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Abstract

The emergence of social conventions in multi-agent systems has been analyzed mainly in settings
where every agent may interact either with every other agent or with nearest neighbours, according
to some regular underlying topology. In this note we argue that these topologies are too simple if
we take into account recent discoveries on real networks. These networks, one of the main examples
being the Internet, are what is called complex, that is, either graphs with the small-world property
or scale-freegraphs. In this note we study the efficiency of the emergence of social conventions in
complex networks, that is, how fast conventions are reached. Our main result is that complex graphs
make the system much more efficient than regular graphs with the same average number of links per
node. Furthermore, we find out that scale-free graphs make the system as efficient as fully connected
graphs.
 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

The study of social conventions in human societies is more than forty years old [21,33].
Social conventions, according to [33], are a special type of norms related to coordination
problems, that is, conventions are “those regularities of behavior which owe either their
origin or their durability to their being solutions to recurrent (or continuous) co-ordination
problems, and which, with time, turn normative” [33, pp. 96–97]. In contrast, proper
social norms are usually meant as solutions to problems of cooperation and originate from
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conflicts. In this sense, Multi-Agent Systems (MAS) are by no means different, that is,
MAS also may need to coordinate and/or cooperate in order to work as intended [15].
There are definitions of norms and conventions more suitable to MAS, see for example the
formal, logic oriented definitions of [6,16], and the game-theoretic definitions of [31] (see
Section 3), where norms and conventions may be viewed as either obligations, ends/goals
or constraints on behavior [34, Chapter 2]. However, in this work we will deal only with
coordination problems, hence we will focus on social conventions.

Two ways of introducing conventions in MAS have been explored: the off-line design,
where every agent has the conventions “hard-wired” from the beginning, and the on-line
design, also known as emergent design, where the collective of agents decides, through
interaction, which are the most suitable conventions given the current state of the system.
The former design is clearly unsuitable in dynamical and changing environments, where
one cannot know a priori what are the conditions under which the system will operate
(this has been argued in [31,35]). In this case, the dynamical nature of on-line conventions
appears to be most appropriate. It is not difficult to think of other situations where these
non-fixed conventions may be an advantage, for example in the case of agents with
changing goals.

In the simplest multi-agent system every agent may interact with every other agent.
This means that the underlying topology is a graph with an all-to-all connectivity pattern.
However, this is not very realistic. It is far more accurate to assume some restrictions
in the pattern of interactions an agent may have. We can think of different possibilities:
Regular graphs, lattices, etc. This has already been (partially) analysed, since emergence
of conventions in MAS with topological restrictions has been studied in regular graphs
(functional and product hierarchies, contract nets, decentralized and centralized markets,
see [32] for definitions of these different types of graphs in the context of organization
theory) and lattices [19,20,32,35]. This work is quite interesting, since it shows that the
underlying MAS topology is important in the efficiency of the emergence of conventions;
however, regular topologies are not very realistic either. If we pay attention to the topology
of real networks, we will find out that most of them have a very particular topology:
they are complexnetworks [2,4,7,11,14,25,36] with non-trivial wiring schemes. Notice that
one of the possible environments for a MAS, the Internet, is among the most prominent
complex networks found in the real world. This fact is clearly relevant also to Organization
Theory, where the notion of network plays a predominant role [12,32]. Complex networks
are well characterized by some special properties, such as the connectivity distribution
(either exponential or power-law) or the small-worldproperty [25,37].

In this note we will study the efficiency of the emergence of social conventions in MAS
with a complex underlying topology. We will follow the conceptual framework introduced
by Shoham and Tennenholtz [29–32] and our measure of efficiency will be one of those
introduced in the work of Kittock [19]: the time it takes to reach a 90% of the agents in the
system to use the same convention. This will be detailed in Section 3. In Section 2 we will
give a detailed description of the graph models of complex networks we have used with
their most relevant properties. We have used two different action update rules (they will
be defined in Section 3): a generalized version of the Simple Majority rule (GSM) and the
well known Highest Current Reward rule (HCR). There is a theorem on the emergence of
conventions in MAS using the HCR [31], but, as far as we know, to Simple Majority rule
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has not been used yet. Here we will provide some analytic evidence of the convergence of
the GSM in graphs fulfilling some special properties. Our results on both systems will be
described in Section 4. Finally, we will discuss our results in Section 5.

