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Abstract

We define trust-based mechanism design as an augmenta-
tion of traditional mechanism design in which agents take
into account the degree of trust that they have in their coun-
terparts when determining their allocations. To this end,
we develop an efficient, individually rational, and incentive
compatible mechanism based on trust. This mechanism is
embedded in a task allocation scenario in which the trust in
an agent is derived from the reported performance success
of that agent by all the other agents in the system. We also
empirically study the evolution of our mechanism when it-
erated and show that, in the long run, it always chooses the
most successful and cheapest agents to fulfill an allocation
and chooses better allocations than other comparable mod-
els when faced with biased reporting.

1. Introduction

Mechanism design (MD) is the field of microeconomics that
studies how to devise systems such that the interactions be-
tween strategic, autonomous and rational agents lead to out-
comes that have socially-desirable global properties. Given
that the designer of a multi-agent system (MAS) typically
has many of the same aims, there is a growing body of work
that seeks to exploit the tools and concepts of MD to this end
[3]. However, an important facet of MAS that is rarely con-
sidered in MD is that agents do not always complete their
tasks as planned or promised (this means they are not al-
ways sucessful). Thus, for example, an agent may not al-
ways complete every task it starts or it may default on pay-
ment for a good. Furthermore, in traditional MD an agent
chooses to interact with partners based on their costs or val-
uations only. However, cheapest is not always best and these
agents may ultimately not be the most successful. Thus, in
many practical situations the choice of interaction partners
is motivated by an agent’s individual model of its counter-
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parts, as well as by information gathered from its environ-
ment about them. For example, on eBay buyers determine
the credibility of particular sellers by considering their own
interaction experiences with them (if they have any) and by
referring to the historic evaluation information provided by
other buyers. To capture this phenomenon, we exploit the
notion of trust to represent an agent’s perception of another
agent’s probability of success (POS) in completing a task
[1] (as opposed to the agent’s own belief about its own POS
[9]). This, in turn, leads us to propose the area of trust-based
mechanism design (TBMD) as an extension of traditional
MD that adds trust as an additional factor to costs and valu-
ations in decision making.

In more detail, the trust in an agent is generally defined
as the expectation that it will fulfill what it agrees to do,
given its observable actions and information gathered from
other agents about it [1]. By their very nature, different
agents are likely to hold different opinions about the trust
of a particular agent depending on their experiences and the
specifics of the trust model they use [10]. As a result, we
cannot simply extend the conventional MD solution (e.g.
the Vickrey-Clarke-Groves (VCG) mechanism) to encom-
pass the notion of trust because such work is predicated on
the fact that agents have private and independent informa-
tion which determines their choice over outcomes. Trust, on
the other hand, implies public and interdependent informa-
tion.

In this work, we specifically consider MD in the context
of task allocation (where it has often been applied [11]). In
our scenario, agents may have different probabilities of suc-
cess in completing a task assigned to them (e.g. it may be
believed that a particular builder has a 95% chance of mak-
ing a roof in five days, while another builder may be be-
lieved to have a 75% chance of doing so). Moreover, an
agent may assign different weights to the reports of other
agents depending on the similarity of their types. For exam-
ple, consider a “repair engine” task assigned to a garage. In
this case, two agents owning a Ferrari would assign higher
weights to each other’s report about the POS of the garage
than they would to the report of another agent which owns
a Robin Reliant.

Against this background, this paper develops and eval-
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uates the notion of trust-based mechanism design. We also
define the general properties that trust models must exhibit
to allow a trust-based mechanism to generate an optimal al-
location of tasks. In particular, we advance the state of the
art in the following ways:

1. We specify the properties that trust models must sat-
isfy to be incorporated in mechanisms that permit effi-
cient allocations.

2. We generalise the standard VCG mechanism to incor-
porate the notion of trust.

3. We prove that the trust-based mechanism we develop
is efficient, individually rational, and incentive com-
patible.1

4. We empirically show that our trust-based mechanism
leads to the most successful and cheapest agents being
selected to fulfill an allocation in the long run and that
it performs better than comparable mechanisms when
agents’ reports of POS are biased.

