Impact of Problem Centralization in Distributed Constraint
Optimization Algorithms

John Davin and Pragnesh Jay Modi
Computer Science Department
Carnegie Mellon University
Pittsburgh, PA 15213

{jdavin, pmod}@cs.cmu.edu

ABSTRACT

Recent progress in Distributed Constraint OptimizatioabRyms
(DCOP) has led to a range of algorithms now available whifflerdi

in their amount of problem centralization. Problem certedion

can have a significant impact on the amount of computation re-
quired by an agent but unfortunately the dominant evalnatiet-

ric of “number of cycles” fails to account for this cost. Weaan
lyze the relative performance of two recent algorithms f@@P:
OptAPO, which performs partial centralization, and Adapgiich
maintains distribution of the DCOP. Previous comparisoAadpt

and OptAPO has found that OptAPO requires fewer cycles than
Adopt. We extend the cycles metric to define “Cycle-Based-Run
time (CBR)” to account for both the amount of computation re-
quired in each cycle and the communication latency betwgen c
cles. Using the CBR metric, we show that Adopt outperforms
OptAPO under a range of communication latencies. We also ask
What level of centralization is most suitable for a given coumi-
cation latency? We use CBR to create performance curvebkrie t
algorithms that vary in degree of centralization, namelppti Op-
tAPO, and centralized Branch and Bound search.

Categories and Subject Descriptors

1.2.11 [Artificial Intelligence]: Distributed Artificial Intelligence—
Multiagent Systems

General Terms
Algorithms

Keywords

Constraint Satisfaction/Optimization

1. INTRODUCTION

The Distributed Constraint Optimization Problem (DCOP#is
general framework for distributed problem solving that hagide
range of applications in Multiagent Systems and has gese:sg-
nificant interest from researchers [6, 11, 5, 4, 2, 12, 8, AQCOP

Permission to make digital or hard copies of all or part o§ twork for
personal or classroom use is granted without fee providatidbpies are
not made or distributed for profit or commercial advantage that copies
bear this notice and the full citation on the first page. Toyootherwise, to
republish, to post on servers or to redistribute to listguies prior specific
permission and/or a fee.

AAMAS'05, July 25-29, 2005, Utrecht, Netherlands.

Copyright 2005 ACM 1-59593-094-9/05/0007$5.00.

assumes that problem variables and constraints are digttikmong
a set of agents who must communicate to find an optimal assign-
ment of values for the variables.

Mailler and Lesser have recently proposed a complete, asyn-
chronous algorithm for DCOP, named Optimal Asynchronous Pa
tial Overlay (OptAPO) [8]. This algorithm uses a novel agpro to
DCOP in which variables and constraints are partially aizied
during problem solving. A dynamically chosen agent whoexil
problem constraints is called a “mediator” and the gengrpt@ach
is termedcooperative mediatian

The cooperative mediation approach to DCOP is novel (in) part
because it provides the first middle point on a spectrum Hrages
from very centralized to more decentralized approachesGOP.

In a very centralized approach, all agents communicatehalt t
constraints to a single agent in the first step of the algoriémd

a centralized optimization technique is applied, such aslhassic
Branch and Bound algorithm [3]. At the decentralized endhef t
spectrum, Modi et al. [10] have previously proposed an aggrdo
DCOP, named ADOPT (Asynchronous Distributed OPTimization
that is more decentralized because agents do not explcithymu-
nicate their constraints to others (although some indirdorma-
tion about constraints can be leaked). OptAPO falls somesine
the middle of this spectrum of centralization.

The degree of problem centralization, or equivalentlyaimeunt
of constraints that are communicated during an algorithexréscu-
tion, can have a significant impact on the amount of comprtati
required at each agent. As an agent’s subproblem grows hasd &
greater number of constraints to process, it requires ase com-
putational effort. Thus, in order to compare algorithmst tiadl
on different points along our centralization spectrum, ariméhat
takes local computation effort into account is needed.

