
Impact of Problem Centralization in Distributed Constraint
Optimization Algorithms

John Davin and Pragnesh Jay Modi
Computer Science Department

Carnegie Mellon University
Pittsburgh, PA 15213

{jdavin, pmodi}@cs.cmu.edu

ABSTRACT
Recent progress in Distributed Constraint Optimization Problems
(DCOP) has led to a range of algorithms now available which differ
in their amount of problem centralization. Problem centralization
can have a significant impact on the amount of computation re-
quired by an agent but unfortunately the dominant evaluation met-
ric of “number of cycles” fails to account for this cost. We ana-
lyze the relative performance of two recent algorithms for DCOP:
OptAPO, which performs partial centralization, and Adopt,which
maintains distribution of the DCOP. Previous comparison ofAdopt
and OptAPO has found that OptAPO requires fewer cycles than
Adopt. We extend the cycles metric to define “Cycle-Based Run-
time (CBR)” to account for both the amount of computation re-
quired in each cycle and the communication latency between cy-
cles. Using the CBR metric, we show that Adopt outperforms
OptAPO under a range of communication latencies. We also ask:
What level of centralization is most suitable for a given communi-
cation latency? We use CBR to create performance curves for three
algorithms that vary in degree of centralization, namely Adopt, Op-
tAPO, and centralized Branch and Bound search.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial Intelligence—
Multiagent Systems

General Terms
Algorithms

Keywords
Constraint Satisfaction/Optimization

1. INTRODUCTION
The Distributed Constraint Optimization Problem (DCOP) isa

general framework for distributed problem solving that hasa wide
range of applications in Multiagent Systems and has generated sig-
nificant interest from researchers [6, 11, 5, 4, 2, 12, 8, 10].A DCOP

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
AAMAS’05, July 25-29, 2005, Utrecht, Netherlands.
Copyright 2005 ACM 1-59593-094-9/05/0007 ...$5.00.

assumes that problem variables and constraints are distributed among
a set of agents who must communicate to find an optimal assign-
ment of values for the variables.

Mailler and Lesser have recently proposed a complete, asyn-
chronous algorithm for DCOP, named Optimal Asynchronous Par-
tial Overlay (OptAPO) [8]. This algorithm uses a novel approach to
DCOP in which variables and constraints are partially centralized
during problem solving. A dynamically chosen agent who collects
problem constraints is called a “mediator” and the general approach
is termedcooperative mediation.

The cooperative mediation approach to DCOP is novel (in part)
because it provides the first middle point on a spectrum that ranges
from very centralized to more decentralized approaches to DCOP.
In a very centralized approach, all agents communicate all their
constraints to a single agent in the first step of the algorithm and
a centralized optimization technique is applied, such as the classic
Branch and Bound algorithm [3]. At the decentralized end of the
spectrum, Modi et al. [10] have previously proposed an approach to
DCOP, named ADOPT (Asynchronous Distributed OPTimization)
that is more decentralized because agents do not explicitlycommu-
nicate their constraints to others (although some indirectinforma-
tion about constraints can be leaked). OptAPO falls somewhere in
the middle of this spectrum of centralization.

The degree of problem centralization, or equivalently, theamount
of constraints that are communicated during an algorithm’sexecu-
tion, can have a significant impact on the amount of computation
required at each agent. As an agent’s subproblem grows and ithas a
greater number of constraints to process, it requires increased com-
putational effort. Thus, in order to compare algorithms that fall
on different points along our centralization spectrum, a metric that
takes local computation effort into account is needed.

The dominant metric for evaluation of DCOP algorithms is num-
ber of synchronouscycles[13]. In cycle-based execution, all agents
operate concurrently within a cycle, but do not move to the next
cycle until all agents have completed their computations from the
previous cycle. Any message sent in a cycle is not received until
the next cycle. While not perfect (see Meisels et. al. [9] andBrito
et. al. [1] for a discussion), the cycles metric provides a convenient
method to assess the performance of an asynchronous algorithm.
True asynchronous execution of a DCOP algorithm is difficultto
measure reliably because of the exponential number of possible ex-
ecution paths that differ significantly in their runtimes. Thus for
repeatable results, it is often most practical to execute a DCOP al-
gorithm in a synchronous fashion on a single computer, and the
“number of cycles” metric provides a useful way to measure this
execution.