The remainder of the paper is structured as follows. Sec-
tion 2 discusses related work in the areas of trust and mech-
anism design. Section 3 describes the basic task allocation
problem with a standard VCG solution. Section 4 presents
our trust-based mechanism design and develops an appro-
priate mechanism for trust-based task allocation. In sec-
tion 5 we show the generality of our mechanism by re-
ducing it to various known instances. Section 6 empirically
evaluates the mechanism with respect to other comparable
mechanisms. Finally, section 7 concludes and outlines fu-
ture work.

2. Related Work

In associating trust to mechanism design, we build upon
work in both areas. In the area of trust and reputation, a
number of computational models have been developed (see
[10] for a review). While these models can help in choosing
the most successful agents, they are not shown to generate
efficient outcomes in any given mechanism. An exception to
this is the work on reputation mechanisms [4, 6]. However,
these mechanisms only produce efficient outcomes in very
constrained scenarios and under strict assumptions (e.g. in
[4] sellers are monopolists and each buyer interacts at most
once with a seller and in [6] the majority of agents must al-
ready be truthful for the mechanism to work).

In the case of MD, there has been comparatively lit-
tle work on achieving efficient, incentive-compatible and
individually-rational mechanisms that take into account un-
certainty in general. An exception to this rule is the dAGVA

1 The mechanism we develop also forms the only class of mechanisms
that have these properties under a Nash equilibrium strategy when fac-
toring trust into the decision making process. Intuitively, this follows
from the uniqueness of the VCG which charges agents their marginal
contribution to the system. Since we use a similar technique to de-
velop our mechanism we believe the same result will ensue (the for-
mal proof of this assertion is beyond the scope of this paper).

mechanism [7] which considers the case when the types of
agents are unknown to themselves but are drawn from a
probability distribution of types which is common knowl-
edge to all agents. However, in our case, the agents know
their types and these incorporates their uncertainty related
to fulfilling a task. Porter et al. [9] have also considered this
case and their mechanism is the one that is most closely re-
lated to ours. However, they limit themselves to the case
where agents can only report on their own POS. This is a
drawback because it assumes the agents can measure their
own POS accurately and it does not consider the case where
this measure may be biased (i.e. different agents perceive
the success of the same event differently). Thus our mecha-
nism is a generalisation of theirs (see section 5 for the for-
mal proof).

Finally, our work may also seem to be a case of inter-
dependent, multidimensional allocation schemes [2] where
there is an impossibility result of not being able to achieve
efficiency when considering interdependent, multidimen-
sional signals [5]. However, we circumvent this by relating
the trust values to a probability that an allocation is com-
pleted, rather than to an absolute valuation or cost signal.

3. A Standard VCG Task Allocation Scheme

We consider a set of agents I, where I = {1, . . . , I}, and
a set of possible tasks T . Each agent i ∈ I has a particu-
lar value, vi(τ, θi), for having a task (completed by another
agent), τ ∈ T , which is dependent on its type θ i drawn
from a possible set of types, Θi. An agent i also has a cost,
ci(τ, θi), of attempting to complete a task. Given a vector
of values, v(τ, θ), and costs, c(τ, θ), from the set of agents,
we can determine the value of an allocation K ∈ K where
K is the set of all possible mappings of T to I. Once a cer-
tain allocation K is implemented, an agent i is then asked
to pay for the task(s) it requested or receive payment for the
task(s) it performed. The overall transfer of money to a par-
ticular agent i is denoted by ri. As is common in this do-
main, we assume that an agent is rational (expected utility
maximiser) and has a quasi-linear utility function [7].