The dominant metric for evaluation of DCOP algorithms is Aum
ber of synchronousycleq13]. In cycle-based execution, all agents
operate concurrently within a cycle, but do not move to thet ne
cycle until all agents have completed their computationgnfthe
previous cycle. Any message sent in a cycle is not receivéitl un
the next cycle. While not perfect (see Meisels et. al. [9] Britb
et. al. [1] for a discussion), the cycles metric provides aveaient
method to assess the performance of an asynchronous higorit
True asynchronous execution of a DCOP algorithm is diffitwlt
measure reliably because of the exponential number oflpesst-
ecution paths that differ significantly in their runtimeshug for
repeatable results, it is often most practical to execut€e®P al-
gorithm in a synchronous fashion on a single computer, aad th
“number of cycles” metric provides a useful way to measuig th
execution.

Although convenient, the cycles metric does not measure the

1057

000 90000 4

50000 4
70000 4
60000 4

Q50000 4

Q40000 4
30000 4

4000 =

Cycles

2000 e

1000 20000
10000

0 r i i : 04

—x—Adopt

—x— A dapt
—a— Opta PO

—a— OptAPO

5000000 4

4000000 4

3000000 4

CCC+L'Cycles

2000000 4

CBR

1000000 4

"
.fo

X o

20 8
Variables

(a) Number of Cycles

Figure 1: (a) OptAPO requires fewer number of cycles than Adpt,

12 18
Variables

(b) Concurrent Constraint Checks

20 g 20

1
Variables

(c) Cycle-Based Runtime

as shown in previous research, (b) But requires an incresed

amount of computation as measured by constraint checks. (&/hen both constraint checks and communication latency (wh L=100)

are accounted for, Adopt outperforms OptAPO.

amount of computation required by the algorithm, i.e., tanof
each cycle. As we have described, taking this factor int@act
is necessary when comparing algorithms that vary in thejrete
of centralization. To address this issue, we extend theesywlea-
surement to include the local computation costs of the #lyar
We useconcurrent constraint checks (cctt) measure the amount
of computation within a cycle [9]. We define a new metric, edll
Cycle-Based Runtime (CBR), that takes into account twoets e
runtime — the computation time as measured by number of atc an
communication time as measured by the latency betweensycle
The CBR metric still requires agents to execute in synchusroy-
cles, which we believe continues to be a useful method fdyaisa
but also incorporates computational cost, allowing us toencom-
pletely measure an algorithm’s performance than with cyalene.
We investigate two issues. First, using CBR, we compare the
performance of algorithms that vary in their degree of cdiza-
tion. Existing research [8] has found that OptAPO outpenfor
Adopt in terms of cycles. We reproduce those results. Howeve
using CBR as a comparison, we show that Adopt performs better
than OptAPO for a range of communication latencies. Sedoad,
cause CBR takes into account communication latency, wisich i
property of the communication environment in which the &l
operates, we can ask which algorithm is most appropriatefen-
vironment with a given latency. We evaluate three algorglomthe
spectrum of centralization: Adopt, OptAPO, and a fully catized
approach. By comparing all three algorithms using the CBRime
we are able to provide a comparison of how differing levelsent-
tralization perform under various communication lateacid& his
analysis is important because it provides assistance éaresers
applying DCOP algorithms within new environments to deieem
the most appropriate level of centralization.

1.1 Key Result

We briefly summarize one of the key results of this paper. iPrev
ous comparisons of Adopt and OptAPO have used measurement
of cycles to compare algorithm performance. In our invesitmn
of Adopt and OptAPO, we obtained cycle measurements in agree
ment with the existing research (Fig 1a). OptAPO solves lyrap
3-coloring problems in fewer cycles than Adopt. Howeverewh
constraint checks are measured to estimate the compwheén
fort of the algorithms, we find that OptAPO uses more congurre
constraint checks than Adopt (Fig 1b). Using the CBR meteic d
scribed in Section 3 which takes both constraint checks and ¢

munication latency into account, we see that Adopt perfdretter
than OptAPO (Fig 1c). The graph shows results for a given com-
munication latency, but our results hold across a rangetefties.

