state, such that the optimal policy consists
of always activating the chain with highest index. In this
way the computational complexity of computing an optimal
policy grows only linearly in the number of agents.

Theorem 3. (Gittins & Jones 1974; Gittins 1989)
Given Markov chainsM1, . . . , Mn in states(s1, . . . , sn)
respectively, there exist independent functions
G1(M1, s1), . . . , Gn(Mn, sn) such that the optimal
policyπ∗(s) = arg maxi Gi(Mi, si).

Several methods of computing Gittins indices are known.
For instance, in (Katehakis & Veinott 1987) a special type of
two-action,k-state MDP is formulated for every state in ak-
state Markov chain, the optimal value of which corresponds
to the Gittins index.

Besides computational tractability, the decomposition as-
pect of Gittins’ solution is of particular interest in a multi-
agent setting, as almost all computation can be distributed
amongst the agents. In a robotics setting, if each robot is ca-
pable of computing its Gittins indices, the only coordination
necessary is to determine which index is highest at every
time-step, and to potentially compute and execute transfer
payments to properly align agent incentives.

To compute VCG charges in this setting the coordinator
must determine which Markov chainwould havebeen acti-
vated inn hypothetical worlds, in which each agent is re-
moved in turn. In the world without some agenti, the only
difference in the optimal policy is that wheneveri’s Gittins
index is highest, the Markov chain with second highest in-
dex is chosen instead. We can compute the expected value
achieved by the system in such a world bysimulatingwhat
would have happened. Again, it does not retain the right in-
centive properties to use theactual (real-world) indices to
determine an agent’s marginal effect on the other agents.

Consider simulation of a policy that is optimal in a world
without i, and letXπ∗

−i
be the simulated sample trajectory.

Let r(X, t) denote the system-reward during thetth step
of trajectoryX . We propose the following mechanism for
optimal coordination in Markov chain settings when agents

have computational capacity, wherem sample trajectories8

{X1

π∗

−i
, . . . Xm

π∗

−i
} are maintained for every agenti:

Mechanism 3. (Distributed-Gittins-VCG)

• Each agenti computes and reports a claim to the plan-
ner about Gittins indiceŝGi(Mi, si), ∀si ∈ Si

• At every time-stept:
1. Each agenti reports to the planner a claim about its

current statêst
i.

2. The planner activates Markov chain:

i∗ ∈ arg max
i∈I

{Ĝi(Mi, ŝ
t
i)}

and simulates the next action in each of then · m
sample trajectories.

3. The planner pays each agenti a transfer:

Ti(ŝ
t) =
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Theorem 4. The Distributed-Gittins-VCG mechanism is
truthful, system-optimal, ex ante IR, and ex ante weak
budget-balanced in Markov Perfect Equilibrium when
agents have a common discount factor.

Proof Sketch.As in the general setting, each agent receives
Groves payments equal to the total reward received by other
agents (here, only one agent receives reward per time-step).
Agenti’s charge term is again independent ofi’s reports, as
information only from the other agents is used in simulating
sample trajectoryXπ∗

−i
. Agents thus want system-welfare

to be maximized, which brings truthful reporting of both
reward and Gittins index information into equilibrium. In
expectation the charges computed for each agenti will fall
between 0 and the intrinsic reward received byi, as a pol-
icy that is optimal without consideringi cannot be better for
the entire system than one that takes all agents into account.
This yields ex ante IR and weak budget-balance.

In the version ofDistributed-Gittins-VCGwe have pre-
sented, agents compute and communicate Gittins indices up
front, but this is not necessary; the mechanism properties
maintain if we elicit index informationonline. That is, we
can instead ask agents for the index of their current state at
each time-step (along with indices for sample trajectories).
See (Cavallo, Parkes, & Singh 2006) for a full discussion.

Conclusions
In this paper we addressed the problem of coordinating a
group of self-interested robots in a way that yields maximum
total social welfare. We have provided solutions that “dis-
arm” the impact of self-interest on the behavior of robots,

8As m is increased the variance of the samples will decrease,
but anym ≥ 1 will achieve the properties in Theorem 4.



transforming competitive environments into “team games”.
Importantly, the methods we propose do not, in expectation,
require any external budget to implement. The methods are
applicable to a wide array of domains, including current sce-
narios where software robots compete for control of a shared
resource and future scenarios of physical robot coordination
problems where self-interest is a factor.

The specific algorithm used in determination of the
system-optimal joint execution policy is not important to the
incentive properties our proposals achieve, and distributed
algorithms are possible. In the Markov chain setting, we
proposed a Gittins index-based policy computation method
that has several desirable properties. In this mechanism the
system-optimal policy can be computed in time linear in the
number of robots, and the computation is almost completely
distributed amongst the robots themselves.

There are many interesting directions for future work.
We are currently examining mechanisms that have desir-
able equilibrium properties even when the policy followed
is suboptimal; such mechanisms are of interest because they
would work with approximate MDP solutions. In addition,
we are interested in finding a synthesis between known MDP
decomposition methods and our mechanism framework, as
well as developing concise methods for value representation
in resource- and action-constrained settings. It will alsobe
interesting to investigate alternate models of agent coupling,
for instance with interactions through states and rewards.
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Abstract

Digital wireless communication networks are vital in modern
life. However, these networks rely on centralized infrastruc-
ture that is extremely vulnerable to disaster or attack. We seek
to improve the communication environment in post-disaster
scenarios by developing groups of mobile communication re-
lay robots, orcommbots, that can be deployed to replace dam-
aged infrastructure. The job of a commbot is to position it-
self so as to maximize overall network performance, which
presents a rich and complex distributed learning and control
problem. We have implemented three distributed algorithms
and have tested them in simulation on a variety of instances
of the commbots problem. We present results from these sim-
ulations and compare and contrast the different approaches.

Introduction
Digital wireless communication networks are an increas-
ingly vital tool in modern life. We rely on GSM, GPRS,
and WiFi networks every day for voice, email, text messag-
ing, Web access, and other digital interactions. While under
nominal conditions such networks generally function effi-
ciently and reliably, the centralized infrastructure on which
they depend is extremely vulnerable to disaster or attack.
We need look no further than the aftermath of September
11, 2001 or hurricane Katrina in 2005 to see proof of the
fragility of digital network infrastructure and the unfortu-
nate consequences of a municipal communication break-
down. When mobile phones stop functioning, victims can-
not call for help, rescue workers cannot coordinate with each
other, and government officials cannot obtain the situational
awareness that they need.

We seek to improve the communication environment in
such post-disaster scenarios by developing self-organizing
communication networks that can be deployed on demand
to replace damaged infrastructure. One solution in this di-
rection is for the rescue teams to carry their own digital
repeaters, placing them in the environment where needed.
This approach has two major disadvantages. First, the hu-
mans must know enough about radio characteristics to de-
cide where relays are needed. Given the complexity of RF
propagation patterns in indoor environments, it is unrealistic

Copyright c© 2006, American Association for Artificial Intelli-
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Figure 1:Commbot research prototypes. The robots are based on
an off-the-shelf hobbyist kit, augmented with a low-power ARM-
based Linux computer equipped with an 802.11b WiFi adapter.
Robot hardware is accessed through the Player device interface
(Vaughan, Gerkey, & Howard 2003).

to assume that paramedics, for example, would be able to de-
cide where to drop relays as they explore a building. Given
the high frequencies (and thus short wavelengths) typically
used in digital radios, a small move (e.g.,< 1 meter) can
have a large impact on signal quality. Second, the resulting
physical arrangement of relays is fixed. The static nature of
the arrangement severely limits the ability of the network to
adapt to changes in its environment, whether from the mo-
bility of users or the loss of one or more robotic teammates
(because of limited battery life, malfunction, etc.).

We propose to address these issues by endowing the re-
lays with physical mobility. We envision small, inexpen-
sive, mobile robots that act as digital radio relays (Figure1).
With appropriate coordination and control, a system of such
communication robots, orcommbots, could form a mobile
ad hocnetwork (MANET) to support rescue operations and
logistics. Such a network could carry whatever digital traf-
fic is necessary for the task, including text, audio, and video.
The same approach could be used to create a digital radio
network where no previous infrastructure existed, such as in
biological field research, or planetary exploration.



In this paper, we present preliminary work on the comm-
bots problem, focusing on the underlying issues of control
and coordination. We have implemented three distributed
algorithms and provide a comparative study of their perfor-
mance in a simulation environment. We hope to motivate
other researchers to apply their expertise to this interesting
and important problem.

Problem Statement
The application area that motivates our work is communi-
cation support in post-disaster situations. Consider a res-
cue crew entering a large office building after a major earth-
quake. The radios carried by the rescuers become increas-
ingly unreliable as they penetrate deeper into the building.
To avoid losing communication with each other and with
their command facilities outside the building, rescue per-
sonnel are able to drop commbots that act as radio relays.
The relays are effectively disposable, and hundreds may be
deployed in a single scenario.

Assumptions
Because of the need to make them small, light, and inexpen-
sive, we assume that the commbots are relatively simple. A
commbot can move slowly and uncertainly within some lim-
ited range of its original location, and it has no knowledge of
the positions of its fellow robots. Commbots do not have a
map of their environment, nor do they carry precise sensors
(e.g., scanning laser range-finders) that would allow them to
build maps. The robots donot share a common coordinate
system or have any knowledge of the relative locations of
their teammates. A commbot’s primary sensor is its radio;
it is by discovering and interacting with its neighbors, both
immediate and distant, that a commbot must decide how to
act.

We assume that the commbots are uniquely identifiable
(e.g., by MAC address), and that they use a common
MANET routing protocol, such as AODV (Perkins, Belding-
Royer, & Das 2003), OLSR (Clausen & Jacquet 2003),
or TBRPF (Ogier, Templin, & Lewis 2004). The routing
protocol is responsible for establishing and updating routes
through the network. This protocol provides the commbot
with the following information:

• list of immediate (one hop) neighbors

• list of all outgoing routes, where a route comprises

– the list of nodes through which the route passes
– a real-valued metric quantifying the quality of the route

Additionally, the commbot can determine, with some un-
certainty, its pose relative to where it was originally placed
(probably through odometric integration). Given this infor-
mation, the commbot must decide where to move, within
some predefined radius of its initial location.

Objective function
The global goal is to optimize network performance, which
can be measured in many ways. For the purposes of the ex-
periments presented in this paper, we use an objective func-
tion that seeks to minimize the number of components in

the communication graph, as well as to maximize the total
quality of routes. We are given

• C: set ofn commbots

• R(i, j): indicator function that returns 1 if there exists a
route from commboti to commbotj, 0 otherwise

• Q(i, j): real-valued function that returns the quality of the
best route from commboti to commbotj

We define the utilityU of an arrangement of commbots as
follows:

U =
∑

i∈C

∑

j∈C,j 6=i

αR(i, j)Q(i, j) − β¬R(i, j) (1)

The first term is the total quality of all outgoing routes from
commboti; the second term is a penalty for any nodes that
commboti cannot reach. Our goal is to position the comm-
bots so as to maximizeU .

A key characteristic of this problem is that the route qual-
ities are not knowna priori, nor can they be predicted. The
value of Q(i, j) for some configuration of commbots can
be determined only experimentally by moving the robots
into that physical configuration. Furthermore, the impact
on global utility of moving a single commbot is effectively
unbounded. Consider a star-like configuration, in which the
central commbot is the only route between the other(n− 1)
commbots: a single move of that central commbot could
change the global utility between the minimum and maxi-
mum attainable values.

In other words, despite being additive across robots, the
objective function is not decomposable, monotonic, or con-
vex. As a result, the only way (to our knowledge) to guaran-
tee a globally optimal solution is to enumerate and evaluate
all possible configurations. Since the number of configu-
rations grows exponentially with the number of commbots,
this brute force approach is clearly intractable. In addition,
the brute force approach is impossible in practice to execute
because it requires global knowledge of the positions of all
the robots and a way to synchronously command them in or-
der to explore the space of configurations. The goal of our
work is to develop distributed algorithms that provide par-
simonious tradeoffs between solution quality and overhead
(e.g., running time, battery usage). We aim for techniques
that efficiently explore the space of configurations and find
good, but not necessarilyoptimal, solutions.

Related Work
The problem of controlling mobile communication relays
has received some attention in the robotics community. One
approach is to deploy the robots in a convoy, with robots in
the rear deciding when to stop in order to maintain a com-
munication link back to a command center (Nguyen, Far-
rington, & Pezeshkian 2004). This technique will build a
single route from a command center to the front-most robot,
but could not build a more general network to service mul-
tiple users and/or command centers. Another approach is
to analyze the environment and use spatial reasoning with
heuristics (e.g., try to maintain line of sight) to decide where
relays should be placed (Konoligeet al. 2004). This method



requires a map of the environment, which is not available in
the problem we study in this paper.

Auction- and market-based techniques have been used by
many researchers to solve multirobot coordination problems
(Diaset al. 2005). The algorithms include iterated first-price
auctions of single-robot tasks (Gerkey & Matarić 2002) and
combinatorial auctions of multirobot tasks (Dias 2004). A
persistent question in such synthetic markets is how to de-
termine bidding rules when individual robots cannot directly
evaluate the global objective function (Toveyet al. 2005).
The problem that we address differs from those studied in
previous work primarily in that the global objective function
is not separable or otherwise decomposable across robots,
which significantly complicates the process of deciding on
local utility values.

Another field of research that has investigated optimiza-
tion in distributed environments is the work from the dis-
tributed constraint optimization (DCOP) community (Modi
et al. 2003; Mailler & Lesser 2004). This work focuses
on solving problems that are naturally distributed and need
to be optimized, but make three key assumptions that make
them difficult to adapt to the commbots problem. First, this
line of work assumes that the robots know their relation-
ships with one another. As was mentioned in the problem
description, commbots are not aware of their impact on the
overall utility until they actually sample a particular config-
uration. The second assumption is that the global utility
function is monotonic. This assumption is also not valid
because the goal is to optimize route quality, which cannot
be estimated without considering the route as a whole. In
fact, the overall utility of the route might be very negative
until the final critical robot is placed into the correct posi-
tion. The third invalid assumption is that communication
between the agents is perfect. This is certainly not true be-
cause the motion of the commbots may cause the communi-
cation network to vary from being completely connected to
completely disconnected, making communication impossi-
ble. In addition to not addressing many of the difficulties as-
sociated with this problem, DCOP algorithms are designed
to produce optimal results and because of that do not scale
very well. Scalability is a key requirement of the commbots
problem, so approximate algorithms that are highly scalable
are preferred to optimal solutions.

Algorithms
We have implemented two centralized and three distributed
algorithms. The centralized algorithms are enumerative
brute force and simulated annealing. Because of the expo-
nentially large search space, the brute force approach is vi-
able only for small populations of fewer than 10 commbots.
Simulated annealing, on the other hand, is very efficient and
on small populations where we have the brute force solution
against which to compare, annealing always finds an opti-
mal solution. Because of the lack of scalability of the brute
force approach, in the experimental results we present the
annealing solution as a surrogate optimum. These global al-
gorithms, which are not realizable on any physical commbot
system, are used only to establish the relative performance
of the distributed algorithms.

The distributed algorithms, explained in detail below,
are a local form of simulated annealing, a modified ver-
sion of distributed breakout (Yokoo & Hirayama 1996), and
auction-based team formation. Because a single commbot
does not have access to global state information, it cannot
directly evaluate the objective function given in Equation1.
Instead it uses the following local (unbounded) approxima-
tion, in which the outer summation over all commbots is
removed:

Ul(i) =
∑

j∈C,j 6=i

αR(i, j)Q(i, j) − β¬R(i, j) (2)

The three distributed algorithms useUl(i) to estimate the
utility of a configuration from the perspective of commboti.

Local annealing
The first approach we applied to this problem was a lo-
calized version of the simulated annealing algorithm (Kirk-
patrick, Gelatt, & Vecchi 1983). Simulated annealing works
by selecting a random next state and if that next state has a
better utility than the current one, the state is changed. If,
however, the next state is worse than or equal in value to
the current utility, the move is taken with probabilitye

α∆U

t

where for the sake of this paper,α = 0.5.
There are several reasons to choose local simulated an-

nealing as an approach to solving the commbots problem.
First and foremost, one of the key characteristics of the
commbots problem is that the robots do not know the utility
of a state without first sampling it. This leads to a com-
mon problem seen in distributed learning where robots have
to trade off getting up-to-date utility estimation throughex-
ploring new states or exploiting current knowledge to obtain
a good solution. Simulated annealing is a good method to
use, because even when the utility of moving to another po-
sition is perceived to be suboptimal, robots will still move
there with some probability, thereby updating their estimate.
In this implementation, the estimation of the value of a po-
sition is a running average of the last five samples taken at
that position. This estimation does not explicitly take into
account the position of any of the other robots in the environ-
ment, which eliminates the need for the robots to explicitly
communicate. For the most part, this technique works be-
cause each robot is trying to move to its best position which
makes the system as a whole climb the utility gradient. To
bootstrap the estimation process, at startup, each robot does
one sample from each of its potential positions before start-
ing the annealing process.

Distributed breakout
The second algorithm implemented was a modified version
of the distributed breakout algorithm (DBA). DBA is a hill-
climbing protocol that is a distributed adaptation of the cen-
tralized Breakout algorithm (Morris 1993). DBA works by
alternating between two modes. During the first mode, the
wait ok? mode, robots collect from their neighborsok?
messages containing current state information. This infor-
mation is then used by each robot to calculate its locally
optimal state and the improvement in its local utility if it



were to switch to this new state. Each robot then sends to its
neighborsimprove? messages containing its improvement
value and then changes to thewait improve?mode.

In the wait improvemode, the robots collectimprove?
messages from their neighbors. The purpose of the improve
message is to find the neighbor with the highest local im-
provement and to elect it to change its value. If a robot re-
ceives an improve message with a higher improvement than
its own, it is not the leader and does not change its value.
This method provides a relatively stable upward climb in
utility, but can be slower than other techniques because of
its controlled nature. DBA allows at most only half of the
robots to change their value at any given time and takes two
steps to elect a leader.

Once the robots have elected a leader, the leader changes
its value. The robots sendok?messages to one another, and
switch to thewait ok?mode.

The original DBA protocol was designed to solve dis-
tributed constraint satisfaction problems (DCSPs) where the
relationship between the variables was known a priori. For
the protocol to work in the commbots domain, several modi-
fications were needed. The first of these was to incorporate a
method for estimating the value of links between each of the
robots. Unlike the distributed annealing approach, the DBA
implementation uses pair-wise estimators where the utility
of a particular position is estimated based on the current state
of all the robot’s neighbors. This allows for a more accurate
estimate of a position’s true contribution to the global utility,
but further slows the protocol’s convergence as the robots si-
multaneously explore their environment and hill-climb.

One of the other key differences between the local anneal-
ing approach and the DBA approach is in how the robots
choose to explore their environment instead of exploiting
prior knowledge. The DBA algorithm presented in this pa-
per calculates the explicit cost and value of the information
in choosing when to explore an unknown state. The cost is
calculated as a percentage of loss of utility from the opti-
mal solution to the unexplored state. This cost is compared
to the value of information that is measured as the percent-
age of robot/state pairs that would be sampled by moving
to this new position. If the overall gain is nonnegative and
the robot’s current improve value is zero, then the move
is made. The overall behavior exhibited by this technique
is that the robots perform quite a few exploration moves
early in the search, but as their knowledge and local utility
increases, they become less inclined to make a costly ex-
ploratory move.

Auction-based team formation

The third algorithm employs local auctions for team forma-
tion. The intuition behind this approach is that it can be prof-
itable to explore configurations that are similar to a known
high-value configuration. The algorithm is distributed, with
each commbot executing the same control code. A comm-
bot has three modes of operation:RANDOM, LEADER, and
FOLLOWER. After a commbot moves, it sends to all its
neighbors alocationmessage containing the robot’s current
position in its local frame.

Each commbot begins in theRANDOMmode, randomly
exploring its local area. Usinglocationmessages received
from neighbors and information from the routing table, the
robot constructs a hash table of tuples (state, utility). The
stateis a set of positions (in their respective local frames) for
some subset of the commbots, and theutility is locally cal-
culated according to Equation 2 and averaged over all times
that the robot has observed thisstate. This state / utility ta-
ble is a more detailed memory of past experience than the
memories maintained by DBA or local annealing.

Each robot keeps track of the maximum utility it has seen
so far. After some period of time has elapsed without this
maximum changing, a commbot transitions to theLEADER
mode in order to explore particularly promising configura-
tions. The robot returns to the position where it saw the
maximum utility and sendsauctionmessages to the neigh-
bors that it had in that state. Eachauctionmessage contains
a desired position for the recipient, along with an estimated
utility for moving to that position. The goal of the leader is
to reconstitute as much as possible of the previous best con-
figuration by offering its neighbors an opportunity to im-
prove their utility. Because its previous neighbors are not
necessarily within communication range, some or all of the
auctionmessages may not be delivered.

Upon receipt of anauctionmessage, a robot that is cur-
rently in theRANDOMor FOLLOWERmodes will compare
the estimated utility to its current utility. If the estimated
utility in the message is greater, the robot will enter theFOL-
LOWERmode (if not already in that mode) and move to the
desired position. Because multiple leaders may be sending
auctionmessages simultaneously, they are competing for the
attention of their neighbors, possibly causing them to defect
from other teams.

Having constructed a team of followers that are in the de-
sired positions, the leader systematically explores its local
area, recording state and utility information. At the end of
this systematic exploration, the team is dissolved and both
leader and followers transition back to theRANDOMmode.

Termination occurs when a robot has not seen a change in
the maximum utility for a sufficiently long period of time.
At this point, if the robot is in theLEADERor RANDOM
mode, it will return to the position where it saw the maxi-
mum utility. A robot in theFOLLOWERmode will remain
in its current position.

Simulation
To evaluate the relative strengths and weaknesses of each
of the algorithms discussed in the previous section, we con-
structed an abstract version of the commbots problem in a
simulator. Figure 2 shows a screenshot of the simulator with
24 robots. Within the simulation, each robot is implemented
as a separate thread that executes one cycle at a time. During
each cycle, the robot can receive its messages, process those
messages, and move only once. The robots actually move
between cycles and the movement occurs instantly. To sim-
plify the calculation of the optimal solution, the simulation
discretizes the potential positions of the robots (Figure 2).
To ensure that the robots do not get synchronized, the sim-



Figure 2:Screen shot of the commbots simulator with 24 robots.

ulator inserts a random duration sleep to simulate the action
of movement.

Robots are able to communicate with one another only
if they are in communication range. Currently, we do not
allow robots to communicate over multiple hops in the com-
munications network. This restriction creates uncertainty in
knowing where other commbots are located because they
are not always able to inform each other about their current
state. Messages are delivered instantaneously and without
loss although, in the future, we plan to relax this assumption
by introducing loss according to the simulated signal quali-
ties between the robots.

On startup, each commbot is placed in a random posi-
tion within the environment and is given knowledge only of
other robots within communication range. As the commbots
move around and in and out of the range of other comm-
bots, the simulator updates their respective routing tables.
The commbots can check their tables at any time to get an
up-to-date view of the overall quality of the network from
their perspective. For the sake of the simulation, the func-
tion Q(i, j) from equation 1 is computed as

Q(i, j) =
1

D(i, j)2
(3)

whereD(i, j) is the travel distance of the shortest path from
i to j in the communication network. Although one can
imagine a number of equally valid functions to optimize,
this one was chosen to simulate the loss of signal quality
that occurs over distance.

As the simulation progresses, the simulator measures the
number of movements made by the robots, the number of
messages that are transmitted, and the current global solu-
tion quality. The simulation terminates when all the robots
report that they no longer wish to move.

Test Setup and Results
To test the various protocols, we set up the simulator to vary
the number of robots while keeping the ratio between com-
munication and movement distance constant and placing the
robots pseudo-randomly in the environment. The following
rules were used to place the commbots:
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Figure 3:Utility of various techniques for solving the commbots
problem.

• The first robot is placed at a random location.

• Every commbot must be within some maximum distant
dmax to at least one other commbot.

• Every commbot must be no closer thandmin to all other
commbots.

The communication range for the commbots was fixed at
300 units and the movement radius was 80 units. We set
dmin = 150 anddmax = 350 to ensure that every comm-
bot had at least one position from which it could commu-
nicate with another commbot and that the overlap between
the commbots was kept to a minimum. For the tests we var-
ied the number of robots in the environment from 5 to 100,
testing at 5-robot intervals. We generated one scenario for
each of the data points and ran each protocol 10 times to
minimize the effects of variance caused by the randomized
nature of the protocols.

The results of the tests can be seen in Figures 3, 4, and 5.
Looking at Figure 3, one can see that none of the proto-
cols does as well as the centralized simulated annealing ap-
proach. Although not shown in these graphs, we ran the
brute force algorithm and compared the results with the cen-
tralized annealing method for a small number of commbots
(n < 10). The global annealing approach does exactly as
well as the brute force search and takes considerably less
time with the brute force approach taking nearly 25 minutes
to compute a solution for nine commbots on a dual-3 GHz
Pentium-based desktop.