Definition 1. A quasi-linear utility function is one that can
be expressed as:

ui(K, ri, θi) = vi(K, θi) − ci(K, θi) + ri (1)

In devising a mechanism for task allocation, we focus on
incentive compatible direct revelation mechanisms (DRMs)
by invoking the revelation principle which states that any
mechanism can be transformed into a DRM. In this context,
“direct revelation” means the strategy space (i.e. all possi-
ble actions) of the agents is restricted to reporting their types
and “incentive compatible” means the equilibrium strategy
(i.e best strategy under a certain equilibrium concept) is
truth-telling. Hence, in our allocation scheme, the agents re-
port their types to a centre which then decides on the allo-
cation K and the reward vector r and reports these back to
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Figure 1. Simple task allocation model. The dotted
lines represent the modifications we make to the
mechanism when using trust in the feedback loop.
The gI functions represent the trust functions that
are used to aggregate all POS values from other
agents into a common measure of trust.

the agents. The problem at hand is then to find a mecha-
nism M(v(τ, θ), c(τ, θ)) = {K, r} that fulfills the follow-
ing commonly sought objectives in MD:

• Efficiency: an allocation that maximises the total util-
ity of all the agents in the system.

• Individual Rationality: an allocation scheme is individ-
ually rational if agents are willing to participate in the
scheme rather than opting out of it. It is commonly as-
sumed that the utility of an agent choosing to opt out
of a scheme, ui(.), is 0. Hence, it is sufficient to en-
sure that the agents derive a utility ui ≥ 0 by being in
the system.

• Incentive Compatibility: an incentive compatible sys-
tem is one in which the agents will find no better op-
tion than to reveal their true type.

Amongst the class of mechanisms that satisfy the above
properties, the VCG mechanism implements an efficient al-
location under dominant strategies (i.e. each agent has a best
strategy no matter what other agents’ strategies are) [7]. Us-
ing the VCG mechanism, our task allocation problem is
then reduced to the following protocol which is shown in
figure 1:

1. The centre receives the set of tasks τ to be allocated
from the agents (step 1).

2. The centre then posts these tasks in the vector τ (step
3). Each agent i then reports its cost ĉi(K, θi) (in the
vector ĉ(K, θ)) for completing a set of tasks in the
set of allocations K along with the reported valuation
v̂i(K, θi) (in the vector v̂(K, θ)) it derives from hav-
ing a set of tasks completed (step 4). In the rest of the
paper, we will superscript with ‘̂ ’ those variables and
functions that are reported to the centre (auctioneer)
to differentiate from those that are privately known. Of
course, the reported values and costs can be different
from the actual values and costs.

3. The centre then solves the following standard VCG
auction equation (step 5):
K̂∗ = arg maxK∈K

∑
i∈I [v̂i(K, θi) − ĉi(K, θi)] and

computes each transfer ri in the vector r as:

ri =
[∑

j∈−i

[
v̂j(K̂∗, θj) − ĉj(K̂∗, θj)

]]
−

[
maxK∈K

∑
j∈−i [v̂j(K, θj) − ĉj(K, θj)]

]
where

−i ≡ I \ i.

4. The centre allocates the tasks according to the optimal
allocation K∗ and implements the transfers ri (step 6).

The VCG mechanism results in an alignment of the
goal of each agent with that of the mechanism designer
via the use of the transfer part of the mechanism. Basi-
cally, each agent has as its best strategy the social opti-
mum goal, which can only be achieved via a truthful rev-
elation. That is, for each agent i, ĉi(K, θi) = ci(K, θi) and
v̂i(K, θi) = vi(K, θi). Since the agents find it optimal to
report their true valuations and costs, the centre thus finds
the efficient allocation in step 3 (i.e. K̂∗ = K∗). The sec-
ond part of the transfer ensures that agents have u j ≥ 0 and
thereby makes the mechanism incentive compatible.

We have thus presented a standard DRM for our task-
allocation problem that achieves efficiency, incentive com-
patibility, and individual rationality under dominant strat-
egy equilibrium. However, this mechanism only considers
the cost and value of the tasks. In the next section we in-
troduce trust as another dimension to be used in the com-
putation of the efficient allocation and show why the stan-
dard VCG is neither incentive compatible nor efficient when
trust is taken into account.