Although convenient, the cycles metric does not measure the

1057

(a) Number of Cycles (b) Concurrent Constraint Checks (c) Cycle-Based Runtime

Figure 1: (a) OptAPO requires fewer number of cycles than Adopt, as shown in previous research, (b) But requires an increased
amount of computation as measured by constraint checks. (c)When both constraint checks and communication latency (with L=100)
are accounted for, Adopt outperforms OptAPO.

amount of computation required by the algorithm, i.e., length of
each cycle. As we have described, taking this factor into account
is necessary when comparing algorithms that vary in their degree
of centralization. To address this issue, we extend the cycles mea-
surement to include the local computation costs of the algorithm.
We useconcurrent constraint checks (ccc)to measure the amount
of computation within a cycle [9]. We define a new metric, called
Cycle-Based Runtime (CBR), that takes into account two aspects of
runtime – the computation time as measured by number of ccc and
communication time as measured by the latency between cycles.
The CBR metric still requires agents to execute in synchronous cy-
cles, which we believe continues to be a useful method for analysis,
but also incorporates computational cost, allowing us to more com-
pletely measure an algorithm’s performance than with cycles alone.

We investigate two issues. First, using CBR, we compare the
performance of algorithms that vary in their degree of centraliza-
tion. Existing research [8] has found that OptAPO outperforms
Adopt in terms of cycles. We reproduce those results. However,
using CBR as a comparison, we show that Adopt performs better
than OptAPO for a range of communication latencies. Second,be-
cause CBR takes into account communication latency, which is a
property of the communication environment in which the algorithm
operates, we can ask which algorithm is most appropriate foran en-
vironment with a given latency. We evaluate three algorithms on the
spectrum of centralization: Adopt, OptAPO, and a fully centralized
approach. By comparing all three algorithms using the CBR metric,
we are able to provide a comparison of how differing levels ofcen-
tralization perform under various communication latencies. This
analysis is important because it provides assistance to researchers
applying DCOP algorithms within new environments to determine
the most appropriate level of centralization.

1.1 Key Result
We briefly summarize one of the key results of this paper. Previ-

ous comparisons of Adopt and OptAPO have used measurements
of cycles to compare algorithm performance. In our investigation
of Adopt and OptAPO, we obtained cycle measurements in agree-
ment with the existing research (Fig 1a). OptAPO solves graph
3-coloring problems in fewer cycles than Adopt. However, when
constraint checks are measured to estimate the computational ef-
fort of the algorithms, we find that OptAPO uses more concurrent
constraint checks than Adopt (Fig 1b). Using the CBR metric de-
scribed in Section 3 which takes both constraint checks and com-

munication latency into account, we see that Adopt performsbetter
than OptAPO (Fig 1c). The graph shows results for a given com-
munication latency, but our results hold across a range of latencies.

The rest of this paper provides background on Adopt and Op-
tAPO, explains the design and rationale of the methods we used
to analyze these algorithms, and then presents analysis that shows
results comparing Adopt with OptAPO.

2. ALGORITHMS FOR DCOP
A Distributed Constraint Optimization Problem [10] (DCOP)is

defined as:

• set ofN agents, A = {A1, A2, . . . , AN}.

• set ofn variables, V = {x1,x2, . . . , xn}.

• set ofdomainsD = {D1, D2,. . . , Dn}, where the value of
xi is taken fromDi. EachDi is assumed finite and discrete.

• set ofcost functionsf = {f1, . . . , fk} where eachfi is a
functionfi : Di,1 × · · · × Di,j → N ∪ ∞. Cost functions
are also calledconstraints.

• a distribution mappingQ : V → A assigning each variable
to an agent.Q(xi) = Ai means thatAi is responsible for
choosing a value forxi. Ai is given knowledge ofxi, Di

and allfi involving xi.

• an objective functionF defined as an aggregation over the
set of cost functions. Summation is most commonly used.

