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Abstract— This paper reports on the design and comparison
of two economically-inspired mechanisms for task allocation in
environments where sellers have finite production capacities and a
cost structure composed of a fixed overhead cost and a constant
marginal cost. Such mechanisms are required when a system
consists of multiple self-interested stakeholders that each possess
private information that is relevant to solving a system-wide
problem.

Against this background, we first develop a computationally
tractable centralised mechanism that finds the set of producers
that have the lowest total cost in providing a certain demand (i.e.
it is efficient). We achieve this by extending the standard Vickrey-
Clarke-Groves mechanism to allow for multi-attribute bids and
by introducing a novel penalty scheme such that producers
are incentivised to truthfully report their capacities and their
costs. Furthermore our extended mechanism is able to handle
sellers’ uncertainty about their production capacity and ensures
that individual agents find it profitable to participate in the
mechanism. However, since this first mechanism is centralised,
we also develop a complementary decentralised mechanism based
around the continuous double auction. Again because of the
characteristics of our domain, we need to extend the standard
form of this protocol by introducing a novel clearing rule
based around an order book. With this modified protocol, we
empirically demonstrate (with simple trading strategies) that the
mechanism achieves high efficiency. In particular, despite this
simplicity, the traders can still derive a profit from the market
which makes our mechanism attractive since these results are a
likely lower bound on their expected returns.

Index Terms— distributed decision making, decision theory,
multi-agent systems, market-based control.

I. INTRODUCTION

Task allocation is an important and challenging problem for
computer science (see [36], [S] for an overview). To this end,
in this paper we specifically consider it in the context of
assigning tasks to a set of autonomous software agents. Now,
when a designer has complete control over both the agents
and the way in which they interact, an inherently cooperative
approach can be developed whereby the agents work together
for the common good according to algorithms specified by
the designer in order to find a system-wide solution [20],
[7]. Moreover when the agents participating in the system are
only concerned about the effectiveness of the overall system,
planning, distributed constraint optimisation and scheduling
algorithms have also been proposed [23], [10], [1], [31], [46].

However, such methods fail in systems where the agents
represent distinct stakeholders whose aim is to maximise their
own profit in the system (e.g. in Grid computing where the
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agents represent end users and e-commerce scenarios such
as e-Bay and electronic markets where agents represent the
buyers and sellers). They would fail because they present the
opportunity for the agent to gain an advantage by misreporting
their position (either their needs or their resources). For
example, an agent might over-report its need for memory
capacity on a computational grid so that when the distributed
constraint optimisation process is carried out, it gets allocated
more memory than its share in an efficient allocation. Another
example is in peer-to-peer systems where the case of free-
riding (i.e. where agents under-state their available resource so
as not to be asked to contribute to the system) has been well
documented [2]. Moreover, it can only be assumed that if they
could obtain such benefit they would do so since the agents
are self-interested, rational problem solvers. Against this back-
ground, market-based techniques are attractive because their
point of departure is developing protocols that achieve good
system wide properties despite the fact that the agents act
selfishly [5]. Specifically, market-based control (MBC) is con-
cerned with using technologies and metaphors from economics
to develop effective task and resource allocation systems that
operate in a robust and decentralised manner [5]. To date,
such techniques have been shown to have great potential in
domains such as grid computing [44], peer-to-peer systems
[39], multirobot coordination [15] and mobile computing [4]
but have typically looked at standard cost functions and do not
provide a comparison between the two main strands of MBC:
namely, centralised and decentralised auctions.

In more detail, the aim of this paper is to consider the
use of these market mechanisms in cases where the agents
that are trying to sell the goods/resources (or provide ser-
vices/tasks) have a particular form of cost structure (consisting
of a fixed overhead cost and a constant marginal cost) and
finite production capacities (which are both privately known
to them). We believe that these traits are typical of many
real world applications such as electricity markets, job-shop
scheduling and grid computing applications. For example, a
power plant will typically have a fixed startup cost and a
constant marginal cost of running the plant upto its maximum
capacity. The classic job shop scheduling problem consists
of running periods composed of an initial machine set-up
time (overhead cost) plus a cost per unit time (the marginal
cost) and a finite capacity which these machines can run upto.
Finally, agents providing computational resources on the grid
incur an overhead cost (computational cost of setting up the
agent managing the resource on the machine) and marginal
costs as they accept tasks upto the limit that their machines
can support.



In general, there are two broad classes of market mecha-
nisms that can be considered when dealing with such prob-
lems. The first class, the reverse auction, involves a centralised
mechanism in which sellers report their values to a centre (that
has already aggregated the demand from the buyers) which
then decides on the optimal allocation and the payments. The
most popular of the centralised mechanisms is the Vickrey-
Clarke-Groves (VCG) mechanism'. Its popularity arises from
two attractive economic properties: it is allocatively efficient
(i.e. it guarantees an efficient solution in terms of finding the
cheapest set of sellers that satisfies the demand) and it is
individually rational (i.e. it ensures that the agents are better off
joining the mechanism rather than opting out of it) [25], [8].
Unfortunately, in our case, the finite capacities of the sellers
and the particular cost structure of our problem mean that the
VCG no longer preserves these desirable economic properties.
Thus, we need to extend the VCG mechanism in order to
restore them. Such modification is important because we wish
to guarantee that we find the cheapest providers and we want
to ensure that participants willingly join the system. Here, we
achieve these dual objectives by allowing agents to report on
the triples (fixed cost, unit cost, and capacity) that characterise
their types and via the use of a novel penalty scheme (detailed
in section IV). We prove that the ensuing mechanism is
strategyproof (i.e. every agent finds it in its best interest to
truthfully reveal its private information) and robust to sellers
being uncertain about their production capacity?. Furthermore,
we show that the mechanism is computationally tractable since
the optimal allocation can be computed in pseudo-polynomial
time via the use of a dynamic programming solution.

However, a potential drawback of our modified VCG mech-
anism (indeed of all the mechanisms in this class) is that it is
inherently centralised. That is, the task allocation is computed
by a single entity, the auctioneer, who does so by collecting all
the private information about the costs and capacities from the
various agents. Now, in some cases, this is not a problem and
the optimality of the mechanism is the over-riding concern.
However, in other cases, issues such as robustness to a single
point of failure and scaleability are more important and this
gives rise to the desire for decentralised mechanisms [8].
Thus to cope with this situation, we also consider the second
broad class of MBC mechanism that can be employed for
the task/resource allocation problem: the continuous double
auction (CDA) [40], [13]. In this protocol, buyers and sellers
continuously submit bids (an offer to buy at price p;) and asks
(an offer to sell at price p,) respectively (which are listed on
a billboard) and the market clears (i.e. a transaction occurs)
whenever the bid of a buyer matches the ask of a seller (i.e.
when p, > p,). Such an auction is decentralised in that the

It should be noted that before the reverse auction is conducted all
information about the agents’ costs are held privately by the individual agents
themselves (and thus it is informationally decentralised) [25]. However, the
operation of these mechanisms involves an agent that collects all information
and performs a centralised computation.

’In certain scenarios, sellers may be uncertain about their capacity and
would only have a best estimate of that capacity (e.g. in power generation
scenarios a wind farm’s capacity will depend on the strength of the wind and
in a job-shop scheduling context the capacity of a machine might degrade
stochastically over time).

allocation of the tasks is not computed by any single agent,
but rather emerges out of the interactions of the agents in the
protocol®. Nevertheless, despite this decentralisation, CDAs
still produce solutions that are very close to the optimal, even
when the participants adopt very simple strategies®*.