4. Trust-Based Mechanism Design

To incorporate trust, a further dimension needs to be added
to the utility function in equation 1 which, in turn, re-
quires both the allocation and payment schemes in the VCG
mechanism to be modified to take this additional dimen-
sion into account. Having defined our mechanism (see sec-
tion 4.4), we prove that it is incentive-compatible, efficient
and individually-rational (in section 4.5). Before doing this,
however, we first need to specify the generic properties that
allow trust to be defined as a measure that can be used in
computing efficient allocations.

4.1. Properties of the Trust Model

Many computational trust models have been developed to
allow agents to choose their most trustworthy interaction
partners (as discussed in section 2). However, at their most
fundamental level, these models can be viewed as alterna-
tive approaches for achieving the following properties 2:

2 Note that we do not focus on a particular trust model. This is because
trust models implement the above properties in their own ways and in
different contexts. Therefore, we concentrate on these abstract prop-
erties to keep the focus on the relationship between trust and the de-
sign of an efficient mechanism. In so doing, we ensure that the prop-
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1. The trust measure of an agent i in an agent j depends
both on i’s perception of j’s POS and on the perception
of other agents on j’s POS. This latter point encapsu-
lates the concept of reputation whereby the society of
agents generally attributes some characteristic to one
of its members by aggregating some/all the opinions
of its other members about that member. Thus, each
agent considers this societal view on other members
when building up its own measure of trust in its coun-
terparts [1]. The trust of agent i in its counterpart j,
tji ∈ [0, 1], is given by a function, g : [0, 1]|I| → [0, 1],
(which, in the simplest case, is a weighted sum) of all
POS measures sent by other agents to agent i about
agent j as shown below:

tji = g({ηj
1, . . . , η

j
i , . . . , η

j
N}) (2)

where ηj
i ∈ [0, 1] is the POS of agent j as perceived by

agent i and g is the function that combines both per-
sonal measures of POS and other agents’ measures.
In general, trust models compute the POS measures
over multiple interactions. Thus, the level of success
recorded in each interaction is normally averaged to
give a representative value (see [10] for a general dis-
cussion on trust metrics).

2. Trust results from an analysis of an agent’s POS in per-
forming a given task. The more successful, the more
trustworthy the agent is. Thus, the models assume that
trust is monotonic increasing with POS. Therefore, the
relationship between trust and POS is expressed as:
∂tj

i

∂ηj
i

> 0, where tj
i is the trust of i in agent j and ηj

i

is the actual POS of agent j as perceived by i.

Given the above, agents can update their trust rating for
another agent each time they interact (both by recording
their view of the success of their counterpart and by gath-
ering new reports from other agents about it). Thus, if an
agent’s POS does not change, the trust measure in it should
become more precise as more observations are made and re-
ceived from other agents. Moreover, having the trust mono-
tonic increasing with POS ensures Mirrlees’s condition re-
garding fixed points in allocation schemes [8] (which is a
necessary condition for the mechanism to be efficient) is
satisfied.

4.2. Augmenting the Task Allocation Scenario

In this section we show how trust is to be calculated and
taken into account in the task allocation example we de-
scribed in section 3. Here, any trust model satisfying the
properties discussed in section 4.1 can be used when actu-
ally building the system. The following changes are made
(as shown in figure 1):

erties of our mechanism are independent of any specific trust model.

• Each agent i reports to the centre their POS vector
η̂i = [η̂1

i . . . η̂I
i ] (step 1). This is the POS that an agent

has observed about the other agents. This vector may
not be complete if agents have not experienced any
past interactions with other agents. However, this does
not affect the properties of the mechanism since the
centre will only pick those POSs that are relevant (and
calculate trust according to these).

• The agents must also submit their respective trust cal-
culation function (equation 2) that applies over the vec-
tor of all (or part of) other agents’ reported POSs (i.e.
η̂), ti = g(η̂), to the centre before the allocation of
tasks (step 2). This allows the centre to compute the
trust of agent i in all other agents (given i’s own per-
ception, as well as other agents’ perceptions of the task
performer’s POS). Given that the trust ti only affects
the allocation of tasks originating from agent i, the lat-
ter has no incentive to lie about its trust function to the
centre (otherwise it could result in i’s task not being al-
located to the agent deemed most trustworthy by i).

