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Abstract

We study the algorithmic issues of finding the nucleolus of a
flow game. The flow game is a cooperative game defined on
a network D = (V| F;w). The player set is F and the value
of a coalition S C F is defined as the value of the maximum
flow from source to sink in the subnetwork induced by S.
We show that the nucleolus of the flow game defined on a
simple network (w(e) =1 for each e € E) can be computed
in polynomial time by a linear program duality approach,
settling a twenty-three years old conjecture by Kalai and
Zemel. In contrast, we prove that both computation and
recognition of the nucleolus are A'P-hard for flow games with
general capacity.

Keywords: Flow game, nucleolus, LP duality, efficient
algorithm, A'P-hard.

1 Introduction.

Cooperative game theory considers how to distribute in-
come v(INV) generated by a group N to its members. The
nucleolus, defined by Schmeidler [26], is a solution that
lexicographically maximizes the sorted vector of excess
for all nontrivial subsets. More formally, let an impu-
tation z : N — R, represent the income distributed to
the members in N with z(N) = v(NN); for each sub-
set 0 # S C N, let v(S) be the revenue generated
by the subset S of members; the excess is defined by
e(S,z) = x(S) — v(S), where z(S) = > ,cgx;. The
sorted vector of excess is e(S1, ), e(S2, x), -, e(Sm, ),
where m = 2/Nl — 2 such that e(S;,z) < e(Sz,z) <
-+« < e(Sm,z). Note that, for different imputation z,
the ordered subset Si1,S53, -, .S, is in general different.
The nucleolus is one imputation that maximizes this
sorted vector lexicographically.

Surprisingly, such a complicatedly defined solution,
according to Aumann and Maschler [1], was the foun-
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dation that dictated a particular schema for the estate
division problem set by Rabbi Nathan that baffled Tal-
mudic scholars for two millennia. The problem is one of
three wives married to a man who promised them 100,
200, and 300 zuz respectively upon his death. The hus-
band died leaving an estate worth less than 600 zuz. Ac-
cording to the Talmud recommendation, the wives will
receive an equi-partition of the estate if it is worth 100;
but a proportional partition of the promised amount
if it is worth 300. Such an intricacy has been made
clear only after the work of Aumann and Maschler, and
the Talmud rule has since been credited as anticipation
of the modern cooperative game theory. The nucleo-
lus and related solution concepts have been applied to
study insurance policies by Lemaire [21], to real estate
by Raghavan and Solymosi [25], to study peer group
by Branzei, Solymosi, and Tijs [2], to bankruptcy by
Aumann and Maschler [1] as well as Malkevitch [22].

With the linear programming approach, the nucle-
olus can simply be solved in a sequence of linear pro-
grams, each exponential in the group size. Clearly,
it does not provide us with an efficient solution of
the nucleolus in general. The first polynomial time
algorithm for nucleolus in a special cost allocation
game on trees was derived by Megiddo [23], in advo-
cation of efficient algorithms for cooperative game solu-
tions, following the concept of good algorithms by Ed-
monds [5]. Subsequently, efficient algorithms have been
developed for computing the nucleolus, such as, for as-
signment game [27], standard tree game [14] and match-
ing game [18]. On the negative side, N"P-hardness result
was obtained for minimum cost spanning tree game [8].
In general, results computing the nucleolus in polyno-
mial time depend on specific properties of the games
[13, 9, 20].

For a related problem, that of the core, the linear
programming approach has been very successful in un-
derstanding the computational complexity issues. The
core is a solution that possesses a sorted excess vector
with all components non-negative. It can be represented
by one single linear program of exponential size. A cen-
tral approach is to establish an equivalent polynomial
size integer program with a polynomial time solution,



such as for assignment game of Shapley and Shubik [28],
linear production game of Owen [24], partition game of
Faigle and Kern [7], packing/covering game of Deng,
Ibaraki and Nagamochi [3] and facility location game of
Goemans and Skutella [12]. Linear program duality has
played an important role in the above results character-
izing the core in cooperative game theory.