2. Graph models

There are several models of graphs we are going to use as the underlying topology of
our MAS. First, we define the following model of regular graphs (these are the regular
graphs underlying the systems explored in [19]):

Definition 1 [19]. CN,K is the graph on N nodes such that node i is adjacent to nodes
(i + j) mod N and (i − j) mod N for 1 � j � K . KN is the complete N -nodes graph
(every node is adjacent to all the N − 1 other nodes).

The CN,K graphs are called contract nets with communication radiusK in [32].
As we pointed out in Section 1, recent discoveries on real networks lead us to think that

regular graphs are not the most realistic environment for MAS. Lots of real networks have
been studied [4,5,7,9,14,25,36] though the most interesting result for us is that the Internet
is a complexnetwork, a scale-free graph with small-world properties [2,4]. Since the
Internet is a quite reasonable environment for a MAS, and since the underlying topology
is important for the efficiency of the emergence of conventions (as shown by [19], see
Section 3.2), it is quite clear that the study of the efficiency of the emergence of conventions
in complex networks will provide more realistic results.

The graphs we will use as models of complex networks are:

• Small-worldgraphs WN : These are highly clustered graphs (like regular lattices) with
small characteristic path lengths (like random graphs) [36,37]. This is the small-world
property. We will choose the Watts–Strogatz model as model of small-world graphs.

• Scale-freegraphs S
γ

N : These are graphs with a connectivity distribution P(k) (the
probability that a node has k adjacent nodes) of the form P(k) ∝ k−γ . We will choose
the Albert–Barabási extended model as model of scale-free graph.

Hence, we use the term “complex” only in reference to graphs, meaning either “scale-free”
or “small-world”. In the case of the Internet, the probability that a certain web document
points to k documents follows a distribution of the form P(k) ∝ k−2.45 [4,8] and the
exponent of the connectivity distribution of Internet Service Providers is γ = 2.5 [11].

Albert, Barabási and Jeong have recently proposed a set of different models for scale-
free graphs, based on the growing process of the Internet and other real complex networks.
We have used the Albert and Barabási [3] extendedmodel as model of scale-free graphs,
since it gives us some control over the exponent γ of the graph. The underlying idea is
that of growth with preferential attachment, where the most “popular” nodes get most
of the links. This model was built on a simpler one [7,8], able to generate graphs with
exponent γ = 2.9 ± 0.1 (by setting p = q = 0 in the algorithm detailed below we recover



174 J. Delgado / Artificial Intelligence 141 (2002) 171–185

this previous model). We will define precisely these graphs by giving an algorithm to build
them.

The algorithm depends on four parameters: m0 (initial number of nodes), m (number of
links added and/or rewired at every step of the algorithm), p (probability of adding links)
and q (probability of edge rewiring). The procedure is: Start the algorithm with m0 isolated
nodes, and perform at every step one of these three actions:

(1) With probability p add m (�m0) new links. We pick two nodes randomly. The starting
point of the link is chosen uniformly and the end point of the new link will be chosen
according to the following probability distribution:

Πi = ki + 1∑
j (kj + 1)

where Πi is the probability of selecting the ith node, and ki is the number of edges of
node i . This process is repeated m times.

(2) With probability q , m edges are rewired. That is, we repeat m times: Choose
(uniformly) at random one node i and a link lij . Delete this link. Choose another
(different) node k with probability {Πl}l=1...N and add the new link lik .

(3) With probability 1 −p−q add a new node with m links. These new links will connect
the new node to m other nodes chosen according to {Πl}l=1...N .

Once we get the desired number N of nodes, we stop the algorithm. The graphs generated
with this algorithm are scale-free randomgraphs, that is, there are no correlations among
edges [27]. It can be shown [3] that in the limit of large N , when p = q , this algorithm
ends up with a graph with connectivity distribution

P(k) ∝ (k + 1)−
( 2m(1−p)+1−2p

m +1
)

that can be approximated, when k 	 1, by P(k) ∝ k−γ where γ = (2m(1 − p)+ 1 − 2p)/
m+ 1. The graphs in our experiments are no larger than N = 105, therefore the theoretical
exponent suffers from finite-size effects and must be computed numerically (see Fig. 1).