The trust function g(.) may assign different weights to the
reports of different agents depending on the level of similar-
ity between the types of agents i and −i (where −i ≡ I \ i).
Thus, given the trust functions and reports of POS of each
agent, we now require the centre to maximise the overall
expected valuation of the allocation (in step 5), as opposed
to the valuation of the allocation independent of trust (i.e.
which the standard VCG does). This is because an agent
has a certain probability of completing the task to a degree
of success which may be less than one. We denote as γ the
completion vector of an allocation K which measures the
level to which each task in an allocation is deemed com-
pleted. Thus, the expected value of an allocation is then(
E[γ|K,ti]

[∑
i∈I v̂i(K, θi)

]
−

∑
i∈I ĉi(K, θi)

)
given the

trust vector ti. This captures the fact that the agent i, that al-
located the task, determines the value of γ. Moreover, agent
j, to which the task has been allocated, incurs a cost inde-
pendent of how agent i evaluates the task. This effectively
means that the valuations are non-deterministic while the
costs are deterministic. The centre thus determines the effi-
cient allocation K∗ (step 7) such that the value of the effi-
cient allocation is maximised.

Having shown how to fit trust into the process of deter-
mining the value of allocations, in the next subsection we
provide a simple example to show why the standard VCG
solution of section 3 is not incentive compatible (and thus
not efficient). This then motivates the search for a mecha-
nism that is.

4.3. Failure of the VCG Solution

Consider a system of four agents where agent 4 has asked
for a task τ to be allocated and its valuation of this task is
v4(τ, θ4) = 210. Each agent i has a cost ci to perform the
task proposed by 4 (agent 4 has infinite cost to perform the
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Agent i ci η1
i η2

i η3
i ti4

1 40 0.4 1.0 0.8 0.5
2 80 0.6 1.0 0.8 1.0
3 50 0.5 1.0 0.9 0.86
4 ∞ 0.525 1.0 0.95 na

Table 1. A set of four agents in which agent 4 has
proposed a task.

task by itself) and does not derive any value from the task
being performed. Now, suppose that the trust function of
agent 4 is a weighed sum of the POS reports by the agents
(i.e. ti4 = α � η̂i where α = [0.3 0.2 0.1 0.4]). Note that
we do not concern ourselves with the reports η 4

i since the
task is proposed by agent 4 itself. Table 1 shows the cost c i

of attempting the task, and the observed POS value of each
agent, ηi, as well as the trust computed by agent 4, ti

4, if
each agent reports truthfully on its ηi.

The VCG solution of section 3 determines the alloca-
tion and payments based only on cost and valuations. How-
ever, this would clearly fail to find an efficient allocation
since agent 1 would be allocated the task despite being the
least trusted and hence most likely to fail. If we instead im-
plemented the VCG mechanism with the expected valua-
tions (taking into account the trust and POS reports), we
then have K∗ = [0010] (i.e agent 3 is allocated the task),
r1 = r2 = 0 and r3 = 210γ − 130. Thus, agent 3 will then
derive an average payment of 0.87 × 210 − 130 = 52.7.
However, this scheme is not incentive-compatible because
agent 2 can lie about η3

2 by reporting η̂3
2 ≤ 0.7357 which

will then lead to agent 2 being allocated the task and de-
riving a positive utility from this allocation. Note that this
scheme is exactly that of [9] for a single-task scenario (with
the modification that we use γ as a level of success rather
than a binary indicator function of success or failure).