Also notable on this graph is that it appears that DBA out-
performs the other methods. This is a bit deceptive as the
variance (not shown because it cluttered the graph) in the
samples was very large, making the difference between the
protocols seemingly insignificant. Looking at Figure 5 we
can see that local simulated annealing makes fewer moves
before converging on a solution. In power-critical applica-
tions such as this one, this is a very desirable feature. In
addition, notice that all the distributed techniques use fewer
robot movements to converge on a solution than the cen-
tralized annealing approach. This is a result of the cooling
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Figure 4:Communication usage of distributed techniques for solv-
ing the commbots problem.

schedule of the annealing process, which can be changed to
converge faster, resulting in fewer moves.

Between the distributed protocols, the local annealing
process uses the least communication because it uses no
communication at all. One can see that DBA uses more mes-
sages than auction-based teams, however. This is most likely
caused by the two-step nature of the DBA protocol, which
causes every robot to send messages to each of its neighbors
on every cycle.

From the results, a number of interesting findings can be
seen. The most profound finding is that the distributed pro-
tocols do not do significantly better even when they use more
communication and robot movements. We suspect that the
cause of this lies in the way the global utility is being cal-
culated and the ability of the individual robots to understand
their effect on it. In an effort to promote scalability, all the
protocols in this paper restrict their interactions to their im-
mediate neighbors and use only this localized information
to make their decisions. However, the global utility is not
an aggregation of the local utilities of the commbots, but is
in fact related to the routes that are created in the network.
This means that local estimations are very likely to be poor
in determining the effect that any one commbot has on the
overall network’s quality.

The results are not entirely discouraging because they
suggest that if the robots can discover information through
abstraction and aggregation, they may be able to make
better localized decisions. It also suggests that partial
centralization-based techniques like cooperative mediation
(Mailler 2004) or regional or hierarchical auctions may be
very good at solving these problems effectively and effi-
ciently.

Summary
We introduced thecommbot problemof controlling a group
of mobile communication relay robots in order to maximize
network performance. We implemented three distributed al-
gorithms and presented results from simulations in which
we tested these algorithms on randomized populations of
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Figure 5:Number of moves made by the commbots before conver-
gence.

commbots. The data that we have gathered so far suggest
that simple message-passing schemes in which the robots’
state retention is purely local are insufficient for this prob-
lem.

We hypothesize that significant benefit can be had by fo-
cusing future algorithm development on two key areas: shar-
ing state information more widely, and recognizing and ex-
ploiting patterns in the observed states. In addition to fur-
ther algorithm design and simulation, in the near future we
will deploy and test teams of physical commbots with hu-
man users. Our hope with this work is to motivate other re-
searchers to engage with us in studying the commbots prob-
lem, which exhibits both theoretical richness and real-world
importance.
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Abstract

Many coordination algorithms claim to begeneral, imply-
ing that they can be used to coordinate agents in a variety
of domains. However, little work has been done to quantita-
tively compare distinctly different approaches to coordination
across a range of domains, in part because of the amount of
effort required to implement the approaches for different do-
mains. In this paper, we present a detailed comparison of two
published coordination algorithms, performed in an abstract
coordination simulation environment that allows extensive,
quantitative experimentation. The abstract environment pre-
serves critical coordination issues but abstracts away domain
level details allowing a high degree of parameterization and
large volume of experiments. The simulator is used to com-
pare two distinct approaches to coordination, token-based co-
ordination and market based coordination. The results largely
show the generality of different approaches, but show that
performance and performance tradeoffs varies greatly across
domains.

Introduction
Autonomous coordination is a complex process because sev-
eral distributed algorithms are required to interact to produce
agile, cohesive and efficient coordinated behavior. If effec-
tive coordination can be achieved, it is applicable to a diverse
range of domains from commerce, to disaster response and
to the military. Because of the importance of autonomous
coordination, many approaches have been developed, in-
cluding approaches based on markets (N. Kalra B. Dias &
Stentz. 2005; Gerkey & Mataric. 2003), tokens (Y. Xu &
Lewis. 2005) and swarms (Cicirello & Smith. 2001). Typ-
ically, each of these approaches is designed to work in a
specific domain, but the authors, usually with good reason,
claim they will work in a wide range of domains. How-
ever, such claims are rarely quantitatively verified and, more
importantly, competing approaches are rarely systematically
compared. Thus, when a developer needs to select an ap-
proach to use in a particular domain, they are confronted
with many claims but little concrete data with which to make
a decision.

The need to compare competing algorithms is well un-
derstood, as is the difficulty of doing so. Major initiatives

Copyright c© 2006, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

such as RoboCup (Yanco. 2001), Urban Search and Res-
cue (USAR) (Jacoff & Evans. 2001) and the Trading Agent
competition (E. David M. He & Jennings. 2005), have
been created partly for the purpose of comparing alterna-
tive approaches. However, with important exceptions e.g.,
(Kaminka. 2000), these initiatives have not led to scientif-
ically valid comparisons to date. This is partly because the
target problem does not have enough flexibility to allow test-
ing across a range of settings and partly because performing
scientifically valid comparisons is simply too resource con-
suming within such environments. In more limited scenar-
ios, and typically on more abstracted problems, many re-
searchers have compared specific algorithms that might be
part of an approach to coordination. Sometimes, the re-
sults are less than conclusive. For example, Modi (Modi
& Veloso. 2005) and Mailler (Mailler & Lesser. 2004) have
written papers in recent AAMAS conferences showing that
their respective algorithms outperform each other on subtly
different problems and with different metrics used to mea-
sure performance. The consequence of the relative lack of
algorithmic comparison within the multi-agent community
is that whole competing sub-fields of multiagent systems
have never been carefully compared with one another.

In this paper, we present an initial attempt at systemati-
cally and scientifically comparing distinct approaches to co-
ordination. To make such a comparison both feasible and
interesting, we have developed an abstract simulation envi-
ronment that is sufficiently rich to capture a variety of real
world concerns, but sufficiently abstract to be highly config-
urable and very fast. Such an environment provides enough
realism to verify that an algorithm can deal with a range of
issues that “real” coordination presents, but is sufficiently
abstract for statistically significant numbers of experiments
to be performed in a reasonable amount of time. We used the
coordination simulator to investigate the relative strengths of
three distinct approaches to coordination: auction-based co-
ordination (Dias & Stentz. 2003); token-based coordination
(Y. Xu & Lewis. 2005); and a hybrid of the two. The first
two approaches to coordination were chosen because they
had sufficiently similar capabilities, were published within
the agents community and claims had been made about the
generality of each approach. The hybrid algorithm was de-
veloped not to be superior to the other two, but to investi-
gate an hypothesis about the observed relative strengths of



the other algorithms.
Unfortunately, the overlap in coordination tasks that can

be performed by both tokens and auctions is limited to task
and resource allocation, hence the focus of the comparison
is on those capabilities. In the experiments, other tasks re-
quired for coordination, such as initiating joint tasks and
sharing key information are always performed by the token
algorithm. Based on an analysis of previous literature (Y. Xu
& Lewis. 2005; N. Kalra B. Dias & Stentz. 2005), several
hypotheses can be formed about the relative performance of
the algorithms. Auctions are focused on maximizing over-
all utility taking into account thebidsof all team members
(N. Kalra B. Dias & Stentz. 2005). Token-algorithms are
focused on scalability, hence they minimize communication,
sometimes at the expense of overall utility. Thus, the clear-
est hypothesis is that auctions will communicate more than
token algorithms, but result in better allocations of tasks and
resources. More subtly, the performance advantage of an
auction should be most pronounced when small changes in
allocations lead to big differences in performance, i.e., typ-
ically highly constrained cases, while the token algorithms
should maximize their communication advantage when the
probabilistic models they rely on are most advantageous,
i.e., weakly constrained cases. The empirical results support
these hypotheses.

Initial experiments suggested that auctions find superior
allocations because they compare many options, while to-
kens use little communication by quickly focusing on the
agents most likely able to perform tasks or having most use
for resources. If these are the correct reasons for the relative
algorithm strengths, then a hybrid algorithm that uses tokens
to solicit auction bids from those agents most likely to sub-
mit winning bids then uses an auction to select from between
the small number of bids should perform well. However, this
hybrid algorithm should only perform well under restricted
circumstances. If the problem is so tightly constrained that
the auctions need to see many bids to make good alloca-
tions then using tokens to solicit bids only adds overhead.
Conversely, if the coordination is so underconstrained that
the tokens can reliably and accurately target the best agents,
then the auction only adds unnecessary overhead. We imple-
mented the hybrid algorithm and compared its performance
to the other algorithms.

Problem
In the following, we formally describe the coordination
problem that the algorithms must contend with.

Agents,A = {a1, . . . , ak}, are cooperating on a joint
goalG. Information,I = {i1, . . . , in}, are discrete pieces
of information that are eithertrue or false at a particular
time. G is broken into discrete sub-tasksα1, . . . , αn, typ-
ically performed by individuals. A subtask,αi is applica-
ble when the predicateApplicable(Iαi

), Iαi
⊆ I is true,

whereApplicable(Iαi
) ≡

∧
i∈Iαi

i. The applicability of
a task must be determined by the team and the team must
ensure that only one instance of an applicable task is being
executed. We refer this process as plan instantiation and de-
confliction.

Agents must perform the individual tasksα, when they
applicable, for the team to receive reward. The reward re-
ceived by the team when an agent performs a task is a func-
tion of the agent and task, as well the resources the agent
has. Specifically:

Reward(a, α, Holds(a)) → R

The functionAssigned(a, α) = 1 if agenta is assigned
to taskα, otherwise it is equal to 0. Only one agent may be
assigned a task at any time, i.e.,

∑
a∈A

Assigned(a, α) ≤
1.

Agents always require sharable resources to perform
tasks. These resources,R = {r1, . . . , rm}, are discrete and
non-consumable. Agenta has exclusive access to resources
Holds(a) ⊆ R. Only one agent may hold a resource at any
point in time, i.e.,∀a, b ∈ A, a 6= b,Holds(a)∩Holds(b) =
∅.

We specifically distinguish betweennecessaryand use-
ful resources. We defineIRi ⊆ R as a set of substi-
tutable resources. Necessary resourcesIR∗

i
are those where

if Holds(a)
∩ IR∗

i
= ∅ thenReward(a, α, Holds(a)) = 0. Useful re-

sourcesIR+

i
are those where ifReward(a, α, Holds(a)) >

Reward(a, α, Holds′(a)) thenHolds(a) ∩ IR+

i
6= ∅ and

Holds(a) ∩ IR+

i
= ∅. In this paper, we consider only nec-

essary resources.
The coordination problem is to maximize the reward to

the team, while minimizing thecosts of coordination. The
overall reward is simply:

n∑

i=0

∑

a∈A

Assigned(a, αi)Reward(a, αi,Holds(a))

The costs of coordination can be very general and in some
cases difficult to define. Here we are specifically concerned
with only the volume of communication. The coordination
simulator that we are using, implements this abstract coor-
dination problem. More details about this simulator are in
Section 4.

Algorithms
In the following, we describe the three coordination ap-
proaches that are compared and point to key literature de-
scribing the expectations for those algorithms. Notice that
we only focus on the problems of task and resource alloca-
tion because other issues are not addressed in a comparable
way by the respective algorithms.

Auction-Based Coordination
The first of the algorithms we compared used a market-based
approach to task and resource allocation. Our implemen-
tation of this approach was based on TraderBots (Dias &
Stentz. 2003) with adaptations where are necessary to make
a comparison possible. In our market-based approach, one
agent acts as auctioneer and both tasks and resources are
treated as merchandise. Agents bid for either single items or
combinatorial sets of items in order to maximize their own



utilities. The auctioneer maximizes its utility by ”selling”
their ”merchandise”. In this approach, Sandholm’s winner
determination algorithm (Sandholm. 2002) is used to deter-
mine the allocation for tasks and resources by the auctioneer.
Because of the centralized position of the auctioneer, it de-
velops a complete knowledge of how agents will use a task
or resource if allocated. Thus, the auctioneer can perform
assignments that maximize the team utility. Notice that sev-
eral constraints also apply to this approach. To be fair to all
the bidders, the auction should last for a fixed period of time.
Where early determination is infeasible; Agents are allowed
to bid for resources after tasks have been allocated. More-
over, to prevent deadlock in resource allocation, agents are
only allowed to bid for resources for theirfirst pending task.

Algorithm 1: AgentAuction
(1) ApplicableTasks=[], Bids=[], OwnTasks=[],

Holds=[], AuctionList=[];
(2) while true
(3) foreach (α in a,α /∈ ApplicableTasks)
(4) if (Applicable(α)
(5) ApplicableTasks.append(α);
(6) SendToAuctioneer(α);
(7) Update(AuctionList, BidList);
(8) msg → recvMsg;
(9) if (msg is NewTaskAuction(α))
(10) BidTask(α);
(11) else if(msg is NewResourceAuction(r))
(12) OpenResources.add(r);
(13) else if(msg is TaskAllocated(α))
(14) OwnTasks.append(α);
(15) else if(msg is ResourceAllocated(r))
(16) Holds(append(r));
(17) CheckExecution(OwnTasks.getfirst(),

Holds)
(18) BidResources(OwnTasks.getfirst());
(19) if (OwnTasks.getfist() is complete)
(20) OwnTask.removeFirst();
(21) SendToAuctioneer(CheckUnneeded(Holds));

Agents using auction based coordination will act at each
step in the following way (see Algorithm 1). The agent first
checks whether new tasks have become applicable. If so,
the agent will submit the tasks for auction (line 3-6). The
agent will then update its AuctionList and BidList (line 7).
Next, agents will be required to receive messages. For each
message, agent process in one of the four ways. If a message
notifies any new task, the agent will consider a bid for that
task and any other open task auctions (line 9-10). The value
of a bid is calculated as

Reward(a, α) = a.cap(α) − dist(a.location, r.location)

Thus, the agent bids proportionally to its capability to per-
form the task but inversely proportionally to the time it will
take to perform the task. If the message is to inform of an
open resource auction, this resource will be added to the
agent’s OpenResources list (line 11-12). If the message is
to notify the agent that is allocated to a task, this task will
be added to OwnTasks (line 13-14). If it is allocated a re-
source, the agent checks whether any task is now executable
(line 15-17). After processing all the messages, the agent

will try to bid for required resources to perform the first task
pending to be performed in OwnTasks (line 18). Notice that
some resources are interchangeable, so the agent can bid for
any of those resources. For example, for a fire fighting a
bucket of water is interchangeable with a fire extinguisher.
The agent will send bids for all combinations of OpenRe-
sources that will allow it to perform its first pending task.
Finally, if any task has been completed, the resources will
be released to the auctioneer for allocation to other agents
(line 19-21).

The auctioneer allocates tasks and resources as described
in Algorithm 2. The auctioneer processes all incoming mes-
sages (lines 3), records bids (lines 11-12) and open new auc-
tions as required (lines 5-10). Then it makes a list for all
auctions to be closed (lines 13). The auctioneer will deter-
mine an allocation for all the items in the list and they will
be allocated (lines 14). Finally, bids for closed auctions are
removed from lists (lines 15).

Algorithm 2: Auctioneer Algorithm
(1) while (true)
(2) Auctions=[], Bids=[], ClosedTasks=[], Close-

dResource=[];
(3) Msgs→ getMsgs();
(4) foreach (m in Msgs)
(5) if (m is Resource(r))
(6) Broadcast(new Auction(r));
(7) Auctions.append(r);
(8) else if(m is Task(α))
(9) Broadcast(new Auction(α));
(10) Auctions.append(α);
(11) else if(m is Bid)
(12) Bids.append(m);
(13) ClosingAuction← toClose(Auctions);
(14) DetermineWinner(ClosingAuction);
(15) RemoveBids(ClosingAuction);

Token-Based Coordination

Token-based algorithms are a relatively new approach
to coordination, designed for coordination of many
agents(P. Scerri & Tambe. 2005; Guralnik. 2003; Y. Xu
& Lewis. 2005). Specifically, here we use the approach
as described in (Y. Xu & Lewis. 2005). Tokens, encap-
sulating both information and control, are the basis for all
coordination. Control information, included with the token,
allows actors to locally decide what to do with the token.
For example, atask tokencontains control information al-
lowing an actor to decide whether to perform the task or
pass it off for another actor. An intelligent routing algo-
rithm (Y. Xu & Lewis. 2005) is built in the token-based
approach to help agents build local decision theoretic mod-
els to determine when and where to pass tokens. By uti-
lizing the relevance between tokens, i.e, tokens representing
resources useful for a particular task should be passed to the
same agent as the token representing that task was, intelli-
gent routing algorithm is able to efficiently deploy tokens
to make higher utility with less communication. In this pa-
per, tasks are allocated by the LA-DCOP token algorithm
(P. Scerri & Tambe. 2005) where different with the basic



task allocation algorithm in (Y. Xu & Lewis. 2005), agent
is allow to reject previous accepted task but accept another
task that it can get more reward.

Specifically, in the token-based approach, each agent ex-
ecutes Algorithm 3. As with the auction-based approach,
agents first check whether new tasks have become applica-
ble. If so, the agent will embed the task to a token and add it
into its token list, Tokens, to be processed (line 3-5). Next,
the agent will receive all the tokens passed from other agents
(line 6). It then processes all the tokens in the Tokens. If a
token represents a task, the agent will accept the task if its
capability to perform that task is higher than token’s thresh-
old (P. Scerri & Tambe. 2005) (lines 8-11), otherwise, the
agent will choose a neighbor to pass that token to (line 13).
If the token is a resource token, and the agent’s need for that
resource to perform his waiting tasks is higher than token’s
current threshold (Y. Xu & Lewis. 2005), this resource will
be held otherwise it is passed to a neighbor (lines 14-21).
Note that when a token is sent, the token will be removed
from that agent’s list. Finally, the agent will check whether
any task which is pending can now be executed (lines 22)
and release any resources from completed tasks (lines 23-
28).

Algorithm 3: AgentToken
(1) ApplicableTasks=[], OwnTasks=[], Holds=[], To-

kens=[];while (true)
(2) foreach (α in a,α /∈ ApplicableTasks)
(3) if (Applicable(α))
(4) ApplicableTasks.append(α);
(5) Tokens.append(CreateTokens(α));
(6) Tokens.append(recvTokens());
(7) foreach (t ∈ Tokens)
(8) if (t is TaskToken(α))
(9) if (GetCap(α) >t.threshold)
(10) if (α /∈ OwnTasks)
(11) OwnTasks.append(α);
(12) else
(13) SendToNeighbour(t);
(14) else if(t is ResourceToken(r))
(15) t.threshold+=δ;
(16) if (GetNeed(r)>t.threshold)
(17) if (r /∈ Holds)
(18) Holds.append(r);
(19) else
(20) t.threshold -=δ;
(21) SendToNeighbour(token);
(22) CheckExecution(OwnTasks, Holds);
(23) foreach (α ∈ OwnTasks)
(24) if (α is complete)
(25) OwnTask.remove(α);
(26) foreach (r ∈ ChkUnneed(OwnTask,

Holds))
(27) Hold.remove(r);
(28) SendToNeighbour(CreateToken(r));

Hybrid Approach: Token-Based Auctions
The two algorithms described above take very different ap-
proaches and are based on distinctly different principles.
The auction algorithm gathers lots of information, i.e., bids,
and then makes an intelligent decision about how to allocate

Figure 1: CoordSim allows us to test coordination algo-
rithms by varying many parameters

tasks and resources. On the other hand, the token algorithm
makes informed estimates of about what good allocations
will be like and attempts to directly target only those agents
involved in an allocation of that quality or better. Intuitively,
these principles can be combined into a hybrid algorithm
that has the key advantages of both basic algorithms. Notice
that the intention here is not to design a new algorithm but
instead fuse two principles to see whether it performs best
in the cases where neither of the two basic algorithms are
particularly suited.

The hybrid algorithm works in the following way. The
auctioneer algorithm runs exactly as before, except that in-
stead of broadcasting announcements for auctions anauc-
tion tokenis created. Each auction token is allowed to exist
from the starting of the auction to the end of the auction be-
ing closed. The auctioneer has a probabilistic model of the
team state, just as all agents do in the token-based approach.
The auction token is then intelligently routed to the agents
most likely to be able to submit the best bids. The token
stops moving after the auction it presents is closing or has
visited a fixed number of teammates. Note that although the
intelligent routing algorithm should work to route tokens for
higher bids, it should not work better than the token-based
approach. The reason is that intelligent routing algorithm
cannot make use of the relevance (Y. Xu & Lewis. 2005)
between tasks and resources which have been encapsulated
into auction tokens. When an agent is receiving an auc-
tion token, it cannot infer any knowledge about the sender
whether it cannot make use of that task or resource. The
auctioneer determines the winner of the auction and allo-
cates tasks and resources the same as in the basic auction
case.

We expect that the hybrid approach should reduce com-
munication over the basic auction, by targeting only those
agents likely to make good bids and reduce computation by
limiting the number of bids the auctioneer must deal with.
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Figure 2: The average reward for heterogeneous teams dra-
matically decrease in auction and hybrid approaches. Token-
based approach maintains constant reward but requires more
messages

Experiments
In this section, we show how the comparisons were per-
formed. The three approaches were implemented in an ab-
stract simulator called CoordSim. This simulator is capable
of simulating the major aspects of coordination including
sensor fusion, plan management, information sharing, task
assignment and resource allocation. CoordSim abstracts
away the environment, instead just simulating its effects on
the team. Uncertain sensor readings are received randomly
by one or more agents in the team at a parameterizable rate.
Agents cannot ”know” anything they do not sense or is not
communicated to them from a teammate.

In the experiments, we use a consistent algorithm for sen-
sor fusion and information sharing, specifically the algo-
rithms described in (B. Yu & Lewis.. 2006; Y. Xu & Scerri.
2004). Physical resources required for tasks are simulated,
only allowing one agent to access them at any time. There
is no cost for transferring resources and resources cannot be
consumed or lost. We simulate the spatial layout of tasks,
distributing them randomly in an 500× 500 environment.
In these experiments all agents move at equal speed. Time
is designed and all agents are allowed to ”think” and ”act”
at each step, although the effects of their ”actions” are ab-
stractly simulated. Communication is implemented via ob-
ject passing, making it very fast. Reward is simulated as
being received by the team when the agent is allocated the
task, its simulated location is at the task location and it has
exclusive access to required resources. Reward is received
while the agent is simulating to take the task, which takes
one time step.
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Figure 3: Reward and Messages increase dramatically with
the number of tasks.

CoordSim allows a large number of parameters to be var-
ied and statistics to be recorded. Figure 1 shows the inter-
face for setting up experiments and viewing results. If not
otherwise stated, the experiments are configured as follows.
There are 100 agents to perform 50 tasks with 50 resources.
Each task requires only one resources which could be in-
terchangeable with four others. In the default setup, there
is only one type of capability required and all agents have
none-zero value for this capability, i.e., all agents are at least
somewhat capable of all tasks. Auctions are held open for 40
time steps and the task tokens, resource tokens are allowed
to move unless accepted. The initial threshold on a task to-
ken is 100, meaning that the task will not be accepted by an
agents until it can get a reward more than 100 by performing
this task. We measured two key statistics required to support
or refute our hypothesis about the algorithms. ”Reward” is
the sum of reward received by each agent. ”Messages” is
the number of times agents communicated, either between
themselves or with the auctioneer. The ”messages” count
indicates messages sent to perform sensor fusion, plan ini-
tiation and information sharing. Simulation runs for 2000
time steps. The experiment results below are based on 100
runs.

Heterogeneous Team
In the first experiment, we examined team performance by
varying team composition and the capabilities required to
perform tasks. For example, in an emergency response ex-
periment some agents might only be able to fight fires while
others could only provide medical treatment. As capabilities
grew more varied fewer agents were available to perform
particular tasks. In this experiment, we varied the number of
capabilities from 1 to 46 where in the most heterogeneous



condition, only two agents on average are capable to per-
forming a task.

The experimental results in Figure 2 show that for het-
erogeneous teams, auction and hybrid approaches earn less
reward as the team becomes more heterogeneous because
there are fewer agents able to compete for the more spe-
cialized tasks. The advantages of teamwide maximization
of utility by the auctioneer decrease as there are progres-
sively fewer feasible alternative bids. In contrast, reward
for the token-based approach remain almost flat with in-
creasing specialization. We propose two reasons. One is
that token-based approach greedily finds reasonable solution
rather than searching for the optimal. As the other reason,
by passing a higher number of tokens around the network
and making use the relevance between them, intelligent rout-
ing algorithm gets better knowledge to route tokens. This is
manifested that although the average distance to route a to-
ken increases with heterogeneity as reflected in an increase
in messages around the team, token-based approach main-
tains the same level of reward.