The goal for the agents is to choose values for variables suchthat
F is minimized. Two agents whose variables share a constraintare
called neighbors. Agents may send messages to any agent they
know about and initially agents only know about their neighbors.
When each agent is assigned a single variable, it is common touse
the notationAi andxi interchangeably as we will in this paper.

2.1 Adopt and OptAPO
Adopt and OptAPO are two state of the art algorithms for DCOP.

Both arecomplete, i.e., theoretically guaranteed to return the op-
timal solution, andasynchronous, i.e., they remain correct even
when agents execute concurrently, potentially at different execu-
tion speeds. In both algorithms, agents interleave computation with
communication. However, there are a number of qualitative differ-
ences in the algorithms which we describe below.

1058

Adopt [10] is an algorithm for DCOP that is able to find glob-
ally optimal solutions while allowing agents to choose variable
values in parallel. Adopt performs a distributed search using the
communication of costs to guide agents toward globally optimal
value choices. Agents communicate their current variable values
to lower priority neighbors, who respond with messages containing
lower bounds onF computed by conditioning on the value choices
of higher priority agents. Higher priority agents respond by ex-
ploring new values. Lower bounds are communicated only to the
lowest higher priority neighbor. As this process continues, lower
bounds become progressively more accurate, until ultimately the
lower bound of the minimum cost solution equals its upper bound,
indicating the cost of the optimal solution has been found. Note
that agents do not directly communicate their constraints to other
agents and only send messages between neighbors.

OptAPO [8] is an alternative approach to DCOP that uses direct
communication of constraints to partially centralize the problem
within a mediator. Election of the mediator is done in an intelligent
way using dynamic priorities determined during problem solving.
The mediator uses a centralized optimization routine to findan opti-
mal solution to its portion of the problem. The optimizationroutine
used by Mailler and Lesser is the Branch and Bound algorithm of
Freuder et. al. [3].

Agents in OptAPO use a novel cost justification technique to
drive the communication of constraints. This technique avoids cen-
tralization when it is deemed unjustified based on problem struc-
ture. As an OptAPO agent receives constraints from other agents
in the problem, it adds the other agents to a data structure called
its goodlist. We will use the size of an agent’s goodlist to measure
amount of centralization in OptAPO. Finally, when constraints are
communicated between two agents who are not neighbors, a link-
ing procedure is used to establish a direct communication link.

2.2 Discussion of Qualitative Differences
Communication of Constraints:We see that a key difference be-

tween Adopt and OptAPO is that agents in OptAPO communicate
their constraints to other agents which allows the agent whore-
ceives them to evaluate the constraint. The communication of con-
straints between agents has significant implications on load balanc-
ing and the amount of computation that each agent must perform
during problem solving. This is because as the size of an agent’s
subproblem grows as constraints are gathered, more local compu-
tation (search) is required to find the optimal solution to the larger
subproblem. Thus, when constraints are communicated between
agents, the computation load at each agent may increase during
problem solving. In OptAPO, we may expect that the computa-
tional load at some agents will grow as problem solving progresses
and their sub-problems grow. On the other hand, in an algorithm
which does not communicate constraints, such as Adopt, we may
expect that the computational load at each agent will remaincon-
stant during problem solving.

Adding Links:Adopt and OptAPO seemingly make different as-
sumptions about the communication links in the underlying appli-
cation domain. OptAPO assumes that an agent has the ability to
establish a direct communication link with any other agent.Adopt
only assumes a direct communication link between neighborsin
the constraint graph. Although a multi-hop message strategy could
in principle be used to establish a virtual communication link be-
tween any pair of agents in a connected communication network,
this approach would incur additional communication cycles. How-
ever, we do not investigate this issue in this paper.

3. AN EVALUATION METRIC FOR ASYN-
CHRONOUS ALGORITHMS

Performance measurement and comparison of distributed algo-
rithms is more complicated than for traditional centralized algo-
rithms. Distributed algorithms have multiple agents that run con-
currently and communicate asynchronously. This distribution of
the algorithm creates several challenges for evaluation ina typical
research lab environment. Running in a fully distributed manner
across a cluster of many computers is often not practical. Alterna-
tively, an asynchronous algorithm can be run on a single computer
using multiple threads of execution, for example using a discrete-
event network simulator. However, this is also problematicbecause
there are an exponential number of execution paths for an asyn-
chronous algorithm and there can be significant variation between
runtimes depending on the path chosen by the underlying simulator.
Evaluation over all possible execution paths is often not practical.