However, most work on CDAs assumes a cost structure that
consists of a fixed marginal cost for each unit supplied and no
startup cost. This choice of cost structure is quite natural in
macro-economic models and it results both in an equilibrium
market price (a unique price at which buyers and sellers
agree to trade) for the commodity and in efficient allocations
[25]. Unfortunately, the particular cost structure of our domain
implies that no such equilibrium exists. This is due to the
average unit cost of producing lower quantities is greater than
that when producing larger quantities as a result of the startup
cost (this is akin to models where there are economies of scale
in which the startup cost is shared over a greater product run
[25]). The presence of a capacity constraint further complicates
matters since, in general, a single seller will not be able to fully
satisfy the total demand. Furthermore, since we are developing
a protocol for task allocation, we consider buyers with inelastic
demand (i.e. buyers do not vary their demand according to
price) which, in turn, means that the CDA is focused on
finding the cheapest set of seller(s) given an exact demand
from the buyers’. Given these points, we need to modify the
standard CDA mechanism by designing suitable clearing rules
and constraining the type of offers allowed in the market in
order to deal with the aforementioned issues. We then assess
the allocative efficiency of our market mechanism using the
same methodology as was employed by Gode and Sunder in
their seminal study of the standard CDA mechanism® [18].
This assessment shows that the allocative efficiency of our
CDA protocol is fairly high (with an average value of 83% in
the scenario we consider) and that our ZI2 agents are always
profitable (this condition is broadly equivalent to the individual
rationality condition of the centralised mechanism).

These two mechanisms have been developed because they
represent complementary task allocation mechanisms for the
same domain (i.e. where the sellers have finite production
capacity and the cost structure we outline). Thus, while the
extended VCG mechanism guarantees that the cheapest set
of seller(s) is always found, it is centralised. In contrast, the

3Even the seemingly centralised billboard in the CDA can be implemented
using a broadcast communication protocol that mimics the typical “shouts”
in the original trading pit [13] .

“4In this context, a strategy is simply a method of generating a bid or an ask
given the observed current market conditions. In CDAs, it has been shown
that a strategy that randomly generates bids/asks between a set lower and
upper bound can be extremely efficient (both for the individual participant
and in terms of the effectiveness of the overall market). Such strategies are
known as zero-intelligence (ZI) strategies [18].

SInelastic demand also ensures a fair comparison with the centralised case.
This is because allowing for elastic demand will result in an allocation which
satisfies a demand defined by the demand and supply curves rather than a
prior demand that has been made by the buyers (which would occur with
inelastic demand). It also allows us to characterise the cost of decentralising
the market-based mechanism in terms of its efficiency loss.

SWhile their study employed ZI agents that operate purely on price, in our
case, the sellers have to provide both a price and quantity vector. Thus we
modify the ZI strategy to a ZI2 strategy that applies the same basic idea to
both price and quantity.



mechanism derived from the CDA is decentralised, but it does
not guarantee to find the cheapest set of sellers. Thus, in some
cases, the centralised mechanism is more appropriate because
efficiency cannot be compromised (e.g. when the costs in-
volved are high or the set of agents participating in the market
is low, thereby abating the disadvantages of centralisation).
However, when decentralisation is a more desirable aspect
(such as in cases where there are large numbers of agents
or when robustness to failure is important), the CDA-based
solution is more appropriate. Furthermore, our experimental
results quantify the loss in efficiency that occurs when the
decentralised system is implemented instead of its centralised
counterpart (an average of 17% in the case we study). It is
important to note that under both mechanisms, the sellers,
though competitive, are profitable and they are hence always
incentivised to participate in our systems.

The remainder of this paper is organised as follows: section
II presents the main related work in this area. In section III,
we then present our basic model of the cost structure we are
considering. We explain in section III why a simple extension
of the VCG mechanism would not work via the use of an ex-
ample. In section IV we detail our centralised mechanism and
prove its economic and computational properties. In section V,
we present our decentralised protocol and empirically evaluate
its properties. We conclude and suggest areas of future work
in section VL.

II. RELATED WORK

The VCG mechanism and its various extensions have been
used in a variety of computer systems for task allocation situ-
ations. The two broad issues that have been investigated are the
economic and computational properties of these mechanisms
under various scenarios (e.g. [29], [38], [41], [32], [22], [33]).
Most solutions in this area consider standard demand functions
(not our cost structure) in order to derive approximate solutions
to the problem or to find instances where these can be solved
exactly in polynomial time [35].

However recently, there has been increasing interest on
the economic and computational properties of mechanisms
using non-standard cost functions. In particular, a decreasing
marginal cost structure has been considered in [21] and a
polynomially solvable, approximately strategyproof and ap-
proximately efficient (i.e. solutions which are within a bound
of the optimal) auction mechanism has been devised. In
addition, more general piece-wise linear continuous curves
have been considered in [11], but the incentives for truthful
bidding were not taken into account. Furthermore, in [37], [16]
more realistic cost curves such as those related to volume-
quatity discounts are considered and expressed using partic-
ular bidding languages (which express variations on XOR
and AND bids) have been investigated. However, none of
these approaches would work for the cost structure of our
domain since they do not consider both the economic and
computational properties of problems with overhead cost,
constant marginal cost and limited capacity simultaneously.
Furthermore, unlike our work, they do not derive an efficient,
strategyproof and individually-rational solution or compare it

with a decentralised auction. Also, they do not consider the
problem of suppliers not fulfilling their commitment. This lat-
ter problem is studied in [9] and [30]. However, the mechanism
in [30] considers success and failure as a binary variable and
thus does not try to incentivise agents to produce upto their
maximum if ever they cannot fulfil their commitment. In [9],
both the producers and consumers report over the success of
a transaction and thus their mechanism is more appropriate
in an iterated market place where the consumers can form an
opinion about the success rate of each producers. As a result, in
their case, the consumers bear the risk of correctly evaluating
the success rate of a producer, unlike in our mechanism where
it is upto the producers to correctly estimate their capacities.

The double auction class of market mechanism consists
fundamentally of two categories: the clearing-house and the
CDA. The former involves all bids and asks being submitted
to an auctioneer and the market being cleared periodically
by that auctioneer (who calculates the allocation). In contrast,
the latter clears continuously, with the competition in the
market deciding the allocation rather than an auctioneer. In
this context, one particularly relevant application of the double
auction is by Nicolaisen et al. in a wholesale electricity
market [27]. Specifically, they use a clearing-house double
auction with discriminatory pricing. Now, while they do not
look at the complexity involved with a cost structure, they
do describe a market mechanism for resource allocation. In
particular, the agents populating their markets adopt a sophisti-
cated bidding behaviour (a modified Roth-Erev Reinforcement
Learning algorithm [34]), and they evaluate the efficiency of
their mechanism using such strategies. Other relevant works
on the double auction include that by McCabe et al [26]
on the design of a clearing-house, and Xia et al.[45] on
solving combinatorial double auction mechanisms. However,
these mechanisms are not decentralised like the CDA since
they involve an auctioneer who computes the allocation and
prices.

Speaking more generally, most research on the CDA has
been on the structure and behaviour of the mechanism. Indeed
the initial stimulation for this work comes from the field
of experimental economics where experiments with human
volunteers showed that small groups of traders could quickly
find the equilibrium price in simulated single commodity
markets [40], [18]. In line with this seminal work, many
researchers then extended these simple trading strategies to
generate sophisticated software agents that are capable of
observing the trading behaviour of other agents in order to
learn the market equilibrium price of a commodity, and thus
trade more efficiently [42], [17], [19], [43]. However, in all
of this work the existence of the market equilibrium at which
both buyers and sellers seek to trade is a consequence of the
assumption of a cost structure with an increasing marginal cost
and no startup cost. Unfortunately the cost structure of our
domain destroys this market equilibrium and thus the close
to optimal efficiency usually obtained by CDAs cannot be
guaranteed. Specifically, this is because the different startup
costs and the inelastic demand mean that a single price on
which buyers and sellers agree to trade cannot be reached.
To remedy this, we develop a variant of the CDA that is still



reasonably efficient, but that can deal with the specific cost
structure and capacity constraint in our domain.