The rest of this paper provides background on Adopt and Op-
tAPO, explains the design and rationale of the methods we use
to analyze these algorithms, and then presents analysisibas
results comparing Adopt with OptAPO.

2. ALGORITHMS FOR DCOP

A Distributed Constraint Optimization Problem [10] (DCQOBR)
defined as:

e setof N agents A = {A1, Az, ... ,An}.
e setofn variables V = {z1,22,... ,2n}.
e set ofdomainsD = {D,, Ds,... , Dy}, where the value of

x; is taken fromD;. EachD; is assumed finite and discrete.

set ofcost functionsf = {f1,..., fr} where eachy; is a
function f; : D;1 x -+ x D; ; — N U oo. Cost functions
are also calledonstraints

adistribution mapping? : V' — A assigning each variable
to an agent.Q(z;) = A; means thatd; is responsible for
choosing a value fox;. A; is given knowledge of:;, D;
and all f; involving z;.

an objective functionF' defined as an aggregation over the
set of cost functions. Summation is most commonly used.

The goal for the agents is to choose values for variablesthath
F'is minimized. Two agents whose variables share a consaeent
called neighbors Agents may send messages to any agent they
know about and initially agents only know about their neigitsh
When each agent is assigned a single variable, it is commoseto
the notationA; andz; interchangeably as we will in this paper.

S

2.1 Adopt and OptAPO

Adopt and OptAPO are two state of the art algorithms for DCOP.
Both arecomplete i.e., theoretically guaranteed to return the op-
timal solution, andasynchronousi.e., they remain correct even
when agents execute concurrently, potentially at diffeex@cu-
tion speeds. In both algorithms, agents interleave cortipatevith
communication. However, there are a number of qualitatifferd
ences in the algorithms which we describe below.

1058

Adopt [10] is an algorithm for DCOP that is able to find glob-
ally optimal solutions while allowing agents to choose abté
values in parallel. Adopt performs a distributed searcimgishe
communication of costs to guide agents toward globallyrogti
value choices. Agents communicate their current variablaes
to lower priority neighbors, who respond with messagesainintg
lower bounds o' computed by conditioning on the value choices
of higher priority agents. Higher priority agents resporydex-
ploring new values. Lower bounds are communicated only ¢o th
lowest higher priority neighbor. As this process continueser
bounds become progressively more accurate, until ultimate
lower bound of the minimum cost solution equals its uppemiobu
indicating the cost of the optimal solution has been foundteN
that agents do not directly communicate their constramtsther
agents and only send messages between neighbors.

OptAPO [8] is an alternative approach to DCOP that usestirec
communication of constraints to partially centralize thelglem
within a mediator. Election of the mediator is done in anlligent
way using dynamic priorities determined during problenvisa.
The mediator uses a centralized optimization routine todimdpti-
mal solution to its portion of the problem. The optimizatioutine
used by Mailler and Lesser is the Branch and Bound algorithm o
Freuder et. al. [3].

Agents in OptAPO use a novel cost justification technique to
drive the communication of constraints. This techniqueads/oen-
tralization when it is deemed unjustified based on problemcst
ture. As an OptAPO agent receives constraints from othemtage
in the problem, it adds the other agents to a data structliedca
its goodlist We will use the size of an agent’s goodlist to measure
amount of centralization in OptAPO. Finally, when consttsiare
communicated between two agents who are not neighborsk-a lin
ing procedure is used to establish a direct communicatida li

2.2 Discussion of Qualitative Differences

Communication of Constraints)/e see that a key difference be-
tween Adopt and OptAPO is that agents in OptAPO communicate
their constraints to other agents which allows the agent veho
ceives them to evaluate the constraint. The communicaficoro
straints between agents has significant implications coh h@danc-
ing and the amount of computation that each agent must perfor
during problem solving. This is because as the size of antagen
subproblem grows as constraints are gathered, more loogco
tation (search) is required to find the optimal solution te ldrger
subproblem. Thus, when constraints are communicated batwe
agents, the computation load at each agent may increasegduri
problem solving. In OptAPO, we may expect that the computa-
tional load at some agents will grow as problem solving peeges
and their sub-problems grow. On the other hand, in an alguarit
which does not communicate constraints, such as Adopt, we ma
expect that the computational load at each agent will reroam
stant during problem solving.