A very interesting flow game was introduced by
Kalai and Zemel [16, 17], which arose from the profit
distribution problem related to the maximum flow in
a network, in which arcs are owned by different indi-
viduals. It was shown in [16, 17] that the flow game
on a simple network (edge capacity being all equal) is
totally balanced, and the allocations corresponding to
minimum cuts in the network always belong to core.
Linear program duality was crucial for the results. They
further conjectured that their approach can lead to an
efficient algorithm for the computation of the nucleolus.

We study the nucleolus of flow games from the
algorithmic point of view. We show that computing the
nucleolus can be done in polynomial time for the flow
game on a simple network. The proof is deep and, at
the same time, an elegant application of linear program
duality approach in Kalai and Zemel’s work [17], and
hence settling their conjecture. On the other hand, we
prove that both the computation and the recognition of
the nucleolus are NP-hard for flow games in general
cases. The AN'P-hardness proof for recognizing the
nucleolus also resolves a conjecture of Faigle, Kern and
Kuipers [8].

In Section 2, we introduce the basic theoretic con-
cepts and the definition of the flow game. In Section 3,
we discuss the essential coalitions and dummy arcs in
the flow game, which play an important role in charac-
terization of the nucleolus. Section 4 is dedicated to the
polynomial time algorithm for computing the nucleolus
of the flow game defined on a simple network. Finally,
in Section 5, we prove that both the problems of com-
puting and recognizing the nucleolus are NP-hard for
flow games with general capacity.

2 Preliminary and Definition.

2.1 Cooperative game theory. The cooperative
(revenue) game I' = (N,v) consists of a player set
N ={1,2,---,n} and a value function v : 2% — R with
v(0) = 0. The allocation to individual player i € N is
represented by z;, and z = (z1,29, -, x,) satisfying
Y ien Ti = v(IV) is an allocation vector. The allocation
z € R™ is called an imputation if x; > v({i}) holds

for all ¢+ € N. The set of imputations of I' is denoted
by X(I'). Given an allocation € R™, the excess of a

coalition S at x is defined as the number
e(S,x) :=x(S) —v(9).

The core of a game I", denoted by C(T"), is defined as the
set of all allocations whose excesses are non-negative.
That is, C(T') = {z € R™ : (N) = v(N) and z(S) >
v(S), VS C N}. We use the shorthand notation
x(S) =3 ;cgwi (S C N) throughout this paper.

The nucleolus of a game I' is defined in the following
way. Given an allocation x € R™ of T', let O(z)
denote the (2" — 2)-dimensional vector of all non-
trivial excesses e(S,x), @ # S # N, arranged in non-
decreasing order. Let >; be the “lexicographically
greater than” relationship between vectors of the same
dimension. The nucleolus of T, n(T"), is then defined to
be the (unique) allocation z € R™ that lexicographically
maximizes O(x) over the set of imputations X (T'). It is
obviously that n(T") always exists (when X(T') # 0),
and it is a member of C(T') when C(TI") is non-empty.
Kopelowitz [19] proposed to compute the nucleolus
by recursively solving the following sequential linear
programs (set Jp = {), N} and gy = 0):

max &
z(S)=v(S)+e. VSeEJT,
r=0,1,---, k-1
LPk: k—1
z(S) = v(S)+e  vSe2M\|J &
r=0

x e X(T)

The number &, is the optimum value of the r-th pro-
gram (LP,), and J, = {S € 2V : 2(S) = v(9) +
g, foreveryz € X,}, where X, = {z € X(I)
(z,er) is an optimal solution of LP,}. This sequential
linear programming process for computing n(I') is de-
noted by SLP(n(T)).

2.2 Flow games. Consider a directed network D =
(V, E;w), where V is the vertex set, E is the arc set and
w: E — RT is the arc capacity function. Let s and t be
two distinct vertices of D which we denote the ‘source’
and the ‘sink’ of the network, respectively. We assume
that each player controls one arc in the network. The
associated flow game I' = (F,v) is defined as:

1) The player set is E;

2) For each subset S C FE, v(S) is the value of
the maximum flow from s to t in the subnetwork
induced by the corresponding arc set S.