III. THE ALLOCATION PROBLEM

We now discuss in more detail the problem structure that we
consider in the remainder of this paper. The system which we
wish to control consists of a set Z = {1,...,n} of n suppliers
of a resource and a number of consumers with total demand
D. Each supplier, ¢ € Z, is characterised by a maximum
capacity that it can provide, c;, and a cost function, C;. The
cost function is defined as a combination of a fixed price, f;,
payable for any amount of production and a separate per unit
price, u;:

0 ifx=0
C = S (1

where z; is the quantity of production allocated to seller
S;. Thus, an allocation vector x € X is one in which
each agent S, is asked to supply a quantity z;. We assume
that both the demand and the details of the cost function
are private information of the producers (also referred to as
suppliers or sellers) since they represent distinct self-interested
stakeholders. Given this, the overall aim of the system is
to satisfy the total demand by allocating production between
the different producers. Here, we assume that the resource is
bought and sold in small indivisible units (as is common in
most billing systems) and thus x; € N.

As the designer of the whole system, we are interested in
ensuring that the overall allocation, x*, of the resource under
consideration is optimum in the sense that it minimises the
total cost of production. In this case, it is an optimisation
problem where we minimise the sum of the individual pro-
duction costs, whilst satisfying the total demand, ZZ z, =D,
and the capacity constraints of each individual producer:

x* = arg m’in Z (i fi + uiz;) 2)

such that 0 < z; < ¢; and where:

|

The problem as described here is similar to two stan-
dard problems from the literature of operational research and
scheduling; specifically the knapsack problem [24] and the
capacitated lot-size problem [3]. Comparing this problem to
the knapsack problem, we note that we can consider each
supplier to be an item to be fitted into a knapsack. The size
and value of each of these items is represented by the number
of units of production allocated to this supplier and the cost
of producing this allocation. Unlike the standard knapsack
problem, where we seek to maximise the value of items
without exceeding the size of the knapsack, our goal here
is to exactly fill the knapsack (i.e. satisfy demand) whilst
minimising the value of items placed inside (i.e. minimise
the production costs). Although we can place fractional items
within the knapsack, the size of these items is restricted to

Oifx; =0
1 otherwise.

integer units of production and the corresponding value of the
item is given by the cost structure shown in equation 1.

Comparing to the standard capacitated lot-size problem,
which attempts to schedule the production of a single producer
over a number of days to meet a specific daily demand,
we are attempting to schedule production over a number of
different producers to satisfy an aggregate demand. Despite
this difference, both problems share a similar cost structure,
most specifically the combination of a fixed and per unit
cost, and most importantly, both models share the concept
of producers who have a constrained production capacity. We
could thus adapt algorithms developed for the capacitated lot-
size problem to our problem. However, in this paper the goal is
to show that the problem can be solved in a computationally
efficient manner rather than solve the problem in the most
computationally efficient manner.

Now, both the knapsack and the capacitated lot-size prob-
lems have been shown to be N'P-hard [12], [14]. However
both can be solved in pseudo-polynomial time using a dy-
namic programming approach [14] and we present a suitable
implementation of this technique for our specific problem in
section IV-C.

Given this problem description, in the following sections
we describe our two task allocation mechanisms, starting with
the centralised one.

IV. A CENTRALISED MECHANISM

Our centralised mechanism builds upon the standard VCG
mechanism since this mechanism has a number of desirable
economic properties with respect to task allocation (as outlined
in section I). Specifically, it is efficient, incentivises the agents
to reveal their costs truthfully to the auctioneer in dominant
strategy (i.e. an agent finds no better option than to reveal its
costs truthfully) and guarantees a non-negative utility to the
participating agents.

The standard VCG mechanism for task allocation represents
the producers as agents participating in a reverse auction to
satisfy the demand of the auctioneer. The agents submit their
respective private information about their costs, known as their
types, 6;, in sealed bids to the auctioneer. After this stage,
the auctioneer finds the efficient allocation and then calculates
the transfers (i.e. the amount of money that is to be paid to
each agent). It is this transfer scheme that results in the agents
having truthful reporting as a dominant strategy.

However, there are two key differences between our setting
and that of a standard VCG mechanism. First, each agent’s
type has three dimensions that characterise its cost function
instead of the usual one. Specifically, these dimensions are the
fixed price or setup cost, f;, the unit cost, u;, and the capacity,
¢;. Second, the capacity of the agent does not directly impact
on the cost of supplying an allocated quantity of a resource,
but rather puts a limit on the amount that it can supply. This
differs from the standard setting of a VCG where an agent’s
type directly impacts on its cost. Thus, an agent overstating its
capacity does not change its payment in the traditional VCG
mechanism (as we show in section IV-A), but does change the
efficient set of suppliers calculated by the centre.



To deal with these differences, the standard VCG needs to
be extended in three ways. The first change is to have agents
report the attributes that define their cost functions rather than
a single cost price. The second change is to have a separate
allocation and payment phase (as opposed to the traditional
VCG mechanism where this is amalgamated into a single
phase) since it is the very reports of the agents (i.e that of
their capacities) which define the space of feasible allocations.
The third change is the introduction of a penalty scheme that
incentivises the agents to report truthfully on their capacities’.

Given this, we present the payment as a two-part scheme:
a transfer scheme and a penalty scheme (presented in sections
IV-A and IV-B). This two-part mechanism is presented for ex-
planatory purposes only and the overall combined mechanism
is presented in section IV-C. In section IV-D, we prove the
economic and computational properties of our mechanism.

A. The Transfer Scheme

The allocation problem is the same as that introduced in
section III. If the agents are incentivised to report truthfully,
then the auctioneer can just take their reports and solve the op-
timization problem introduced in section III. More generally,
however, agents might not report their types truthfully if they
believe that they will derive a higher profit by lying. Thus, if

agents report 9: = (ﬁ, u;, ¢; ), the auctioneer then solves:
x* = arg m)inz (aifi + Uixi) 3)
K3

such that 0 < z; < ¢; and where:

Oifa:i:O

Q; = .
1 otherwise.

Hence, comparing equations 2 and 3, in order to achieve an
efficient allocation we are left with the problem of incentivis-
ing the agents to report truthfully. If we assume rational self-
interested agents, then this implies that they should maximise
their own utility when reporting truthfully (otherwise they will
lie!). As with most other work in this area, we consider the
case that the agents have a quasi-linear utility function® [25].

Definition 1: Quasi-linear Utility Function. A quasi-linear
utility function is one that can be expressed as:

Ui(x,t;,0;) = t; — vi(x,0;) €]

where v;(x, 6;) is the cost of the allocation x to agent i given
its type 6; and t; represents the transfer of money from the
centre to agent 4.

7We should note here that the second difference does not result in inter-
dependent valuations (i.e. valuations which depend on other agents’ observed
signals). While the capacity of each agent does change the allocation of other
agents (the cheapest agent will determine how much the remaining agents will
obtain via its capacity), it only does so in an indirect way. Therefore, we can
still aim to achieve an efficient mechanism despite the multi-dimensionality
of the types since we are firmly in the realm of private values [22].

8The quasi-linear utility function is a characteristic of a standard VCG
mechanism and is required so as to circumvent the Gibbard-Satterthwite
impossibility result about achieving efficiency in a setting that considers
general utility functions (i.e non quasi-linear ones) [25].

Sellers

S1 S2 Ss
Capacity 100 | 150 | 175

Fixed Price 100 | 200 | 120

Unit Price 1.5 1 2

TABLE I
A SET OF THREE PRODUCERS BIDDING TO SATISFY A DEMAND OF 200

UNITS.