Adding Links:Adopt and OptAPO seemingly make different as-
sumptions about the communication links in the underlyipplia
cation domain. OptAPO assumes that an agent has the ability t
establish a direct communication link with any other agémtopt
only assumes a direct communication link between neightvors
the constraint graph. Although a multi-hop message styategld
in principle be used to establish a virtual communicatiork lbe-
tween any pair of agents in a connected communication n&twor
this approach would incur additional communication cyctésw-
ever, we do not investigate this issue in this paper.

3. AN EVALUATION METRIC FOR ASYN-
CHRONOUS ALGORITHMS

Performance measurement and comparison of distributed alg
rithms is more complicated than for traditional centradizdgo-
rithms. Distributed algorithms have multiple agents that con-
currently and communicate asynchronously. This distidioubf
the algorithm creates several challenges for evaluatientypical
research lab environment. Running in a fully distributechrmex
across a cluster of many computers is often not practicaerAd-
tively, an asynchronous algorithm can be run on a single cbenp
using multiple threads of execution, for example using ardie-
event network simulator. However, this is also problemiag¢icause
there are an exponential number of execution paths for an-asy
chronous algorithm and there can be significant variatiawéen
runtimes depending on the path chosen by the underlyingatoru
Evaluation over all possible execution paths is often natfical.

3.1 Number of Cycles

Because of the above difficulties, previous researchers ¢
posed evaluating asynchronous algorithms according tcstare
dardized execution path, namely one in which agents synolusy
interleave communication and computation. Specificalgjoidthm
execution is divided into a sequence of cycles [13] as defietmlv.

Definition: A cycleis defined as one unit of algorithm progress
in which all agents, in parallel, process their incoming sag®es,
perform any required computation, and send their outgoieg-m
sages. Importantly, a message sent in cycle i is not receingbl
cycle i+1.

Cycles are a convenient standardized metric for estimatiag
performance of a DCOP algorithm that avoids the problems de-
scribed earlier. However, a drawback of cycles is that itsdoet
take into account the amount of computation required by tee d
tributed agents. We wish to devise a metric that retainsekeable
properties of the measurement using cycles but considerputa-
tion costs as well.

On initial consideration it might seem that the amount of pam
tation performed by an algorithm could be accurately mesasby
the total runtime used by the process on a single computer- Ho
ever, since the agents must take turns using a single parcass
cannot execute in parallel as they would in a distributedesys
the runtime may not accurately reflect the actual distritpierfor-
mance. If the agents solving the problem do not share the eomp
tational burden relatively evenly, then they will not taldvantage
of the parallelism of distributed problem solving.

3.2 Cycle-Based Runtime

To more accurately measure the performance of DCOP algo-
rithms, we desire a metric that approximates the total nmof an
algorithm whose execution has been measured using syratigon
cycles. We begin with a simple definition of runtime:

m
total runtime of m cycles = Z time for cycle k
k=0

@)

Now, we need a definition for the time of a cycle. A cycle in-
volves communication followed by computation. Lietlenote the
time required in a cycle to deliver all messages sent in theipus
cycle. We call this thdatencyof the underlying communication
environment.L is algorithm independent. So we have