A network D = (V, E;w) is called simple, if w(e) =1
for every e € E. The flow games associated to simple



networks also fall into the scope of packing/covering
games introduced in [3]. The following result on
characterization of the core of a flow game is due to
Kalai and Zemel [17].

THEOREM 2.1. LetT' = (E,v) be the flow game defined
on a network D = (V,E;w). Then the core C(T) is
always non-empty, and a core allocation can be found
in polynomial time. In the case D 1is a simple network,
C(T') is exactly the convexr hull of the characteristic
vectors of the minimum cuts of D.

On the other hand, it was proved that for flow
games with general capacities, the problem of checking
whether a given allocation belongs to the core is co-NP-
complete [6].

3 Essential Coalition and Dummy Arc.

In this section we restrict our attention to simple
networks. We assume that each v € V is contained
in some path from the source s to the sink .

Let I' = (N,v) be a cooperative game. A subset
S C N is called an essential coalition of T' if v(S) >
> _rer v(T) for every non-trivial partition 7 of S, where
a partition of S is called trivial if the partition consists
of the coalition S itself. Also, single member coalitions
are also defined to be essential, since there are only
trivial partitions of such coalitions. We denote by &
the set of all essential coalitions of I'. It was shown in
Huberman [15] that for a game I':

(1) the core C(T") can be determined only by essential
coalitions;

(2) when C(I") # 0, dropping the constraints asso-
ciated with inessential coalitions will not change
the result of SLP(n(T")) for computing the nucleo-
lus. That is, the nucleolus can be determined com-
pletely by essential coalitions.

Let us consider the essential coalitions of flow
games. An (s,t)-path in D is a simple path (it visits
each node at most once) from s to ¢t. Let P be the set of
(s,t)-paths in D, each regarded as a subset of arcs, i.e.,
a coalition of E. The following result follows directly
from the definition of essential coalition.

PROPOSITION 3.1. Let T' = (E,v) be the flow game
defined on a simple network D = (V,E). Then the
set of essential coalitions of I' consists of all singletons
and all coalitions with respect to (s,t)-paths. That is,

&= UeEE{e} Un.

In the following, we introduce dummy arcs (play-
ers) of two types, which play an important role in the

computation of the nucleolus, and discuss their descrip-
tions and related algorithm. The proofs of the following
results can be found in the full version.

DEFINITION 3.1. Let D = (V, E) be a simple network.
An arce € E is called a dummy arc if v(E\{e}) = v(E).
Furthermore, we distinguish the dummy arcs into two

types:

(1) A dummy arc e is called Type I, if there exists a
mazimum flow f of D with f(e) > 0;

(2) A dummy arc e is called Type II, if it holds that
f(e) =0 for any maximum flow f of D.

For example, eq, e2, €3, €4 are all dummy arcs in the
network D depicted in Figure 1, e1, e5 and e3 are dummy
arcs of Type I, and e4 is a dummy arc of Type II.

A

€2 €3

Figure 1: Network D

PROPOSITION 3.2. An arc e € E is a dummy arc in
the network D if and only if e is not contained in any
minimum cut of D. Furthermore, e € E is a dummy arc
if and only if x(e) = 0 for each core allocation x € C(T)
of the associated flow game T.

PROPOSITION 3.3. Let P be an (s,t)-path in D. The
following statements hold:

(a) If P does not contain any dummy arc of Type II ,
then |[PNC| =1 for each minimum cut C' in D;

(b) If P contains dummy arcs of Type II , then there
exists a minimum cut C in D such that |PNC| > 2.

PrROPOSITION 3.4. The sets of dummy arcs of Type I
and II can be identified efficiently.

4 Nucleolus of Flow Game on Simple Network.

In this section we show that for the flow game defined
on a simple network, the nucleolus can be computed
efficiently. Let D = (V, E) be a simple network with
source s and sink ¢ (|E| = n), and ' = (E, v) be the flow
game defined on D. We also assume that each v € V
is contained in some (s,t)-path in D. Throughout this
section, we use the following notations:

E.={e€E:e=(st)};



FEy: the set of dummy arcs;
FEop1: the set of dummy arcs of Type I;
FEys: the set of dummy arcs of Type II;

P: the set of all (s,t)-paths in D;
Py ={P € P : P contains dummy arc of Type II}.