As can be seen, the VCG mechanism needs to be ex-
tended to circumvent this problem. Specifically, we require
a mechanism that is efficient given the reports of the agents
on their costs and valuations of allocations, as well as their
observed POS vector (since the VCG is affected by false re-
ports of POS). In effect, we need to change the payment
scheme so as to make the truthful-reporting of POSs an op-
timal strategy for the agent again. Once this is achieved, the
centre can then choose the efficient allocation based on ex-
pected utilities. The difficulty with designing such a mech-
anism is that the centre cannot check on the validity of POS
reports of agents because it is based on a private observa-
tion carried out by the agent. Thus two agents may legiti-
mately differ in their observed POS of another agent due to
their different interaction histories with that agent.

4.4. The Trust-Based Mechanism

Before presenting our trust-based mechanism (TBM),
we first introduce some notation. Let the sum of
utilities of all agents in a system given an alloca-
tion K and a completion vector γ be denoted as
U(K, θ, γ) =

∑
i∈I vi(K, θi, γ) −

∑
i∈I ci(K, θi).

Then the expected utility U(K, θ, γ) before the allo-
cation is carried out is E[γ|K,ti]

[U(K, θ, γ)] where
θ is the vector containing all agent types. We also
denote the marginal contribution of the agent i
to the system given an efficient allocation K̂∗ as
mci = U−i(K̂∗, θ, γ) − maxK∈K

[
U−i(K, θ−i, γ)

]
where maxK∈K

[
U−i(K, θ−i, γ)

]
is the overall ex-

pected utility of the efficient allocation that would have re-
sulted if agent i were not present in the system. Now, we
can detail TBM:

1. Find the efficient allocation K̂∗ such that:

K̂∗ = argmax
K∈K

U(K, θ, γ) (3)

This finds the best allocation; that is, the one that max-
imises the sum of expected utilities of the agents, con-
ditional on the reports of the agents. We note here that
we do not take into consideration the reward functions
of the agents when calculating the overall utility since
these rewards are from one agent to another and there-
fore do not make a difference when calculating the
overall utility of the agents.

2. We now calculate the efficient allocation that would
have resulted if agent i’s report is taken out:
K∗

−i = arg maxK∈K E
[γ|K,t′

i]
[U(K, θ, γ)] where

t′
i = g(η̂\η̂i). This computes how η̂i affects which al-

location is deemed efficient.

3. We now find the effect that an agent’s η̂i has had on
its marginal contribution. Thus, find Di = U(K̂∗, .)−
U(K∗

−i, .). This distils the effect of an agent’s η̂i re-
port on its marginal contribution.

4. Given K∗, the payment ri made to the agent i is then:

ri = mci − Di (4)

Naturally, if ri is negative it implies that i makes a
payment to the centre. The first part of the payment
scheme, mci, calculates the effect that an agent’s pres-
ence has had on overall expected utility of the system.
We also subtract Di to take into account the effect that
an agent’s POS report has on the chosen allocation.
This is in line with the intuition behind VCG mecha-
nisms in which an agent’s report affects the allocation
but not the payment it receives or gives.

We will now prove each of the properties of TBM in turn
whilst intuitively explaining why the mechanism has the
aforementioned properties.

Permission to make digital or hard copies of all or part of  
this work for personal or classroom use is granted without fee  
provided that copies are not made or distributed for profit or  
commercial advantage and that copies bear this notice and the  
full citation on the first page. To copy otherwise, to republish,  
to post on servers or to redistribute to lists, requires prior  
specific permission and/or a fee.  
           AAMAS'04, July 19-23, 2004, New York, New York, USA.  
           Copyright 2004 ACM 1-58113-864-4/04/0007...$5.00 



4.5. Properties of TBM

Proposition 1. TBM is incentive-compatible in ex-ante
Nash Equilibrium.