Time Critical Tasks
In the second experiment, we investigated team performance
when many tasks needed to be performed within a short
period of time. To increase their reward, teams were re-
quired to perform tasks and allocate resources as rapidly as
possible. In this study we varied the number of tasks the
teams were required to finish from 20 to 182. After 2000
time steps, the accumulated reward and message count were
recorded as shown in Figure 3.

All three approaches performed more tasks in order to get
higher reward. As expected, the auction approach attained
higher reward than the hybrid or token-based approaches.
Considering both reward and messages, however, the hybrid
approach performs well by almost matching the reward ob-
tained by the auction at just a quarter of the communication
cost. The reason the hybrid approach achieves such good
performance with so little communication overhead is that
the intelligent routing algorithm limits communication to a
small number of agents while high bidders must always be
informed in auctions.

Competitive Resources
The third experiment used 200 tasks each requiring an aver-
age of four resources with no interchange possibilities. As
available resources are increased from 4 to 40, competition
for them declines and they become less likely to be a bottle-
neck.

The experiment was stopped after 1000 time steps. Figure
4 shows that the reward for the auction based approach in-
creased rapidly with increases in resources. Both the token-
based and hybrid approaches remained flat with token-based
approach earning the highest reward at all levels of scarcity
while the hybrid approach yielded very limited reward.

We hypothesized that because resource contention in this
experiment was high the centralized control of the auction
and hybrid approaches would often force agents to either
bid for all four resources together or miss the task while the
distributed token-based approach weakened this constraint.
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Figure 4: Reward increase with available resources in auc-
tion approach and are very low in hybrid approach, but with
token-based approach are uniformly high

If our hypothesis were true, auction and hybrid approaches
would get more reward if we either increased the simula-
tion length or reduced the length of the auction to weaken
the constraint. Figure 5 shows the effect of shortening auc-
tion length from 40 to 20 steps (a) and increasing session
length from 2000 and 4000 steps (b). The token-based ap-
proach continues to produce its constant level of reward
while the hybrid approach obtain slightly better rewards.
The auction-based approach, however, improves with in-
creasing resources exceeding the token-based approach at
most levels in the two alternative experiments.

Interchangeable Resources

In the fourth experiment, there were 100 tasks each requiring
three resources. The number of interchangeable resources
were varied from 1 to 5. Experiments were stopped at 1000
steps. Results are shown in Figure 6.

Interchangeable resources did not help the token-based
approach, helped the auction-based approach very little but
substantially increased reward for the hybrid approach. We
contend that three required resources for each task is a high
constraint for a centralized auction. The constraint have
been weaken in auction based approach because this exper-
iment lasts long enough for auctioneer to search bids and
maximize the reward. In contrast, this constraint is higher in
hybrid approach because within a limited number of mov-
ing, all resource auction tokens for a role are required to visit
an agent who has this task pending. This is also a reason why
hybrid approach gained so low reward in section 4.3. More-
over, interchangeable resources led to dramatic increases in
the number of messages for auction based approach because
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Figure 5: Auction approach gets more reward when auction
last length is 20 (a) than as it is 40 or when experiments lasts
from 2000 time points (b) than as it is 4000.

every agent could participate in every resource auction lead-
ing to the submission of a large number of multiple bids.
For example, when interchangeable resources are 5, an agent
should submit53 resource bids.

Auction Length
In this experiment, we varied the length of auctions from
10 to 100 steps. In the hybrid approach, if the auction is
open longer auction tokens can be passed to more agents and
more agents have the opportunity to bid in the auction. In
this experiment an auction lasting 100 steps, would provide
every team member in the hybrid approach an opportunity
to participate.

Figure 7 shows that for this experiment the auction ap-
proach obtained a uniformly high level of reward at all auc-
tion lengths. This reward, however, came at the cost of a
large number of messages for short auctions. The hybrid
approach, by contrast, had a uniformly low volume of mes-
sages and it approached a comparable level of reward with
auction based approach very quickly as auction last long.
This shows us that intelligent routing algorithm works as
explained in section 4.2.

Handling Communication Failures
In this experiment, we investigated the performance of each
approach working in an ad-hoc coordination domain where
agents may randomly lose communication or fail. In this ex-
periment, we varied the probability of communication fail-
ure from 0 to 9 percent.

Experimental results presented in Figure 8 show that un-
certainty had greatest effect on the hybrid condition. As the
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Figure 6: Reward for hybrid approach increases rapidly with
more interchangeable resources

bottom graph shows reward lose was greatest for the hybrid
condition at all levels of failure. While the token-based ap-
proach had the poorest performance in this experiment, the
rapid decline of reward with failure rate for the hybrid con-
dition suggests that loss of auction tokens may have a dis-
proportionate impact on system performance.

Conclusions
This paper presented a detailed, quantitative comparison of
two distinct approaches to coordination. Our results showed
that while both approaches might be used in a wide range
of domains, their relative performance varied greatly. More-
over, there was a clear trade off, as expected, between qual-
ity of allocation and use of communication. The size of
this trade off depended on the specific circumstances. Un-
der some circumstances a hybrid of the two approaches
appeared to provide a useful trade off by leveraging the
strengths of both algorithms.

While this work represents an important first step towards
quantitatively comparing distinct approaches to coordina-
tion, much work remains to be done. Critically in the com-
parison here, we used the simplest instantiations of the al-
gorithms, ignoring the many performance enhancing tech-
niques proposed in the literature. We intend to extend Co-
ordSim to implement some of these extension. Just as im-
portantly, while we considered many coordination issues,
many others were ignored, e.g., individual failures, that may
impact performance.
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Abstract

Combinatorial auctions are a great way to represent and solve
distributed allocation problems. Unfortunately, most of the
winner determination solutions that exists are centralized.
They require all agents to send their bids to a centralized auc-
tioneer who then determines the winners. The PAUSE auc-
tion, in contrast, is an increasing-price combinatorial auction
in which the problem of winner determination is naturally
distributed amongst the bidders. Furthermore, the bidders’
have an incentive to perform the required computations. But,
until now, no bidding algorithm for the auction existed. We
provide a bidding algorithm for agents in a PAUSE auction,
the PAUSEBID algorithm. It always returns the bid that max-
imizes the bidder’s utility. In effect, PAUSEBID is a the dis-
tributed counterpart to the existing centralized winner deter-
mination algorithms, from which we borrow several proven
techniques. Our test results show that a system where all
agents use PAUSEBID finds the revenue-maximizing solution
at least 95% of the time. Run time, as expected since this is
an NP-complete problem, remains exponential on the number
of items.

Introduction

Combinatorial auctions are a popular research topic in part
because of their applicability to a large number of dis-
tributed allocation problems and multiagent coordination
problems (Cramton, Shoham, & Steinberg 2006). However,
the bulk of the winner determination algorithms developed
thus far are centralized since they assume the standard auc-
tion where all the bids are sent to a centralized auctioneer
who then runs the winner determination algorithm. Specif-
ically, CASS (Fujishima, Leyton-Brown, & Shoham 1999),
CABOB (Sandholm et al. 2005), and the earlier Bidtree
(Sandholm 2002) all assume this type of centralized auc-
tion. Unfortunately, these type of centralized auctions are
not a good fit for multiagent systems where computational
resources are owned by each agent and each agent has local-
ized information. We need a way of distributing the compu-
tation.

Luckily, there do exist auction formulations where the
bidders must perform part of the computation, thereby leav-
ing the auctioneer with little or no work to perform. One

Copyright c© 2006, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

such auction is the Progressive Adaptive User Selection En-
vironment (PAUSE) auction (Land, Powell, & Steinberg
2006), and earlier and slightly different version of which ap-
peared first in (Kelly & Stenberg 2000), . The PAUSE auc-
tion lets bidders distribute the winner determination problem
amongst themselves. However, in order to use it in an agent
system we first need an algorithm that tells the agents how
they are to generate their bids. That is, in the same way that
the standard combinatorial auction requires a winner deter-
mination algorithm in order to be implemented by an agent
system, so does the PAUSE auction require a bidding algo-
rithm for its agents. We thus present the PAUSEBID algo-
rithm which enables agents in a PAUSE auction to find the
bids that maximize their utility.

A system of agents using PAUSEBID and the PAUSE auc-
tion can effectively and distributively calculate the solution
to complex coordination problems. For example, imagine a
group of robots trying to pick up and deliver a set of pack-
ages in an office building. Each robot is at a different loca-
tion and has different abilities (some can carry certain types
of packages, some can carry multiple packages at a time,
etc.) These can decide who will deliver which packages by
implementing the PAUSE combinatorial auction where each
robot uses its own valuation function for the sets of packages
it can deliver. The computation required for calculating the
final allocation is naturally distributed among the robots.

The PAUSE Auction

A PAUSE auction for m items has m stages. Stage 1 consists
of having simultaneous ascending price open-cry auctions
for each individual item. During this stage the bidders can
only place individual bids on items. At the end of this state
we will know what is the highest bid for each individual
good and who placed that bid. In each successive stage k =
2, 3, . . . ,m we hold an ascending price auction where the
bidders must submit sets of bids that cover all goods but each
one of the bids must be for k goods or less. The bidders are
allowed to use bids that other agents have placed in previous
rounds when placing their bid, thus allowing them to find
better solutions. Also, any new bid set has to have a sum of
bid prices which is bigger than the currently winning bid set.

At the end of each stage k all agents know the best bid for
every subset of size k or less. Also, at any point in time after
stage 1 has ended there is a standing bid set whose value in-



creases monotonically as new bid sets are submitted. Since
in the final round all agents consider all possible bid sets,
we know that the final winning bid set will be one such that
no agent can propose a better bid set. Note, however, that
this bid set is not guaranteed to be the one that maximizes
revenue since we are using an ascending price auction so the
winning bid for each set will be only slightly bigger than the
second highest bid for the particular set of goods. That is, the
final prices will not be the same ones as the prices in a tradi-
tional combinatorial auction where all the bidders bid their
true valuation. However, there remains the open question of
whether the final distribution of goods to bidders found by
the PAUSE auction is the same as the distribution dictated by
the revenue maximizing solution. Our test results provide an
answer to this question.

The PAUSE auction makes the job of the auctioneer very
easy. All it has to do is make sure each new bidset adds up to
a number that is bigger than the current best as well as make
sure that any bids an agent places that are not his do indeed
correspond to other agents’ bids. The computational prob-
lem shifts from one of winner determination to one of bid
generation. Each agent must search over the space of all bid
sets which contain at least one of its bids. The search is made
easier by the fact that the agent need only consider the cur-
rent best bids and only wants bid sets where its own utility is
higher than in the current winning bid. Each agent also has a
clear incentive for performing this computation, namely, its
utility only increases with each bid set it proposes (of course,
it might decrease with the bid sets that others propose). Fi-
nally, the PAUSE auction has been shown to be envy-free in
that at the conclusion of the auction no bidder would prefer
to exchange his allocation with that of any other bidder.

We can even envision completely eliminating the auction-
eer and, instead, have every agent perform the task of the
auctioneer. That is, all bids are broadcast and when an agent
receives a bid from another agent it updates the set of best
bids and determines if the new bid is indeed better than the
current winning bid. The agents would have an incentive
to perform their computation as it will increase their ex-
pected utility. Also, any lies about other agents’ bids are
easily found out by keeping track of the bids sent out by ev-
ery agent (the set of best bids). Namely, the only one that
can increase an agent’s bid value is the agent itself. Any-
one claiming a higher value for some other agent is lying.
The only thing missing is an algorithm that calculates the
utility-maximizing bid for each agent.
Related Work A lot of research has been done on various
aspects of combinatorial auctions. We recommend (Cram-
ton, Shoham, & Steinberg 2006) for a good review. How-
ever, the study of distributed winner determination algo-
rithms for combinatorial auctions is still relatively new. One
approach is given by our other algorithms for distributing
the winner determination problem in combinatorial auctions
(Narumanchi & Vidal 2006), but these algorithms assume
the computational entities are the goods being sold and thus
end up with a different type of distribution. The VSA al-
gorithm (Fujishima, Leyton-Brown, & Shoham 1999) is an-
other way of performing distributed winner determination

in combinatorial auction but it assumes the bids themselves
perform the computation. This algorithm also fails to con-
verge to a solution for most cases. In (Parkes & Shneid-
man 2004) the authors present a distributed mechanism for
calculating VCG payments in a mechanism design problem.
Their mechanism roughly amounts to having each agent cal-
culate the payments for two other agents and give these to a
secure central server which then checks to make sure results
from all pairs agree, otherwise a re-calculation is ordered.
This general idea, which they call the redundancy principle,
could also be applied to our problem but it requires the exis-
tence of a secure center agent that everyone trusts. Another
interesting approach is given in (Park & Rothkopf 2001)
where the bidding agents prioritize their bids, thus reducing
the set of bids that the centralized winner determination al-
gorithm must consider, making that problem easier. Finally,
in the computation procuring clock auction (Brewer 1999)
the agents are given an ever-increasing percentage of the
surplus achieved by their proposed solution over the current
best. As such, it assumes the agents are impartial computa-
tional entities—not the set of possible buyers as assumed by
the PAUSE auction.

Problem Formulation
We now introduce some notation to formally describe the
problem and our algorithm. Let each bid b be composed of
bitems which is the set of items the bid is over, bvalue the value
or price of the bid, and bagent the agent that placed the bid.
The agents maintain a set B of the current best bids, one for
each set of items of size ≤ k where k is the current stage.
At any point in the auction, after the first round, there will
also be a set W ⊆ B of currently winning bids. This is the
set of bids that currently maximizes the revenue, where the
revenue of W is given by

r(W ) =
∑

b∈W

bvalue. (1)

Agent i’s value function is given by vi : S → ℜ where
S is a subset of the items. Given an agent’s value function
and the current set of winning bids W we can calculate the
agent’s utility from W as

ui(W ) =
∑

b∈W | bagent=i

vi(b
items)− bvalue. (2)

That is, the agent’s utility for a bid set W is the value it
receives for the items it wins in W minus the price it must
pay for those items. If the agent is not winning any items
then its utility is zero. The goal of the bidding agents in the
PAUSE auction is to maximize their utility, subject to the
constraint that their next set of bids must have a total revenue
that is at least ǫ bigger than the current revenue, where ǫ
is the smallest increment allowed in the auction. Formally,
given that W is the current set of winning bids, agent i must
find a g∗ such that r(g∗) ≥ r(W ) + ǫ and

g∗ = arg max
g⊆2B

ui(g), (3)

where each g is a set of bids all taken from B and g covers
all items.



PAUSEBID(i, k)

1 my-bids ← ∅
2 their -bids ← ∅
3 for b ∈ B
4 do if bagent = i or vi(b

items) > bvalue

5 then my-bids ← my-bids +new Bid(i, bitems, vi(b
items))

6 else their -bids ← their -bids +b
7 for S ∈ subsets of k or fewer items such that

vi(S) > 0 and ¬∃b∈Bbitems = S
8 do my-bids ← my-bids +new Bid(i, S, vi(S))
9 bids ← my-bids + their -bids

10 g∗ ← ∅ � Global variable
11 u∗ ← ui(W ) � Global variable
12 h(S)← max revenue on items from S given B, for all S.
13 PAUSEBIDSEARCH(bids, ∅)
14 surplus ←

∑
b∈g∗ | bagent=i bvalue −W (bitems)

15 if surplus = 0
16 then return g∗

17 my-payment ← vi(g
∗)− u∗

18 for b ∈ g∗ | bagent = i
19 do if my-payment ≤ 0
20 then bvalue ← 0

21 else bvalue ←W (bitems) + my-payment · b
value−W (bitems)

surplus

22 return g∗

Figure 1: The PAUSEBID algorithm which implements a branch and bound search. i is the agent and k is the current stage of
the auction, for k ≥ 2.

Bidding Algorithm

During the first stage we simply have several English auc-
tions. As such, an agent’s dominant strategy is to bid ǫ
higher than the current winning bid until it reaches its valu-
ation for that particular item. The only caveat is for agents
with sub-additive valuations. These agents must make sure
that their valuation for all the subsets they are currently win-
ning is higher than the current sum of the prices. Our algo-
rithm focuses on the succeeding stages: k > 1.

Agent i can find g∗ by performing a complete search on
all the possible combinations of bids within B. This is a
large search tree but luckily we can speed up the search by
pruning it. We start by noticing that the agent wants to find
the set of bids that maximize its revenue and that at any one
time there are likely only a few bids within B which the
agent can dominate. That is, we start by defining my-bids
to be the list of bids for which the agent’s valuation is higher
than the current best bid, as given in B. We set the value
of these bids to be the agent’s true valuation (but we won’t
necessarily be bidding true valuation, as we explain later).
Similarly, we set their -bids to be the rest of the bids from
B. Finally, the agent’s search list is simply the concatenation
of my-bids and their -bids . Note that the agent’s own bids
are placed first on the search list as this will enable us to do
more pruning. Lines 3–9 of PAUSEBID, shown in Figure 1,
show how we create these lists.

The agent can now perform a branch and bound search

on the branch-on-bids tree produced by these bids. This
branch and bound search is implemented by PAUSEBID-
SEARCH shown in Figure 2. Our algorithm not only im-
plements the standard bound but it also implements other
pruning techniques in order to further reduce the size of the
search tree.

The bound we use is the maximum utility that the agent
can expect to receive from a given set of bids. We call it
u∗. Initially, u∗ is set to ui(W ) (PAUSEBID line 11) since
that is the utility the agent currently receives and any solu-
tion he proposes should give him more utility. If PAUSE-
BIDSEARCH ever comes across a partial solution where the
maximum utility the agent can expect to receive is less than
u∗ then that subtree is pruned (PAUSEBIDSEARCH line 21).
Note that we can determine the maximum utility only af-
ter the algorithm has searched over all of the agent’s own
bids (which are first on the list) because after that we know
that the solution will not include any more bids where the
agent is the winner thus the agent’s utility will no longer in-
crease. For example, if an agent has only one bid in my-bids
then the maximum utility he can expect is equal to his value
for the items in that bid minus the minimum possible pay-
ment we can make for those items and still come up with
a set of bids that has revenue greater than r(W ). The cal-
culation of the minimum payment is shown in line 19 for
the partial solution case and line 9 for the case where we
have a complete solution. Note that in order to calculate
the min-payment for the partial solution case we need an



upper bound on the payments that we must make for each
item. This upper bound is provided by h, defined in PAUSE-
BID line 12. This upper bound is identical to the one used by
the Bidtree algorithm—it merely assigns to each individual
item a value equal to the maximum bid in B divided by the
number of items in that bid.

The algorithm also uses the h heuristic to prune any
branches which cannot lead to a solution with revenue
greater than the current W , as shown in lines 16–17 of
PAUSEBIDSEARCH. That is, it uses the h function in the
same way an A∗ algorithm uses its heuristic.

A final pruning technique implemented by the algorithm
is ignoring any branches where the agent has no bids in the
current answer g and no more of the agent’s bids are in the
list (PAUSEBIDSEARCH lines 6–7).

The resulting g∗ found by PAUSEBIDSEARCH is thus the
set of bids that has revenue which is bigger than r(W ) and
maximizes agent i’s revenue. However, agent i’s bids in g∗

are still set to his own utility and not to the lowest possible
price (that is, the min-payment). Lines 18–21 in PAUSEBID

are responsible for setting the agent’s payments so that it can
achieve its maximum utility u∗. If the agent has only one bid
in g∗ then it is simply a matter of reducing the payment of
that bid by u∗ from the current maximum of the agent’s true
valuation. However, if the agent has more than one bid then
we face the problem of how to distribute the agent’s pay-
ments among these bids. There are many ways of distribut-
ing the payments and there does not appear to be a dominant
strategy for performing this distribution. We have chosen
to distribute the payments in proportion to the agent’s true
valuation for each set of goods, as shown in lines 18–21 of
PAUSEBID

The PAUSEBID function is called for rounds k ≥ 2
of the PAUSE auction and it returns the agent’s revenue-
maximizing bid, if there is one. It assumes that the set of
winning bids B and the current best winning bid set W re-
mains constant during its execution.

Analysis

Since PAUSEBID performs a complete branch and bound
search for g∗ we can prove that it is correct by analyzing
its pruning strategies.

Theorem 1. PAUSEBID finds g∗ which satisfies (3) given a
set B of current best bids and a currently winning bidset W .

Proof. The proof follows from the fact that it performs a
complete search and only prunes subtrees which are guar-
anteed to not contain a satisfactory solution. Lines 6–7 of
PAUSEBIDSEARCH prune subtrees where the final solution
will not contain any bid from the agent thus giving him a
utility of zero, lines 16–17 of PAUSEBIDSEARCH prune sub-
trees where the final solution is guaranteed to have lower
revenue than the current solution, and line 21 of PAUSEBID-
SEARCH prunes subtrees where the solution is guaranteed
to give the agent lower utility than an already found solu-
tion.

We know that in a single-item English auction an agent’s
myopic best-response strategy is to always bid ǫ higher than

the current price as long as his bid is less than his valua-
tion for the item, after which the agent should stop bidding.
The PAUSEBID algorithm implements a similar strategy. The
agent places the bid which maximizes its own utility and
has a revenue greater than the current winning bid. Since
the more an agent pays the less utility it receives, the agent
always places the bid that has the lowest possible revenue.
As such, PAUSEBID implements a myopic best-response bid-
ding strategy given that the agent knows nothing about the
others’ valuation or bidding strategies.

Unfortunately, PAUSEBID does have certain weaknesses
that could be exploited if used against an intelligent oppo-
nent who knows the agent is using PAUSEBID. The prob-
lem lies in lines 18–21 of PAUSEBID where we distribute the
agent’s surplus across his bids in g∗. Notice that we dis-
tribute the agent’s payments proportionately to the agent’s
valuation for that set of items. This has the unfortunate ef-
fect of revealing, to some extent, the agent’s true relative
valuation for the items. For example, if an agent increases
his bids for two sets of items, but his increase for the first
set is much greater than for the second set then we can de-
duce that the agent valuates the first set much higher than
the second. This knowledge could then, perhaps, be used
by a strategic agent to place his own bids. However, based
on our previous work on agent modeling (Vidal & Durfee
1998), we believe, that such strategic thinking will incur in
large computational costs and will deliver small utility gains.
But, even if this belief proves wrong, it is a simple matter to
change the surplus distribution method to include some ran-
domness. Of course, even with random distributions, the
fact that an agent increases the his bid for certain subsets of
items is still a clear signal that its valuation of those subsets
is higher than the current price (perhaps, a lot higher?). An
opponent might be able to use this knowledge to make better
decisions about which sets of items he should bid on.

Because of these strategic issues we cannot claim that the
PAUSEBID strategy is a dominant strategy: the best strat-
egy to use regardless of the other agents’ strategies. How-
ever, we can claim that at each time it is called it returns
the bid that maximizes the agent’s utility while still having a
revenue greater than the current solution and increasing the
agent’s utility over the one it is currently receiving. Further-
more, as our tests show, if all agents use PAUSEBID then the
system as a whole is likely to find the solution that is the
same as that found by a centralized winner determination
algorithm when everyone reports their true valuations.

Tests

We have implemented PAUSEBID in order to ensure that it
works as predicted and to test how long the auctions take to
finish and what is the final solution. In order to do our tests
we had to generate value functions for the agents1. The algo-

1Note that we could not use CATS (Leyton-Brown, Pearson,
& Shoham 2000) because it generates sets of bids for an indeter-
minate number of agents. Its like if you were told the set of bids
placed in a combinatorial auction but not who placed each bid or
even how many people placed bids, and then asked to determine
the value function of every participant in the auction.



PAUSEBIDSEARCH(bids, g)

1 if bids = ∅
2 then return
3 b← first(bids)
4 bids ← bids −b
5 g ← g + b
6 if g does not contain a bid from i
7 then return
8 if g includes all items

9 then min-payment ← max(0, r(W ) + ǫ− (r(g)− ri(g)),
∑

b∈g | bagent=i B(bitems))
10 max -utility ← vi(g)−min-payment
11 if r(g) > r(W ) and max -utility ≥ u∗

12 then g∗ ← g
13 u∗ ← max -utility
14 PAUSEBIDSEARCH(bids, g − b) � b is Out
15 else max -revenue ← r(g) + h(items not in g)
16 if max -revenue ≤ r(W )
17 then PAUSEBIDSEARCH(bids, g − b) � b is Out
18 elseif bagent 6= i
19 then min-payment ← r(W ) + ǫ− (r(g)− ri(g))− h(items not in g)
20 max -utility ← vi(g)−min-payment
21 if max -utility > u∗

22 then PAUSEBIDSEARCH({x ∈ bids |xitems ∩ bitems = ∅}, g) � b is In
23 PAUSEBIDSEARCH(bids, g − b) � b is Out
24 else

25 PAUSEBIDSEARCH({x ∈ bids |xitems ∩ bitems = ∅}, g) � b is In
26 PAUSEBIDSEARCH(bids, g − b) � b is Out
27 return

Figure 2: The PAUSEBIDSEARCH recursive procedure where bids is the set of available bids and g is the current partial solution.
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Out S v0(S) B(S) in W ? h(S)

(0) 198 0 : 131 Yes 131
(1) 44 0 : 40 No 135
(2) 62 0 : 45 No 135

(0,1) 849 No NA
(1,2) 1 : 270 Yes NA

r(W ) = 131 + 270 = 401

Figure 3: Sample search tree produced by PAUSEBIDSEARCH for agent 0 given the values on the table at the top right. We
assume that ǫ = 1. The nodes are bids of the form “agentid : (items) price”.