Albert–Barabási’s scale-free graphs have not the small-world property. So we have
chosen another graph model to work with: The Watts–Strogatz model. It depends on
two parameters, connectivity (K) and randomness (P ), given the size of the graph (N ).
This model starts with a CN,K graph and then every link is rewired at random with
probability P , that is, for every link lij we decide whether we change the “destination”
node with probability P ; if this is the case, we choose a new node k uniformly at random
(no self-links allowed) and add the link lik while erasing link lij . In fact, for P = 0 we
have WN = CN,K and for P = 1 we have a completely random graph (but not scale-free).
For intermediate values of P there is the “small-world” region, where the graph is highly
clustered (which means it is not random) but with a small characteristic path length (a
property shared with random graphs). The Watts–Strogatz model does not generate scale-
free graphs, since the distribution P(k) associated to these graphs is exponential [8].
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Fig. 1. This figure shows the connectivity distribution of a graph generated with the Albert–Barabási extended
model (see text). Parameters are N = 5 × 104, p = q = 0.4, m0 = 4 and m = 2, so the exponent should be
γ = 2.3. As we see in the plot, the real exponent is γ ∼ 2.5. The data were logarithmically binned.

3. Social conventions in MAS

First we will describe some general properties of the systems we are going to study.
Details will require separate subsections. The MAS we deal with are extremely simple, but
also necessarilysimple if we want to get to any conclusion about its dynamics. The use
of these simple settings in MAS theory has been largely discussed in [31,35], to which we
refer for more information.

Our MAS will consist of N agents on a graph, where every agent will be located on a
node of the graph. Its adjacent agents will be called its neighbors. Every agent will be in
one out of two states (or actions), called A and B . The system will evolve in time, and at
each time step one agent will be selected at random, for state updating.1 Different rules to
update agent’s state will define different systems. In this note we will study two different
rules: the generalized simple majorityrule (detailed in Section 3.1) and the highest current
reward rule (detailed in Section 3.2).

We define a social conventionas in [31].

Definition 2 [31]. A social law is a restriction on the set of actions available to agents.
A social law that restricts the agents’ behavior to one particular action is called a social
convention.

1 The dynamics we use is asynchronous, following previous work [19,20,31]. We will depart from Walker and
Wooldridge formalization [35] because the dynamics they use (their function r , used to define a run) imposes
a synchronousdynamics, where all agents interact at once. This is, at least, problematic. It is well known that
some “emergent” properties of synchronous systems are not due to the system itself, but to global correlations
introduced by this synchronous update [17,22].
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In our case a social convention will be reached if all the N agents are either in state A

or in state B .
From [19] we will get the performance measure we use to evaluate how fast conventions

arise in our systems, it is the convergence timeTc : the convergence time for a given level
of convergence c is the earliest time at which Ct � c, where Ct is the convergence of a
system at time t , that is, the fraction of agents using the majority action (either A or B). In
this note we will focus on the study of the average time to a fixed convergence (we set c
to 90%, following [19]).

3.1. Generalized simple majority: definition

We generalize herein the simple majority rule, as was defined in [35]. We have N agents
on a graph, so we have a well defined neighborhood for every agent. The initial state of the
system is a random state (either A or B) for every agent. Now, at every time step one agent,
say the j th, is chosen randomly. Let us suppose that agent j has k neighbors and that kA
neighbors are in state A (so there are k − kA neighbors in state B). If agent j is in state S,
let S̄ be the complementary state. Thus, agent j will change to state S̄ with probability

fβ(kS̄)= 1

1 + e2β(2kS̄/k−1)
.