@)

time for cycle k = L + computation time in cycle k

1059

In order to measure the computational cost in a cycle, we make
use of a recent metric - concurrent constraint checks (&jc)A
constraint check is the act of evaluating a constraint inpitodo-
lem by comparing the value of one variable to another vagiatl
the problem. Constraint checks are a well accepted meagure o
computation in traditional centralized constraint prateg algo-
rithms. Letce(z;, k) be the number of constraint checks performed
by agentz; in cycle k. Then the computation time of cycle k is de-
fined as:

computation time in cycle k = max ce(ms k) X t
x; €

®)

wheret is the time required for one constraint chetls a prop-
erty of the underlying computing hardware and is algoritimehe-

pendent. The max over all agents is used because the agents ar

conceptually executing in parallel. The length of a cycleeaser-
mined by how long the longest running agent took to complete.
Substituting 3 into 2, we have

time for cyclek = L + max ce(zi, k) x t 4)
Now substituting 4 in 1,
m
total runtime of m cycles = ;(L + max ce(xi, k) X t)
®)

Finally, the number of concurrent constraint checks (cas} p
formed by an algorithm over m cycles is defined as:

(6)

m
cee(m) = Z max ce(xs, k)
k=0""

Substituting 6 in 5, we arrive at our final equation for thediof
m cycles, called Cycle-Based Runtime (CBR):

CBR(m) =t X cce(m) + L X m.)
Note that the CBR metric is parameterized according to two en
vironmental factors: the communication latency betweetiesy
(L) and the speed of computatiot).(Using this parameterized
model, we can evaluate algorithm performance over a range of
environments that vary in their relative speeds of commatioa
and computation. Time required to transmit a message idlysua
greater than the time for a constraint check in most envients)
so for simplicity we assume that a constraint check is thdlesta
atomic unit of time { = 1), and assumd is given relative tar.
We will explore four types of environments where communarat
costs are increasing by order of magnitude relative to caatioun,
i.e.,L =t,L=10t, L =100¢t, L = 1000¢.

L=t —x— Adopt

—= OpEAPO

—x—Adopt
—=— OptAPO

L=10
100000 100000

80000 80000

60000 60000
40000 40000

20000 20000

0+

0+

12 4 vars 18

L=1000 —x—Adopt

- CpARD

L=100

—«—Adopt

100000 —s— CptAPQ 250000

o
:;//,:/
.

8

a0000 200000

50000 150000
40000 100000

20000 50000

o

0

12 20 24

18
vars

Figure 2: Comparison of Adopt and OptAPO using the CBR
metric on graphs of low density. Each graph represents a dif-
ferent L value.

4. EMPIRICAL EVALUATION

We obtained the OptAPO code from its creators Roger Mailler
and Victor Lesser, and the Adopt code from its creator Prsiyday
Modi. We used a simulator framework to measure ccc and cytles
both OptAPO and Adopt. Following previous work [10, 8], wertth
ran OptAPO and Adopt on a set of randomly generated 3-cgorin
problems. The problems were generated with problem sizes&f
12, 16, or 20, and a link density of either 2n or 3n. Each pmble
size had 50 generated problems (a total of 8*50 = 400). Thesam
set of randomly generated graphs was used for each algorithm

4.1 Runtime as Measured By CBR

Constraint checks and cycle counts were logged and used to
compute the value of CBR in Eqn 7 for four different values of
L. We create a different graph for each value. As describe@in S
tion 3, L represents the time required by the communication envi-
ronment to deliver messages between cycles specifiedretatihe
time for a constraint check. For exampldif= 1, we are assuming
communication is very fast and on the same order of magnésde
a constraint check. I£ = 1000, we are assuming communication
takes three orders of magnitude longer than a constraigkche

Figures 2 and 3 show four graphs generated from a single set
of experiments on problems of link density 2n and 3n respelgti
Each datapoint represents the average of the 50 problenfsg4n
ure 2, we see that wheh is 1, 10, and 100, Adopt outperforms
OptAPO. AtL = 1000, Adopt performs slower than OptAPO on
the problem sizes we tested. However, from the growth rdtdeo