The standard VCG mechanism achieves truth-telling by
aligning the goal of each agent with that of the mechanism
designer. It does so by imposing a transfer on the agent which
is equivalent to its marginal contribution to the society. Now,
applying this insight to our multi-dimensional type domain, we
advocate the following transfer scheme in which the agents
report on all three dimensions of their types (i.e. on 6; =

(fis iy )

[ 5 (o5 450

zj<¢j jeT\i

[ (e ma))

JeT\i

(&)

where 7" is the allocation to agent j in the optimal allocation,
x*, calculated with the reports of all the agents. This scheme
is the only one that completely captures an agent’s marginal
contribution to the system and it is therefore the only possible
scheme that can be used in this context.

The transfer scheme of equation 5 consists of two parts.
The first calculates the total cost of the optimal allocation if
agent ¢ were not included in the set of suppliers. In the second
part, first the optimal allocation with agent 7 is found and then
the total cost of this allocation is calculated minus the cost of
this allocation to agent ¢. Thus, the payment that i receives
is its marginal contribution to reducing the total cost of the
optimal allocation. It can be observed that ¢ will always receive
a non-negative payment since the addition of a seller will only
decrease the cost of the optimal allocation.

However, this is not the only change that is required to
incentivise the agents to report truthfully. We now present an
example which illustrates the need for an additional penalty
scheme. Consider a set of producers {1,...,n} with different
types who are participating in a reverse auction to fulfill a
demand of 200 units (i.e. D = 200). The producers’ types,
(ie. 8; = (¢, fi,u;)), are depicted in table I. They report
their types to the auctioneer which then calculates the transfers
according to equations 3 and 5.

Let us suppose for now that the capacity c; of the agents are
known by the auctioneer. Then, implementing our mechanism
with the transfer described by equation 5, the auctioneer
first chooses the optimal allocation. In this case, it would
be Sy producing 150 units and S; producing 50 units (i.e
x = {50,150,0}) thereby giving a total cost of 525 to the
system. The transfers would then be 220 to S7, 395 to S and
0 to S3 (i.e. t = {220, 395,0}). However, given this scheme,
S3 has an incentive to lie about its capacity and give a capacity
greater than 200 (i.e. ¢3 > 200). It would then be allocated to
produce the whole demand and would be paid 525 to do so.



However, as its true capacity is only 175 units, the demand
will not be satisfied.

Thus from the above example, we can observe that an agent
has an incentive to report a higher capacity than it actually has.
However, an agent has no incentive to report a lower capacity.
This is because the utility derived by an agent is equal to its
marginal contribution to the society. Now, if an agent reports
a capacity lower than its actual one and this misreport has an
effect on the optimal allocation (i.e the capacity it reports is
lower than the allocation it would have got under an optimal
allocation), then it increases the total cost to the society since
the minimisation in equation 3 would have tighter constraints.
This would mean that the marginal contribution of the agent
to decreasing the total cost in the society is less and hence the
agent would derive a lower utility. We thus only need to worry
about agents reporting a higher capacity than they actually
have. We therefore impose a penalty scheme that incentivises
agents to report truthfully about their capacity. In a standard
VCQG, such a penalty scheme does not exist since it is assumed
that the producers have unlimited capacity. Furthermore, a
penalty scheme imposed after the agents have supplied their
allocations is the only way in which we can incentivise agents
to report truthfully about their capacity. This is because the
auctioneer will only know whether an agent has overstated its
capacity if ever that agent has been allocated to produce over
its true capacity (but under its declared one) after the agent
has supplied its allocation.

B. The Penalty Scheme

We wish to penalise agents that report a higher capacity
than they actually have. However, we are not concerned with
untruthful reporting if this does not change the resulting
efficient allocation. This is because such agents will not derive
a higher utility if their untruthful reporting has not changed the
efficient allocation. Thus, we will call agents whose reported
capacity changes the optimal outcome active agents.

For example in the allocation problem given in table I, if
there was a supplier Sy with (ca, f1,u4) = (150,200, 2), then
even if it lied and reported ¢; = 400, it would not make a
difference in our optimal allocation (since its cost of supplying
200 units is 550 and this is still greater than the efficient
outcome calculated previously).

In order to know whether the active agents have truthfully
reported their capacity, we require a post-production stage that
checks how much they actually produced. We shall assume
that if an agent is asked to supply a certain amount z;", and
actually produces only T, (T; < #;"), then the capacity of that
agent is 7;. We shall see that given the penalty we design, this
assumption is satisfied with rational agents. It is only in the
case of malicious agents who want to increase the cost to the
system with no consideration to their own utility for which
the following penalty scheme would not work.

In more detail, we impose the following penalty, p;, if the
agent does not supply the amount that it was required to supply
under the optimal allocation (i.e. if T; < z}):

pi = ti(x; < &) —ti(w; <T5) +6 (6)

where t;(x; < ¢;) is the transfer in equation 5 computed with
the constraint z; < &, t;(x; < T;) is the one computed with
the constraint x; < Z; and § > 0. Intuitively, the penalty
scheme ensures that an agent overstating its capacity would
derive strictly less utility than when it provided a truthful
report by making such an agent derive an overall transfer of
t;(x; <T;) —J. Note that in the event that such an agent has
misreported so as to be in the active set, ¢;(x; < T;) would
then be zero and thus that agent would derive a negative utility
equal to —d since ¢;(x; < ¢;) would also be removed from its
utility.

This penalty scheme, which is a transfer of money from the
agent to the auctioneer, consists of three parts. The first is the
transfer that occurs with the reported capacity ¢;. The second
part is the transfer that would have resulted if the agent had
reported its capacity as the amount that it has successfully
supplied. This penalty scheme thus only penalises agents in
the case where their misreported capacity has changed the
allocation of supply. The third part is the one that ensures
that the utility an agent derives from misreporting its capacity
is strictly lower than when it tells the truth (i.e it is then a
strongly dominant strategy for the agent to report its truthful
capacity).

It should also be noted that although this penalty scheme
has been developed for the case of agents misreporting their
capacity, it would also penalise agents that have not produced
the specified amount due to other reasons. This penalty scheme
thus puts the onus on the agents to provide an accurate report
of the amount they can produce. The value of § can thus be set
by the mechanism designer depending on how critical it is to
meet demand. The more critical the requirement, the higher §
should be set. Evidently, this sacrifices efficiency (the agents
report a lower capacity than their most likely capacity) for
robustness. Another attractive aspect of this penalty scheme is
that if ever an agent realises after the allocation that it cannot
produce the amount assigned to it, it would still produce till its
limit so as to reduce the ultimate penalty. This penalty scheme
can also be potentially coupled with a reputation mechanism
such that instead of having a § which is uniform over all the
agents, each agent ¢ could have a specific §; which the centre
tunes according to past interactions with the agent (e.g. one
could use the simple trust model in [9] in order to model past
interactions and condition the penalties accordingly). Further
details about the actual calibration of & when the system is
designed for the case in which agents are unsure about their
capacity are given in the appendix.

Thus, in our example in table I, if agent S5 reported ¢; =
200, it would be penalised 525 + § (from equation 6). As a
result, the agent does not profit by lying. In the case of the
two other agents, S1 and S92, misreporting their types, they
incur a loss in utility equal to J.

C. The Mechanism

We can amalgamate the two-part payment-scheme presented in
sections IV-A and I'V-B into an equivalent one-stage payment,
thus yielding the following centralised mechanism:
1) First the seller agents, S;, provide reports of their types
0; = (fi, ui, ¢;) to the centre.



2) The centre, having gathered total demand from the buyer
agents, solves equation 3 and assigns production to the
agents according to the optimal allocation vector X*.