GENERATEVALUES(i, items)

1 for x ∈ items
2 do vi(x) = EXPD(.01)
3 for n← 1 . . . (num-bids − items)
4 do s1, s2 ←Two random sets of items with values.
5 vi(s1 ∪ s2) = vi(s1) + vi(s2) + EXPD(.01)

Figure 4: Algorithm for the generation of random value
functions. EXPD(x) returns a random number taken from
an exponential distribution with mean 1/x.

rithm we used is shown in Figure 4. The type of valuations it
generates correspond to domains where a set of agents must
perform a set of tasks but there are cost savings for particu-
lar agents if they can bundle together certain subsets of tasks.
For example, imagine a set of robots which must pick up and
deliver items to different locations. Since each robot is at a
different location and has different abilities, each one will
have different preferences over how to bundle. Their costs
for the item bundles are subadditive, which means that their
preferences are superadditive.

The first tests we performed simply ensured the proper
functioning of the algorithm. We then compared the solu-
tion found by our algorithm to the solution found by CASS
when given a set of bids that corresponds to the agents’ true
valuation. That is, for each agent i and each set of items
S for which vi(S) > 0 we generated a bid. This set of
bids was fed to CASS which implements a centralized win-
ner determination algorithm to find the solution which max-
imizes revenue. When we compared this solution with the
set of bids found by PAUSEBID we found that on at least
95% of the runs both algorithms arrive at the same solu-
tion. Specifically, with 5 bidders, 6 items, and 1000 runs,
we found that on 96.2% of the runs both algorithms arrived
at the same solution. Note, however, that the revenue from
the PAUSE auction on all the auctions is always smaller than
that found by CASS using the agents’ valuations. Since
PAUSE uses English auctions the final prices (roughly) rep-
resent the second-highest valuation, plus ǫ, for that set of
items.

The cases where we failed to arrive at the revenue of the
revenue-maximizing solution are those where there was a
large gap between the first and second valuation for a set (or
sets) of items. If the revenue-maximizing solution contains
the bid (or bids) using these higher valuation then it is im-
possible for the PAUSE auction to find this solution because
that bid (those bids) is never placed. For example, if agent
i has vi(1) = 1000 and the second highest valuation for (1)
is only 10 then i only needs to place a bid of 11 in order to
win that item. If the revenue-maximizing solution requires
that 1 be sold for 1000 then that solution will never be found
because that bid will never be placed.

We are also interested in the real-time performance of the
system. We define a time unit as the time it takes for all
agents to place a bid. We can then measure how many time
units it takes for the system to arrive at the final solution.

50 250 450 650 850 1050
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100
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78% of the runs take less than 250

Figure 5: Distribution of the times it took to run each auc-
tion, for 1000 runs with 6 agents and 5 items. The y-axis is
the number of runs that took at most x time units. A time
unit consist of all agents having a chance to place a bid.

Figure 5 shows a distribution of the time it took for each
one of 1000 runs for the system to finish. As we expected,
the distribution is thick on the left side (short time) but has
a long tail towards the right. This shape is similar to the
exponential distribution from which the agent’s valuations
were taken. The long times are from those cases where two
or more agents happen to have very high valuations for the
same set of items and engage in the typical oneupmanship
seen in English auctions.

The scalability of the algorithm can be determined by
counting the number of times that PAUSEBIDSEARCH gets
invoked for each time that PAUSEBID is called, that is, the
number of nodes expanded in the search tree. Figure 6 shows
the average number of nodes expanded on each invocation
of PAUSEBID as we vary the number of items for sale. As
expected since this is an NP-complete problem, the number
of nodes does grow exponentially with the number of items.
But, the actual number of nodes is a much smaller than the
worst-case scenario of xx where x is the number of items.
For example, for 10 items we expand slightly less than 104

nodes which is much smaller number than 1010. Notice also
that our value generation algorithm (Figure 4) generates a
number of bids that is exponential on the number of items, as
might be expected in many situations. As such, these results
do not support the conclusion that time grows exponentially
with the number of goods when the number of bids is inde-
pendent of the number of goods. We expect that PAUSEBID

will grow exponentially as a function the number of bids,
but stay roughly constant as the number of items grows.

Future Work

This algorithm continues our research in distributed winner
determination algorithms for combinatorial auctions (Naru-
manchi & Vidal 2006). In contrast with our previous work,
with the PAUSE auction we have made the assumption that
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Figure 6: Average number of nodes expanded as a function
of the number of items in the auction. There were 5 agents
in this experiment.

the agents are the buyers and each one has multiple bids that
it wants to place.

There are many obvious ways to improve on the perfor-
mance of PAUSEBID. The most dramatic gain will probably
be when we modify it to cache partial solutions. As it is,
the algorithm performs each search completely from scratch
each time it is invoked. However, since these are English
auctions where each agent submits, at most, one bid set then
it is likely that B does not change much from time t to t+1.
We will be implementing caching techniques similar to those
used by CABOB, where the algorithm remembers the best
bid set for each set of items previously searched over. The
added complication we face is that we must come up with
an efficient scheme for invalidating the proper entries in the
cache when B is updated.

Other possible improvements include developing ways
that agents may cooperate in order to minimize any re-
dundant work (while still not giving them any incentive to
cheat), ways of speeding up the inherent real-time slowness
of the English auction, exploiting the fact that in the k level
of the auction any new bid set is likely to include at least
one bid of size k, and eliminating the need for agents to
constantly broadcast new bids and instead use a multicast-
ing method.

Conclusion

We have presented PAUSEBID—an algorithm for bidding in
a PAUSE auction that is guaranteed to find the bid which
maximizes the agent’s utility given the outstanding best bids.
Agents in a multiagent system can use PAUSEBID to imple-
ment a distributed combinatorial auction and thereby solve
complex coordination problem distributively. The agents
can even be selfish as the system provides an incentive for
them to perform the computations. As it is an NP-complete
problem, the running time of our algorithm remains expo-
nential but it is significantly better than a full search. We are

currently working on caching techniques that should dra-
matically improve the performance of the algorithm. Cen-
tralized combinatorial auctions are only of limited use for
building multiagent systems, we believe that distributed al-
gorithms for achieving similar coordination will be much
more relevant to this domain.
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Abstract

Most auction approaches assume that bidding agents must

be available to take on a new task when they submit or at
least commit to a bid. This works well for pre-planning, for

example, before a group of robots takes on a mission with

multiple tasks, as the robots have not yet been assigned to
any tasks. However, once a mission has begun, it is difficult

to adapt to new situations that arise using the auction

approach because most of the robots may already be tasked.
This reduces the pool of robots available to take on new

tasks. We demonstrate a novel hybrid approach that uses

negotiation methods similar to a combinatorial auction, but
extends winner determination with a polynomial time

constrained clustering algorithm called CLUS-STAR

(CLUstering for Self-Synchronizing Tasked Agent
Reallocation). CLUS-STAR is able to reassign agents to

accommodate new tasks that come up without dropping

existing tasks. We show that CLUS-STAR can fulfill all the
needs for new and existing tasks significantly more often

than a combinatorial auction approach when many of the

agents are already tasked, while also decreasing the cost of
the tasks. CLUS-STAR can also be used for team or

coalition formation problems.

Introduction

Imagine a typical household scenario where family
members are getting ready for their day. Mother says she
needs to pick up the laundry, visit Grandma, and rake the
yard. Father says that he needs to buy groceries, fix the
bathroom sink, and cook dinner. Their kids need to do
homework, take out the garbage, and walk the dog. While
discussing their plans, a call comes in saying that their
DVD player has been fixed and is ready for pickup. In this
situation, everyone seems pretty busy and it appears
difficult to determine who is going to pick up the DVD
player. However, humans will often solve this problem by
negotiating and reassigning tasks to make it easier to take
on new tasks. In this case, they may decide that it would
make more sense for Father to make dinner, fix the sink
and take out the garbage, while Mother buys groceries,
visits Grandma, and picks up the laundry and DVD player,
leaving the kids to do homework, rake the yard, walk the
dog and help with dinner. After a bit of negotiation, all the

tasks have been assigned with the added benefit of having
more time to watch a movie on their DVD player. Our
approach of extending an auction with CLUS-STAR works
in the same way as this family. However, its power can be
applied to less domestic and often more serious situations,
such as coordinating multiple robots for search and rescue
or for synchronizing Marines small-units (company and
below) for Distributed Operations (Hagee 2005).

The concept of self-synchronization has been used by the
U.S. Department of Defense to describe the ability to re-
configure tasks, plans and units to meet new goals in a
dynamic environment (Alberts and Hayes 2003). Self-
synchronization is a capability in an overarching concept
called Network-Centric Warfare (NCW), in which control
decisions are being pushed down to lower level military
units to make the units more agile and adaptive to
unexpected situations. The U.S. Marines Distributed
Operations (Hagee 2005) concept is an example of NCW.
CLUS-STAR is motivated by the needs of the military to
handle situations that require self-synchronization.
Examples include small units that are on patrol missions
who receive Fragmentary Orders (FRAGOs), or orders to
modify their current tasks. Self-synchronization is also
relevant for robots or unmanned aerial vehicles (UAVs)
that team to accomplish various missions. We assume the
agents representing the robots, UAVs or units are
cooperative and mostly motivated by the greater good of
the whole. However, individual agents are able to submit
their preferences in the form of a utility function.

Our process begins with a typical auction, where an
auction announcer agent (“auctioneer”) announces a need
for a number of capabilities to complete a task. Most
existing auction algorithms will have bidding agents that
commit to one ore more specific capabilities. A winner-
determination algorithm will select the bids to fulfill the
task needs. This approach is somewhat inflexible because
already committed agents cannot bid, and the bidding
agent commits only to the task it bid.

Our approach allows agents that are busy with other
tasks to submit their capabilities along with their current
tasks. The bidding agents can auctioneer uses a constrained
clustering algorithm, based on Coca (Tung et al. 2001), to
analyze the existing tasks and any new tasks, along with



the bidding agents’ capabilities and costs for completing
tasks. CLUS-STAR will attempt to generate a solution that
fulfills all obligations for all tasks. Clusters represent tasks
while capabilities required to fulfill tasks are represented
by cluster constraints. Task reallocation proceeds by
moving or swapping agents from cluster to cluster until the
aggregate cost of the clusters can no longer be decreased
(or alternatively, the cluster utility can no longer be
increased). The negotiation-CLUS-STAR process can be
further distributed by allowing bidding agents to
recursively create an announcement for a subset of
capabilities, which it does not possess. This causes the
search for capabilities to be spread to a larger number of
agents than those of which the initial auctioneer aware.

In the remainder of this paper, we first discuss related
auction approaches, including contract net and
combinatorial auctions. We discuss clustering, particularly
constrained clustering and the algorithm that inspired our
approach. We discuss how we extended the combinatorial
auction and explain the CLUS-STAR approach in detail,
including the algorithm and complexity. Finally, we show
results from comparing CLUS-STAR to two auction
approaches in scenarios, where some of the agents are
assigned to existing tasks when a new task appears. We
conclude with a discussion of our current and future work.

Auction Approaches

The contract net protocol (FIPA 2002) is a simple auction
approach where an initiator sends a request for proposal to
a number of participants. Participants can bid or refuse to
participate. The bidders will submit a value indicative of
the worth of the item to be bid on. The initiator will select
the best bid and reject the others. Contract nets generally
involve the negotiation of one item at a time. Several
extensions to the contract net protocol have been
developed, including the approach in TRACONET
(Sandholm 2003) that allows agents to recursively swap
tasks. In TRACONET a swap or reallocation is a one-to-
one agent operation, implying that if many tasks need to be
reallocated, it may take a long time for all tasks to be
assigned. Our approach considers swapping several tasks at
once, potentially reducing the amount of communication
between agents.

A combinatorial auction allows agents to simultaneously
submit bids for multiple items (de Vries and Vohra 2003).
In a task-allocation situation, a bid with multiple items may
correspond to multiple capabilities that an agent can
provide. The auctioneer must run a winner-determination
algorithm on the bids. The algorithm considers the possible
combinations of bids that will provide an optimal or
heuristic best solution. If we stripped the task reallocation
aspect out of the CLUS-STAR approach, we would
essentially have a combinatorial auction using a clustering
algorithm to do constraint optimization to determine a
winner. However, our approach has a significant
advantage: engaged agents normally unable to participate
in the bidding process are now available for consideration.

This is important in domains where agents may need to
coordinate in an ad-hoc manner.

Coalition formation is a coordination problem that often
uses an auction to form relationships between agents
(Caillou et al. 2002; Sandholm 1999; Yamamoto and
Sycara 2001) that are advantageous for the agents
involved. Our CLUS-STAR auction approach can be used
to form coalitions or teams, where clusters represent
coalitions and cluster constraints indicate the properties
that coalition members should have. A task allocation
problem could be formed as a coalition formation problem
where capabilities to complete a task are equivalent to
required coalition member properties. A coalition or team
is formed to handle a task. Evaluation of a coalition is
often in the form of a utility (Sandholm 1999) that
indicates how good the agent considers the coalition
relationship to be. Our approach can be used for task-
allocation and team and coalition formation. A bid can
contain a cost or utility for an item or a relationship. For
simplicity, we discuss CLUS-STAR in the context of a
task-allocation problem, with cost the evaluation of a bid.

Clustering

Clustering analysis is an unsupervised learning approach
commonly used to discover relationships between groups
of objects (Chen et al. 1996). In the classic k-means
clustering algorithm (Witten and Frank 2000), k centroids
are selected at random and each object is assigned to the
centroid it is most similar or closest to. Centroids are
recalculated to be the mean of the objects assigned to them.
The algorithm repeatedly determines centroids and re-
analyzes centroids until no more objects are reassigned.
Clustering has recently been used for group formation of
multi-agents (Ogston et al. 2003), but their similarity-
matching approach does not consider the negotiation of
cost or benefits essential to form partnerships between
entities. To our knowledge, clustering has never been used
for the purposes of task allocation or agent coordination.

Constrained clustering is an extension of clustering
analysis that puts certain requirements on clusters or
cluster members (Tung et al. 2001). In non-constrained
clustering algorithms, relationships are formed by
comparing objects to objects or to cluster representatives,
but overall cluster properties are not generally considered.
Constrained clustering analyzes the qualities of the cluster
as a whole and requires cluster or cluster members to meet
certain minimum constraints when an object is moved in or
out of a cluster, or the move will be considered illegal.
Constrained clustering provides an excellent basis for task
allocation and team formation problems because tasks and
teams generally have requirements that must be met, for
example, the capabilities needed to complete a task (must
have a drivers license and car to pick up DVD player).

We based our CLUS-STAR approach on a constrained
clustering algorithm called Coca (Tung et al. 2001). At the
heart of Coca is the formation of a pivot movement graph
from an existing cluster configuration. A cluster can



contain a number of pivot objects whose movement to
other clusters may cause constraints to be affected. For
example, a cluster may be required to contain at least m
objects of type t. The objects of type t are then pivot
objects. This graph represents pivot objects that are
members of a cluster c, but are actually better represented
by another cluster c’. The pivot movement graph
represents existing clusters as vertices. A directed edge e
from vertex ci to cj indicates that an object in ci is closest to
the cluster cj. Clustering proceeds by moving objects along
the edges to their nearest cluster using a pivot movement
schedule. Movements that break cluster constraints are
avoided by using a deadlock-checking cycle. Each pivot
movement progressively improves the quality of the
clusters. At some point, the pivot movement graph must be
regenerated as previously evaluated relationships are now
invalid. In an optimal solution, objects will eventually end
up in their best representative cluster. The algorithm to
generate an optimal solution is NP-complete, but various
heuristics are used to make the solution tractable.

The CLUS-STAR Auction Approach

Extending the Combinatorial Auction

In our task-allocation problem, N agents exist where M ! N

agents are occupied on k existing tasks. We discuss an

experiment in which each agent can only be assigned to

one task. Each task ti has a set of capabilities Ci that must

be fulfilled to be completed properly. Multiple agents

could be assigned to the same task if one agent does not

fulfill all capabilities needed for the task. While agents are

working on the existing tasks, a new task tk+1 appears with

a set of capabilities Ck+1. An auctioneer agent forms an

announcement requesting the capabilities Ck+1. An agent ai
could potentially fulfill a subset of capabilities Ci,k+1, where

!"# +++ 1,11, ,
kikki

CCC . In a combinatorial auction, a bid

could be formed by the agent containing Ci,k+1. However,

the agent would not be able to commit to a bid if it was

already occupied with another task.

Our approach relaxes the previous restriction to allow an

agent that does not need to be assigned to a particular task

to commit to a bid with the assumption that any

commitments it has to existing tasks will be passed on to

other agents. We define such agents to be flexible agents.

Instead of bidding just the Ci,k+1 tasks, a flexible agent will

submit all capabilities that it has, if !"+1,kiC , in

anticipation of its potential assignment to tk+1 or another

task. In general, a bid bij by agent a i for task tj in a typical

combinatorial auction will be as follows: { }ijijij Cb !,=

where _ij = the cost for agent ai to do task t j. In our

approach, a bid by a flexible agent will be as follows:

{ }aijiiij tfCb ,, !"= where
i
C = the capabilities of the

agent ai, if is a function that calculates the cost for agent ai

given the properties of a task, and ta is the task that the

agent is currently assigned to, which could be null. In a

sense, the bidding agent is saying to the auctioneer, “I’m

offering my capabilities to any tasks as long as you can

find someone to fulfill my capabilities on my existing

task.”

The cost function allows the auctioneer agent to

calculate the cost for any task it may to the agent. Any

preferences or needs of an individual agent that may affect

the cost can be incorporated into the cost function. We

place a constraint on the function such that the result of the

function must be independent of the other movable objects

in a cluster. This constraint reduces the algorithm runtime

and will be discussed in detail later. Many auction

approaches keep the utility/cost function private. Because

we assume a cooperative military environment, these

functions can be shared among agents.

CLUS-STAR

The auctioneer agent receives a set of bids from agents and

must determine how to assign the agents to the tasks. The

auctioneer has the initial task tk+1 for which it posted the

announcement, as well as any tasks that bidding agents

have submitted. The auctioneer agent initializes CLUS-

STAR with a group of clusters representing these tasks.

Formally, the auctioneer receives n bids, a subset of which

has tasks associated with them. In total, m tasks are

included in the n bids, some of which could have multiple

bidding agents assigned to them. The auctioneer agent will

create m+2 clusters. Clusters c1..cm contain the m existing

tasks and agents assigned to them. Cluster cm+1 contains the

new task for which it created the announcement with no

agents yet assigned to it. Cluster cm+2 contains any bidding

agents not yet assigned to a task. Assigning an agent ai to a

cluster that contains a task tj represents a temporary

assignment of agent ai to task tj.

Each cluster type has two functions: a function to

determine if the cluster is legal (i.e., meets constraints) and

a function to calculate the cluster’s quality. These

functions are used to build the movement graph. In our

tasking scenarios, there are three types of clusters: one for

existing tasks called existing, one for the new task called

new, and one for the unassigned agents called unassigned.

Table 1 shows the functions for the cluster types. In the

table, Cj = the set of capabilities the task tj in cluster c j
requires, Cj’ = the set of capabilities the agents in cluster cj
can provide. Lower cost equals higher quality. The cost of

cluster type new is intended to be very high when not all

the capabilities are fulfilled by agents, but the cost should

decrease as more capabilities are fulfilled. This causes the

clustering algorithm to attempt to fulfill needs for the new

task before reducing the cost of the other tasks.



Table 1: Cluster functions for different types of clusters used in

task allocation problem.

Cluster

Type
Is Legal Quality (Cost)

Existing: If( jj CC !
'

)then

true

else

false

!
=

k

i

i

1

" where k = number

of agents in cluster cj and

_i = the cost for agent i to

do the task

New: True if( jj CC !
'

) then

!
=

k

i

i

1

"

else

MAX*(
||

||
1

'

j

jj

C

CC I
! )

where MAX is a very

high number

Unassigned True 0

The CLUS-STAR algorithm consists of two main stages;

building the movement graph and making the movements.

We only move objects that are moveable; for example, an

agent can be moved to represent a task reassignment, but a

task cannot. Also, only agents that submitted bids should

be moved. The objects being moved do not have to be

pivots as defined by (Tung et al. 2001) because the

movement of any type of object may affect the quality of

the clusters. However, no movement is allowed that causes

a cluster to be made illegal as legality is a requirement for

all clusters. Building the movement graph involves

creating an edge for any legal move or swap of objects that

improves the aggregate quality of the clusters involved

( jiji !!!! +<+
''

, where ji !! , are initial cluster costs and

''
, ji !! are the costs after the move/swap). A move causes

one object to be moved from one cluster to another. A

swap causes two objects to be swapped between clusters.

The CLUS-STAR algorithm is as follows:

clusstar(clusters)

edges=buildMG(clusters)

while edges not empty do

changed=Ø

sort edges by amount improved

for each edge in edges

(select biggest improvement first)

if(to and from clusters not in changed)

do move/swap

add to and from clusters to changed

edges=buildMG(clusters after moves)

buildMG(clusters)

edges=Ø

for all movable objects in all clusters

for all clusters object is not in

if move/swap to new cluster is legal

improvement=change in quality of clusters

if(improvement > 0)

edge = new edge containing to, from

clusters and objects

add edge to edges

return edges

CLUS-STAR Complexity

We used the concept of cluster constraints and the pivot
movement graph from Coca (Tung et al. 2001). However,
because we are dealing with a specific domain, we are able
to make assumptions that Coca could not, resulting in a
polynomial, not NP-complete algorithm. Two key insights
that lead to this conclusion are: an object will never return
to a cluster from which it was moved, and moving an
object in CLUS-STAR causes a permanent improvement in
the aggregate quality of the clusters. We will now show
how these insights result in an algorithm that converges in
polynomial time.

Assumption. In our approach, a bidding agent supplies a
function that determines the cost for the agent to be
assigned to a task. The function requires a result that is
independent of the objects that can be moved into or out of
a cluster. This is a reasonable assumption as in general the
movable objects will be agents in a military environment
that should not be motivated by their desire to work or not
work with a select group of agents. Instead, cost will be
determined by the properties of the cluster’s task, and the
task will not be movable.

Proof. With the previous assumption, the function that
determines the cost of assigning an agent to a task within a
cluster is based on static properties of the cluster. The
result does not change when objects are moved around.
Therefore, a positive improvement caused by a movement
of an object between two clusters ci and c j will always
result in a negative improvement if the move is reversed
from cj to c i. This allows us to conclude that a move that
causes an improvement will bring the algorithm closer to a
final solution without reversal of previous movements.
When no more improvements can be made, the algorithm
stops. The algorithm converges. Therefore, we can avoid
recursion caused by objects moving to a previous cluster,
and we do not need the deadlock-avoidance algorithm used
in Coca. Thus, we conclude that the algorithm runtime is
polynomial.

Extensions to CLUS-STAR

We intend to use the CLUS-STAR algorithm and hybrid
auction approach in a number of applications, ranging from
robot team-formation to small-unit coordination.



Therefore, the CLUS-STAR algorithm is customizable to
multiple domains. To extend CLUS-STAR for a specific
purpose, one need only specify the functions that
determine cluster quality, legality and cost to move objects.
We have used CLUS-STAR in three different
demonstrations since its development. In one
demonstration we use the concept of agent well-being to
determine the quality of a cluster. Agent well-being is an
aggregate of a number of variables called homeostatic
vectors that represent the agent’s motivation. For more
information on this motivation model see (Greene et al.
2006).

Comparative Results

Description of Compared Approaches

In our experiment, an auctioneer agent will create an
announcement that contains the capabilities needed for a
new task. We compared our CLUS-STAR auction to two
auction-only (non-hybrid) approaches. The first is a
contract net approach in which agents are allowed to bid
one of their capabilities and the auctioneer agent selects the
one with lowest cost. The second is a combinatorial
auction where agents can bid multiple capabilities that are
required by the task and the auctioneer uses a simple
heuristic to determine a winner. Both auction-only
approaches only allow agents not currently assigned to a
task to submit a bid. The hybrid combinatorial auction-
CLUS-STAR approach is as previously described.

The winner-determination algorithm used by the

combinatorial auction works by calculating the average

cost per capability that an agent submits in its bid. Given a

bid { }ijijij Cb !,= , the average cost =
|| ij

ij

C

!
. The algorithm

attempts to fulfill the capabilities for the task by first

selecting the bids that have the lowest average cost per

capability. Assuming a random distribution of costs for

bidding agents, this approach will reduce the cost of

handling the task by attempting to fulfill as many

capabilities by a single agent as possible.