This rule generalizes simple majority since for β → ∞ we recover the change of state
only when more than k/2 neighbors are in state S̄ (see Fig. 2). Notice that Walker and
Wooldridge’s simple majority rule in a system with two-state agents and any type of graph
as underlying topology is a deterministic version of what was called a convention evolution
settingin [32]. There is no theorem assuring convergence in the emergence of conventions
in the system defined with the GSM rule, but we can provide some analytical evidence

Fig. 2. Generalized simple majority rule: If an agent chosen for updating is in state B and has 25 neighbors, this
figure shows how the probability of changing state varies as a function of the number of neighbors in state A, for
different values of β.
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that this is the case. We use what in physics is called a mean-fieldargument [26]. Let
NA(t) be the number of agents in state A at time t and ρ(t) = NA(t)/N be the density of
agents in state A. We will assume the following homogeneitycondition: for every agent
with k neighbors, the number of neighbors in state A is kA(t) � kρ(t). This condition is
completely fulfilled for KN graphs (obviously), and approximately fulfilled for SγN graphs
and WN graphs with P → 1, since these are random graphs. In this case, the probability of
change will depend on ρ(t). Let us assume an agent is in state B and has k neighbors. The
agent will change with probability

fβ
(
kA(t)

) = 1

1 + e2β(2kA(t)/k−1)
� 1

1 + e2β(2kρ(t)/k−1)

= 1

1 + e2β(2ρ(t)−1)
= fβ

(
ρ(t)

)
.

By the same argument, if the agent is in state A, it will change with probability fβ(kB(t)) =
fβ(1 − ρ(t)).

Now, we can write an equation for the evolution of ρ(t). First, notice that the variation
of ρ(t) after a small time interval �t is proportional to �t , that is, ρ(t + �t) = ρ(t) +
∂tρ(t)�t + O(�t2). Then, we can neglect the O(�t2) term (since we want to perform
a continuum approximation �t → 0) and compute the variation of ρ(t) as the balance
between the agents switching from state B to state A and the agents switching from state A
to state B . On one hand, the fraction of agents in state B (that is, 1 − ρ(t)) that change to
state A in a time interval �t is the product (1 − ρ(t))fβ (ρ(t))�t , provided �t is small
enough; on the other hand, the fraction of agents that switch form state A to state B in �t

is ρ(t)fβ(1 − ρ(t))�t , also for small �t . That is,

ρ(t +�t)− ρ(t) = [(
1 − ρ(t)

)
fβ

(
ρ(t)

) − ρ(t)fβ
(
1 − ρ(t)

)]
�t.

Thus, after �t → 0, the mean-field equation for ρ(t) can be written as

∂tρ(t)= (
1 − ρ(t)

)
fβ

(
ρ(t)

) − ρ(t)fβ
(
1 − ρ(t)

)
.

After substitution of fβ(ρ(t)), this equation reads

∂tρ = −ρ + 1 + e2β(2ρ−1)

2 + e−2β(2ρ−1) + e2β(2ρ−1)

finally, with the change x(t)= 2β(2ρ(t)− 1) we get to

∂t x = −x + 2β
ex − e−x

2 + ex + e−x
.

We want to study the stable fixed-points of x(t), since these will give us information on the
final state of the system. Thus, we must find the solutions of ∂tx(t) = 0. It can be shown
that, for β > 1 the only stable fixed-points of this equation are x1 = −2β and x2 = 2β , that
is, ρ1 = 0 (state B is the reached convention) and ρ2 = 1 (state A is the final state of all
the agents). Let us point out that this result implies the convergence to a social convention
in systems using the simple majority rule, as defined in [35]. Initial conditions will break
the symmetry of the solutions, that is, an initial fraction of agents in state A slightly larger
than the initial fraction of agents in state B will get the system to a ρ = 1 stationary state,
and vice-versa (see Fig. 3). In this note we will not study the effect of β , setting β = 10.
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Fig. 3. Evolution in time of the density of agents in state A for the system defined in Section 3.1. Several graphs
have been used (N = 104): KN (thick solid line), CN,12 (solid line), S2.5

N
(dot-dashed line, m0 = 4, m = 2,

p = q = 0.4), S3
N (long-dashed line, m0 = 7, m = 6, p = q = 0) and WN (dashed line, P = 0.05 and K = 12,

inside the small-world region). We observe a fast convergence in the graphs that fulfill the homogeneity condition,
that is, the scale-free graphs and the KN graphs.