3) The centre then provides the overall payment m; to the
agents once they have produced their allocation:

mi =t; —pj

=ti(z; <T) —00; @

where (3; is a binary variable indicating when a supplier
has over-reported its capacity and equals 1 when 7; <

o~k

xZ; .

D. Properties of the Mechanism

We now prove the properties of our mechanism. To this end:
Proposition 1: The mechanism is strategyproof.

Proof: A mechanism is strategyproof if it is a dominant
strategy for the players to reveal their types truthfully (i.e.
stating their types truthfully is a best strategy for an agent
no matter what the type of the agent and no matter what
strategy the other agents follow). Here, we need to prove
that truthful reporting is a dominant strategy for the agents
given the transfer and penalty schemes in our mechanism. We
first consider the case that the agent has not over-reported its
capacity. Then its strategy is to report 6 so as to maximise its
utility:

01‘ = (’l/JJ\l, fi7 Ez) = arg 0{11&(;( (UZ(Q,), X)
i€0;

= arg max | (&"(fi - fi) + (@
0,€0;
— In)in Z (ajfj + 11356]) =+
;<& jeT
min Z (Oéjfj + ujxj> ]
x;<¢j jeT\i
— arg max | (& (Ji = fi) + (@ — w)&i")
0;€0;

_ m)gn Z (Otjfj —+ ’U,jl’j) i|

T <& jET

)"

The first part of the maximisation is the gain or loss that an
agent makes by misreporting its type, whereas the second part
is the effect that this misreporting has on the allocation and
the global cost. Hence any misreport on its type is cancelled
out by the effect on the global cost. The important point to
note here is that the minimisation is not carried out by the
agent but by a centre that is only aware of 6;. Hence, in order
to maximise the term in [] above, an agent should report
0; = (fi,ui, ¢;). That is, truthtelling in (f;,u;) is a weakly
dominant strategy (it is only weakly so because in certain cases
an agent on lying would derive a utility which is equivalent
to what it derives if it told the truth). Thus, we have proved
that the mechanism is strategyproof in (f;,u;). Furthermore,
we know that an agent will not report a lower capacity (as per
the discussion in section IV-A).

Now, we prove that under the penalty scheme the agent will
not report a capacity higher than its actual one. The utility of
an agent ¢, given that it has reported a higher capacity, is

the sum of its cost, transfer and penalty. We now prove that
overreporting its capacity is a weakly dominated strategy for
an active agent (i.e. overreporting one’s capacity is never better
than stating one’s capacity truthfully). From equations 4 and
7, the utility of an agent would then be:

Ui() = max (& (Fi = f) + (@ —w)&)
0;€0;
— m}in Z(aj‘fj + ’ll\jl'J)] —(sﬂ
z;<Tj jeT
< max (@ (F; = fi) + (@ - u))")
0,€0;
_ m)in Z(ajfj +’ll\j.%‘j)}
©;<¢j jeT
Ci=c;

Thus, together with the fact that an agent would not report
a lower capacity (since such a report would mean that its
resulting allocation is less or equal to the one when it reports
truthfully), the above proves that an agent will always report
its truthful capacity c;. Hence we have that the agent always
reports truthfully about its type 6;. |

Proposition 2: The mechanism is efficient.

This implies that the centre finds the outcome given by
equation 2.

Proof: The above is a result of the strategyproofness
of the mechanism. Since the goal of the centre is to achieve
efficiency, then given truthful reports, the centre will achieve
efficiency. |

Proposition 3: The mechanism is individually-rational.

A mechanism is individually rational if there is an incentive
for agents to join it rather than opting out of it. We begin by
assuming that the utility an agent derives from not joining the
mechanism is 0. Then, we need to prove that the utility an
agent derives in the mechanism is always > 0.

Proof: Given the strategyproofness of the mechanism,
the utility of an agent is:

Ui(ui, fi, ¢;) = — min Z (a fj + ujx;)
zj<cj jeT
+min Y (afj +ujz;)

zj<¢j jeT\i

The first minimisation is over a larger set than the second one.
Thus:

min Z(ajfj + ujx;) < min Z (aufj +ujzxj)
z;j<cj jeT zj<cj jeT\i
Hence, Ui(ui, fi7ci) > 0. |

Proposition 4: The mechanism is robust to uncertainties
about the capacity of agents.

In this case, we impose less stringent information require-
ments on the agents when reporting their capacity. So far, we
have considered the case where prior to revealing its type an
agent is aware of its capacity. However, we believe that this
may not be always practical since the capacity of a supplier
may depend on numerous external factors (as discussed in
section I). We therefore relax this requirement and consider
the case where an agent is aware of only the probability



distribution function (pdf) relating to its capacity. We next
prove that the designer can, via the setting of §, force the
agent to either report safe values (i.e. the agent is nearly certain
that it will produce at least this capacity) or more risky but
potentially more profitable ones.

Proof: We start by looking at the expected utility of
an agent given that the probability distribution function of its
capacity, pdf(c;), ranges from a lower bound ¢; to an upper
bound ¢;:

ElUi(ci, fisui) :E[m}in Z (afj +ujz;)
z;<¢j jeT\i
- min Y (a;f; +ujz;) - 06
z;<¢; Jj€T

= m)gn Z (Otfj +’U,j.7jj)

zj<Ej jeT\i
/Ci
C;

min Y (a;f; +uyz;) pdf (ci)de;

i x;<¢ jeI
— (5P(Ci < a)
Now, let us analyse how the reports of the agents impact

on their utility. The safest report is the minimum report c;.
Reporting a higher capacity would then yield a gain of:

min Y (a;f;

xj<¢j jeT

+ ujz;) */A min > (o, f;

i x;<¢ jeT

AE[Ui(ci,fi,ui)] = — (5P(Ci < a) +

+ ujxj)pdf(ci)dci] (8)

The agents would then try to maximise the above gain given
a certain J. Thus, the setting of § would then depend on how
certain we want the agents to be about being able to satisfy
their capacity. Hence, given P(c; > ¢;), setting ¢ as:

0=|min Y (af +ujz;) — min Y (af

zj<¢j jET ©;<¢ jeT

+ujz;)Plei > &) |/ (1= Plei > &))

results in no expected gain for the agent. In fact from equation
8, if we consider a fixed 0, then as ¢; increases, the part in [.]
increases while —dP(c¢; < ¢;) decreases. Thus there is a ¢; for
a fixed J that results in a maximum gain. We can therefore
conclude that as ¢ increases, ¢; — c; and as ¢ decreases,
¢ — G- u

The second part of the robustness is that even if the agent
realises after reporting ¢; that ¢; < ;" (and it is asked to
produce ¢; < zf < ¢;), it will still produce upto ¢; as a result
of the payment and penalty scheme.

Proof: This is evident from the way the centre pays the
agents. The agents get a higher utility with a higher production
since the transfer depends on how much they produce (i.e. )
after the allocation. Specifically, consider an agent ¢ that has

overestimated its capacity in such a way that it affects the
efficient allocation (i.e. in the efficient allocation calculated
by the centre from the reported types, ¢; < z7 < ¢). Then,
that agent derives a utility of:

Ui(\) =ti(z; <T5) — fi —u;T — 6
= min Y (o f + @)

z;<¢5 jeT\)
— Il’%(in Z(ajfj + ’ijl’j) -4 (9)

x;<¢; jET

Ci=T;
Only the second term of equation 9 can be affected by agent
1 varying its production amount Z;. Since agent ¢ wants to
maximise its utility, it would want this second term to be as
small as possible and therefore make 7; as large as possible,
which is achieved by making z; = c;. |
So far, we have discussed the use of a uniform § which is
chosen according to how critically demand has to be met. This
approach penalises the agent during the current interaction.
An alternative approach to dealing with uncertainties in seller
capacity would be to instead penalise the agent over-reporting
its capacity during future interaction. A possible way of
implementing this is via the use of a trust-based mechanism
(TBM)[9]. Whilst detailing such a mechanism is outside the
scope of this paper, we provide in the appendix an intuitive
explanation on how such a mechanism would differ from the
one proposed here.