Scenario

In our experiment each approach has an auctioneer agent

and a set of agents that can bid on tasks. The three

approaches are run in parallel with the same initial agent

and task configurations (number of agents, number of

tasks, cost for agent ai to do task tj, etc.) but have different

algorithms to assign the agents to the tasks. Our

experiment represents a scenario in which some percentage

p of agents will be occupied on k existing tasks. A new

task tk+1 appears that needs to have agents assigned to it.

Each auctioneer agent will create an announcement

containing the set of capabilities Ck+1 that task tk+1 requires,

and agents will submit bids. The contract-net-bidding

agents will submit bids in the form { }ijijij cb !,= where cij

is a capability agent ai can contribute. The combinatorial

auction bids are in the form { }ijijij Cb !,= , and the CLUS-

STAR bids are in the form { }aijiiij tfCb ,, !"= as

described previously. Once the auctioneer agents receive

the bids, they will attempt to fulfill the capabilities Ck+1

using the agents that submitted bids. A successful solution

is one in which all capabilities for all tasks are fulfilled.

None of the approaches are guaranteed to generate a

successful solution. We compare algorithms by the number

of successful solutions and by the quality (low cost) of the

solutions generated.

Results

Our initial experiment had 20 bidding agents with p=75
percent of them occupied on other tasks. We considered
this a reasonable situation in which most of the agents were
“busy.” It is not likely that many agents will be unoccupied
in a high-intensity, dynamic environment. In each run, the
number of tasks ranged from 1 to 15. Each task required 1-
3 different capabilities. After 100,000 runs in which a new
configuration was initialized at each run, we got the results
in Table 2. To attempt to compare approaches on a run-by-
run basis, the costs were only considered when all
approaches were successful. CLUS-STAR yielded
significantly better results than the other auctions, with
close to twice as many successful runs as the contract net,
and 31 percent more successful runs than the combinatorial
auction. In addition, the average cost to handle the new
task with CLUS-STAR was 30 percent less than the
combinatorial auction and 50 percent less than the contract
net. The third column in Table 2 shows the total cost of all
the tasks in a run, averaged over all the runs. Because
CLUS-STAR also attempted to lower the cost of other
tasks, its solution was considerably lower cost than the
solutions of other two approaches, which did not attempt to
reassign agents to tasks.

Table 2: Results from an experiment with 100,000 runs, using 20

agents with 75% of agents previously tasked.

Average

Cost for

New Task*

Percent

Successful**

Average

Cost for

All

Tasks***

Simple

Auction
107.5 46% 484

Combinatorial

Auction
76.1 64% 453

CLUS-STAR

Auction
53.5 93% 284

*Average total cost for agents assigned to the new task.

**Percent of runs that fulfill all capabilities for all tasks.

***Average total cost for all tasks in a successful run.



In other experiments we varied either the number of
agents or the percent of agents assigned to a task when the
new task appeared. In these experiments we used runs of
10,000. Figure 1 through Figure 4 show the results from
these variations. In Figure 1 and Figure 2, as the number of
agents is increased, the quality of the solution and
percentage of successful runs also increased. This is
because there is an increased pool of agents that were able
to submit bids. For example, in the auction-only
approaches, with only 10 agents, only two agents were
unassigned, while with 100 agents, 25 agents were
unassigned. In Figure 3 and Figure 4, the combinatorial
auction was as good as or better than the CLUS-STAR
auction when very few agents are assigned to tasks. This is
logical as the task reassignment approach of CLUS-STAR
is not necessary when most agents were unassigned.
However, we see that CLUS-STAR had a significant
advantage over the other approaches when many (up to 90
percent) of the agents are previously tasked.
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Figure 1: Average cost, over 10,000 runs, of new task while

varying the number of bidding agents. 75 percent of agents have

existing tasks in all runs.
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Figure 2: Percent of runs that were successful while varying the

number of bidding agents. 75 percent of agents have existing

tasks in all runs.
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Figure 3: Average cost of new task while varying the percent of

agents previously assigned to tasks. Twenty bidding agents are

used in all runs. The dip in cost when 90 percent are assigned

may arise because successful runs are rare for the contract net

approach and may be correlated with low-cost task assignments.

We are investigating this further.
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Figure 4: Percent of runs that were successful while varying

percentage of agents assigned to tasks. Twenty bidding agents are

used in all runs.

Future Research

The CLUS-STAR algorithm we described runs within one
agent. However, in some cases, it may be desirable to
distribute the task re-allocation problem over a number of
agents. We are developing a peer-to-peer CLUS-STAR
extension where an agent can be both an auctioneer and a
bidder. Any agent can initiate an announcement if it
becomes aware of a new task. If an agent receives an
announcement for a task for which it has some capabilities
but cannot complete alone, it can choose to create an
announcement to agents it knows to attempt to fulfill more
of the required capabilities. Once the agent receives bids, it
will run CLUS-STAR to find a partial solution, which it
will then bid to the auctioneer agent from which it received
the original announcement. This approach has the potential
to increase the pool of bidding agents, as the initial
auctioneer agent may not be aware of all available agents.
Also, it can take advantage of beneficial relationships that
agents may have formed previously by allowing them to
create partial solutions from preferred agents. This will
result in a single object within CLUS-STAR. This
approach also is similar to the Coca heuristic of forming
micro-clusters (Tung et al. 2001).



Conclusions

We developed an auction approach that can reconfigure
agents when a majority of the agents are occupied. Auction
approaches generally ignore these situations and only
allow agents to bid when they can commit to exactly what
they are bidding for. We showed results that indicate that
our approach performs better than the contract net and
combinatorial auction approaches in situations where a
significant percentage of the agents are busy. Our CLUS-
STAR approach can be used in many domains, including
team and coalition formation and task allocation, and can
be used for robot or UAV coordination, as well as our
initial motivation; assisting with synchronization for small-
unit operations.
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Abstract

Allocating heterogeneous tasks that each require a vari-
ety of different skills to capable individual robots pos-
sessing those skills or abilities is an important prob-
lem in multi robot task domains. This problem involves
both designing effective heterogeneous robot teams for
that task domain and intelligently allocating the domain
tasks to those robots. In this paper, we present a bid-
ding strategy for an auction-based task allocation sys-
tem to allocate heterogeneous tasks to heterogeneous
robots. We evaluate this system in abstract hierarchi-
cal task domains against various ad hoc heterogeneous
teams, and compare the performance in terms of time
and team costs with a homogeneous robot team in the
same domain.

Introduction

Designing multi-robot teams to solve problems in a variety
of domains has generated great interest lately. In search and
rescue, emergency handling or planetary base assembly ap-
plications, a variety of different tasks is involved. One of the
issues that arise is the designing of teams of robots with the
necessary abilities for use in such domains where the tasks
may require a number of different skills to be successfully
accomplished. A subsequent issue is then allocating the
tasks to suitable robots. These skills required by a task can
be met by corresponding abilities that a robot possesses such
as a gripper, large manipulator arm or tracks or wheels. The
robots are endowed with these abilities when they are con-
structed and subsequently cannot have any abilities added to
them. In practice, they may however lose some abilities due
to damage.

The simplest approach is to equip all robots with the same
superset of all the possible abilities that might be required.
Each robot then effectively becomes a super robot and task
allocation can be done independently of the abilities of indi-
vidual robots as the team is homogeneous, and each member
is qualified for every task. This approach is not practical as
equipping every robot with all possible abilities is not only
prohibitively expensive but rarely necessary for the achieve-
ment of goals in most domains. In such instances, every un-
necessary ability that can be omitted when designing a robot

Copyright c© 2006, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

is a reduction in the cost of construction of that robot. When
dealing with expensive abilities or large numbers of robots,
this cost can be significant.

For example, consider the problem domain of planetary
base assembly in which a team of heterogeneous robots have
to perform tasks such as materials transportation, site prepa-
ration and excavation and base assembly. These tasks might
require abilities such as mobility, gripper, large manipulator
arm, navigation system and advanced visual sensors. Rather
than equipping a team of six robots with all these five abil-
ities, a heterogeneous team of two transporters with mobil-
ity, gripper and navigation system, two robots with gripper
and advanced visual sensors, and one excavator with mobil-
ity and large manipulator arm might be able to complete the
tasks with the same amount of time and energy as the ho-
mogenous team might have been able to. This example also
illustrates that heterogeneous systems have specialization of
function, or roles, built into them. Such an approach is suc-
cessful because the very tasks themselves in a domain have
this same specialization among them, and an effective team
should mimic this specialization.

The research question we seek to investigate in this pa-
per can be stated thus: How can we design a team of robots
with heterogeneous abilities in such a manner that these ro-
bots can successfully achieve the goals of a problem domain,
while satisfying some objective criteria with which these
goals are measured, to the same extent as a team of homoge-
nous robots, each of which had all the necessary abilities
for every task in that domain? We are fundamentally inter-
ested in how to partition these varied abilities among our ro-
bots without losing any performance measured according to
some criteria. These partitions can be seen as the hardwired
roles of the robots. The methodology we adopt for allocat-
ing the tasks to robots is a single item multi round auction
in which each robot bids for a task based on how closely it
matches the skills requirement for that task.

This paper is organized as follows. After this introduc-
tion, we give a motivating example and then describe our
approach wherein a formal definition of the problem and a
description of our methodology is provided. We then de-
scribe our experimental setup and how we generate the test
instances, and we evaluate our results. We briefly describe
how this work relates to similar work already done and end
with our conclusion.



Lunar Habitat Construction Example

To motivate solutions to this problem, we describe an appli-
cation example. In the lunar habitat construction in (Thomas
et al. 2005), a high level scenario is given where a team of
robots have to perform a set of operations in order to con-
struct a habitat. These operations have precedences and con-
straints between them. Each operation is composed of a set
of basic actions that have to be executed in sequence. Each
basic action, in turn, requires a set of skills for successful
completion.

The eight operations to be performed are navigation, site-
identification, mapping, clearing, transport, planning, exca-
vation and building. The set of thirteen actions, from which
specific actions are selected to compose these operations, are
traverse, grasp, release, lift, unload, excavate, mate, iden-
tify, localize, track, model, plan and recharge. The super-
set of skills, of size 7, required for these actions are Stereo
Camera(S), Mobility(M), Gripper(G), Manipulator Arm(A),
Large Manipulator Arm(L), Navigation System(N) and Cog-
nitive skills(C).

Figure 1 shows the breakup of skills across the various op-
erations, and the subset-superset relationship between these
operations in terms of the skills required. Each skill is de-
scribed by its alphabetic acronym and arrows indicate the
superset.

{SMNAG} 
[map, clear,  transport]  

tratransporttransport

{SMNG} [build] 

{SMN} [navigate] 

{SN} [identify-site] 

{SML}  
[excavate] 

{C} 
 [plan] 

Figure 1: Distribution of Skills among Task Classes for
Lunar Habitat Construction Scenario

Examining this figure, we see that the eight operations
fall into six distinct skill classes: SMNAG, SMNG, SMN,
SML, SN and C. And these six classes are distributed across
three different hierarchies. Equipping robots with abilities to
cover these skill classes, we can perhaps choose four robot
classes of SMNAG, SMN, SML and C; or two robot classes
of SMNAG and SMNLC. The exact number of robot classes
and the number of robots that belong to each class should be
a function of the number of operations(or tasks in our ter-
minology) the overall scenario has, the relative cost of en-
dowing a robot with a particular ability, and the total funds
available for constructing the robot team.

This paper takes a first step at attacking this problem.

Approach

Problem Statement

We give a formal definition of our problem here.
A domain T = {t1, t2, . . . , tn} is composed of n tasks.

Each task i has associated with it a skill vector Si =
{s1, s2, . . . , sK} which describes which members of the su-
perset of all possible skills, of cardinality K, is required by
that task. The elements of Si are binary values and are inter-
preted as sj = 1 indicating skill j is required for the task i,
and sj = 0 indicating skill j is not required for that task.

A robot team of m robots has associated with each ro-
bot an ability vector, also of size K, denoted by Ai =
{a1, a2, . . . , aK} composed of binary values indicating
which abilities the robot possesses. As before, the elements
of Ai are binary values and aj = 1 indicates robot i pos-
sesses the ability j, and aj = 0 indicates it does not.

A robot possessing a particular ability has the matching
skill that a task might require. Therefore, a robot i is quali-
fied for task j iff

sp−ap < 1 for p = 1 . . .K where a ∈ Ai, s ∈ Sj (1)

Associated with each ability is a cost for including it in a
robot. This is a fixed vector of real values, identical for all
robots, and is denoted by C = {c1, c2, . . . , cK}.The cost for
constructing robot i is therefore given by:

cost(ri) =
K∑

j=1

aj .cj where a ∈ Ai, c ∈ C. (2)

The objective is to assign all the tasks in T to robots in
R in such a manner that the tasks are completed in minimal
total time overall (or some other objective criteria), and total
cost of the robot team, given by

∑

r∈R

cost(r) (3)

is also minimized.
There are two problems represented in this formulation.

Firstly, there is the problem of allocating tasks to robots. We
do this through a multi round single item auction whereby
robots bid for tasks based on a simple metric defined later.
Secondly, there is the problem of dividing the abilities
among a set of robots in such a manner that the total cost
of all robots is minimized and that all tasks in the domain
can still be allocated without overall performance degrading
from the ideal all-homogenous robots case. This is a more
difficult problem, and in this paper, we make a preliminary
attempt at solving it by investigating how the performance
of certain predefined partitions of these abilities amongst the
robots compare with the ideal homogenous case.

In practice, robots exhibit specialization. Their abilities
are not fully heterogeneous, but these abilities are parti-
tioned into heterogeneous classes, with each class having
the same set of abilities. We call these classes hard roles
to denote the fact that a robot cannot change its hard role
once assigned, other than by losing some abilities due to
damage. It can never add any new hardware abilities. We
differentiate this from soft roles, which are partitions based



on behavioral abilities that a robot can acquire or relinquish
dynamically over time. We leave the formal definitions of
hard and soft roles for future work. An important cost con-
sideration in manufacturing settings, which we ignore here,
is limiting the total number of hard roles. Consequently, an
effective heterogeneous team design has minimal number of
roles and minimal number of abilities per role and achieving
such a balance is a challenging problem.

Methodology

Auction Mechanism. The auction method we use for task
allocation.is a single item multi round auction based on
(Tovey et al. 2005). Robots bid for each task that is auc-
tioned, if they are qualified, until all tasks have been allo-
cated. In each round, one task is allocated to the overall
lowest bidder. When all tasks have been allocated, robots
then execute the set of tasks they have won. Total perfor-
mance is evaluated as the total makespan which is the time
at which the last task is completed.

Bid Strategy. We define a metric that captures how
closely a robot’s abilities match with the skills required for
a particular task. We call this value the minimal matching
score (mms), initially described in (Thomas et al. 2005),
and define it as follows. If robot i is qualified for task j, then

mms(i, j) = 1 +
K∑

p=1

(ap − sp).cp (4)

∀a ∈ Ai, s ∈ Sj , c ∈ C

If a robot i is not qualified for task j, then mms(i, j) = 0.
The intuitive idea here is to reduce the number of robots
assigned to tasks they are over-qualified for, and to reserve
them for those tasks which closer match their abilities. In
addition, for a non-uniform cost vector C, the mms favors
allocating those robots with cheaper excess abilities over the
robots with more expensive excess abilities.

If we directly used the mms to determine bids, the ro-
bot with abilities closest to a task’s skills would win all
those tasks, while other robots with excess abilities would
remain idle. Since we are interested in minimizing the to-
tal makespan, we therefore discount the mms with a factor.
Recall that K is the maximum number of skills. So the bid
value robot i sends for task j is

bidV alue = γy.mms(i, j) (5)

where the discount factor γ = 1 + K and y is the number
of tasks currently allocated to robot i. This ensures that if
there are any idle qualified robots, their bids will succeed.
If we were interested in some criterion other than minimum
makespan, such as average latency, our bid strategy would
have to reflect this. Only non-zero bids are sent to the auc-
tioneer. If a robot is not qualified for a task (the mms is 0 or
negative), it does not send a bid at all.

Experimental Setup

Assumptions.

We consider an abstract domain of heterogeneous tasks
whereby a task is some job that requires certain skills to ex-

ecute and takes a fixed amount of time to perform by a robot
possessing those abilities or skills. A task has no location or
spatial components, and each task requires the same amount
of time to execute. We also assume tasks are independent of
each other and have no dependencies in terms of precedence
or tightly coupled relationships.

We assume that the abilities of a robot can be possessed
independently of each other. This may not always be true
e.g. tracks and. wheels are usually mutually exclusive.

This simple task structure restricts us to considering ab-
stract domains, but it is illustrative for our purpose of test-
ing the efficacy of homogeneous and heterogeneous robots
when heterogeneity is the only difference between them.
When other factors are involved such as robot location, en-
ergy levels, task constraints, precedences and priorities, the
bidding strategy must be modified to include them.

Task Instantiation.

The key question to be answered here is what are the unique
classes of skills in our task set, and how many members does
each class have? As already illustrated, tasks in real world
scenarios usually exhibit subset dependencies in terms of the
skills required. These subset relationships might be in a sin-
gle hierarchy or multiple disjoint hierarchies. Consequently,
as a first step, we consider task set instantiations that are in
single and multiple, regular hierarchies.

Regular Hierarchies. Task classes form a full n-ary
rooted tree with each parent node having the combined skills
of all its children. Leaf nodes have the fewest skills and the
root node the most. The number of task classes was thus
usually equivalent to the number of nodes in the hierarchy.
We evaluated the following hierarchies:

1. Linear Trees (LT): A linear tree of depth 7 and 7 classes

2. Binary Tree (BT): A binary tree of depth 3 and 7 classes

3. Ternary Tree (TT): A ternary tree of depth 3 and 13
classes

4. Double-Forest (DF): A forest composed of 2 discon-
nected ternary trees, each of depth 2, and 8 classes in total.

5. Quad-Forest(QF): A forest composed of 4 disjoint bi-
nary trees each of depth 2; 12 classes in all.

Distribution. The distribution of membership of the
classes in a task set was done in 4 different ways: uni-
form distribution where all classes had the same number of
tasks, random distribution among classes, and distribution
weighted in direct and in inverse proportion to the number
of skills required by that task.

Figure 2 shows the task classes based on skill distribution
in the Binary Tree (BT) hierarchy. The actual distribution of
tasks in each in each class varied based on the total number
of classes and the distribution methodology adopted.

Classes of Robot Heterogeneity

Again, a similar question arises here: what are the unique
classes or hard roles involved, and how many robots does
each role have? Ideally, we want to be able to determine the
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Figure 2: Task Classes in Binary Tree Hierarchy

precise partitioning of the ability classes and the exact dis-
tribution of members of each class for a particular problem
instantiation of tasks and robots. In this paper, as a pre-
liminary investigation, we restrict our analysis to evaluating
the performance of three predefined partitions on the task
instantiations of the previous section. We partitioned these
hard role classes as follows:

Homogenous (Hom) This is a single class composed of
all the abilities possible and serves as the base case. For our
heterogeneous teams, we want to match the performance of
this ideal homogenous team.

In the binary tree example, all robots would have the same
skill set of {111111111111111111}.

Heterogeneous In determining our heterogeneous classes,
we attempted to enforce the following constraints to ensure,
and improve, viability of a solution:

1. Every task must have at least one role that is qualified to
perform it.

2. Every role must be qualified to perform at least one task.

3. The number of robots in a role cannot exceed the total
number of all tasks that role is qualified to perform.

We then compared the following two partitions:

Full Hierarchy(HetFH) : This partition is as identical to
the corresponding task set partitioning, first in abilities, and
then in membership distribution, as possible subject to the
constraints above. Since the number of robots is typically
less than the number of tasks, the distribution of roles and
their members is kept proportionally identical as far as pos-
sible. This partition serves to represent a possibly ideal het-
erogeneous team in terms of task coverage. The drawback
of such a team is the large number of roles within it.

In the Binary Tree example, the distribution of role classes
for the full heterogeneous robot hierarchy is identical to the
distribution of task classes in Figure 2.

Sparse Hierarchy (HetSH) : The role classes are con-
structed based on a sparse hierarchy of the original full hi-
erarchy. We eliminate nodes randomly, subject to viability
constraints. The creation of the roles was done manually for
each of the 5 regular hierarchies of task sets. Since our par-

titioning was ad-hoc, we assumed this would be the worst
performing in terms of makespan, while having the fewest
number of roles.

In both the full and sparse hierarchies, distribution of ro-
bots to the role classes was done in the same 4 ways as be-
fore: uniform, random, weighted direct proportionality and
weighted inverse proportionality.

{111111111111111111} 
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{111111111000000000} 
skills= s1-s9

{000011111000000000} 
skills= s5-s9

{000000000111100000} 
skills= s10-s13

Figure 3: Role classes in Binary Tree Sparse Hierachy

Figure 3 shows the role classes of the sparse heteroge-
neous robot hierarchy for the Binary Tree instance.

Evaluation.

We tested our problem instances in our abstract task simula-
tor. Robots bid for tasks based on the bidding rules presented
previously. Tasks were allocated based on minimum bids in
a multi round single item auction. Robots began execution
of their allocated tasks when the auction was complete. All
tasks had equal duration of 10 cycles. The maximum num-
ber of possible skills was 18. Fixed cost for each ability for a
robot was identical. We ran experiments for task sizes of 70-
400 and robot sizes of 13-30. Results for 70 tasks, 13 robots
and 400 tasks, 30 robots in terms of minimum makespan,
total team costs and number of roles are shown in Figures
5-9.

Analysis of Results

The different distribution methods gave varying results, but
since our interest was in determining if heterogeneous teams
can compare favorably with homogeneous teams, the ımini-
mum makespan of each experiment set was considered more
illustrative.

From Figures 5-6, it can be seen that the heterogeneous
approaches to the various task sets perform almost as well
as the homogenous case. In the 70-13 case, at least one het-
erogeneous approach (HetFH or HetSH) for every task hier-
archy always matches the performance of the homogenous
case. In the 400-30 case, performance is matched except
for the forest task instantiations. In both cases, the forest
task instantiations deteriorate first. This suggests that as the
number of disjoint subclasses increase, the distinct roles that
have no overlap with each other increase and performance
decreases. Performance improves when there is overlap be-
tween the roles as this increases the number of qualified ro-



bots that can accept tasks. We hypothesize that our bidding
rule helps as a heuristic in guiding good allocations.

Legend Expansion 

Hom Homogenous robots 

BT-HetFH Binary Tree – Heterogeneous 
robots in  Full Hierarchy 

DF-HetFH Dual Forest – Heterogeneous 
robots in  Full Hierarchy 

LT-HetFH Linear Tree – Heterogeneous 
robots in  Full Hierarchy 

QF-HetFH Quad Forest – Heterogeneous 
robots in  Full Hierarchy 

TT-HetFH Ternary Tree – Heterogeneous 
robots in  Full Hierarchy 

BT-HetSH Binary Tree – Heterogeneous 
robots in  Sparse Hierarchy 

DF-HetSH Dual Forest – Heterogeneous 
robots in  Sparse Hierarchy 

LT-HetSH Linear Tree – Heterogeneous 
robots in  Sparse Hierarchy 

QF-HetSH Quad Forest – Heterogeneous 
robots in  Sparse Hierarchy 

TT-HetSH Ternary Tree – Heterogeneous 
robots in  Sparse Hierarchy 

Figure 4: Key to Legends in Charts
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Figure 5: Makespan with 70 Tasks-13 Robots

In terms of team costs (Figures 7-8), the very drawback
of disjoint roles that works against forests in performance
is an advantage in minimizing total team costs, as the need
for super robots with large ability sets decreases. Forests
have among the lowest team costs for heterogeneous robots
among all structures. This also explains the high team cost
of linear task sets. All the heterogeneous teams far outper-
form the base homogenous team which is restricted, by de-
finition, to the highest team cost. As expected, full hierar-
chies in heterogeneous teams have higher numbers of roles
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than the sparse hierarchies (Figure 9).

Related Work

Most research on heterogeneous robots has focused on di-
versity in behavior. (Potter, Meeden, & Schultz 2001) ex-
plore coevolution of robot controllers based on differing lev-
els of difficulty in a herding task. (Balch 2002) uses social
entropy to measure diversity in robot teams, again focusing
on behavioural differences. (Bongard 2000) measures het-
erogeneity using evolutionary fitness functions on agents op-
erating in foraging and traveling mailman domains. (Parker
1999) studies the effect of heterogeneity of physical robots
in terms of how well a robot can accomplish a certain task.
Our work differs from these in that we examine the effect of
heterogeneity in physical abilities on teams of robots trying
to perform heterogeneous tasks in an abstract domain.