CBR does not take into account number of messages or the timelines it appears that OptAPO may exceed Adopt on larger probl

required to process messages. In other words, we assunmedbat
sage processing time per cycle is not a significant difféaieng
feature between algorithms under comparison. We beliggegh
true for the algorithms compared in this paper. While Adogetsu
many more messages than OptAPO, this is explained by it€high
cycle count, i.e, the number of messages communicated pkr cy
is about the same between the two algorithms. Also, we asthene
time to process each message is similar for both algorithms.

sizes. To investigate this, we were able to run a small nuraber
experiments with problems containing 24 variables. We detad
20 problems for density 2 and 10 for density 3 (the lengthy run
times on these large problem sizes prevented completionoog m
problems). The performance on these problems has been shown
with a dotted line on thé = 1000 graph, and indicates that Adopt
may outperform OptAPO on large problems everd at 1000.

We observed that while Adopt requires more cycles than Op-

1060

1 Min

Density=2
L=1 —x—Adopt L=10 —«— Adopt BAverage
9000000 ——OptAPO 3000000 —= CRAPO [EYS
20
6000000 6000000
16
3000000 3000000 E
= 12+
=]
0+ T T T — 0 f 1 =3
8 12 4 yars 16 20 g 12 4 yape 16 20 s
@ 9 4
%
4 4
L=100 —<— Adopt L=1000 —x— Adopt
9000000 —=—OptAPO 4pooooon - Opfpo 0
000000 Fonmann Problem Size (#vars)
20000000 ’
o O Min
3000000 J— .5 ; Density=3 Average
1 " 0+ i.‘"‘/_// ; s 8 Max
8 12 4 vars 18 20 8 12 ﬂJaErs 20 24 7
16 4
Figure 3: Comparison of Adopt and OptAPO using the CBR Z .
metric on graphs of high density. Each graph represents a dif e
=
ferent L value. 5
&
w
4 4
tAPO, each OptAPO cycle takes significantly longer than deidpt
1]

cycle. L provides a parameter to vary the relative cost between
number of cycles and length of each cycle. We conclude thia fo Problem Size (#vars)
significant range of., Adopt performs better than OptAPO, and as

problem size grows this range increases.

4.2 Centralization of OptAPO Figure 4. OptAPO centralization - Avg is the average central

We have hypothesized that the degree of centralizatior issidr- |zat.|0n.across the agents na problem, Max is .th.e highest cen
, tralization of all the agents in a problem, and Min is the lowest
son that OptAPQO’s cycles take much longer than an Adopt cycle - .
- : o of the agents. The upper line above each bar marks n (# of vari-
To verify this, we recorded the amount of centralizationt tiwee S - : o
o) ables), which is the maximum possible centralization at edc
OptAPO agents reached by termination, as represented Isyzihe roblem size. Each measurement is the average of 50 problems
of the OptAPOgoodlist which contains the other agents whose P ' 9 P
constraints have been centralized to an agent.
We computed the average, minimum, and maximum goodlist

sizes across the agents in a problem at termination. Wenglotai ¢ computation within a cycle, which we will calbad(k), can be

similar results to the centralization data reported in &8 thesis represented by the ratio of the maximum constraint checkseto
[7]. As seen in Figure 4, on low density problems OptAPO agent tota| constraint checks in a cycle:

on average have centralized at least half of the problemétirte
a solution is found. On highly dense graphs, which are mdfie di

cult and time-consuming to solve, OptAPO on average centsl
MaXy,c Agents Cc(xiy k)

nearly all of the problem. load(k) = (8)
The Max bars show that in high density graphs, almost allprob 2ieagents (i K)
lems had at least one agent that fully centralized the pnoblia
low density problems, on average there was at least one agrent This equation represents the fraction of work that the marim
centralized about 75% of the problem. computing agent did during the cycle. A value of 1.0 means one
. . . agent did all of the computation in that cycle, and a loweuegal
4.3 Parallelization of Computation indicates the load was more balanced.