Recall that for the flow game T', the collection of
essential coalitions is £ = (J, g {e} UP. Followed from
the results on essential coalitions in [15], the core of the
flow game I is represented as

C(T)= {xeR":z(F)=v(E);
z(P)>1,VPeP

and z(e) >0, Ve € E\ E,},

(4.1)

and SLP(n(T")) for computing the nucleolus can be
described as LPy (k=1,2,---):

(4.2)
max &
k—1
z(P)>1+e vPeP\ U P
r=0
k—1
xz(e) > € Vee (E\E)\ U E"
r=0
xz(e) =&, YVee E", r=1,2--- k-1
2(P)=14e, YPEP, r=1,2-k—1
z(E) = v(E)
Here P" = {P € P: x(P)=1+¢, for every x € X"}
and E" = {e € E\ E, : x(e) = &, foreveryz €

X"}, where the number &, is the optimum value of
the r-th program (LP,) and X" = {z € X(I))
(x,&,) is an optimal solution of LP,.}, X° = X (T).

In the following, we will discuss how to solve the
SLP(n(T")) (4.2) efficiently. (The details of the proofs in
this section are referred to the full version of the paper.)

PROPOSITION 4.1. For LPy in SLP(n(T)) (4.2), we
have X! = C(T), &1 = 0 and consequently, P = {P :
PeP\ Py}t and E' = {e: e € Ep}.

Proposition 4.1 implies that if the network D does
not contain any dummy arc of Type II, i.e., Py = @, then
SLP(n(T")) (4.2) can be simplified as (k =1,2,---):

max €
z(P)>1 VPeP
k—1
(4.3) xz(e) > e Vee (E\E)\ U E"
r=1
x(e) =&, Yee E", r=1,2,---,k—1
z(E) =v(E)

Note that in the sequential LPs (4.3), we use the
constrains x(P) > 1 replacing z(P) = 1, VP € P.
According to Proposition 3.3 (a), it is easy to see

that this replacement does not change the solutions of
these LPs. Based on the polynomial equivalence of
optimization and separation problems (see, e.g., [11])
(here, z(P) > 1 can be checked by solving the shortest
(s,t)-path w.r.t the arc length i(e) = z(e) for e € E), we
can conclude that the sequential LPs (4.3), consequently
the nucleolus 7(T"), can be computed in polynomial time.

PROPOSITION 4.2. For the flow game T' defined on a
simple network with no dummy arc of Type II, the
nucleolus n(T') can be computed in polynomial time.

When the network D contains dummy arcs of Type
IT, the number of (s, t)-paths in Py may be exponential
in n and identifying the (s,t)-paths in Py which are
binding at all optimal solutions of LPj in (4.2) can
not be done in polynomial time directly. Therefore, we
have to investigate a new approach to dealing with the
SLP(y(I)).

Let W C V, denote by (W) and 6~ (W) the sets
of arcs leaving W and entering W, respectively. Define
a function ¢ : E — {0,1} with c(e) = 1 if e € §7({s}),
and c(e) = 0, otherwise. Consider the following arc-
flow formulation of the maximum flow problem in the
network D = (V, E):

(LP7)
max »_ c(e)y(e)
eckE
s.t. > yle)— X yle)=0
e€st({v}) e€s—({v})
VoeV\{st}
0<yle)<1 VeeFE
The dual program of (LP*) is:
(DLP*)
min Z z(e)
st (e)+ 6(v) — p(w) > efe) Ve = (v,w) € E
z(e) >0 Vee E

The following result is due to Kalai and Zemel [17].

PROPOSITION 4.3. Let z € C(I'). Then there exists
¢ = {p(v) : v € V} such that (z,¢) is an optimal
solution to (DLP*).

Kalai and Zemel [17] conjectured that this theorem
can serve as a practical basis for computing the nucle-
olus of a flow game. In the rest of this section, we will
show that Kalai and Zemel’s result (Proposition 4.3)
indeed plays an important role in our approach to effi-
ciently computing the nucleolus.