This problem is similar to the team skill problem that is
an instance of the set covering problem (Cormen, Leiserson,
& Rivest 1990). In the team skill problem, a team task re-
quires multiple skills and the goal is to find a minimal num-
ber of team members whose combined abilities cover all the
required skills of the task. Our problem is different in that
we attempt to match qualified team members with individ-
ual tasks that each require multiple skills, and also to reduce
the total number of team members and the total number of
qualifications required by the team as a whole.

Using market systems to allocate tasks in multi-robot
routing domains is a widely used method for task allo-
cation now (Zlot et al. 2002). (Tovey et al. 2005;
Sariel & Balch 2006) present strategies for automatically
generating bidding rules in auction mechanisms.

Conclusion

In this preliminary study, we have presented an auction
based task allocation mechanism that allows heterogeneous
robots to bid for the tasks they are best suited for. We de-
fined a bidding rule that allows robots to independently as-
sess their suitability for a particular task based on the task
skills required, the abilities the robot possesses and the cur-
rent workload of the robot. We then compared the perfor-

mance of this system with instances of hierarchical task sets
and manually partitioned heterogeneous teams.

Our results are promising in that they seem to indicate
that, using this bidding rule, a sensible, ad hoc creation of
heterogeneous teams can match the best case performance
of homogenous teams in hierarchical task structures. Thus,
team costs, in terms of abilities given to each robot, can be
greatly reduced.

Our analysis has been preliminary; we only examined a
small subset of possible task structures; this needs to be ex-
panded and practical applications that have these character-
istics need to be used as test cases. Methods need to be
developed for automatically inferring the best structure for
a heterogeneous team given a heterogeneous task structure.
In addition, the issue of planning among tasks comes into
play. How do relationships such as precedence, tightly cou-
pled tasks etc, affect the analysis? In these contexts, tasks
are no longer independent but have dependencies between
themselves. We plan to explore these issues in future work.
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Abstract

The automation of electronic negotiation protocols re-
quires fault tolerant interactions among agents partici-
pating in the trading process. Negotiation agents must
be able to interact each other tolerating failures, for ex-
ample terminating an auction process even if some sell-
ing agents dynamically crash. Current Agent Commu-
nication Languages (ACLs) do not provide a support for
handling agent failures, resulting inadequate for agents
cooperating in open environments. In this paper we
presentFT-ACL, an advanced ACL which deals with
crashfailures of agents.FT-ACL provides fault toler-
ant communication primitives and support for an anony-
mous interaction protocol designed for open systems.
We show howFT-ACL can be used to support multi-
agent negotiation in open systems providing a specifi-
cation of a fault tolerant agent-based English Auction
protocol.

Introduction
In the agent research community there is an increasing
agreement on the important of inter-agent communication
in Multi-Agent Systems (MAS), which is considered an es-
sential property of agency (Chaib-draa & Dignum 2002;
Luck, McBurney, & Preist 2003).

The importance of inter-agent communication is espe-
cially highlighted inopen systems, whose nodes can be de-
signed and implemented by different organizations and indi-
viduals. In such systems, agents can increase their problem-
solving activity by cooperation. Heterogeneous agents that
would like to cooperate with each other face two major chal-
lenges (Sycara 1998). First, they must be able to find each
other (in an open environment, agents might appear and dis-
appear unpredictably). Second, they must be able tointer-
operate. Interoperation is an the essential property for the
success of agents and concerns the ability to effectively com-
municate and exchange knowledge with one another despite
differences in hardware platforms, operating systems, archi-
tectures and programming languages. The language used
by the agents for this exchange is theAgent Communication
Language (ACL).

Copyright c© 2006, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

In order to exploit ACLs in open environments, an im-
portant issue has still to be addressed and concerns how
these languages should deal with failures of agents. In fact,
current ACLs (such as FIPA ACL (FIPA 2002) and KQML
(Finin, Labrou, & Mayfield 1997)) do not provide a support
for handling agent failures. That is, they are based on the
assumption that a sender agent will always receive replies
from target agents. Agent interactions cannot fail and an
agent will never endlessly wait for a reply. These assump-
tions are too strong if we want to develop real open MAS in
which we expect to encounter unreliable agents and infras-
tructures. Indeed, MASs are prone to the same failures that
can occur in any distributed software system. An agent may
suddenly become unavailable due to various reasons, such as
bugs in the agent program or in the supporting environment.
Moreover, theasynchronousnature of many MASs makes
impossible to distinguish a dead agent from a merely slow
one. For these reasons, we claim that current ACLs are inad-
equate for open MASs because they are designed for well-
behaved agents running on reliable infrastructures. ACLs
should provide mechanisms to deal with failures maintain-
ing a knowledge-level characterization of the communica-
tion primitives (Gaspari 1998).

In this paper we present a Fault Tolerant Agent Communi-
cation Language (FT-ACL) which deals withcrashfailures
of agents.FT-ACL provides fault tolerant communication
primitives and support for an anonymous interaction proto-
col designed for open systems. To illustrate the potentiality
of the ACL we provide a case study on the domain of elec-
tronic negotiation protocols. The automation of such pro-
tocols requiresfault tolerant interactionsamong agents par-
ticipating in the trading process (Feldman 2000). Therefore,
negotiation agents must be able to interact each other tol-
erating failures, for example terminating an auction process
even if some selling agents dynamically crash. We show
how FT-ACL can be used to support multi-agent negotia-
tion in open MAS providing a specification of a fault tolerant
agent-based English Auction protocol. Finally, we discuss
some important properties of ourFT-ACL based specifica-
tion.

An Advanced ACL
Following the style of (Gaspari 1998), an agent in the system
has a symbolic (logical) name and avirtual knowledge base



(VKB). Let AACL be a countable set of agent names ranged
over by â, b̂, ĉ, . . .. Let VKBâ be the virtual knowledge
base of agent̂a. We adopt the following abstract syntax for
communication actions:performative(â, b̂, p) whereperfor-
mativerepresents the communication action,â andb̂ are the
names of the recipient agent and of the sender agent respec-
tively, andp is the contents of the message. Our model is
based on the following assumptions:

1. Agents arecooperative, meaning that they truly negotiate
to achieve common goals.

2. Only crash failures are tolerated1: a crashed agentstops
prematurely and does nothing from that point on. In the
rest of the paper we refer toavailable agentsas agents
which have not crashed.

3. Communication actions areasynchronous, allowing
buffering of messages and supporting non blocking ask
performatives.

4. Communication actions arereliable, i.e.,whenever a mes-
sage is sent it must be eventually received by the func-
tional target agent.

5. Each communication action contains information in a
given knowledge representation formalism. We generi-
cally express the content of a communication action with
a predicatep.

Agents react to messages received from other agents and
from the user. Each agent has an associatedhandler function
which maps the received message into the list of communi-
cation actions which must be executed when that message is
received.Hâ will be the handler function of agent̂a. The
handler function is expressed by a set of Prolog-like rules
{r1, r2 . . . , rn} having the form:

handler(performative(̂a, b̂, p))← body

wherebody is a sequence of literalsh1∧h2 . . .∧hn in which
eachhi can be a communication action, a dynamic primitive
or a predicate on the VKB of the agent. There are no ex-
plicit receive primitives inside such predicates. Idle agents
repeatedly look for messages: they perform pattern match-
ing between the incoming message and the head of rules and,
when a matching succeeds, the body of the selected rule is
executed.

FT-ACL provides a set of standard conversation perfor-
matives and supports ananonymous interaction protocolin-
tegrated with agent-to-agent communication. This allows an
agent to perform a one-to-many request of knowledge with-
out knowing the name of the recipient agents and to con-
tinue the cooperation using agent-to-agent communication.
Moreover,FT-ACL supports adynamicset of agents (as in
(Gaspari 2002)), allowing the creation of new agents and
the termination of existing ones; the anonymous interaction
protocol is integrated with these features. For example, new

1Note that considering only crash failures is a common fault
assumption in distributed systems, since several mechanisms can
be used to detect more severe failures and to force a crash in case
of detection.

agents can be reached by theask-everybodyperformative
provided that they register their competences.

Failure Handling in FT-ACL
The failure model we have adopted requires to tackle new
issues in the design of the ACL’s communication primi-
tives. Such primitives must allow agents to collaborate in
open Multi-Agent Systems (MASs) prone to failures while
preserving agents’ autonomy. This is a fundamental point:
agents must be autonomous in the choice of what actions
perform when a failure occurs. Therefore agents must be
able to decide what exception handling actions execute for
each interaction they perform in the MAS.

Moreover, asynchronous and nonblocking communica-
tion primitives must always succeed even if the target agent
has crashed. That is, as soon as a communication primitive
is executed the flow of control passes to the next instruction.
This is a sound behaviour because in asynchronous systems
when a communication action is executed it is not always
possible to detect if the target agent has crashed. However,to
avoid agents endlessly wait for replies from crashed agents,
sooner or later they should react to possible crashes of tar-
get agents performing exception handling actions. There-
fore, knowing that the target agent has crashed could be a
relevant information for an agent to provide a fault-tolerant
behaviour.

To address the above issues we propose a high level mech-
anism which associates specific success and failure contin-
uations to communication primitives. When a communica-
tion primitive is called afailure continuationshould be spec-
ified to deal with a possible failure. When the target agent
fails the failure continuation is executed. InFT-ACL agents
may react to relevant crash failures, while all the other ex-
ceptions are not considered at the knowledge-level and are
handled at a lower level (Dragoni & Gaspari 2006). A failure
continuation is associated to all the communication primi-
tives that may need to deal with a possible failure of the tar-
get agents. This feature allows agents to react to unexpected
crashes and thus to realize fault tolerant protocols.

Moreover, since we consider nonblocking primitives, ask
primitives do not explicitly wait for answers. Therefore a
mechanism to specify the desired behaviour when a response
is received is needed. This functionality is usually realized
adding :reply-to and :reply-with parameters to the perfor-
matives (as in KQML) or defining the handler function to
match answers with a template of the request (as in (Gas-
pari 1998)). InFT-ACL we use a mechanism similar to the
one defined above for dealing with crash failures: asuccess
continuationallows an agent to specify its behaviour when
it receives a response to a given request for knowledge or in
general when the communication action succeeds. Thus the
code that the agent must execute when it will receive a mes-
sage containing the answer to a given request is specified
together with the request, despite the fact that the performa-
tive is executed asynchronously.

The following abstract syntax is used to associate contin-
uations to a performative:

performative(...)[successcont(body1) + failure cont(body2)]



Table 1: Primitives ofFT-ACL.
Standard conversation performatives:
ask-one(̂a, b̂, p)[on answer(body1) + on fail(body2)]
insert(̂a, b̂, p)[on ack(body1) + on fail(body2)]
tell(â, b̂, p)

One-to-many performative:
ask-everybody(̂b, p)[on answer(body1) + on fail(body2)]

Support for anonymous interaction:
register(̂b, p) unregister(̂b, p) all-answers(p)

Support for creation and termination of agents:
create(̂b, w) clone(̂b) bye

For space constraints, in this paper we will use the following
compact notation: performative(...)[body1 + body2].

Informally2, the semantics of the plus operator (+) is that
only one of the two continuations can be called for a perfor-
mative. For example, if the target agent is not crashed and
replies to the sender agent then the success continuation of
the sender is called. As a consequence, the failure continu-
ation becomes inactive and the programbody1 is executed.
If this execution terminates successfully (all the instructions
in body1 have been executed), then also the success con-
tinuation is disabled. Otherwise, the success continuation
remains active until it succeeds.

Note that our approach is different from generic catch and
throw mechanisms of programming languages (such as in
Java or Lisp) because continuations are strongly related to
the communication primitives and to the failure model we
have adopted.

FT-ACL Primitives
The primitives of the language are shown in Table 1. Be-
cause of space constraints we discuss only the primitives
used in the Case Study of the paper. Readers interested in
a detailed discussion about all theFT-ACL primitives can
find it in (Dragoni & Gaspari 2006; Dragoni, Gaspari, &
Guidi 2005).

Executing the performativeask-onean agent̂b asks an
agentâ for an instantiation ofp which is true in the VKB
of â. This performative is associated with a success continu-
ationon answer(body1) which is called when̂b receives the
reply of the agent̂a. As a consequence, the programbody1

is executed bŷb. Instead, when̂a cannot reply because it has
crashed, the failure continuationon fail(body2) is called and
b̂ executes the programbody2.

By means of the performativetell an agent̂b can send
some knowledgep to an agent̂a without requiring any in-
formation about the success of the sending. At the moment
no continuations can be associated to this performative, al-
though the realization of a stronger version is possible.

The anonymous interaction protocol is implemented

2Readers interested in a formal treatment of these issues can
find it in (Dragoni & Gaspari 2006).

through theask-everybodyone-to-many performative. This
primitive allows an agent̂b to ask all agents in the system
which are able to deal withp for an instantiation ofp which
is true in their VKB. When̂b executesask-everybody, an
ask-onemessage is sent to all the agents interested inp (ex-
cept̂b). The performative is associated with the success con-
tinuationon answer(body1) which is called each timêb re-
ceives a reply to the multicast query and can remain active
until all the replies have arrived. Instead, if no agents are
able to reply because they have all crashed, then the failure
continuationon fail(body2) is called. The success contin-
uation remains active until it succeeds, allowing agents to
realize different protocols. For example, ifb̂ wants to wait
all the answersof the (not crashed) agents in the MAS which
are able to deal withp, then it can do that by executing the
performativeask-everybodywith

body1

def
= body3 ∧ all-answers(p)∧ body4

whereall-answer(p)is a boolean predicate which returns
true if all the availableagents have already replied about
p or false if there is at least oneavailableagent which has
not yet replied. Therefore each reply to the multicast query
of b̂ is handled by the programbody3, which is executed
when the success continuationon answer(body1) is called.
Instead the programbody4 is executed only when the pred-
icateall-answers(p)returnstrue, that is only when the last
reply has arrived.

The multicast request performed byask-everybodyis for-
warded to all the agents on the basis of agents’ declara-
tions. An agent̂b can declare its competences through the
register(̂b, p) andunregister(̂b, p) primitives.

Knowledge-Level Requirements
In (Gaspari 1998) conditions are postulated which require
a careful analysis of the underlying agent architecture in or-
der to ensure knowledge-level behaviour.FT-ACL has been
carefully designed taking into account these knowledge-
level requirements3, which we recall below.

(1) The programmer should not have to handle physical ad-
dresses of agents explicitly.

(2) The programmer should not have to handle communica-
tion faults explicitly.

(3) The programmer should not have to handle starvation is-
sues explicitly. A situation of starvation arises when an
agent’s primitive never gets executed despite being en-
abled.

(4) The programmer should not have to handle communica-
tion deadlocks explicitly. A communication deadlock sit-
uation occurs when two agents try to communicate, but
they do not succeed; for instance because they mutually
wait for each other to answer a query or because an agent
waits a reply of a crashed agent forever.
3Details about formal proofs of this sentence as well as about

the formal specification of a minimum agent architecture forsup-
porting FT-ACL can be found in (Dragoni & Gaspari 2006;
Dragoni 2006).



Case Study: English Auction
The automation of electronic negotiation protocols requires
fault tolerant interactionsamong agents participating in the
trading process (Feldman 2000). Therefore, agents negoti-
ating in open MAS must be able to interact each other tol-
erating failures, for example terminating an auction process
even if some selling agents dynamically crash. The aim of
this case study is to show howFT-ACL can be really used to
support fault tolerant multi-agent negotiation in open MAS.
For this purpose we provide a fault tolerant specification of
an agent-based English Auction protocol. English Auction
is one of the most famous type ofone-side auction, that is
an auction with exactly oneauctioneerand manybidders
(Milgrom 1989). In practice there are many variations of the
protocol. Here we consider a version which is similar to the
one presented in (FIPA 2001).

Description of the English Auction Protocol
The English Auction protocol can be described by the fol-
lowing steps:

1. In the first step, the auctioneer seeks to find the market
price of a good by initially proposing a price (which is
not secret)p below that of the supposed market value. The
proposal is sent to all the available bidders.

2. In the second step, each bidder evaluates the announced
price and replies with:

• a new proposal (that is a new priceq > p ) OR
• a “stop” message indicating that the bidder is not able

to make a new bid for the good.

3. In the third step, the auctioneer checks all the replies re-
ceived from the bidders and acts depending on the values
of the bids. There are three ways of choosing an action for
the auctioneer, depending on whether there areno bids,
just one bid, or more than one bid.

• More than one bid:if at least two bidders have replied
with a bid, then the auctioneer restarts the process from
step 1 with a new price. The price is updated with the
highest bid.

• One bid:the good is sold to the related bidder.
• No more bids:the good is sold to the highest bidder

agent at the price of its last bid. If there are at least two
equal bids, the good is sold to the agent whose reply
was received first.

• No bids: if the auctioneer has not received any bids for
a good, then the good is not sold.

This auction protocol can terminate in three different states:

1. It ends successfully if the highest bidder agent sells the
good.

2. It ends with a not sold good if the auctioneer does not
receive any bids from available bidders.

3. It ends with a failure only if:

• the good is assigned to a bidder which subsequently
crashes (and therefore it does not reply to the auction-
eer) or

• all the bidders in the system are (dynamically) crashed.

Note that forhighest bidderwe mean thefirst bidder
which has offered thebestprice.

Specification of the English Auction Protocol
An English Auction can be defined by the set of agents
S = {â, b̂1, ..., b̂n | n ≥ 1} running in parallel, wherêa
is the auctioneer and̂b1, ..., b̂n aren bidders. The handler
functions of these agents are defined in Figures 1 and 2.
We assume bidders have already registered in the system by
means of aregisterprimitive. We use the following protocol
specific predicates which operate on the VKB of an agent:

• morebids(X, P):returnstrue if at least two bids for a good
X with the current price P have been received. It returns
falseotherwise.

• retrievebestbid(X, P, Y, U):retrieves the best bid for a
good X with the current price P and stores the name of
the bidder in Y and the value of the bid in U. If the price
P is empty (retrievebestbid(X, , Y, U)), the predicate
retrieves the best price for X according to a FIFO disci-
pline: if at least two bidders have offered the best price,
the good is sold to the agent whose reply was received
first. The predicate always returnstrue.

• onebid(X, P): returnstrue if there is exactly one bid for
the good X with the current price P. It returnsfalseother-
wise.

• retrievebidders(X, Y, L): retrieves a list L of bidders
which has made a bid for the good X and returnstrue.
The list L does not contain the agent Y.

• makebid(X, P, Z):stores in Z a new bid for the good X
which has the current price P. The bid can be a new price
greater than P or the string “stop” indicating that the bid-
der is not able to make a new offer for X. The predicate
always returnstrue.

• greater(Z, P):returnstrue if the price stored in Z is greater
than the price P,falseotherwise.

Behaviour of an Auctioneer Agent. The protocol starts
when an auctioneer agent receives an ask-one message con-
taining the good X to sell and its initial price P (line 1 in
Figure 1). For the sake of simplicity, we assume this mes-
sage is sent by a generic agent called “starter” which could
be another agent in the system or the user. The auctioneer
reacts to this request asking for bids to the available bidders
in the systems (line 2). If no bidders are available because
they are crashed, then the programbody2 is executed (lines
29-32). As a consequence, a message of failure is sent to the
starter of the protocol (line 30) and to all the bidders inter-
ested for X (line 32). Otherwise, each reply is handled by the
success continuation of the primitive ask-everybody and the
program getbids is executed (lines 4-21). In this program
the auctioneer stores the received bid in its own VKB (line
5) and checks if all the replies have arrived by means of the
FT-ACL predicate all-answers (line 6). If this is the case,
the predicate iterateprot is executed and the auctioneer will
act according to the received replies (lines 9-21). As previ-
ously described, at this point there can be four situations:



Hâ:
1 handler(ask-one(̂a, starter, startEA(X, P)))←
2 ask-everybody(̂a, bid(X, P, ))[get bids(M) +body2]
3

4 get bids(tell(̂a, W, bid(X, P, Z)))←
5 update(bid(X, P, W, Z, t))∧
6 all-answers(bid(X, P))∧
7 iterateprot(X, P)
8

9 iterateprot(X, P)←
10 more bids(X, P)∧
11 retrievebestbid(X, P, Y, U)∧
12 ask-everybody(̂a, bid(X, U, ))[get bids(M) +body2]
13 iterateprot(X, P)←
14 one bid(X, P)∧
15 retrievebestbid(X, P, Y, U)∧
16 ask-one(Y,̂a, sell(X, U))[end(M) +body2]
17 iterateprot(X, P)←
18 retrievebestbid(X, , Y, U) ∧
19 ask-one(Y,̂a, sell(X, U))[end(M) +body2]
20 iterateprot(X, P)←
21 tell(starter,̂a, not sold(X, P))
22

23 end(tell(̂a, W, sell(X, U)))←
24 update(sold(X, W, U))∧
25 tell(starter,̂a, EnglishAuctionOK(X, U))∧
26 retrievebidders(X, Y, L)∧
27 tell(L, â, sold(X, Y, U))
28

29 body2

def
=

30 tell(starter,̂a, EnglishAuctionFailed(X))∧
31 retrievebidders(X, , L) ∧
32 tell(L, â, EnglishAuctionFailed(X))

Figure 1: Behaviour of an Auctioneer Agent.

1. More than one bid (lines 9-12):in this case the auc-
tioneer retrieves the best bid (using the predicate re-
trieve bestbid) and restarts the protocol using it as the
new price for the good.

2. One bid (lines 13-16):if the auctioneer has received only
one bid for a price P (line 13) then it asks to the bidder
for selling the good at this price (line 16). The reply of
the bidder is handled by the program end (lines 23-27):
when the bidder confirms the payment, then the auction-
eer updates this information in its VKB and sends anEn-
glishAuctionOKmessage to the starter of the protocol in-
dicating the success of the auction (line 25). The other
bidders in the system are also informed of the end of the
auction (line 27). Otherwise, if the winner bidder does
not reply because crashed, then the programbody2 is ex-
ecuted and the auction fails.

3. No more bids:in this case, the auctioneer has not received
new bids for the good X (that is, all the received replies
contain the string “stop” instead of a new price). The auc-
tioneer retrieves the best bid received in the whole auction
process (line 18) and asks the related bidder for selling the
good at that price (line 19). As in the previous case, the
reply of the bidder is handled by the program end, while

in case of a crash of the bidder (lines 29-32) the auction
fails and anEnglishAuctionFailedmessage is sent to the
starter of the protocol (line 20).

4. No bids: if the auctioneer does not receive any bids for
the good X, it informs to the starter of the protocol that
the good has not been sold (line 21).

Behaviour of a Bidder Agent. When a bidder receives a
request for a good X which has a current price P (line 33 in
Figure 2), it computes a new bid for X executing the predi-
cate makebid (line 34). The new bid (stored in variable Z)
could be a new price for X greater than P or the string “stop”
indicating that the bidder is not able to pay more than P. The
bidder replies to the auctioneer sending its offer (lines 35).

Hb̂i
:

33 handler(ask-one(b̂i, Y, bid(X, P, )))←
34 makebid(X, P, Z)∧
35 tell(Y, b̂i, bid(X, P, Z))
36

37 handler(ask-one(b̂i, Y, sell(X, Z)))←
38 update(sold(X,̂bi, U)) ∧
39 tell(Y, b̂i, sell(X, Z))
40

41 handler(tell(̂bi, Y, sold(X, W, U)))←
42 update(sold(X, W, U))
43

44 handler(tell(̂bi, Y, EnglishAuctionFailed(X)))←
45 update(EnglishAuctionFailed(X))

Figure 2: Behaviour of a Bidder Agent.

If a bidder wins the auction receiving a request for selling
the good (line 37), then it updates its VKB and replies to
the auctioneer confirming the purchase (lines 38-39). Oth-
erwise, when a bidder receives a tell message indicating that
another bidder has won the auction (line 41) then it just up-
dates its VKB (line 42). The same behaviour is performed
by a bidder when a message of failure of an auction related
to a good X is received (lines 44-45).

Analysis of the Protocol Specification

The previous specification shows how it is possible to
program a distributed negotiation protocol withFT-ACL

tolerating agent crashes. However we can also infer more
general properties of the specified auction protocol. In
fact, the MAS we have defined inherits all the properties
that follow from the knowledge-level requirements satisfied
by FT-ACL. For example,liveness4 holds in the English
Auction if we assume that the auctioneer does not crash.

Liveness Property: liveness holds in the English Auction if
we assume that the auctioneer agent does not crash.

4Informally, a livenessproperty claims that “something good”
eventually happens, that is the system eventually will do something
good.



It follows directly from knowledge-level requirements
(3) and (4).

Another important property concerns thesound termi-
nation of the negotiation protocol: we want to guarantee
that if there is at least one bidder which has not crashed
throughout the whole negotiation process and which has
made the best offer, then the good is sold to that bidder.

Sound Termination Property: assuming that the auction-
eer agent does not crash and the highest bidder does not
crash, then the English Auction protocol terminates selling
the good.