Proposition 5: The optimal task allocation to the agents can
be computed exactly by the centre in pseudo-polynomial time.
Proof: The centre can calculate the task allocation to the
agents exactly using dynamic programming. Specifically, we
wish to calculate C[n, D] — the minimum total cost to satisfy
a demand of D with access to n producers. This can be solved

using the recursive expressions:

[0, d) = 0 ?fd:O
oo ifd>0
Cli,d] = min C[Z,_l’d]
v | Cli—1,d—x]+ fi + zuy

such that 0 < = < ¢;. As the production allocated to each
producer is in indivisible units, we can calculate C'[n, D] by
evaluating all nD possible values. This results in an algorithm
which operates in pseudo-polynomial time.

In particular, a simple algorithm for this solution is pre-
sented in figure 1. Here we calculate all the values of the
array, C[n, D], starting from the known case C[0,0] = 0 and
using the recursive expressions above to calculate subsequent
values. A more efficient solution may be found using primal-
dual algorithms [28]. However for the size of problem tackled
here, the above solution is extremely efficient. Moreover, the
same approach can then be used to calculate the resulting task
allocation to the agents. |

V. A DECENTRALISED MECHANISM

So far we have considered a centralised mechanism in order to
deal with our task allocation problem. However, as discussed



Calculate initial row of matrix C
C[0,0] — O
ford =1 to D do C[0,d] — oo
Loop through the total number of producers
Jori=1to ndo
Loop through the total demand
Jord =0 to D do
Clid] — C[i-1,d]
Loop through the total capacity of producer i
for x = 1 to min{d,c;} do
Compare the previous result to the current
result and select the minimum of the two
Cli,d] — min{C[i,d],C[i-1,d-x]+ f;+xu;}
Return the final result
return C[n,D]

Fig. 1. Pseudo-code representing the dynamic programming solution to find
the optimum centralised solution in pseudo-polynomial time.

in section I, we sometimes require a mechanism for task allo-
cation in which there is no centre that governs the allocations.
Therefore, in this section, we consider the CDA as the second
class of MBC task allocation mechanism.

Our task allocation problem involves multiple suppliers and
multiple buyers, and the matching of the two is determined
by the sellers and buyers who successfully transact with one
another. As discussed in sections I and II, the most common
CDA format assumes buyers and sellers have an increasing
marginal cost and no startup cost and the offers in the trade are
via price alone. However, in our case, the total production cost
depends on both the startup cost and the number of units to be
sold (given the marginal cost). In fact, since the startup cost is
distributed over the sale quantity, the cost price is not fixed for
different numbers of units sold. As a result, the supplier cannot
firmly decide on an asking price (based on the production cost
per unit or cost price) that would allow it to be profitable and to
participate in the task allocation (by transacting with potential
buyers). This is because the sale quantity cannot be known
a priori. To overcome this, we assume that it is possible for
the supplier to make a prediction about the amount of units it
expects to sell (since exact demand can only be estimated)”.
Now, in traditional cost settings, a supplier can start making
bids for a low quantity and slowly ramp up his price so as to
ensure he does not make a loss. However, in our scenario, low
quantities correspond to higher unit prices. Thus the supplier
is faced with the problem that reducing its price may not
guarantee that it transacts and in certain cases may lead to
a loss (if a buyer specifies a demand such that the ask price
becomes lower than the cost price). We therefore allow sellers
to communicate the amount they wish to sell to the market via
a multidimensional bid consisting of both quantity and price.
We also specify in our clearing rules that a transaction only
occurs when a buyer makes a bid for this amount.

Given this background, a key objective for the decentralised
mechanism is to be individually rational (as defined in section

9In fact, in CDA scenarios demand cannot be known even after the bids
have been submitted [6]. This is why sellers try to predict the demand in
order to be more profitable [19].

IV-D). In this case, this means ensuring the suppliers can be
profitable in the market so that they are incentivised to enter
it in the first place. Furthermore, while the mechanism has
to be individually rational, our global objective is to achieve
the most efficient outcome (task allocation) that we can. Now
as we discussed in section III, this is equivalent to finding
the allocation that minimises total cost. In a typical CDA
mechanism, the optimal task allocation occurs when the total
profit of all buyers and all sellers is maximised [43] and this
occurs when the combined cost of sellers is minimised on
the sell side!®, as the sellers with the lowest cost would be
successful.

However, given our additional constraints of limited capac-
ity and a startup cost, the seller’s strategic behaviour would
be more complex than that of the buyer, since, as we mention
before, it additionally has to strategise over the quantity it
is expected to sell. In this context, we cannot achieve full
efficiency because no agent has complete information about
every other agent in the market (unlike in section IV where
the centre is aware of everyone’s cost functions and capacities)
and the sellers do not have increasing marginal costs which
would guarantee an equilibrium price for trade [25].

Given this, our aim is to design a protocol that achieves
a level of efficiency that is reasonably close to the optimal
solution given by our centralised mechanism. To do this, we
now outline our protocol, and then go on to compare its
performance with its centralised counterpart in terms of task
allocation efficiency.

A. The Mechanism

The protocol we propose is a variant of the multi-unit CDA.
Buyers and sellers can submit offers to buy and sell multiple
units of the resource, respectively, and those orders are queued
in an order book which is cleared continuously (with additional
constraints as a result of buyers’ inelastic demands). The
protocol proceeds as follows:

o Buyer ¢ submits an offer, bid(q,p,i), to buy exactly ¢
(g > 1) units of the good at the unit price p. The utility
of buyer ¢ for a quantity other than ¢ is 0.

« Conversely, supplier S; submits an offer, ask(q,p, j), to
sell a maximum of ¢ (¢ > 1) units at unit price p.

o These bids and asks are queued in an orderbook, which is
a publicly observable board listing all the bids and asks
submitted to the market (see table II). The bids in the
order book are sorted in decreasing order of price and
the asks are in increasing order (higher bids and lower
asks are more likely to result in transactions).

e The clearing rule in the market is as follows. Whenever
a new bid or ask is submitted, an attempt is made
at clearing the order book. The orderbook is cleared
whenever a transaction can occur (that is, when the lowest
asking price is higher than the highest bidding price and
any bidding offer can be cleared completely and the
bidding quantity for each offer is completely satisfied by
the supply to be cleared). The transaction price is set at

10Sell side refers to the market from the sellers’ perspective.



the bidding price which we experimentally find to result
in the total market profits being equally divided between
the sell side and the buy side!' [43].
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[ Order Book l
Bids Asks
(quantity, price, buyer) (quantity, price, seller)

(30, 2.95, 2) ( 60, 2.20, 3)
(40, 2.75, 5) (25,260, 1)
(30, 2.70, 1) (40, 3.22,2)
(24, 2.16, 3) (100, 3.50, 5)

(25,3.69,7)

TABLE II

MULTI-UNIT CDA ORDER BOOK - BEFORE CLEARING

To further illustrate this process, we present a graphical
representation of the clearing rule in figure 2. As can be
seen, the offers queued in the orderbook are used to build
demand and supply curves. All bids with a unit price lower
than the lowest unit ask price and, similarly, all asks with a
unit price higher than the highest unit bid price, cannot result
in any transaction and are not represented in the figure. The
transaction price and quantity are clearly shown in the figure
(2.75 and 70 respectively), as the point where the demand
curve crosses the supply curve under the additional constraint
that bid offers are not divisible. At this transaction price, the
total profit of all buyers and sellers that transact is maximised
with all constraints specified by our protocols satisfied. The
orderbook in table II can thus be cleared as shown in figure 2
resulting in the new orderbook given in table III. The market
clearing is then similar to solving an optimisation problem
where the objective is to maximise the total profit of buyers
and sellers that will transact given that cleared demand must
be equal to cleared supply and no partial clearing of bid is
allowed. !?