Let z € C(T') and (z,¢) be an optimal solution for
(DLP*). Proposition 4.3 leads to the following remarks:



Remark 1. By the definitions of the two types of
dummy arc and LP duality theorem,

Ve=(v,w) € E\ Ep:

z(e) + ¢(v) — p(w) = c(e),
(4.4) Ve=(v,w) € Ep :

z(e) + ¢(v) — d(w) = c(e).
Also by Proposition 3.2 and the definition of ¢, we have
(4.5) Vee€ Ey, z(e)=0 and c(e) =0.

Remark 2. Let P = {s,vyy, ", v;,t} € P\ Po.
Then ¢(P) = 1, and Proposition 3.3(a) implies that

z(P) = 1. Followed from the constraints of (DLP*)
and formula (4.4),

z(P) = ¢(P)+ (vi) — ¢(8)

+¢(vlz) (Ull) +oot (b(t) - ¢(vlk)
= 1+[o(t) — o(s)]-

It implies that
(4.6) o(t) = ¢(s).

Remark 3. Let P € Py be an (s,t)-path con-

taining k& dummy arcs of Type II, namely e; =
(v1,,01,), -, €x = (Vgy,Vk,). Then by formulas (4.4),
(4.5) and (4.6), we have

2(P)—1 =2z(P)—c(P)
= ZeEP\{el,m,ek} z(e) — c(e)

=3r (6(v),) — B(v1,)).

Formula (4.7) shows that, given a core allocation, the
excess of an (s, t)-path P € Py is determined completely
by the corresponding optimal solution of (DLP*).

The remarks given above, especially the formula
(4.7), provide us a new idea to deal with SLP(7n(T))
of the flow game I'. Let us define another sequential
linear programs LPy as follows (k =2,3,---):

(4.7)

(4.8)
max €
z(e) + o(v) — p(w) = c(e) Ve=(v,w)€E
o(w) —p(v) =&, Ve=(v,w)€ Ef,,
r=1,---,k—1
z(e) =&, VecE", r=1,--- k;—l

Ve=(v,w) € Epa \ U Ej,

z(e) > e VeG(E\E)\UE’"
z(P)>1 VP e P

z(e) >0 Veec E

z(F) =v(F)

Here, E}, = 0 and Ej, = {e = (v,w) € Epa : ¢p(w) —
¢(v) = &, for every x € X"}, where the number &, is the

optimum value of the r-th linear program ITP/’,. and )z "=
{z € XT) : (x,¢,&) is an optimal solution of LP,}.
Notice that in (4.8), the last three constraints guaran-
tee x must be in the core C(I'), and the other constraints
guarantee (z,¢) is a solution of (DLP*). Thus, accord-
ing to Proposition 4.3, each feasible solution (x,¢) of
LP}, is in fact an optimal solution of (DLP*). We will
show that the sequential linear programs I}k is equiv-
alent to SLP(n(I")) given in (4.2).

To make our approach more clearly, we first assume
that the network D satisfies the following property.
And at last, we shall show how to transform D to a
new network D satisfying this property such that the
corresponding flow games defined on D and D have the
same core and the same nucleolus.

Denote by Po. be the set of (s,t)-paths containing
only one dummy arc of Type II.

Property (A) For each e € Eyq, there exists an
(s,t)-path P € Py, containing e.

PROPOSITION 4.4. Let ' be the flow game defined on
D = (V,E) with Property (A). In SLP(n(T")) (4.2),
if P € Py \ Po« satisfies that e(P,T) = ey, for some
z € X* 1, then there exists a path P’ € Py, such that
e(P',z) = e. Furthermore, P € Py \ Po. need not be
considered in any computation of SLP(n(T")).

Based on Proposition 4.4, we can rewrite SLP(n(T"))
described in (4.2) as following LPs, LPy(k = 2,3,--+):

max &
z(P)=1+¢ VPeP§,r=1,--- k-1
z(e) = ¢, VeeE", r=1,---,k—1
k—1
z(P)>1+e VY PePu\ U P
(49) =
z(e) > ¢ Vee (E\E)\ U F
r=1
z(P)>1 VP e P
z(e) >0 Vee E
2(E) = v(E)
Here, P}, = 0 and P, = {P € Po. : 2(P) =

1+ e, forevery x € X"}, where the number ¢, is
the optimum value of LP, and X" = {& € X(T) :
(z,er) is an optimal solution of LP,.}.