This property follows from knowledge-level requirement
(4) and from the Liveness property. SinceFT-ACL satisfies
that requirement, we are sure that a communication dead-
lock is impossible because the fault tolerant primitives ofthe
language allows the auctioneer to react to crashes of bidders.
This fact, combined with the hypothesis that the highest bid-
der has not crashed, guarantees there will be a winner of the
auction. Note that if there is only one bidder which has made
the best offer, then the good is sold to that bidder. Instead,
in the case of two or more bidders with the same offer, the
good is sold to the bidder whose reply was received first (ac-
cording to the definition of highest bidder). This bidder is
not crashed for hypothesis.

If we remove the assumption that the highest bidder
does not crash, we cannot guarantee sound termination.
However, if we only assume that the auctioneer agent
does not crash, a crucial property also holds in this case
and concerns the fact that the system will never enter in a
deadlock situation. In other words, thanks to thisDeadlock
Avoidanceproperty we are sure that the program also
handles the worst case in which all bidders crash.

Deadlock Avoidance Property: assuming the auctioneer
agent does not crash, then the English Auction protocol is
deadlock free.

This property follows directly from knowledge-level
requirement (4) which guarantees that an auctioneer agent
does not wait for a reply endlessly even if a bidder is crashed.

Finally, the following property guarantees that the speci-
fied negotiation protocol always terminates.

Termination Property: assuming that the auctioneer agent
does not crash, then the English Auction protocol termi-
nates.

The protocol could have three possible terminations: a
sound terminationif the good is sold, anot sold termina-
tion if the auctioneer does not receive any bids or afailure
terminationif the good is not sold because of crashes of the
bidders. Sound Termination property guarantees that if the
highest bidder does not crash, then the protocol has a sound
termination. Otherwise, if the highest bidder crashes then
the Deadlock Avoidance property guarantees that the proto-
col terminates. Since deadlock situations are impossible,the
protocol still terminates if all the bidders in the MAS have
crashed. Finally, note that the protocol terminates also ifthe

auctioneer does not receive any bids from bidders. In this
case anot soldmessage is sent to the starter of the protocol
by the auctioneer (line 21 in Figure 1). Therefore the proto-
col always ends in one of the three possible terminations.

Related Work

Despite the broad literature on detecting failures in MAS
(Klein & Dellarocas 1999; Kaminka & Tambe 2000; Klein,
Rodrı́guez-Aguilar, & Dellarocas 2003; Shahet al. 2003;
Parsons & Klein 2004), to the best of our knowledge we
do not know works in which fault tolerance is integrated
with a knowledge-level ACL. From this point of view, our
work can be considered a first proposal for supporting fail-
ure handling in ACLs. The main difference between our ap-
proach with respect to current failure handling approaches
for MAS is that we provide aknowledge-level handlingof
failures. This is realized by means of the fault tolerant prim-
itives of FT-ACL. The novelty of our approach is to em-
bed some of the failure detection mechanisms in the ACL
maintaining aknowledge-levelcharacterization. On the one
hand we define a set of high-level communication primi-
tives which are fault tolerant. On the other hand we pro-
vide a well defined interface which allows agent program-
mers to explicitly deal with a set of application-dependent
agent crashes that cannot be solved with general policies.
In other words, we provide to agent software designers a
high-level language for developing robust Multi-Agent Sys-
tems in which agents are able to communicate and coop-
erate at the knowledge-level despite failures. This lan-
guage is completely supported at the architectural-level by
a well defined agent architecture (Dragoni & Gaspari 2006;
Dragoni 2006).

The main advantage ofFT-ACL with respect to current
ACLs such as KQML (Finin, Labrou, & Mayfield 1997)
and the FIPA ACL (FIPA 2002) is that it provides a set of
fault-tolerant communication primitives which are well in-
tegrated at the knowledge-level. Most of the current ACLs
do not provide a clear distinction between conversation and
network primitives, as these are often considered at the same
level. Moreover, failures crashes and fault tolerance are of-
ten not present in the specifications.

Finally, in our approach we propose a set of communi-
cation primitives (ask-everybody, register and unregister)
which implement an anonymous interaction protocol at the
knowledge-level. This protocol is fully integrated with the
dynamic and open nature of Multi-Agent Systems on the
Web.

Conclusion and Future Work

In this paper we have presentedFT-ACL, a fault tolerant
agent communication language which deals withcrashfail-
ures of agents.FT-ACL provides fault tolerant communi-
cation primitives and support for an anonymous interaction
protocol designed for open systems. We have shown how
FT-ACL can be used to support multi-agent negotiation in
open MAS providing a specification of a fault tolerant agent-
based English Auction protocol. Finally, we have discussed



some important properties which can be inferred from our
FT-ACL based specification.

Our future work will concern two main tasks: (1) the ex-
tension of the set of primitives ofFT-ACL and (2) the ex-
tension ofFT-ACL for supporting more severe failures.

With regard to (1), our goal is to increase the expressive
power of the ACL maintaining its knowledge-level proper-
ties, in order to have acore but alsoexpressiveACL. Fol-
lowing this direction we are investigating the integrationof
a new (fault tolerant) primitive which is able to handle mul-
tiple answers to a query from a single agent.

Regarding (2), we are working for extending our middle-
ware (which is based on a distributed facilitator + an un-
reliable failure detector) with adequate mechanisms to deal
with malfunctions more severe than crash failures (such as
receive omission or message corruption).
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Abstract

In this work, we propose a dynamic task selection
scheme for allocating real-world tasks to the members
of a multi-robot team. Tasks in our research are subject
to precedence constraints and simultaneous execution
requirements. This problem is similar to the Resource
Constrained Project Scheduling Problem (RCPSP) in
operations research. Particularly, we also deal with the
missions that may change their forms by introducing
new online tasks during execution making the prob-
lem more challenging besides the real world dynamism.
Unpredictability of the exact processing times of tasks,
unstable cost values during runtime and inconsistencies
due to uncertain information form the main difficulties
of the task allocation problem for robot systems. Since
the processing times of the tasks are not exactly known
in advance, we propose a dynamic task selection scheme
for the eligible tasks instead of scheduling all of them
to eliminate the redundant calculations. In our ap-
proach, globally efficient solutions are attained by the
mechanisms for forming priority based rough schedules
and selecting the most suitable tasks from these sched-
ules. Rough schedules are formed by tentative coalition
commitments which are agreed upon by robots for the
tasks with simultaneous execution requirements. Since
our method is for real world task execution, commu-
nication requirements are kept at minimum as much
as possible. The approach is distributed and computa-
tionally efficient.

Introduction

In this work, we propose the Dynamic Priority-
based Task Selection Scheme (DPTSS) embedded in
our multi-robot cooperation framework, DEMiR-CF
(Distributed and Efficient Multi Robot - Cooperation
Framework), for allocating real-world cooperative tasks
to the members of a multi robot team. DEMiR-
CF is designed for distributed achievement of a com-
plex mission with precedence constraints and simultane-
ous execution (multi-resource) requirements by a multi
robot team without the central authorities. Each robot

∗Sanem Sariel is also affiliated with Georgia Institute of
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Copyright c© 2006, American Association for Artificial In-
telligence (www.aaai.org). All rights reserved.

equipped with the framework contributes to achieving
the mission in a cooperative manner while using the re-
sources efficiently. Robustness is provided through the
integrated Plan B Precaution Routines (Sariel & Balch
2006a). DEMiR-CF is evaluated in three different do-
mains: Object construction (Sariel, Balch, & Erdogan
2006), Multi-robot multi-target exploration (Sariel &
Balch 2006b) and Multi-AUV Naval mine countermea-
sures (Sariel, Balch, & Stack 2006) domains. In this
article, we present the formal details of our task selec-
tion and allocation approach to solve a global problem
from a local point of view and the simulation scenarios
on the US NAVY’s realistic simulator for dynamic tasks
and events.

Following the definition of the coalition given in (Hor-
ling & Lesser 2005) as a goal directed and short lived
organization formed with a purpose and dissolves when
that needs no longer exist, we call a multi-robot group
(sub-team) formed to execute a particular task simul-
taneously and synchronously as a coalition. In this re-
search, we particularly deal with the types of tasks that
require same type of capabilities within a coalition to
execute a task although the overall mission requires a
heterogeneous team and diverse capabilities.

M+ (Botelho & Alami 1999) is one of the earlier coop-
eration schemes addresses many real time issues includ-
ing plan merging paradigms. One of the latest works,
Zlot’s (Zlot & Stentz 2006) task-tree auction method
combined with the combinatorial auction based task al-
location scheme, TraderBots (Dias 2004), is suitable for
the complex tasks represented as and/or trees. Lemarie
et al. proposes a task allocation scheme for multi-
UAV cooperation by balancing workloads of the robots
(Lemarie, Alami, & Lacroix 2004). Gancet (Gancet et
al. 2005) proposes a coordination framework address-
ing the planning and allocation issues. These systems
use the auction based task allocation approach which
is scalable and robust. However as Dias et al. report,
still there are not certain procedures for re-planning,
changing decomposition of tasks, rescheduling during
execution (Dias et al. 2005). Our main objective is to
design the certain components in an integrated cooper-
ation framework to deal with these issues and make it
usable for as many domains as possible.



We formulate the general multi-robot multi task al-
location problem as a Resource Constrained Project
Scheduling Problem (RCPSP) (Brucker 2002). Unpre-
dictability of the exact processing times of tasks, the
unstable cost values during runtime and the inconsis-
tencies due to the uncertain information form the main
difficulties of the task allocation problem for the robot
systems. Since the processing times of tasks are not
exactly known in advance, we propose a dynamic task
selection scheme for the eligible tasks instead of schedul-
ing all of them to eliminate the redundant calculations.
Particularly, we also deal with the real-world missions
that may change their forms by introducing new online
tasks during the execution which makes the problem
more challenging besides the real world dynamism. Our
generic task representation is suitable for multi-robot
teams and relaxes many assumptions for the real world
tasks. DPTSS provides a way to find a solution to the
problem from a global perspective by the mechanisms
for forming priority based rough schedules and select-
ing the most suitable tasks from these schedules. Rough
schedules are formed by the tentative coalition commit-
ments which are agreed upon by the robots for the tasks
with simultaneous execution requirements. Therefore
since the allocations are not made from scratch, the
scheduling costs are reduced and the communication
requirements are kept at minimum as much as possi-
ble. The approach is distributed and computationally
efficient.

Problem Statement

We formulize the multi-robot task allocation prob-
lem for complex missions as a version of the well
known Resource Constrained Project Scheduling Prob-
lem (RCPSP) in operations research (Brucker 2002).
RCPSP is known to be an NP-Hard problem (Weglarz
1999). The adapted version of the formulation for our
multi robot task allocation problem on project tasks is
given as follows. A complex mission consists of a set of
tasks T = {t1, ..., tn} which have to be performed by a
team of robots R = {r1, ..., rm}. The tasks are interre-
lated by two type of constraints. First, the precedence
constraints are defined between activities. These are
given by the relations ti ≺ tj , where ti ≺ tj means that
the task tj cannot start before the task ti is completed.
Second, a task ti requires a certain set of capabilities
reqcapi and certain number of robots (resources) reqnoi

to be performed. We relax the limitation on reqnoi by
allowing its change during the task execution based on
the requirements which provides a more realistic way of
representing the real-world tasks. Therefore different
alternative solutions may be found to allocate the tasks
to the robots based on the environmental factors.

Based on the given notation, the Scheduling Problem
(ScP ) is defined as determining starting times of all the
tasks in such a way that:

• at each execution time, the total reqnoi for a task ti
is less than or equal to the number of available robots

(RSj = ∪rj) with reqcapi ⊆ capj (Condition-1, C1).

• the given precedence conditions (Condition-2, C2)
are fulfilled , and

• the makespan Cmax = max(Ci), 1 ≤ i ≤ n (Objec-
tive, O) is minimized, where Ci = Si + pi is assumed
to be the completion of task ti, where Si is the ac-
tual starting time and pi is the actual processing time
respectively.

This problem can also be stated as a multiprocessor
task scheduling problem and it is proved to be an NP-
Hard problem (Brucker 2001). It’s not always possible
to expect the exact processing times (p) of the tasks of
real world missions especially in which robots involve.
However to form a complete schedule, it is necessary to
make an approximation in terms of the best knowledge
available.

Since the schedules are subject to change, we propose
a way to allocate the tasks incrementally to the robots
without ignoring the overall global solution quality in-
stead of scheduling all the tasks. Therefore the main
objective becomes determining which robot should do
in a precedence and resource feasible manner whenever
a new task needs to be assigned, instead of scheduling
all the tasks from scratch. Although it is not a con-
cern during the assignments are made, preemption (i.e.
yielding) is possible to maintain the solution quality and
to handle the failures during the execution. The main
problem that we try to solve is given as follows: The
Selection Problem (SlP ) is determining the next action
to select (either being idle or executing a task) for each
robot in such a way that the C1 and the C2 are fulfilled
and the O is minimized.

Missions can be represented by directed acyclic
graphs (DAG) where each node represents a task (with
requirements) and the directed arcs (conjunctive arcs)
represent the precedence constraints among them. A
sample graph for a small size mission for moving the
boxes (labeled as 1 and 2) to a stamping machine and
dropping them in a given order, then cleaning the room
is given in Figure 1. Before dropping boxes into the
mailbox, they should first be moved to the stamping
machine. The room can only be cleaned after both
boxes are moved. Since the box 1 is heavy, two robots
are needed to move and drop the box. The unique
dummy nodes are added to the graph for representing
the initial (S) and the termination states (T). There-
fore even when the task graph is not connected, after
adding these task nodes, it becomes connected. Al-
though this graph shows the relationships on the de-
pendencies among tasks, it does not show which robot
performs which task in sequence. There may be several
alternative solutions to this problem based on the num-
ber of available robots, their capabilities and the task
requirements.

The following definitions are needed for our formu-
lation to the solution. Intuitively, robots do not deal
with the ineligible tasks (Tφ) as a union of tasks that
are already achieved or that are not eligible from the ca-
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Figure 1: The Directed Acyclic Mission Graph for drop-
ping the stamped boxes into the mailbox in an order.
The boxes (1,2) are first moved to the stamping ma-
chine and then dropped. After the boxes are moved to
the stamping machine, the room can be cleaned.

pabilities perspective. The eligible tasks (TEj = T \Tφ)
for the robot rj consists of only the considerable tasks
that are neither in execution (Tie) nor achieved. Pi is
defined as the set of all predecessor tasks of the task
ti. We define an active task set as: TAj = {{ti} |
reqcapi ⊆ capj , Pi is completed, 0 < i ≤ n}, (TAj ⊆
TEj), whereas an inactive task set TIj = TEj \TAj con-
tains the tasks for which the robot rj , reqcapi ⊆ capj ,
but the precedence constraints are not satisfied yet. In-
cremental allocation is achieved in our system by means
of the dynamic selection of a suitable task from TAj by
taking into consideration of the TEj.

Shehory and Krauss (Shehory & Kraus 1998) present
an algorithm for coalition formation in cooperative
multi agent systems. During the coalition value cal-
culations, the capabilities of agents are taken into con-
sideration. In multi robot systems, the cost values are a
function of not only the capabilities but also the physi-
cal conditions, which change during execution, such as
the location of robot, the locations of object/subjects,
etc. When the robots decide to perform a task, both
the subjects in the environment and the physical enti-
ties (e.g. fuel) of robots change. Vig and Adams (Vig
& Adams 2005) state the differences of the multi-robot
and the multi-agent coalition formation issues from the
sensor possessive point of view. The locational sen-
sor capabilities are considered in their work. Another
important factor in multi-robot systems for evaluating
coalitions is the changing cost values which are highly
probably subject to change during runtime. The robot
capabilities may not change in advance (this also is not
a realistic assumption), however this is not the case for
the costs.

Difficulty of the problem arises when the communi-
cation is limited and the robots should autonomously
perform the task allocation simultaneously with the
execution. The simultaneous execution requirements
make the problem more challenging because each robot
should be in its the most suitable coalition in a future
formation and estimate it correctly before making a de-
cision in a distributed fashion and with as minimum
communication requirements as possible.

Overview of The Solution Methods for

RCPSP by a Multi Robot Team

There are three main ways to allocate the tasks of a
mission among a group of robots:

1. Applying a centralized approach to find a schedule
and running the method in the operator agent(s)

2. Applying a centralized approach to find a schedule
and running the approach in each robot

3. Applying a distributed approach to find a schedule
and running the approach in each robot

The overall schedule may be carried out by using the op-
erations research methods (the first allocation method).
Our research addresses the issues of the real time exe-
cution when managing the overall team by a central au-
thority is not possible due to the limitations of the real-
world environments. Therefore each individual robot
should find a way to solve the global problem from
the local perspective while thinking globally as much
as possible.

In the first method, besides the real-time execution
burdens, robots have to deal with the others’ plans.
The second allocation method does not suggest the co-
ordination methods among robots. Robots may plan
themselves lacking of the knowledge about the inten-
tions of the other robots and consequently further in-
consistencies may arise. The third allocation scheme,
on the other hand, can be applied by the auction based
task allocation approach and provide a scalable and ef-
ficient way of distributing the tasks. However, it is not
guaranteed to find the optimal schedule. By design-
ing efficient heuristic cost (bid) functions, the solution
quality may be improved. The auction based task al-
location scheme provides a way to solve the problem in
a distributed manner and to announce the intentions
regarding the selected task to execute. The robots may
reason about the tasks selected by others and can make
the future plans based on this information. Therefore
the decisional authority is distributed to the system
robots. The decision on which robot/agent is member of
which coalition (task execution) is an important issue.
Since the coalitions are disjoint in our case, assigning a
robot/agent to a coalition may prevent another advan-
tageous situation in which one of the already assigned
robots may take role in a near future formation. Fur-
ther negotiations, different from auctions, are needed
to reach the consistent agreements. One important is-
sue that should be addressed in auction based systems
is ensuring ways to plan for the global problem from
the local views. From our point of view, this can be
achieved through extensive bid evaluation designs and
the additional routines to improve solution quality.

In summary, the shortcomings of central authorities
and scheduling all tasks from scratch especially for real
world missions are numerous and given as follows:

1. For the decision to be made by a centralized
(semi-centralized) algorithm, the related information



should be collected from all robots (even the fuel lev-
els). In dynamic environments, the updated infor-
mation related to the resources (robots) should be
continually recollected.

2. Results of the scheduling should be continually pro-
vided to the individual robots.

3. The additional complications on determining the de-
cisional authority exist, if there is more than one de-
cisional authority.

4. These former issues should be handled in real-task
environments which are unpredictable, noisy and dy-
namic.

5. There is a huge amount of redundant scheduling cost,
if the globally (near-)optimum solutions are desired.

6. The system becomes sensitive to the failures.

Proposed Approach

DEMiR-CF is for multi-robot teams that must coop-
erate/coordinate to achieve complex missions including
tightly coupled tasks that require diverse capabilities
and collective work (Sariel & Balch 2006a). It combines
auctions, coalition maintenance scheme and recovery
routines called Plan B precaution routines to provide
an overall system that finds (near-) optimal solutions
in the face of noisy communication and robot failures.

Generic Task Representation

Our task representation is designed to address the real
time issues during the task execution and kept up close
the reality as much as possible. The tasks are repre-
sented as data structures containing the information
regarding the task requirements and the task statuses
to keep system consistency: < id, type, reqcap, deplist,
reqno, maxno, relinfo, precinfo >. Some system gen-
erated task ’id’s are assigned initially before the mis-
sion execution. These ’id’s are common for all robots.
However the online task ’id’s may be different for each
robot. The robots agree on the task types (type) and
the corresponding execution methods before the mis-
sion execution. The requirements (reqcap) point to the
special sensors and the capabilities required to execute
the tasks. deplist represents the precedence relations.
While the minimum number of robots to execute the
task is represented by reqno, maxno represents the
limits for the formed coalition and the maximal redun-
dancy. The related information (relinfo) represents the
information regarding the type and the task execution
details. The precaution information (precinfo) is used
for contingency handling. These are: the task state, the
estimated task achievement time and the current exe-
cution cost. The task definitions can be changed during
the execution. In particular, relinfo, precinfo, reqno
and maxno are subject to change during the execution.
Whenever robots recognize that the reqno should be
changed, they update the task description for the cor-
responding task. For example, they may detect that a
Push-Object Task requires more number of robots than

the previously defined number, or the physical limita-
tions prevent the previously defined number of robots to
work on the same task. Therefore the super-additivity
is present to some degree bounded by the physical lim-
itations.

The Dynamic Priority-based Task
Selection Scheme (DPTSS)
In our approach, the instantaneous, precedence and re-
source feasible decisions are made by the robots’ global
time extended view of the problem from the local per-
spectives. The solution is efficient enough with support
for soundness, scalability and robustness. While com-
pletion of the mission is the highest priority goal objec-
tive, additionally other performance objectives can also
be achieved.

The time extended consideration is achieved through
forming the rough schedules by the robots. Since the
schedules are highly probable to change in dynamic en-
vironments and furthermore robots also have the real
time burdens of path planning, mapping etc., the sched-
ules formed in our approach are tentative and con-
structed by computationally cheap methods.

The rough schedules are formed as dynamic priority
queues (similar to runqeues) of the eligible tasks (TE).
Since each robot rj has different capabilities, the eligible
sets TEj and the priority queue entries may be differ-
ent. Sometimes the uncertain information (e.g. related
to an online task that is not known by all robots) or the
unexpected (either internal or external) events (e.g. de-
tection of the fuel leakage) may result in this difference
although the capabilities are the same.

A critical task is a task that has inflexibility from the
resources point of view and the robot is suitable for that
task. Level of a node (task) represents the depth of the
node in the mission graph in reversed order. The level
of a node is assigned as the value incrementing by one
from the maximum level of the the succeeding nodes
(connected by the conjunctive arcs). The terminating
dummy node has a level value as 0 and the dummy start
node has the highest level value. The coalition reserva-
tion tables are built for the critical tasks representing
the committed robots for the execution. Depending on
the number of entries, the possibility of mission com-
pletion can be attained. The reservation tables present
the future commitments although they are roughly de-
termined. The entries of the tables are used for deter-
mining the task requirements such as power, fuel etc. If
there is not any entry in a reservation table, the robot
should consider the task as highly critical that should
be executed by itself during runtime.

The Rough Schedule Generation Scheme
Each robot generates its rough schedule by considering
critical task set (TC), the coalition reservation entries
of them, the eligible tasks, the conjunctive arcs and the
requirements. The rough schedule generation is imple-
mented by the Algorithm 1. curcsj represents the re-
maining capacity of robot rj and reqcs(i) represents the



required capacity for task ti in terms of the consumable
resources (e.g fuel).

Algorithm 1 Rough Schedule Generation Algorithm

ts = φ
C = TEj \ TAj prioritized by the level values in de-
scending order (the tie breaking rules: type priority
and reqno)
R = curcsj

TRj = φ
for each ti ∈ C and ti ∈ TCj do

R = R − reqcs(i)
if R < 0 then

unachievable = true
break

else
TRj = TRj ∪ ti

end if
end for
if (unachievable ‖ R − reqcs(top(TAj)) > 0 ‖
top(TAj) ∈ TCj then

ts = top(TAj)
end if

The priority queue is formed by first taking into con-
sideration of the conjunctive arcs of the task graph. If
there are no online tasks, or invalidations, the order of
the tasks which are connected by the conjunctive arcs
remains the same in the priority queue although there
may be additional intermediate entries in the queue.
The selection is implemented by using the requirements
of the rough schedule. The tie breaking rules while
forming the active list (TA) is given from the highest to
the lowest importance as follows: The least flexibility
(reqno), the level value of the node, and the id.

Each robot generates its own rough schedule. This
feature of our framework allows robots to form their
own plans still working for the global objective. The
Dynamic Task Selection is implemented by the Algo-
rithm 2.

The fundamental decision that each robot must make
is selecting the most suitable action for a task from a
set of active tasks (TA) by considering TE. The four dif-
ferent decisions are: keeping execution of the same task
(if any), joining to a coalition, forming a new coalition
to perform a free task (It may require to leave from a
coalition or cease performing a task), and being idle.

Auctions and Negotiations In DEMiR-CF, the
standard auction steps of CNP (Smith 1980) are im-
plemented to announce the intentions on the task ex-
ecution and select the reqno number of robots for a
coalition in a cost-profitable, scalable and tractable way.
Additionally Plan B precaution routines are added to
check validness in these negotiation steps. Each robot
intending to execute a task announces an auction after
determining the rough schedules. If auctions conflict
for the same task or the tasks with close relation, some
of them are canceled. We allow announcements at the

Algorithm 2 DPTSS Algorithm for robot rj

Determine the eligible tasks (TEj), the active set
(TAj ⊆ TEj) and the critical tasks (TCj ⊆ TEj)
Maintain the coalition reservation entries for the
tasks in TEj

Generate the Rough Schedule (TRj)
Select the active task tS from TAj to process and
perform one of the following
if ts 6= φ then

if ts is the current task then
Continue to the current execution

else
Offer an auction for forming a new coalition or
directly begin execution (depending on the task
type)

end if
else

if R + top(Tie) ≤ curcsj and profitable to join a
coalition then

Join a coalition
else

Be idle
end if

end if

same time to ensure robustness.
Maintaining the coalition reservation entries are im-

plemented by negotiations. The robots maintain the
coalition reservation entries by proposing the coalition
commitment requests to the specific robots that can ex-
ecute the corresponding task. Depending on the num-
ber of suitable robots, the communication can be estab-
lished on peer-to-peer or broadcast basis. The coalition
reservations only show the tentative agreements which
can be canceled in future.