Now in order to compare the efficiency of this protocol with
that of the centralised mechanism, we assume that the buyers
have high limit prices (this represents price inelasticity because
buyers are willing to pay any price to acquire the goods and is
equal to an arbitrary maximum price that a bid or an ask can
be submitted at). Furthermore, we adopt the approach of Gode
and Sunder [18] in employing a zero-intelligence strategy in
order to find the underlying efficiency of our market. To this
end, we next present the ZI2 that is tailored to the bidding
structure of our CDA protocol, before we detail the actual

"We chose this option because a mechanism where most of the profits in
the market were distributed among sellers would be less appealing to buyers
than one where a larger share of profits were distributed among buyers. Thus,
with a similar preference among sellers (who will join a market where more
profit is distributed among the sell side), a mechanism that equally distributes
market profits among the buy and sell side is the rational preference for both
buyers and sellers.

2We note that other clearing rules are also possible, for example to
maximise the number of transactions or to maximise profits of the sellers
only. However, the aim of a market mechanism is to maximise social welfare
by maximising the total profit extracted in the market, and it is achieved
through the simple ordering order books that publicly shows which buyers
(with highest valuation of the goods) can transact with which suppliers (with
the lowest ask prices).
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(30, 2.70, 1) (40, 3.22, 2)
(24, 2.16, 3) (100, 3.50, 5)
(25, 3.69, 7)

(b)

Fig. 2. Panel (a) shows the demand and supply (curves) of the order
book, with the shaded region representing allocations. Panel (b) points out
the clearable bids and asks in the order book (shaded area in panel (a)).

[ Order Book |
Bids Asks
(quantity, price, buyer) (quantity, price, seller)
(30, 2.70, 1) (15, 2.60, 1)
(24, 2.16, 3) (40, 3.22,2)
(100, 3.50, 5)
(25,3.69,7)
TABLE III

MULTI-UNIT CDA ORDER BOOK - AFTER CLEARING

evaluation.

B. The ZI2 Strategy

One of the principal concerns in developing a market mecha-
nism is to ensure that it is efficient even when the participants
adopt a simple strategic behaviour. The underlying intuition
here is that by considering such behaviour, we are able to
establish a lower bound on the efficiency of the mechanism
and we can consider the extent to which the market mechanism
itself affects the efficiency of the market. Thus, the ZI strategy
[18] is widely used for this purpose since it is not motivated
by trading profit and effectively ignores the state of the market
and past experience when forming a bid or an ask. It simply
draws its offer price from a uniform distribution over a given
range.



Since in our mechanism, the asks consist of price and
quantity, we extend the ZI strategy to our ZI2 strategy that
randomises over both price and quantity. As discussed earlier,
any sophisticated strategy, on the sell side, would make some
form of prediction on the number of units it is likely to sell as
part of its price formation process (because information about
the actual demand is not available and there is uncertainty as
to whether the agent is more competitive than the other par-
ticipating suppliers). Our ZI2 supplier j, instead, randomises
over the expected transaction quantity to form a limit price
¢; which is used as in the original ZI strategy. Thus the ZI2
strategy is'®:

For buyer 1,

offer = bid(qi,pi,1) (10)

For seller j,

dj ~U(0,¢c;)
£ = (f; + gyu;)/dj
D) ~U(L;, max)
offer = ask(c;,pj,J) (11)

Buyers are endowed with high limit prices at the beginning
of the auction (because they have inelastic demand), while
sellers are endowed with their cost functions and capacities
(collectively referred to as the production function). Buyer ¢
submits offers to buy the quantity ¢; it requires at a unit price
drawn from a uniform distribution ranging from O to its limit
price /; (see equation 10). Conversely, seller 5 submits an ask
between its limit price and max as per equation 11, where
c; is its production capacity, f; is its startup cost, u; is its
marginal cost.

C. Empirical Evaluation of the Mechanism

In order to perform empirical evaluations, we have developed
an implementation of this distributed mechanism based on the
protocol and strategies described here'®. As the experimental
setup, we ran the simulations over 2000 rounds® for two
different markets, more specifically a small market with 3
buyers and 3 sellers (market A) and a larger market with 15
buyers and 15 sellers (market B). We consider both the small
and large markets so as to demonstrate the scaleability of our
mechanism.

In each market, each seller was given a production function
(supply for market A is given in table I), while each buyer
was required to procure an exact quantity of units with a

3X ~ U(A, B) describes a discrete uniform distribution between A and
B, with steps of 0.01.

14 Available at http://www.ecs.soton.ac.uk/~pv03r/simula
tor

15The results were validated using a students t-test with two samples of
2000 runs, assuming equal variance with means g1 = 0.7198 and pp =
0.7218 and p-value p = 0.3660. This means that the difference between the
means is not significant.
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relatively high limit price. We ran different simulations for
each market, with different total demands ranging from 1 to
the maximum production quantity. The total demand, D, was
distributed among the buyers (see table IV for the demand in
market A, where D = ), ¢;, D € [1,425] given the sellers’
production functions in table I). Thus, the total demand in
market A was varied from 1 to 425 (the maximum supply
quantity of market A), while in market B the total demand
ranged from 1 to 2400.

Buyers’ Demand
Bz' B1 B2 Bs
allocation 1 100 | 150 50

allocation n q1 q2 q3

TABLE IV
A SET OF THREE BUYERS WITH DIFFERENT DEMANDS.

In order to empirically evaluate the efficiency of the mech-
anism, in terms of minimising the total cost of production, we
measure this property and compare it to the optimal solution
found in the centralised mechanism. Given each total demand,
the mean efficiency of the market (averaged over 2000 in-
dependent rounds) is shown in figure 4, where the optimal
production cost is normalised to 1, while the total production
cost of the centralised and the decentralised mechanisms are
shown in figure 3. As can be seen, the mechanism is efficient
with an average efficiency of 83% (and a minimum efficiency
of 53% when demand is relatively low) for the market B and
an average efficiency of 86% (and a minimum efficiency of
67%) for market A. In both cases, the minimum efficiency
case occurs when the demand is split amongst many more
suppliers than are actually needed (with respect to the optimal
allocation). This increases the overall cost of supply as a result
of the fixed cost of the extraneous suppliers. However, in the
typical CDA, the worst-case analysis considers the average
efficiency of ZI agents [18]. This is because although it is
theoretically possible for an allocation of very low efficiency
to occur, in almost every run (higher than 99% of the time),
the CDA implemented with agents employing the ZI strategy
has a high efficiency. Thus, it is the zero-intelligence nature
of the strategy which provides a lower bound on measuring
efficiency and, we expect the average efficiency with a more
informed strategy to be better [6], [19], [43]. We thererefore
adopt this approach in discussing the inherent efficiency of our
CDA mechanism.

In the experiments with each market, we observe an in-
creasing trend whereby the market efficiency increases as total
demand approaches the maximum capacity of the sellers (see
figure 4). It can also be seen that there is a high variance when
the total demand is relatively low. Considering specifically
the set of experiments with market A, the intuitions behind
these observations are as follows. The variance of the market
efficiency is generally higher when the total demand is low.
This is because the optimal allocation for a total demand of
100 is completely covered by seller 1 (with a marginal cost of
1.5 and a startup cost of 100). However, our market mechanism
does not ensure that only seller 1 will trade and, thus, sellers 2
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and 3 may also be part of this allocation for the total demand
of 100. The high variance is principally an artefact of the
additional startup costs if more than one seller were to trade.
As the total demand increases past 175, the optimal allocation
is covered by at least two sellers. Again, the variance past
the demand of 175 is the result of sellers supplying different
numbers of units at different marginal costs, with at most
one additional startup cost. When the total demand is very
high, close to the total capacity, all the sellers participate
in the allocation, and the small variance is solely due to
the sellers providing different numbers of units (a difference
which is relatively low compared to the total startup cost). The
observations in the set of experiments with market B can also
be explained by the same reasoning, with the higher variance
occurring when demand that can be covered by a single seller
is distributed among multiple sellers.