Proof. We first need to calculate the expected util-
ity, E[γ|K,ti]

[ui(K, θi, γ)], that an agent derives from
TBM because the goal of a rational agent is to max-
imise its expected utility. We note here that we are
assuming that the agent is myopic in that it is only con-
cerned with its current expected utility given the cost vec-
tor, c(K, θ), the value vector, v(K, θ), and the trust vector
t. The expected utility that an agent, ui(K̂∗, θi, γ), de-
rives from an efficient allocation, as calculated from
equation 3, given the reports of all agents in the sys-
tem is:

ui(K̂∗, θi, γ) = E[γ|K̂∗,ti]

[
vi(K̂∗, θi, γ)

]
− ci(K̂∗, θi)

+ mci(K̂∗, θi, γ) − Di

= E[γ|K̂∗,ti]

[
vi(K̂∗, θi, γ) − v̂i(K̂∗, θi, γ)

]
−

(
ci(K̂∗, θi) − ĉi(K̂∗, θi)

)
+

U(K∗
−i, θ, γ) − max

K∈K
[
U−i(K, θ−i, γ)

]
(5)

¿From 5 we will firstly prove the following lemma:

Lemma 1. An agent has an equilibrium strategy to reveal
its observed POS values.

Proof. We consider how η̂i affects ui(K̂∗, θi, γ).
From equation 5 we observe that η̂i cannot affect
U(K−i, θ, γ) − maxK∈K

[
U−i(K, θ−i, γ)

]
. Thus, an

agent only has an incentive to lie so that K̂∗ is se-
lected such that E[γ|K̂∗,ti]

[
vi(K̂∗, θi, γ)− v̂i(K̂∗, θi, γ)

]
−(

ci(K̂∗, θi) − ĉi(K̂∗, θi)
)

is maximised. If an agent re-

veals its cost and valuation truthfully i.e. v̂(.) = v(.) and
ĉ(.) = c, we then have the term as zero. Then an agent can-
not gain from an untruthful reporting of η̂i. If, however,
an agent is to gain from such an untruthful report-
ing, it needs to set either v̂(.) < v(.) or ĉ(.) > c or both.
However, doing so would decrease the chance of i success-
fully allocating a task or winning an allocation. Therefore, i
would not reveal untruthful values for ĉ(.) and v̂(.). More-
over, i will actually report truthfully its η̂i since this al-
lows the centre to choose those agents that i deems to have
a high POS (as well as helping other agents choose i as hav-
ing a perception close to theirs). Thus, reporting η̂i = ηi is
an ex-ante Nash equilibrium strategy.

Given lemma 1, we can now show that TBM is
incentive compatible. Suppose an agent is truth-
ful about v̂(.) and ĉ(.). Then it derives as util-
ity U(K∗

−i, θ, γ) − maxK∈K
[
U−i(K, θ−i, γ)

]
.

Now assume that the agent lies about v̂(.) and
ĉ(.) so as to increase its utility. This then means
that E[γ|K̂∗,ti]

[
vi(K̂∗, θi, γ) − v̂i(K̂∗, θi, γ)

]
−

(
ci(K̂∗, θi) − ĉi(K̂∗, θi)

)
+ U(K ′

−i, θ, γ) >

U(K∗
−i, θ, γ) where K ′

−i is the efficient allocation
found with ĉ(.) and v̂(.) without the report of η i. How-
ever, as argued earlier, an agent would not report a lower
value or a higher cost. Thus E[γ|K,ti]

[
vi(K̂∗, θi, γ) −

v̂i(K̂∗, θi, γ)
]
−

(
ci(K̂∗, θi) − ĉi(K̂∗, θi)

)
≤ 0. Fur-

thermore, by the maximisation of step 2 of TBM,
U(K ′

−i, θ, γ) < U(K∗
−i, θ, γ) if all other agents re-

port truthfully. Thus, TBM is incentive-compatible in an
ex-ante Nash equilibrium.

Proposition 2. TBM is efficient.

Proof. Given that the agents are incentivised to report truth-
fully (proposition 1), the centre will calculate the efficient
allocation according to equation 3 (i.e. K̂∗ = K∗).

Proposition 3. TBM is individually-rational (in expected
utility).