3.1 Number of Cycles
Because of the above difficulties, previous researchers have pro-

posed evaluating asynchronous algorithms according to onestan-
dardized execution path, namely one in which agents synchronously
interleave communication and computation. Specifically, algorithm
execution is divided into a sequence of cycles [13] as definedbelow.

Definition: A cycleis defined as one unit of algorithm progress
in which all agents, in parallel, process their incoming messages,
perform any required computation, and send their outgoing mes-
sages. Importantly, a message sent in cycle i is not receiveduntil
cycle i+1.

Cycles are a convenient standardized metric for estimatingthe
performance of a DCOP algorithm that avoids the problems de-
scribed earlier. However, a drawback of cycles is that it does not
take into account the amount of computation required by the dis-
tributed agents. We wish to devise a metric that retains the desirable
properties of the measurement using cycles but considers computa-
tion costs as well.

On initial consideration it might seem that the amount of compu-
tation performed by an algorithm could be accurately measured by
the total runtime used by the process on a single computer. How-
ever, since the agents must take turns using a single processor and
cannot execute in parallel as they would in a distributed system,
the runtime may not accurately reflect the actual distributed perfor-
mance. If the agents solving the problem do not share the compu-
tational burden relatively evenly, then they will not take advantage
of the parallelism of distributed problem solving.

3.2 Cycle-Based Runtime
To more accurately measure the performance of DCOP algo-

rithms, we desire a metric that approximates the total runtime of an
algorithm whose execution has been measured using synchronous
cycles. We begin with a simple definition of runtime:

total runtime of m cycles =
m�

k=0

time for cycle k (1)

Now, we need a definition for the time of a cycle. A cycle in-
volves communication followed by computation. LetL denote the
time required in a cycle to deliver all messages sent in the previous
cycle. We call this thelatencyof the underlying communication
environment.L is algorithm independent. So we have

time for cycle k = L + computation time in cycle k (2)

1059

In order to measure the computational cost in a cycle, we make
use of a recent metric - concurrent constraint checks (ccc) [9]. A
constraint check is the act of evaluating a constraint in theprob-
lem by comparing the value of one variable to another variable in
the problem. Constraint checks are a well accepted measure of
computation in traditional centralized constraint processing algo-
rithms. Letcc(xi, k) be the number of constraint checks performed
by agentxi in cyclek. Then the computation time of cycle k is de-
fined as:

computation time in cycle k = max
xi∈V

cc(xi, k) × t (3)

wheret is the time required for one constraint check.t is a prop-
erty of the underlying computing hardware and is algorithm inde-
pendent. The max over all agents is used because the agents are
conceptually executing in parallel. The length of a cycle isdeter-
mined by how long the longest running agent took to complete.
Substituting 3 into 2, we have

time for cycle k = L + max
xi∈V

cc(xi, k) × t (4)

Now substituting 4 in 1,

total runtime of m cycles =

m�

k=0

(L + max
xi∈V

cc(xi, k) × t)

(5)

Finally, the number of concurrent constraint checks (ccc) per-
formed by an algorithm over m cycles is defined as:

ccc(m) =
m�

k=0

max
xi∈V

cc(xi, k) (6)

Substituting 6 in 5, we arrive at our final equation for the time of
m cycles, called Cycle-Based Runtime (CBR):

CBR(m) = t × ccc(m) + L × m. (7)

Note that the CBR metric is parameterized according to two en-
vironmental factors: the communication latency between cycles
(L) and the speed of computation (t). Using this parameterized
model, we can evaluate algorithm performance over a range of
environments that vary in their relative speeds of communication
and computation. Time required to transmit a message is usually
greater than the time for a constraint check in most environments,
so for simplicity we assume that a constraint check is the smallest
atomic unit of time (t = 1), and assumeL is given relative tot.
We will explore four types of environments where communication
costs are increasing by order of magnitude relative to computation,
i.e.,L = t, L = 10t, L = 100t, L = 1000t.