Precaution Routines

DEMiR-CF ensures the system consistency and robust-
ness through integrated Plan B Precaution routines.
Each robot keeps track of the models of known tasks
and other robots in their world knowledge to keep track
of the internal and external inconsistencies. Whenever
information is received from others, robots update their
world knowledge accordingly or recovery routines are
activated for conflicting situations. The inconsistencies
occur when robots are not informed about the tasks
that are completed, under execution or under auction.
The complete set of precaution routines designed for
handling several contingencies can be found in (Sariel
& Balch 2006a).

Experimental Results

In our earlier work, we apply the rough schedule gen-
eration scheme for MTSP (open loop-Multiple Travel-
ing Salesman Problem) on multi-robot systems (Sariel
& Balch 2006b). Since the rough schedules are gener-
ated tentatively, quality of the solution is improved over
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Figure 2: Initial Mission graph consists of only the
Search Task.

time if the initial quality is degraded. Furthermore, an
incremental assignment approach saves a considerable
computation overhead.

In this work, we evaluate our approach in the US
NAVY’s realistic simulator (ALWSE ). Particularly in
this experiment, the mission consists of the online tasks,
generation time of which are not known in advance by
the robots (Autonomous Underwater Vehicles). The
overall mission is searching a predefined area and pro-
tecting the deployment ship from any hostile intents.

The initial graph of the application mission is given
in Figure 2. Initially the mission consists of only the
Search Task. Although reqno = 1 for this task, since
there are no other tasks and the robots have enough
fuel capacities, they execute the task as a coalition
and divide the area to search. The Search Task exe-
cution with three robots and the corresponding search
areas are illustrated in Figure 3. The robots patrol
the sub-areas which are determined after the negotia-
tions (Sariel, Balch, & Stack 2006). Therefore, although
there is only one task on the higher level, the robots cre-
ate instances of the Search Task (Search 1-3) as if each
instance is another separate task. If there are no hostile
intentions, the robots only search the area.

Whenever a hostile diver is detected by the robots,
a related interception task is generated. The execution
trace after detection of the hostile diver is illustrated in
Figure 4. R2 cheases performing the search task and
immediately switches to the Intercept Task generated
for the hostile diver. The hostile diver attacks to R2 by
using its missiles. Therefore R2 needs to return back
to the deployment area while R1 takes control of the
Intercept Task. R1 can deter the diver but waits until
the threat entirely disappears. During this time, it can
make coalition commitment for the search task.

The evolving mission graph is illustrated in Figure
5. The task execution is to be preempted and the
task execution authority is exchanged during run time.
The robots may need to generate local tasks (e.g. Re-
pair/Refuel Task, which is generated by R2 after being
shot by the hostile diver unexpectedly) as in Figure
5 (d). Therefore the mission graphs may be different

Table 1: The Cost Evaluations for the application do-
main

Task Type Cost Function Taken Action

Search Task Distance to the region

interest points (Sariel,

Balch, & Stack 2006)

In depth analysis is

needed. Standard auc-

tion type is applied.

Intercept

Task

Expected time to

achieve the task: tE =

E[dist(rj , ti)]/E[speed−

diff(rj , ti)]

Immediate response is

needed. One step auc-

tion or direct execution

is applied.

for the robots even when they work cooperatively for
the same objective (Figure 5 (c-d)). In Figure 5 (c),
although executing the Intercept Task, R1 can make
a coalition commitment assuming it will succeed in a
predefined time (described as TBD), R2 cannot make
any coalition commitment for the search task because
its future operations depend on its recovery time.

Cost evaluation for the tasks are implemented accord-
ingly depending on the task. While the robots try to op-
timize the fuel levels for the Search Task, the Intercept
Task requires immediate response and time minimiza-
tion. Therefore different cost evaluations are performed
for the different tasks facilitating optimizing composite
(multi) objectives. We provide the cost evaluations for
the task types used in the experiments (Table 1) and
leave a further investigation for a general classification
as a future work. Cost evaluation for the search task
is implemented by dividing the search area into regions
(with corresponding interest points) and comparing the
distance values for these interest points. The details of
the cost evaluation for the search task is given in (Sariel,
Balch, & Stack 2006). For the intercept task, the ex-
pected time to achieve (intercept the diver) the task is
taken as the cost value. The Intercept Task is assumed
to be achieved whenever the hostile threat is believed
to be disappeared.

Actions taken to execute the tasks are defined be-
fore mission execution. In our approach, the auction
announcements are also used to maintain the models of
the other robots in the system and also used as clues for
the intentions. Emergency tasks (e.g. Intercept Task)
require immediate action. We do not suggest the stan-
dard auction steps for these types of tasks. Instead, ei-
ther a single step auction is performed or the task is di-
rectly executed (we use the latter approach.). However,
in this case, parallel executions may occur and should
be resolved. This facility is provided in our framework
by the Plan B precaution routines. We allow the paral-
lel executions to handle the emergencies to be resolved
when recognized. In a sample scenario with limited
communication ranges, the parallel executions arise for
the emergency tasks such as the Intercept Task as in
Figure 6. However these inconsistencies are resolved by
activation of corresponding Plan B precaution routines
whenever robots enter into the communication range.
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Figure 3: (a) Mission execution begins. The overall area is divided into regions related to the generated task instances.
(b) Robots patrol the area in the corresponding regions.
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Figure 4: A sample execution trace under highly dynamic task situations in which failures occur after shots by the
hostile diver. (a) The robots begin searching the area. (b) R2 recognizes the hostile intent. After detection, the
hostile vehicle attacks R2. (c) R2 returns to the deployment ship. R1 takes control of the intercept task. The hostile
intention disappears. (d) R1 and R3 continue to search the area.
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Figure 6: Under limited communication ranges, parallel
executions may occur to be resolved when detected. R3
switches to the search task, after detecting the parallel
execution. R1 continues to execute the intercept task.

Conclusion

In this work, we present our dynamic and distributed
task selection scheme (DPTSS) embedded in our
generic cooperation framework, DEMiR-CF. The dy-
namic task selection scheme ensures that the instan-
taneous, precedence and resource feasible decisions are
made by the robots’ global time extended views of the
problem from the local perspectives. The framework
combines a distributed auction based allocation method
and Plan B precaution routines to handle contingen-
cies and limitations of the real world domains and to
maintain the high solution quality with the available
resources. Preliminary results on complex missions, as
presented in this paper, reveal the integration of real-
world task allocation and execution; immediate and ef-
fective handling of the online tasks and events and the
solution quality maintenance performance of our frame-
work is promising.
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Abstract

We present an auction-based method for dynamic allocation
of tasks to robots. The robots have to visit locations in a 2D
environment for which they have a map. Unexpected obsta-
cles, loss of communication, and other delays may prevent a
robot from completing its allocated tasks. Therefore tasksnot
yet achieved are rebid every time a task has been completed.
This provides an opportunity to improve the allocation of the
remaining tasks and to reduce the overall time for task com-
pletion. We present experimental results that we have ob-
tained in simulation using Player/Stage.

Introduction
There are many real-world problems in which a set of tasks
has to be distributed among a group of robots. We are in-
terested in situations where each task can be done by a sin-
gle robot, but sharing tasks with other robots will reduce the
time to complete the tasks. Search and retrieval tasks as well
as pickup and deliveries are examples of the types of tasks
we are interested in.

What distinguishes task allocation to robots from other
task allocation problems is the fact that robots have to phys-
ically move to reach the task locations, hence the cost of
accomplishing a task depends on the current robot location
and not just on the task itself.

We describe an efficient algorithm based on auctions to
perform task allocation. Our method does not guarantee an
optimal allocation, but it is specially suited to dynamic envi-
ronments, where execution time might deviate significantly
from estimates, and where it is important to adapt dynam-
ically to changing conditions. The algorithm is totally dis-
tributed. There is no central controller and no central auc-
tioneer, each robot auctions its own tasks. This increases
robustness and scalability.

The auction mechanism we propose attempts to minimize
the total time to complete all the tasks. Given the simplifying
assumption of constant and equal speed of travel for all the
robots, this is equivalent to minimizing the sum of path costs
over all the robots (Toveyet al. 2005). We are not as much
interested in obtaining a theoretically optimal solution,as in
providing a method that is both simple and robust to failure

Copyright c© 2006, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

during execution. If a robot finds an unexpected obstacle,
or experiences any other delay, or loses communication, or
is otherwise disabled, the system continues to operate and
tasks get accomplished.

Our algorithm is greedy, and finds close-to-optimal solu-
tions that are fast to compute. It is flexible, allowing robots
to rebid every time a task is achieved. This provides an op-
portunity to produce a better allocation and increases the ro-
bustness of the system in case of unexpected problems or
delays. Rather than forcing a costly re-computation of the
entire optimal solution when a task cannot be achieved, the
algorithm uses multiple auctions to reallocate tasks.

In this paper we report scalability results with varying
numbers of tasks and robots (already reported in (Nanjanath
& Gini 2006a)) and we specifically address the problem of
performance in case of communication malfunctions.

Related Work
The problem we address is a subset of the larger problem of
coordination in a team. Our robots have to coordinate so that
all the locations of a given set are reached by a robot, but are
otherwise independent.

A recent survey (Diaset al. 2005) covers in detail the
state of the art in using auctions to coordinate robots for ac-
complishing tasks such as exploration (Dias & Stentz 2000;
Kalra, Ferguson, & Stentz 2005), navigation to different lo-
cations (Toveyet al. 2005), or box pushing (Gerkey &
Matarić 2002). Auction-based methods for allocation of
tasks are becoming popular in robotics (Dias & Stentz 2000;
Gerkey & Matarić 2003; Toveyet al. 2005) as an alterna-
tive to other allocation methods, such as centralized schedul-
ing (Chien et al. 2000), blackboard system (Engelmore
& Morgan 1988), or application-specific methods, which
do not easily generalize (Agassounon & Martinoli 2002) to
other domains.

Combinatorial auctions have been tried as a method to
allocate navigation tasks to robots (Berhaultet al. 2003) but
are too slow to be practical and do not scale well. They allow
tasks to be accomplished with maximum efficiency, but the
time taken in determining whom to assign which tasks often
ends up being more than the time for the tasks themselves.

Sequential single-item auctions tend to miss opportunities
for optimal allocation, even though they can be computed in
polynomial time. Our approach tries to find a tradeoff be-



Figure 1: The hospital environment. The top part of the figureshows the Stage simulation, with the locations of the tasks and
of the robots. (The active robot has its range sensor traces shown). The lower part shows the paths generated by the RRT
algorithm, with the location of the active robot on the pathsindicated by a square. This is one of the single robot experimental
runs, where only one robot is active.

tween computational complexity and optimality of alloca-
tions. We do not use combinatorial auctions, but we reauc-
tion tasks multiple times while they are being executed, so
allowing for a better allocation.

Recent work (Toveyet al. 2005; Lagoudakiset al. 2005)
has focused on producing bidding rules for robot naviga-
tion tasks that lower significantly the computational costs
but give up the guarantee of finding an optimal solution. The
method uses multi-round auctions, where each robot bids in
each round on the task for which its bid is the lowest. The
overall lowest bid on any task is accepted, and the next round
of the auction starts for the remaining tasks. Once all the
tasks have been allocated, each robot plans its path to visit
all the sites for the tasks it won. The bidding rules are such
that there is no need for a central controller, as long as each
robot receives all the bids from all the robots, each robot can

determine the winner of the auction.
Our approach differs in many ways. First, the auction-

eer determines the winner of the auction, so if a robot fails
to submit a bid (perhaps because of communication failure),
the auction can continue. Second, our approach is designed
for highly dynamic situations where unexpected delays dur-
ing execution or communication failures can prevent a robot
from accomplishing its tasks, or can make task accomplish-
ment more time consuming than originally thought. By
continuously rebidding and reallocating tasks among them-
selves during task execution, the robots adjust to changing
situations. When the environment is highly dynamic, com-
puting the optimal path to achieve all the tasks allocated to
a robot, as in (Lagoudakiset al. 2005), might not pay off,
because tasks are reallocated often.

Our approach is similar to the method presented in (Dias



et al. 2004) where a group of robots is given tasks to ac-
complish, and robots are selectively disabled in different
manners, in order to examine their performance under dif-
ferent conditions. Performance is measured in terms of task
completion. Their approach differs in that they do not as-
sume a time limit for task completion. Additionally they use
more complex robots, whose navigation and obstacle detec-
tion abilities are much better.

We have reported elsewhere (Nanjanath & Gini 2006b)
results of our algorithm when tasks have priorities, which
means the first few tasks receive more attention and later
tasks may be abandoned in favor of accomplishing earlier
ones. Upon reassignment, if a robot has received a higher
priority task than its current task, it postpones executionof
the current task to complete the higher priority one first.

Proposed Algorithm
In this work we assume that each robot is given a map that
shows its own location and the positions of walls and rooms
in the environment. No information is given about where the
other robots are located. The map allows a robot to estimate
its cost of traveling to the task locations, and to compute the
path to reach them from its original location.

Suppose a user has a setR of m robots R =

{r1, r2, ...rm}, and a setT of n tasksT = {t1, t2, ...tn},
where each task is a location a robot has to visit. The user
partitions the tasks intom disjoint subsets, such that

T1∪T2∪...∪Tm = T andTi∩Tj = φ ∀i, j1 ≤ i, j ≤ m.

and allocates each subset to a robot. Note that a subset can
be empty.

The initial task distribution done by the user might not
be optimal. Some robots might have no task at all assigned
to them, while others might have too many tasks, the tasks
assigned to a robot might be spread all over the environment,
and might be within easy reach of another robot, some tasks
may be in an unreachable location.

A robot must complete all its tasks unless it can pass its
commitments to other robots. Since the robots are cooper-
ative, they will pass their commitments only if this reduces
the estimated task completion time. The ability to pass tasks
to other robots is specially useful when robots become dis-
abled since it allows the group as a whole to increase the
chances of completing all the tasks. This process is accom-
plished via single-item reverse auctions, in which the lowest
bid wins, that are run independently by each robot for their
tasks.

Each bid is an estimate of the time it would take for that
robot to reach that task location (assuming for simplicity a
constant speed) from its current location.

To generate paths efficiently, robots use Rapidly-
expanding Random Trees (RRTs) (Kuffner & LaValle 2000).
Generation of RRTs is very fast, and scales well with large
environments. An example of a RRT is shown in Figure 1.

Auctions are parallel, i.e. many auctioneers may put up
their auctions at once, but since each bidder generates bidsin
each auction independently of the other auctions, the effect
is the same as having each auction done as a single-item
auction that the bidder either wins or loses. Robots compute

Repeat for each robotri ∈ R:

1. Activateri with a set of tasksTi and a list of robots
R−i = R - {ri}.

2. Create an RRT usingri’s start position as root.

3. Find paths in the RRT to each task location inTi.

4. Assign cost estimatecj to each tasktj ∈ Ti based on
the path found.

5. Order task listTi by ascending order ofcj .

6. ri does in parallel:

(a) Auction the assigned tasks:
i. Create a Request For Quotes (RFQ) with tasksTi.
ii. Broadcast the RFQ toR−i and wait for bids.
iii. Find the lowest bidbjk among all the bids for task

tj .
iv. If bjk < cj then sendtj to robotrk, else keeptj .

If rk does not acknowledge receipt, returntj to ri

Mark tj as assigned.
v. Ask rk to update its bids for the tasks left (rk has

now new tasks).
vi. Repeat from 6(a)iii until all tasks are assigned.

Robots that do not bid on tasks are ignored in the
auction.

(b) Bid on RFQs received from other robots:
i. Find a RRT path for each tasktr in the RFQ.
ii. Create a cost estimatecr for eachtr that the robot

found a path to.
iii. Send the list of costs to the auctioneer that sent the

RFQ.
(c) Begin execution of first assigned task:

i. Start executing the first tasktj by finding a path in
the RRT and following it as closely as possible.

ii. If new tasks are added as result of winning auc-
tions, insert them inTi keeping it sorted in ascend-
ing order of cost, and repeat from 6(c)i.

iii. If ri is stuck, auctionri’s tasks.
iv. If tj is completed successfully, restart from 4.

until timeout.

Figure 2: Task allocation algorithm.

their bids for all the parallel auctions assuming they startat
their current location. This can results in bids that over- (or
under-)estimate the true cost.

The algorithm that each robot follows is outlined in Fig-
ure 2. We assume the robots can communicate with each
other, for the purpose of notifying potential bidders about
auctioned tasks, for submitting their own bids, and for re-
ceiving notification when they won a bid. We show later
experimental results in case of partial communications loss.
A robot can choose not to bid on a particular task, based on
its distance from and accessibility to that task.

Once the auctioned tasks are assigned, the robots begin to
move to their task locations, attempting the nearest task first
(i.e. the task with the lowest cost).



When a robot completes its first task, it starts an auction
again for its remaining tasks, in an effort to improve the task
allocation. In case robots get delayed by unexpected obsta-
cles, this redistribution of tasks allows them to change their
commitments and to adapt more rapidly to the new situation.

If a robot is unable to complete a task it has committed to,
it can auction that task. Any task that cannot be completed
by any of the robots is abandoned. We assume that there is
value in accomplishing the remaining tasks even when not
all of them can be completed.

The robots are given a time limit to complete the tasks,
so that they do not keep trying indefinitely. When all the
achievable tasks (determined by whether at least one robot
was able to find a path to that task) are completed, the robots
idle until the remainder of the time given to them is over.

The algorithm allows for dynamical additions of new
tasks during the execution, but for simplicity, in the experi-
ments described in Section , the set of tasks and of robots is
known at start and does not change during the execution.

Experimental Setup and Analysis
We conducted experiments in the Player/Stage simulation
environment (Gerkey, Vaughan, & Howard 2003). We sim-
ulated robot deployment in complex 2-D worlds, using as
our test environment the section of the hospital world from
Player/Stage shown in Figure 1. The hospital world consists
of several rooms with small doorways and limited accessi-
bility, covering a total area of33 × 14m

2.
Each robot is simulated as a small differential drive vehi-

cle placed at an arbitrary location in the world. It is equipped
with 5 sonar sensors mounted at45

◦ angles across its front,
which are used for obstacle avoidance. While these sensors
allow the robot to avoid colliding into straight walls, robots
tend to get stuck on corners where they cannot detect the cor-
ner before colliding into it. This tend to produce unexpected
delays during the execution that vary greatly between runs.
Tasks are modeled as beacons placed at different positions
in the environment.

The experiments were run for 10 minutes each, to avoid
long runs when robots were unable to make much progress.
This also allowed us to test how often the robots could not
accomplish all the tasks in the allocated amount of time.

We ran each experiment 10 times, with the same initial
conditions, but with different initial task allocations. The
auction algorithm is sensitive to the order in which tasks are
given to the robots. To reduce this effect we supplied the
tasks to the robots in a random order each time an experi-
ment was run. This, combined with the inherently random
nature of the RRT generation algorithm, resulted in signifi-
cant variations across runs both in the allocation of tasks and
time taken to complete the tasks.

Experiments with different numbers of robots

We used different experimental setups, each with 16 tasks
placed in different rooms. We tested the setups with 1, 3,
and 10 robots, and ran a set of experiments with a single
auction (with no rebidding) to use as a baseline.
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Figure 3: Time spent trying to complete tasks in different
robot-auction combinations.
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Figure 4: Relative task completion rates for different robot-
auction combinations

Performance results are shown in Figure 3. The results
show the time taken to complete all the tasks that were ac-
complished in each run. We can observe that a single robot
takes longer, but, as expected, the speedup when using mul-
tiple robots is sublinear. A single round auction tends to per-
form worse than multiple auctions and has more variability
in the time needed to complete the tasks. This is consistent
with the observation that reallocation of tasks via additional
bidding tends to produce on average a better allocation. The
results are best when the number of robots and tasks is bal-
anced. When the task are few some of the robots stay idle,
when the tasks are too many with respect to the number of
robots the completion time increases, since each robot has
more work to do.

Figure 4 shows the percentage of tasks completed for each
run. Since the number of tasks was relatively large with re-
spect to the time available and the distance the robots had
to travel, very few runs had all the tasks completed. We can
observe that with a single robot only a small percentage of
the 16 tasks get accomplished in the time allocated. With
a more balanced number of tasks and robots a much larger
percentage of tasks gets done. We can see the differences
between runs when using a single round auction versus us-
ing multiple rounds. The performance of multiple rounds of



auctions is not consistently better than when using a single
round. Recall that in each experiment the initial allocation
of tasks to robots was different, and some allocations were
clearly better than others.

Experiments with Communication Loss
We ran a second set of experiments, where we modeled loss
of communication among the robots and its impact on task
performance. For this set of experiments we kept the num-
ber of robots fixed at 10, with 16 tasks placed in different
rooms in the hospital environment as in the previous set of
experiments.

Communications among the robots is modeled in terms
of two variables: range and efficiency. The range measures
how far the signal of each robot reaches. For the purposes
of these experiments, range has been set to the size of the
environment - all robots are within range. Communication
efficiency encodes the rate at which messages sent from one
robot to another actually reach the other robot. The cur-
rent experiments have been done keeping the efficiency uni-
formly across all the robots as 75%. With this setup, each
time a message is sent (the message may be the response to
an RFQ, or a task assignment on winning a bid), the message
has a 75% chance of actually reaching the desired recipient.
Results are reported in Table 1.

We assume that as long as a signal is available, actual
communication is instantaneous - issues such as signal being
interrupted in the middle of a transaction are not considered.

The possible error conditions are dealt with as follows:

1. If a robot does not receive notification of an RFQ, then the
robot simply does not respond, and hence its bids are not
considered in the computations for the task allocation.

2. If after assigning a task to a robot, the robot fails to accept
the assigned task, the task is taken back by the auctioneer,
and the original agent puts it back on its own task list.

3. In the event a set of tasks is missed because of communi-
cation failures, the robots bring the tasks back to auction
after a 10 second wait. This continues until either all the
tasks are completed or the time is up.

In order to maximize the chance of completing tasks, the
robots initially send a list of assigned tasks to each other,and
use the list to update their own task lists. Thus, a complete

Table 1: Communications Experiments. Results obtained
with 10 robots and 16 tasks with 75% and 100% communi-
cations efficiency. Task locations are the same across all the
experiments, but the initial task allocation to robots varies
randomly. Times are in seconds. Results averaged over 10
runs.

% Task Completion Rate Task Completion Time
Comm Mean Std Dev Mean Std Dev
75% 56.875 12.65 397.6748 31.92
100% 51.875 5.92 395.2361 24.18

copy of all the tasks assigned to date is maintained with each
robot. This list of tasks is updated whenever a task is com-
pleted by any robot (and the information reaches that robot).
This can lead to redundancy with multiple robots trying to
accomplish the same tasks. However, since the task lists are
synchronized periodically, this redundancy should be caught
before time is wasted.

The results of the experiments with communication loss
show that 75% communication does slightly better in task
completion than 100% communication but has a larger vari-
ance. This may be because the robots with no communi-
cation had less interference while performing tasks, though
they spent more time in completing them, or because of
a better initial task allocation. Something similar was ob-
served in the experiments reported in (Diaset al. 2004).
We will be conducting further analysis with different com-
munication rates, to track this further.

Conclusions and Future Work
We have presented an algorithm for allocation of tasks to
robots. The algorithm is designed for environments that are
dynamic and where failures are likely.

We assume the robots are cooperative, and try to mini-
mize the total time to complete all the tasks assigned to the
group. Each robot acts as an auctioneer for its own tasks
and tries to reallocate its tasks to other robots whenever this
reduces the cost. Robots also re-assess the current situa-
tion and attempt to improve the current task allocation by
putting their remaining tasks up for bid whenever they com-
plete a task. The process continues until all the tasks have
been completed or the allocated time has expired.

We removed any need for central coordination; tasks are
assigned in a distributed fashion, so that the system can re-
cover from single or even multiple points of failure. This
prevents us from using any centralized system, such as a
blackboard system (Engelmore & Morgan 1988), since this
will create a single point of failure.

Future work will include considering additional costs to
do tasks over the cost of reaching the task location, and
introducing heterogeneous robots having different speeds
and capabilities. We will also compare the performance
of our algorithm against the performance of other auction-
based task allocation algorithms, such as the one reported
in (Lagoudakiset al. 2005). There are tradeoff between
quality of the solution found and rate of change in the envi-
ronment that we will explore.
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