So far we have found that OptAPO does more computation, based In Figure 5, the load ratio for OptAPO and Adopt is graphed for
on our measurement of the maximum constraint checks pegefibrm the execution of one representative graph coloring prolléin 8
across the agents during each cycle. However, we would iélso | variables and a density of 2n. The x-axis is the executioe iim

to determine whether the higher maximum constraint chexckisé cycles, and the y-axis is the load as defined in Eqn 8. The tine f
to OptAPO simply doing more computationafi the agents during OptAPO shows spikes at cycles where an agent, the mediaar, d
a cycle, or if it is due to uneven distribution of the compiatiaal Branch and Bound search and accounted for most or all of time co
load. putation in that cycle. On the other hand, Adopt had very isbeist

As discussed in Section 3¢(z;, k) is the number of constraint distribution of computation, with most agents doing a samium-
checks performed by agent in cycle k. Then, the distribution ber of constraint checks for most of the algorithm’s dumatio

1061

—=—Adopt
—— OptaP O

o o o o o o
= m W o~ m ;=
L L L L L L |

MaxCCCiTotal per cycle

o
[
L

e s e e e B e e e e e - B e e

o o
= a2
L

o

20
Cycle

Figure 5: A measure of the distribution of computation in
Adopt and OptAPO. The peaks on the OptAPO line indicate
that in those cycles a single agent did most of the computatio

This chart illustrates that OptAPO finished in a fewer nunufer
cycles than Adopt, but the computation during those cycldess
evenly distributed among the agents, which results in lotigee
per cycle.

4.4 Tradeoffs Between Communication Latency
and Centralization
As our analysis has shown, a non-centralized algorithmAitkept

—x— A dopt

Density=2 OptAPO
—&— Centralzed
4
@
L
—o——'_———x
T = T T 1
1 10 100 1000
. —u—Adopt
Density=3 ORAPO
—i— Centralized
™ » - 1
=4
[}
L=
H
® Xff__ﬂ__

1 10 100 1000

L

uses more communication cycles but has a lower computationa Figure 6: Adopt, OptAPO, and Centralized at 4 different L

cost per cycle. OptAPO, a partially centralized algorittas rela-
tively low communication cycles but higher computationagtcper
cycle. We now ask how does a partially centralized approikeh |
OptAPO and a decentralized approach like Adopt, compare avit
completely centralized approach using CBR as an evaluatieta
ric?

For the centralized approach, we assume one agent stagk the
gorithm with full knowledge of the problem, and simply inesk
an optimization search procedure. We used OptAPO’s impleme
tation of centralized Branch and Bound search and measheed t
number of constraint checks required to find the optimaltsmiu
We ignored the overhead cost that would be required in a ttigly
tributed setting of electing a centralizer and all agentsiooini-
cating the problem information to it. In the worst case, tiast is
only some small factor of the width of the communication ¢rap

Figure 6 shows the three algorithms at different L valuesexs
pected, the centralized algorithm is insensitive to varjirvalues
because no communication is required. For both graph dessit
Adopt is the best performing algorithm at L values less th@@. 1

values. Each graph is based on 50 random problems of 20 vari-
ables.

this partial reuse does not completely recover the costepte-
vious searches. From our analysis, we conclude that on legh d
sity graphs OptAPO eventually centralizes most of the mobbut
does so with a higher cost than doing a simple centralizatidme
first step of the algorithm.

Figure 6 provides initial guidance to a researcher seekirapt
ply a DCOP algorithm to a new domain. The figure gives an es-
timate of which algorithm would be the most efficient for aegiv
communication model and constraint density, althoughltesu
other domains may vary.

5. CONCLUSION

We have investigated two algorithms for DCOP - OptAPO and
Adopt - that vary in the amount they centralize the problerorin
der to find the optimal solution. We developed a metric, CBR, f

The crossover point occurs between L=100 and L=1000. These more accurately comparing these algorithms by taking iotoant

crossover points are important because they tell us at wdiat p
communication becomes too expensive for Adopt to operate ef
ficiently, and tell us which algorithm should be used for aegiv
communication environment.