CBR does not take into account number of messages or the time
required to process messages. In other words, we assume thatmes-
sage processing time per cycle is not a significant differentiating
feature between algorithms under comparison. We believe this is
true for the algorithms compared in this paper. While Adopt uses
many more messages than OptAPO, this is explained by its higher
cycle count, i.e, the number of messages communicated per cycle
is about the same between the two algorithms. Also, we assumethe
time to process each message is similar for both algorithms.

Figure 2: Comparison of Adopt and OptAPO using the CBR
metric on graphs of low density. Each graph represents a dif-
ferent L value.

4. EMPIRICAL EVALUATION
We obtained the OptAPO code from its creators Roger Mailler

and Victor Lesser, and the Adopt code from its creator Pragnesh Jay
Modi. We used a simulator framework to measure ccc and cyclesin
both OptAPO and Adopt. Following previous work [10, 8], we then
ran OptAPO and Adopt on a set of randomly generated 3-coloring
problems. The problems were generated with problem sizes ofn=8,
12, 16, or 20, and a link density of either 2n or 3n. Each problem
size had 50 generated problems (a total of 8*50 = 400). The same
set of randomly generated graphs was used for each algorithm.

4.1 Runtime as Measured By CBR
Constraint checks and cycle counts were logged and used to

compute the value of CBR in Eqn 7 for four different values of
L. We create a different graph for each value. As described in Sec-
tion 3, L represents the time required by the communication envi-
ronment to deliver messages between cycles specified relative to the
time for a constraint check. For example ifL = 1, we are assuming
communication is very fast and on the same order of magnitudeas
a constraint check. IfL = 1000, we are assuming communication
takes three orders of magnitude longer than a constraint check.

Figures 2 and 3 show four graphs generated from a single set
of experiments on problems of link density 2n and 3n respectively.
Each datapoint represents the average of the 50 problems. InFig-
ure 2, we see that whenL is 1, 10, and 100, Adopt outperforms
OptAPO. AtL = 1000, Adopt performs slower than OptAPO on
the problem sizes we tested. However, from the growth rates of the
lines it appears that OptAPO may exceed Adopt on larger problem
sizes. To investigate this, we were able to run a small numberof
experiments with problems containing 24 variables. We completed
20 problems for density 2 and 10 for density 3 (the lengthy run-
times on these large problem sizes prevented completion of more
problems). The performance on these problems has been shown
with a dotted line on theL = 1000 graph, and indicates that Adopt
may outperform OptAPO on large problems even atL = 1000.

We observed that while Adopt requires more cycles than Op-

1060

Figure 3: Comparison of Adopt and OptAPO using the CBR
metric on graphs of high density. Each graph represents a dif-
ferent L value.

tAPO, each OptAPO cycle takes significantly longer than eachAdopt
cycle. L provides a parameter to vary the relative cost between
number of cycles and length of each cycle. We conclude that for a
significant range ofL, Adopt performs better than OptAPO, and as
problem size grows this range increases.

4.2 Centralization of OptAPO
We have hypothesized that the degree of centralization is the rea-

son that OptAPO’s cycles take much longer than an Adopt cycle.
To verify this, we recorded the amount of centralization that the
OptAPO agents reached by termination, as represented by thesize
of the OptAPOgoodlist, which contains the other agents whose
constraints have been centralized to an agent.

We computed the average, minimum, and maximum goodlist
sizes across the agents in a problem at termination. We obtained
similar results to the centralization data reported in Mailler’s thesis
[7]. As seen in Figure 4, on low density problems OptAPO agents
on average have centralized at least half of the problem by the time
a solution is found. On highly dense graphs, which are more diffi-
cult and time-consuming to solve, OptAPO on average centralizes
nearly all of the problem.

The Max bars show that in high density graphs, almost all prob-
lems had at least one agent that fully centralized the problem. In
low density problems, on average there was at least one agentwho
centralized about 75% of the problem.