3.2. Highest current reward: definition

The framework in which we will work here was introduced by Shoham and Tennen-
holtz [29–32] some time ago, though it is in frequent use nowadays (see [10,13,23] for
example). In this note we will adapt from [31] the definitions and theorems we need, not
dwelling on justifications of this formal framework (it was eloquently done in [31]). We
will focus on coordinationgames [21,30]

Definition 3 [31]. A payoff matrix G 2 × 2 defines a 2-person 2-choice symmetric
coordination game if G has the form(

x u

v y

)

where x > v and y > u.

Essentially the idea is that every player has two available actions, say A and B . If both
players play A, both players receive a payoff of x . If they play B they receive a payoff
of y . When the players do not agree, for example, player 1 plays A and player 2 plays B ,
the former receives a payoff of u and the latter a payoff of v; the remaining situation is
symmetric. The condition on the entries of G makes clear that to play the same action
is the best choice. Specifically, we will use the pure coordination game[21] G, where
x = y = +1 and u= v = −1.

Now, once defined the game we need to define the players. Our MAS will be composed
of N agents (every agent is a player) that will interact with other agents, playing the
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game G once per interaction. What we are interested in is whether the dynamics of this
system makes all the agents reach a social convention. In our particular setting, this means
that we want to know whether all the agents will end up playing one of the two possible
actions of the game G, say A and B .

Following [19], every agent, say the kth, will be characterized by a memoryMk of
size M (same size for all the agents) and an action ak (to play the next time agent k is
selected, so the value of ak is either A or B). The memoryMk will record some information
on the M last plays of the agent k: The value of the position i of the memory Mk will be
a tuple 〈aik,pi

k, t
i〉 where t i is the time the ith play took place, aik is the action played by

agent k and pi
k is the payoff received (1 � i � M). However, in this work we will not study

the effect of memory, setting M = 1.
Now we must define the dynamics of the system (a variant of n−k−g stochastic social

games [31] where we will take into account the underlying topology). At every time step t ,
a pair of agents will be selected to play the game G, where one of them will be randomly
chosen and the other will be one of its neighbors, according to the underlying graph. They
will receive a payoff (either +1 or −1) depending on their actions. Let us assume that at
time t , agents k (with memory Mk and action ak) and l (with memory Ml and action al)
are chosen to play. Every agent will receive a certain payoff, say pk and pl . Now, agent
k must decide which action it is going to play next time it is chosen, as a function of its
memory Mk , the action ak played and the payoff received pk . It uses the Highest Current
Rewardrule. Agent k will compute the payoff received for using action A in the last M
plays in which it has been involved: Pk

A = ∑
i : aik=A pi

k , where Pk
B is defined in the same

way. Agent k will add pk to either Pk
A or Pk

B , depending on ak . Now, agent k can decide:
Next time it is chosen to play, the action chosen by the agent k will be either A if Pk

A > Pk
B ,

B if Pk
B > Pk

A or ak otherwise. Finally agent k updates its memory, deleting the oldest entry
and adding the tuple 〈ak,pk, t〉 (agent l will do the same thing, the rest of the system will
do nothing).

Shoham and Tennenholtz [30,31] provide a general theorem that guarantees the
convergence of our system to a stable social convention. With the system as defined above,
an immediate consequence of Shoham and Tennenholtz result is:

Theorem 1 [31, Theorem 12]. Given a2-person2-choice symmetric coordination game,
with the dynamics as defined and using the HCR action selection rule:

• ∀ε > 0 there exists a bounded numberΓ , such that if the system runs forΓ iterations
then the probability that a social convention will be reached is greater than1 − ε.

• Once the convention is reached, it will never be left.

Kittock [19] studied numerically the efficiency of the emergence of conventions in
regular graphs CN,K and KN . His main result was that the underlying topology has a
profound effect on the efficiency with which conventions emerge, and he conjectured that
this efficiency depends essentially on the diameterof the graph.

Shoham and Tennenholtz showed [31] that the update rule known as External Majority
(EM) (equivalent to the HCR rule, but taking into account only the majority of the states
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seen in the last M interactions, not the payoff received) was equivalent to the HCR update
rule in 2-person 2-choice coordination games. However, notice that their definition of EM
is different from Walker and Wooldridge definition [35] of the simple majority rule, in
which the simultaneous state of neighbours is used to update agents’ state. So, the GSM
rule (based, as defined above, on Walker and Wooldridge’s rule) is different from Shoham
and Tennenholtz’s EM rule and their result cannot be extended to our GSM rule without
further consideration.