PROPOSITION 4.5. Let D be a simple network satisfying
Property (A), and T be the associated flow game. Then

the sequential linear programs IA/P;C (4.8) is equivalent to
SLP(n(T)) given in (4.9).

Therefore, the nucleolus n(I') can be obtained by
proceeding to solve the sequential linear programs LP;
and LP; (kK = 2,3,---). Followed from the similar



discussion as_in the proof of Proposition 4.2, it is
shown that LPy (k =2,3,---) can be solved efficiently.
Therefore, we have

PROPOSITION 4.6. Let D be a simple network satisfying
Property (A), and T' be the associated flow game. Then
the nucleolus n(T") can be calculated in polynomial time.

The remainder problem is how to deal with a
network D not possessing Property (A).

A vertex v € V is called removable if the arcs
adjacent to it are all dummy arcs of Type II. Let
R be the set of removable vertices in the network
D. Suppose that the induced subnetwork D[R] has [
connected components. Each component corresponds
to a subset of vertices, namely Rp, Ra,---, Ry, which
forms a partition of R. R

We transform D to a new related network D as
follows: for each i = 1,2,---,1, we first delete the
vertices in R; and all the arcs adjacent to them; then
add to D a set of new arcs {(u,w) : u € 6 (R;),w €
0% (R;) and there is a (u,w)-path in D[R; U {u,w}]}.

Note that the arcs deleted in D are all dummy arcs
of Type II, and the new arcs added are also dummy arcs
of Type IT in D. It is easy to verify that

~

(a) D satisfies Property (A);

(b) our construction of D can be carried out in
polynomial time;

(c) the flow games corresponding to D and D have
the same core and the same nucleolus (for edge
ecD\Dandec D\ D, z(e) =0 for each core
allocation z of both games).

Thus, computing the nucleolus of the flow game
defined on D can be transformed to the same problem
defined on D. By summarizing the discuss and results
given above, we therefore obtain our main result of this
section.

THEOREM 4.1. Let D = (V, E) be a simple network and
' = (E,v) be the corresponding flow game. Then the
nucleolus n(I") can be computed in polynomial time.

5 Computational to
Nucleolus.

Complexity Related

In this section, we show that for flow games with general
capacity, both the computation and the recognition of
the nucleolus are NP-hard. The technique we used is a
polynomial transformation from the basic N'P-complete
problem, EXACT COVER BY 3-SETS (X3C) [10].
Given a finite set U = {uq,uz2, - -,ug,} and a
collection W = {wy,ws, - -+, wy |} of 3-element subsets

of U (|W] > q). We say that an element u € U is covered
by a subset w € W if u € w. A sub-collection C C W
is called a cover of U if each element u € U is covered
by some w € C. A minimum cover of U is a cover with
minimum cardinality. The problem X3C is to determine
whether there exists a sub-collection W/ C W such that
every element of U occurs in exactly one member of W/,
i.e., whether the minimum cover of U has the cardinality
q. Throughout this section, we add a simple restriction
to the instance of X3C:

(5.1)

The problem of X3C with the restriction (5.1) is still
NP-complete.

Each element of U is included in
at least two subsets in W.

Let U = {u}, --,u;} and W' = {w],wh, wi,wy}
be such that
(5 2) wll = {u/l’u/%ug}a wé = {ué’uilvuls ’
. I A A li I / / i
w3 = {u57u67u1}5 Wy = {u2au47u6

We call this couple (U’,W') an extra module. The
construction of wj, (k = 1,---,4) guarantees that in
an extra module, the cardinality of a minimum cover of
U’ is 3.

Given an arbitrary instance of X3C (with the re-

striction (5.1)): U = {uq,ug,---,u3e} and W =
{wi,wa, -+, wyw|}, we construct a network D in two
steps.