12

Total Sellers’ Cost in Market B
6000 : : ‘ ‘

-------- CDA Production Cost
— Optimum Production Cost

5000

4000

3000

2000

1000

1000 1500 2000

Total Demand

0 500

(b) 15 buyers and 15 sellers

Efficiency of Market B

0.95¢
0.9F
0.851
0.8
0.75
0.7
0.65
0.6

0.551

0.5 ‘
0 500

1000 1500 2000

Total Demand

(b) 15 buyers and 15 sellers

Furthermore, we can explain the increasing trend of the
market efficiency seen in figure 3. Considering market A,
a demand of up to 175 can be provided by only 1 seller.
The jumps in figure 3 correspond to the optimal allocation
changing between a combination of one to three sellers. For
example, jumps at 100 and 150 correspond to the optimal
allocation starting with seller 1, changing to seller 2 and finally
to seller 3. The increase in efficiency as total demand increases
is the result of the number of sellers involved in the optimal
allocation, changing from a single seller (up to a total demand
of 175) to three sellers (past a total demand of 325 which is the
highest demand any two sellers can cover). However, in our
market, any number of sellers can trade at any time. Thus, as
total demand increases, the loss in efficiency that arises from
the extra startup costs (compared to the optimal allocation)
decreases which in turn explains the generally increasing trend.
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Fig. 5. The sellers’ total profit given different demands (for market A with
3 buyers and 3 sellers and market B with 15 buyers and 15 sellers.

In the simulations with market B, a similar trend can be
observed, with a lower efficiency when demand is lower than
the minimum sellers’ capacity (210). As in market A, there
are more inefficient allocations that can arise when demand
is low (and can be satisfied by a single seller), which would
decrease the average efficiency much more than it would given
a smaller number of inefficient allocations. Here, we use the
same reasoning as in market A to explain the jumps, which
are larger in number given the larger number of participants.

As well as being efficient, the simulation results in figure
5 show that, broadly the sellers and buyers do indeed equally
share the market profits (the ratio of sellers’ profits to total
market profit is approximately equal to 0.5 in both cases.
This fair division of profits arises from the design of the
clearing rule (see section V-A). This is important because this
profitability means that the agents are incentivised to enter the
market which means our distributed mechanism can be viewed
as being individually rational.

Having analysed two different markets (A+B) in detail, we
now examine how the efficiency of our mechanism scales
up over different markets (see figure 6). In order to do so,
we find the average efficiency of markets as the number of
buyers and the number of sellers are respectively varied from
two'® to twenty. We run the auctions over 500 iterations with
sellers randomly allocated their supply and buyers having
a demand ranging from 1 upto the total supply divided by
number of buyers. As can be seen, the average efficiency of the
mechanism is maintained as the size of the market increases.
The average efficiency ranges between 0.64 and 0.89 with
no correlation to the market size '7, which implies that it is
unaffected by the size of the market i.e. the market scales.

16 A minimum of two sellers and two buyers is required for a double auction.
"The correlation between average efficiency and number of sellers is 0.1
and the correlation between average efficiency and number of buyers is -0.05.
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VI. CONCLUSIONS AND FUTURE WORK

In this paper, we have presented our work on the development
of two complementary mechanisms for task allocation. We
considered a scenario where production costs are characterised
by a cost function composed of a fixed cost, a constant
marginal cost and a limited capacity and where we were seek-
ing the minimal total production cost that satisfies demand.

Specifically, in the first mechanism we extend the standard
VCG mechanism to our problem domain in order to incentivise
selfish agents to report truthfully about their types and thereby
enabling the mechanism to find the efficient allocation. This
required a novel penalty scheme to ensure that the mechanism
is strategyproof for agents misreporting both their cost and
their capacities. Individual rationality is conserved under this
new mechanism and we show how this mechanism is robust
to uncertainties in the capacities of the agents. We then
presented a dynamic programming algorithm, that solves the
task allocation problem of the centre in pseudo-polynomial
time.

In the second mechanism, we extend the standard format
of a CDA so as to develop a decentralised mechanism for
resource allocation in the same context. We find that this
mechanism has a high inherent average efficiency (over 86%
in the examples we study) by testing it with a variant of the
Z1 strategy.

When taken together, we find that these mechanisms repre-
sent a trade-off in terms of efficiency and the decentralisation
of a mechanism (in the examples we consider, the loss in
efficiency can range from 0% to 50% depending on the
demand and number of buyers and sellers in the market).
However, both mechanisms still ensure that the participants
derive a profit by joining the mechanism, thereby justifying
their use with selfish agents.

As future work, we first intend to extend these mechanisms
to deal with iterated allocations (i.e. ones in which new
demand continuously appears) since in several of the cases
we consider it is conceivable that the agents can observe and
learn about the behaviours of other agents in the system. Our



centralised mechanism would still work in such situations if
we consider myopic agents (i.e. agents that cannot strategise
over more than one round of allocation [29]) since then
these agents will not strategise over rounds. However, this
assumption might be too restrictive in some settings. Also we
wish to further investigate the link between task allocation
protocols which are efficient and those that are robust (i.e.
protocols in which it is highly likely that agents will fulfill their
assigned task despite being uncertain about their capabilities
when revealing their type). The link has been revealed here via
the penalty scheme and the connection of the penalty scheme
to a trust-based scheme has been discussed. However, a deeper
study is required to formally establish the consequence of
requiring robust mechanisms on the efficiency of the resultant
mechanism. We believe that the hybrid approach combining
trust and penalties would be a very interesting field to pursue.
Finally, we aim to develop more sophisticated strategies for the
decentralised mechanism in order to enhance the efficiency of
the system, whilst ensuring that these sophisticated strategies
derive higher profit than their simpler counterparts. This has
been shown to be achievable in simple CDAs [6], [17], [43]
and we believe it is also achievable in our modified CDA
protocol. Such developments will enable us to more effectively
find the set of agents who can perform the required task at the
lowest cost (i.e. the efficiency will be increased).
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APPENDIX

A TBM would differ from the current scheme in two main
respects 18:

1) An agent ¢ would report an extra dimension, rep;,
which is its self-reputation that determines how often
it succeeds in providing upto its reported capacity, c;.

2) The centre determines the optimal allocation, K*, from
the reports of the agents (u;, f;,c;, rep;), whereby the
feasible allocation is determined by a combination of
rep; and c;.

It is interesting to note that as a result of the way the
payments are conditioned in the TBM, a penalty would still
be applied if the agent does not produce its capacity but the
penalty is not the same. In TBM, there is no incentive for
an agent which has been over-optimistic of its capacity to
produce the maximum it can. Also, TBM does not consider the
case when the pdf from which the (expected) capacity of the
agent is determined changes (e.g. seasonal changes affecting
the capacity of a solar generator, or failures in components
of a machine reducing the capacity of a job-shop machine).
However, an interesting hybrid approach would be to have a
specific §; conditioned on the reputation of each agent i. This
would provide us the ability to condition the penalty of an
agent dependent upon its past performance and not just its
present performance. The investigation of such a mechanism
is outside the scope of this paper and is left for future work.

18We here consider the simplification of TBM in which agents report about
their own reputation. This is similar to the mechanism developed in [30].
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