For density 2, the OptAPO performance curve outperforms its
own centralized solver using the CBR metric. These resgitsea
qualitatively with the results using a serial runtime netgported
by Mailler and Lesser [8]. On density 3, the fully centratizap-
proach had a lower CBR than OptAPO, which we believe may be
explained by the fact that OptAPO does repeated multiple@&ra

communication latency between cycles and the length of egch
cle. We have shown that while OptAPO requires fewer cycles
than Adopt, OptAPQ's cycles are longer because they require
computation. For domains with low communication latencyneo
pared to time to do a computation, Adopt outperforms OptARO b
cause in such domains agents are able to communicate dfficien
and Adopt is able to take advantage of it by more evenly thigtri

ing the work of solving the DCOP. We have created graphs of the
relative performance of Adopt, OptAPO, and centralizeddean-

der environments with varying communication latenciesyjating

and Bound searches, which could become more costly on densethe ability to choose the most effective level of centralma for

graphs. The OptAPO searches partially reuse past seaitties,

each environment.

1062

6. ACKNOWLEDGEMENTS

We thank Roger Mailler for generously providing us with his i
plementation of OptAPO, which made this investigation fimss
We thank Manuela Veloso for productive discussions and fzym
insightful comments.

7. REFERENCES

[1] I. Brito, F. Herrero, and P. Meseguer. On the Evaluatibn o
DisCSP Algorithms. IrProc. Workshop on Distributed
Constraint Reasoning held at Constraint Programming 2004
(CP), 2004.

[2] B. Faltings and S. Macho-Gonzalez. Open constraint
optimization. InPrinciples and Practice of Constraint
Programming - CP2003.

[3] E. C. Freuder and R. J. Wallace. Partial constraint
satisfactionArtif. Intell., 58(1-3):21-70, 1992.

[4] K. Hirayama and M. Yokoo. An approach to
over-constrained distributed constraint satisfactiabfgms:
Distributed hierarchical constraint satisfaction. In
Proceedings of International Conference on Multiagent
Systems2000.

[5] M. Lemaitre and G. Verfaillie. An incomplete method for
solving distributed valued constraint satisfaction peoios.
In Proceedings of the AAAI Workshop on Constraints and
Agents 1997.

[6] J. Liu and K. Sycara. Exploiting problem structure for
distributed constraint optimization. Proceedings of
International Conference on Multi-Agent Systefi895.

[7] R. Mailler. A Mediation-Based Approach to Cooperative,
Distributed Problem SolvingPhD thesis, University of
Massachussetts at Amherst, 2004.

[8] R. Mailler and V. Lesser. Solving Distributed Consttain
Optimization Problems Using Cooperative Mediation. In
Proceedings of Third International Joint Conference on
Autonomous Agents and Multiagent Systems (AAMAS)
pages 438-445. IEEE Computer Society, 2004.

[9] A. Meisels, E. Kaplansky, I. Razgon, and R. Zivan.
Comparing Performance of Distributed Constraints
Processing Algorithms. IRroc. Workshop on Distributed
Constraint Reasoning (AAMAS002.

[10] P.J. Modi, W. Shen, M. Tambe, and M. Yokoo. Adopt:
Asynchronous distributed constraint optimization with
quality guaranteedtrtificial Intelligence Journgl2005.

[11] V. Parunak, A. Ward, M. Fleischer, J. Sauter, and T. @han
Distributed component-centered design as agent-based
distributed constraint optimization. Proc. of the AAAI
Workshop on Constraints and Agent997.

[12] M. Silaghi and D. Mitra. Distributed constraint saéisfion
and optimization with privacy enforcement.3nd IC on
Intelligence Agent Technolog2004.

[13] M. Yokoo, E. H. Durfee, T. Ishida, and K. Kuwabara. The
distributed constraint satisfaction problem: Formalaat
and algorithmsKnowledge and Data Engineering
10(5):673-685, 1998.

1063