4. Convergence time of social conventions in complex networks

Once we know that social conventions will emerge in the systems we are interested in,
we would like to know how fast these conventions will be reached.

The results of our experiments can be seen in Figs. 4, 5 and 6. First we performed
experiments analogous to those of Kittock [19]. We measured T90% vs. N in systems using
the HCR rule and four different underlying graphs (Fig. 4): regular graphs KN and CN,12,
scale-free graphs (generated with the Albert–Barabási algorithm detailed in Section 2,
with parameters m0 = 4, m = 2 and p = q = 0.4 which provide graphs with exponents
γ � 2.5 and average connectivity � 12) and small world graphs (generated with the Watts–
Strogatz algorithm detailed in Section 2, with parameters P = 0.1 and K = 12 so that the
graphs have the small world property). We have chosen graphs with the same (average)
connectivity per node in order to perform a reasonable comparison, and the exponent of
the scale-free graphs in such a way that it be similar to the exponent of the Internet. For
every N , we ran 25 simulations of the system initialized randomly (agents with random
initial state, either A or B with probability 0.5), averaging the results (see Table 1).

Fig. 4. HCR rule: T90% vs. N , averaged over 25 samples for each N . Several graphs have been used: KN , CN,12,

S2.5
N

(m0 = 4, m = 2, p = q = 0.4) and WN (P = 0.1 and K = 12, inside the small-world region). All the graphs
have the same average connectivity per node (except KN , for obvious reasons).
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Fig. 5. GSM rule: T90% vs. N , averaged over 25 samples for each N . Several graphs have been used: KN ,
CN,12, S2.5

N (m0 = 4, m = 2, p = q = 0.4), S3
N (m0 = 7, m = 6, p = q = 0) and WN (P = 0.1 and K = 12,

inside the small-world region). All the graphs have the same average connectivity per node (except KN , for
obvious reasons).

Fig. 6. T90% vs. P for systems using the two different action update rules studied in this note, with underlying
graphs generated with the Watts–Strogatz model. Parameters are N = 104 and K = 12.

Table 1

Fig. 4 Graph parameters Size × 103 (N ) Samples

KN None needed 1,2.5,5,7.5,10,25,50 25
CN,12 None needed 0.1,0.25,0.5,0.75,1 25

S2.5
N m0 = 4, m = 2, p = q = 0.4 1,2.5,5,7.5,10,25,50 25

WN P = 0.1, K = 12 1,2.5,5,7.5,10 25
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Table 2

Fig. 5 Graph parameters Size × 103 (N ) Samples

KN None needed 1,2.5,5,7.5,10,25,50,75,100 25
CN,12 None needed 0.1,0.25,0.5,0.75 25
S2.5
N

m0 = 4, m = 2, p = q = 0.4 1,2.5,5,7.5,10,25,50,75,100 25
S3
N

m0 = 7, m = 6, p = q = 0 1,2.5,5,7.5,10,25,50,75,100 25
WN P = 0.1, K = 12 1,2.5,5,7.5,10,25,50 25

Table 3

Fig. 6 N K P Samples

HCR rule 104 12 P = 0.05 and P = 0.09 . . . 0.9 (�P = 0.09) 25
GSM rule 104 12 P = 0.05 and P = 0.09 . . . 0.9 (�P = 0.09) 25

An identical experiment was performed with systems using the GSM rule (Fig. 5),
though in this case we used, besides the above mentioned graphs, scale-free graphs with a
different exponent (parameters m0 = 7, m = 6 and p = q = 0 which provide graphs with
exponent γ � 3 and an average connectivity � 12). See Table 2.

For reasons explained below, a third experiment was necessary (Fig. 6) in which
we measured T90% vs. P for systems with different update rules (HCR and GSM) and
underlying Watts–Strogatz graphs of size 104 and connectivity K = 12. We ran 25
simulations (each with random initial conditions) for every P (P = 0.05 and then from
P = 0.09 to P = 0.9 with an increment of �P = 0.09) and averaged the results (see
Table 3).