4.3 Parallelization of Computation
So far we have found that OptAPO does more computation, based

on our measurement of the maximum constraint checks performed
across the agents during each cycle. However, we would also like
to determine whether the higher maximum constraint checks is due
to OptAPO simply doing more computation inall the agents during
a cycle, or if it is due to uneven distribution of the computational
load.

As discussed in Section 3,cc(xi, k) is the number of constraint
checks performed by agentxi in cycle k. Then, the distribution

Figure 4: OptAPO centralization - Avg is the average central-
ization across the agents in a problem, Max is the highest cen-
tralization of all the agents in a problem, and Min is the lowest
of the agents. The upper line above each bar marks n (# of vari-
ables), which is the maximum possible centralization at each
problem size. Each measurement is the average of 50 problems.

of computation within a cycle, which we will callload(k), can be
represented by the ratio of the maximum constraint checks tothe
total constraint checks in a cycle:

load(k) =
maxxi∈Agents cc(xi, k)
�

xi∈Agents
cc(xi, k)

(8)

This equation represents the fraction of work that the maximum
computing agent did during the cycle. A value of 1.0 means one
agent did all of the computation in that cycle, and a lower value
indicates the load was more balanced.

In Figure 5, the load ratio for OptAPO and Adopt is graphed for
the execution of one representative graph coloring problemwith 8
variables and a density of 2n. The x-axis is the execution time in
cycles, and the y-axis is the load as defined in Eqn 8. The line for
OptAPO shows spikes at cycles where an agent, the mediator, did a
Branch and Bound search and accounted for most or all of the com-
putation in that cycle. On the other hand, Adopt had very consistent
distribution of computation, with most agents doing a similar num-
ber of constraint checks for most of the algorithm’s duration.

1061

Figure 5: A measure of the distribution of computation in
Adopt and OptAPO. The peaks on the OptAPO line indicate
that in those cycles a single agent did most of the computation.

This chart illustrates that OptAPO finished in a fewer numberof
cycles than Adopt, but the computation during those cycles is less
evenly distributed among the agents, which results in longer time
per cycle.

4.4 Tradeoffs Between Communication Latency
and Centralization

As our analysis has shown, a non-centralized algorithm likeAdopt
uses more communication cycles but has a lower computational
cost per cycle. OptAPO, a partially centralized algorithm,has rela-
tively low communication cycles but higher computational cost per
cycle. We now ask how does a partially centralized approach like
OptAPO and a decentralized approach like Adopt, compare with a
completely centralized approach using CBR as an evaluationmet-
ric?

For the centralized approach, we assume one agent starts theal-
gorithm with full knowledge of the problem, and simply invokes
an optimization search procedure. We used OptAPO’s implemen-
tation of centralized Branch and Bound search and measured the
number of constraint checks required to find the optimal solution.
We ignored the overhead cost that would be required in a trulydis-
tributed setting of electing a centralizer and all agents communi-
cating the problem information to it. In the worst case, thiscost is
only some small factor of the width of the communication graph.

Figure 6 shows the three algorithms at different L values. Asex-
pected, the centralized algorithm is insensitive to varying L values
because no communication is required. For both graph densities,
Adopt is the best performing algorithm at L values less than 100.
The crossover point occurs between L=100 and L=1000. These
crossover points are important because they tell us at what point
communication becomes too expensive for Adopt to operate ef-
ficiently, and tell us which algorithm should be used for a given
communication environment.

For density 2, the OptAPO performance curve outperforms its
own centralized solver using the CBR metric. These results agree
qualitatively with the results using a serial runtime metric reported
by Mailler and Lesser [8]. On density 3, the fully centralized ap-
proach had a lower CBR than OptAPO, which we believe may be
explained by the fact that OptAPO does repeated multiple Branch
and Bound searches, which could become more costly on dense
graphs. The OptAPO searches partially reuse past searches,but

Figure 6: Adopt, OptAPO, and Centralized at 4 different L
values. Each graph is based on 50 random problems of 20 vari-
ables.

this partial reuse does not completely recover the cost of the pre-
vious searches. From our analysis, we conclude that on high den-
sity graphs OptAPO eventually centralizes most of the problem, but
does so with a higher cost than doing a simple centralizationin the
first step of the algorithm.