Step 1. Construction of the expanded instance
(EI).

We add three extra modules (Uy, W1),(Us, Wa) and
(Us, W3) to the given instance of X3C, where U, Uy, Us

and Us are disjoint, and obtain an expanded instance
(EI):

z:UuUluUzngn
W:WUW1UW2UW3;
Gi=q+6,f = W] +12.

(EI) :

Obviously, the expanded instance (EI) also satisfies the
restriction (5.1).
Step 2. Construction of a network D = (V, E; c).
Based on the expanded instance (EI), a network
D = (V, E;c) is constructed as follows. See Figure 2.
The vertex set V' consists of three parts excluding
the source s and the sink ¢:

o U={u;:i=1,2,---,3q};
d W:{wj 1j= 132a"'af_};
e vp and v, are two additional vertices.

Without confusion, we identify the elements in U and
W with their corresponding vertices.

The arc set E and the associated capacity function
c¢: E — RT are defined as:



® ap = (v),1), c(ao) = 3¢;
® by = (v, 1), c(bo) = 3f =37
Al :{(Sawi):i: 15"'af}a

A2 = {(wi7uj) DUy € wyg,
1,---,3q}, Ve € As:c(e) =1;

A3:{(Uj,’l}6) :j:]-,"'a'?’q}a v66143:0(6):1;

B = {(w;,v) :i=1,---,f}, Ye€ B:c(e)=3.

Denote by I'p = (E,v) the flow game associated to
the network D, and n := |E|. Obviously, v(E) = 3f.

] w

2

Figure 2: Network D = (V, E;¢).

Define an allocation n* € R™ of I'p:

3/4 Ve € A,

0 Veec A,UB
(5.3) n*e) =< 1/2 Ve € As

%5,—3 € =ag

(f-D+7 e=h

We show that n* is not only a core allocation of I'p,
but also an optimal solution of LP;, LP, and LPj3
in SLP(n(I'p)) for computing the nucleolus of I'p.
Moreover, we have

LEMMA 5.1. The allocation n* given in (5.3) belongs to
C(T). Furthermore, it is the nucleolus of the flow game
I'p if and only if there is an exact cover in the instance
of X3C.

The proof of this lemma is referred to the full ver-
sion of this paper. It can be seen that the construction
of I'p can be carried out in polynomial time. Therefore,
we obtain our main result of this section.

THEOREM 5.1. Computing the nucleolus of a flow game
with general capacity is N'P-hard.

THEOREM 5.2. Given a flow game T' = (E,v) and an
allocation y € C(T'), checking whether y is the nucleolus
of T is N'P-hard.

6 Conclusion and Remarks.

Computational complexity has recently proposed as a
rationality measure for the solution concepts in cooper-
ative game theory (Megiddo [23], Deng and Papadim-
itriou [4]). That is, a rational solution concept should
not only be “fair” in theoretical sense but also efficiently
computable. It has since been a major effort in the
study of cooperative games.

The definition of the nucleolus of a cooperative
game entails comparisons between vectors of exponen-
tial length. This makes it difficult to compute the nu-
cleolus by directly following its definition. To obtain
an efficient algorithm for the nucleolus of the flow game
defined on a simple network, we provide an alternative
characterization for the computation of the nucleolus
based on the linear program duality to the arc-flow for-
mulation of the maximum flow problem. This kind of
formulation and its dual were used to characterize the
core of the flow game by Kalai and Zemel [17]. They
also conjectured that their result may serve as a practi-
cal basis for computing the nucleolus. Our work there-
fore answer in the affirmative to their conjecture. In
general, linear program duality has proven itself a very
powerful tool in the study of cooperative games, espe-
cially in the study of the cores. However, little work
dealt with nucleolus by using the duality technique so
far. Hence, our alternative formulation for computing
the nucleolus may be of independent interest.

In the NP-hardness proof given in Section 5, the
flow game constructed possesses a polynomial size for-
mulation of linear production game. Therefore, as a
direct corollary, we come to the same N P-hardness con-
clusion for linear production games. That is, both the
problems of computing and recognizing the nucleolus of
a linear production game are N 'P-hard.
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