From our numerical work (see Figs. 4 and 5, these figures are representative of results
obtained with different sets of parameters) we may conjecture that T90% = O(N3) for CN,K

graphs (which was already observed by Kittock [19]) and T90% = O(N logN) for complex
graphs and KN graphs (this is the lower bound predicted analytically in [31,32]) for the
HCR rule. Results for the GSM rule are T90% = O(N3) for CN,K graphs and T90% = O(N)

for complex graphs and KN graphs. Besides, we observe that an underlying small-world
graph makes the system less efficient than an underlying scale-free graph, despite they have
the same behavior.

Kittock’s conjecture provides us with a partial explanation of the observed behavior.
According to [19], the efficiency of the emergence of social conventions depends on the
diameter of the graph. The diameter of CN,K grows linearly with N [36] but the diameter
of complex graphs grows logarithmicallywith N [25], hence the difference between the
growth of T90% in regular graphs and complex graphs. However, the precise relation
between the linear growth of the diameter in regular graphs and the O(N3) behavior
of T90% for both rules, and between the logarithmic growth of the diameter in complex
graphs and the O(N logN) behavior of T90% for the HCR rule, O(N) behavior for the
GSM rule, remains to be fully justified by means of analytical arguments.

Now, the efficiency of the emergence of social conventions in systems with underlying
scale-free graphs is almost as good as with KN graphs, despite having a constant (with
respect to N ) average connectivity. Notice that KN graphs are optimal with respect to T90%,
provided Kittock’s conjecture is correct, since this quantity depends on graph diameter and
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this equals 1 for KN graphs. Besides, underlying small-world graphs are less efficient than
scale-free graphs, despite they have same behavior with respect to N . This is so because
what is important here is the randomness (in the sense mentioned above) of the scale-free
graphs we have used, since randomness reduces the graph diameter. However, the small-
world property seems to have no effect on T90%. We may perform some experiments to test
this hypothesis. The Watts–Strogatz model allows us, by means of the parameter P , to go
from small-world graphs (small P ) to random graphs (P → 1) with an exponential P(k).
Thus, measuring T90% on the Watts–Strogatz model with varying P will make clear the
importance of randomness. We see in Fig. 6 that T90% decreases with P , without noticing
the small-world zone for small P : The graph becomes more and more random and the
system becomes more and more efficient. This fact makes clear, again, that the diameter
seems to be the important factor in the efficiency with which conventions are reached.
Thus, our results are fully consistent with Kittock’s results.

5. Summary and prospects

In this note we have introduced the analysis of MAS with underlying complex
topologies. We have defined simple MAS with which to study the efficiency of the
emergence of social conventions in complex networks. On the one hand we have defined
MAS with the action update rule called the generalized simple majority rule, providing
analytical evidence of convergence to a social convention, and, on the other hand, we have
studied the well-known MAS with the highest current reward rule as action update rule.
On both systems we have performed a numerical study of T90% as a function of N and, in
graphs defined according to the Watts–Strogatz model, of P . Our results on both systems
are consistent with the hypothesis that the diameter of the graph underlying the MAS is of
essential importance in the efficiency with which conventions are reached [19]. We have
found a topology that makes the system as efficient as the KN graph but at a lower cost,
where the cost is the average number of links per node.

Some questions are still open: It remains to be analytically justified the precise relation
we have found among the growth of the diameter for different classes of graphs and the
behavior of T90%.

There are many ways to extend the work introduced in this note. We may perform
a similar study of the effect of either memory (M in systems using the HCR rule) or
randomness in state switching (β in systems using the GSM rule). The same study may be
repeated with cooperative games, since these games were also considered by Shoham and
Tennenholtz [29–31] and Kittock [19]. Furthermore, preliminary results indicate that the
behavior of cooperative games in complex networks is far from trivial [1,36]. Also, it would
be interesting to study MAS playing stag-hunt games [18,28] in complex networks, since
these games are frequently used in the study of emergent conventions in game theory. These
complex topologies could also be introduced in organization theory, since, quoting [12],
“work on organizational design suggests that different architectures influence performance
and there is no one right organizational design for all tasks”.
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Finally, it has been shown that systems with mobile elements have also some of the
properties of complex networks [24], so a study of coordination and cooperation games in
mobile agents should also be relevant to MAS theory.
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