Figure 6 provides initial guidance to a researcher seeking to ap-
ply a DCOP algorithm to a new domain. The figure gives an es-
timate of which algorithm would be the most efficient for a given
communication model and constraint density, although results in
other domains may vary.

5. CONCLUSION
We have investigated two algorithms for DCOP - OptAPO and

Adopt - that vary in the amount they centralize the problem inor-
der to find the optimal solution. We developed a metric, CBR, for
more accurately comparing these algorithms by taking into account
communication latency between cycles and the length of eachcy-
cle. We have shown that while OptAPO requires fewer cycles
than Adopt, OptAPO’s cycles are longer because they requiremore
computation. For domains with low communication latency com-
pared to time to do a computation, Adopt outperforms OptAPO be-
cause in such domains agents are able to communicate efficiently
and Adopt is able to take advantage of it by more evenly distribut-
ing the work of solving the DCOP. We have created graphs of the
relative performance of Adopt, OptAPO, and centralized search un-
der environments with varying communication latencies, providing
the ability to choose the most effective level of centralization for
each environment.

1062

6. ACKNOWLEDGEMENTS
We thank Roger Mailler for generously providing us with his im-

plementation of OptAPO, which made this investigation possible.
We thank Manuela Veloso for productive discussions and her many
insightful comments.

7. REFERENCES
[1] I. Brito, F. Herrero, and P. Meseguer. On the Evaluation of

DisCSP Algorithms. InProc. Workshop on Distributed
Constraint Reasoning held at Constraint Programming 2004
(CP), 2004.

[2] B. Faltings and S. Macho-Gonzalez. Open constraint
optimization. InPrinciples and Practice of Constraint
Programming - CP, 2003.

[3] E. C. Freuder and R. J. Wallace. Partial constraint
satisfaction.Artif. Intell., 58(1-3):21–70, 1992.

[4] K. Hirayama and M. Yokoo. An approach to
over-constrained distributed constraint satisfaction problems:
Distributed hierarchical constraint satisfaction. In
Proceedings of International Conference on Multiagent
Systems, 2000.

[5] M. Lemaitre and G. Verfaillie. An incomplete method for
solving distributed valued constraint satisfaction problems.
In Proceedings of the AAAI Workshop on Constraints and
Agents, 1997.

[6] J. Liu and K. Sycara. Exploiting problem structure for
distributed constraint optimization. InProceedings of
International Conference on Multi-Agent Systems, 1995.

[7] R. Mailler. A Mediation-Based Approach to Cooperative,
Distributed Problem Solving. PhD thesis, University of
Massachussetts at Amherst, 2004.

[8] R. Mailler and V. Lesser. Solving Distributed Constraint
Optimization Problems Using Cooperative Mediation. In
Proceedings of Third International Joint Conference on
Autonomous Agents and Multiagent Systems (AAMAS),
pages 438–445. IEEE Computer Society, 2004.

[9] A. Meisels, E. Kaplansky, I. Razgon, and R. Zivan.
Comparing Performance of Distributed Constraints
Processing Algorithms. InProc. Workshop on Distributed
Constraint Reasoning (AAMAS), 2002.

[10] P. J. Modi, W. Shen, M. Tambe, and M. Yokoo. Adopt:
Asynchronous distributed constraint optimization with
quality guarantees.Artificial Intelligence Journal, 2005.

[11] V. Parunak, A. Ward, M. Fleischer, J. Sauter, and T. Chang.
Distributed component-centered design as agent-based
distributed constraint optimization. InProc. of the AAAI
Workshop on Constraints and Agents, 1997.

[12] M. Silaghi and D. Mitra. Distributed constraint satisfaction
and optimization with privacy enforcement. In3rd IC on
Intelligence Agent Technology, 2004.

[13] M. Yokoo, E. H. Durfee, T. Ishida, and K. Kuwabara. The
distributed constraint satisfaction problem: Formalization
and algorithms.Knowledge and Data Engineering,
10(5):673–685, 1998.

1063