Proof. We need to show that the expected utility of any
agent from an efficient allocation K ∗ is greater than if the
agent were not in the scheme (i.e. ui(K∗, θi, γ) ≥ 0).
As a result of the inherent uncertainty in the completion
of tasks, we cannot guarantee that the mechanism will
be ex-post individually-rational for an agent. Rather, we
prove that the mechanism is individually-rational for an
agent if we consider expected utility. Given truthful reports,
the utility of an agent from equation 5 is U(K ∗

−i, θ, γ) −
maxK∈K

[
U−i(K, θ−i, γ)

]
. The first maximisation is car-

ried out without the reports η−i
i ,whereas the second max-

imisation is carried out over the set of agents I \ i. Thus,
the second maximisation is carried out over a smaller set
than the first one. As a result maxK∈K

[
U−i(K, θ−i, γ)

]
≥

U(K∗
−i, θ, γ) such that ui(K∗, θi, γ) ≥ 0.

5. Instances of TBM

TBM can be viewed as a generalised version of the VCG
mechanism in which there exist uncertainties about whether
a set of agents will carry out an allocation and about the
relevance of reports of POS by agents. In this section, we
demonstrate its generality by analysing two specific in-
stances of the mechanism.

5.1. Self-POS Reports Only

The non-combinatorial mechanism developed in [9] is a
special case of TBM. Specifically, agents only report on
their own POS (i.e. η̂i = η̂i

i) and agents assign a relevance
of 1 to reports by all other agents. However, since in their
model there is no notion of varying perceptions of success,
we need to introduce the notion of a report agent that has
v(K, .) = 0 and c(K, .) = ∞. This acts as a proxy to agents
reporting the ex-post POS to the centre. This also caters for
the problem of single POS reports as there is then no mea-
sure of tj

i once j’s report is removed (and hence U(K ∗
−i, .)

Permission to make digital or hard copies of all or part of  
this work for personal or classroom use is granted without fee  
provided that copies are not made or distributed for profit or  
commercial advantage and that copies bear this notice and the  
full citation on the first page. To copy otherwise, to republish,  
to post on servers or to redistribute to lists, requires prior  
specific permission and/or a fee.  
           AAMAS'04, July 19-23, 2004, New York, New York, USA.  
           Copyright 2004 ACM 1-58113-864-4/04/0007...$5.00 



is undefined). The centre then calculates the efficient allo-

cation as: K∗ = argmaxK∈K
[
U(K̂∗, θ, γ)

]
and the pay-

ment to agent i is ri = mci − Di = mci. The term Di = 0
since, as a result of the report agent, U(K̂∗, .) = U(K∗

−i, .)
(because t is equal in both cases).

5.2. Single-Task Scenario

Consider the single task scenario (as presented in table 1)
where an agent k proposes a single task τk. Using equation
3, the efficient allocation is then simplified to:

K∗ = argmaxK∈K
[
U(K̂∗, θ, γ)

]
.

The payment to agent i, from equation 4, is then:
ri = E[γ|K∗

−i,tk]

[
vk(K∗

−i, θk, γ)
]

+ ĉi(K̂∗, θi, γ) −∑
i∈I ĉi(K∗

−i, θi, γ)−maxK∈K

[
E[γ|K,tk] [vk(K, θk, γ)]−

∑
j∈−i ĉj(K, θ−i, γ)

]
.

Since the above single-task scenario is an instance of
the TBM, it is still incentive compatible. Therefore, when
applying the above allocation scheme to the example, we
can take the reported values of the agents as being truth-
ful. Given this, the efficient allocation is agent 3 getting to
do the task. Then, we need to check whether agent 3’s report
has made itself more attractive. To do so, we remove the re-
port of agent 3 and end up with agent 4 having a trust vector
ti
4 = [0.5 1.0 0.9] which again leads to agent 3 being al-

located the task. Thus agent 3 will get an expected utility of
210 ∗ 0.8667 − 50 + 50 − 130− 50 = 2. Agent 1 and 2
no longer have an incentive to lie about the POSs since this
would not increase their utility. However, suppose that, af-
ter the allocation, every type becomes common knowledge.
Then agent 2 can deduce that lying about its costs and re-
ported POS would allow its utility to increase. This would
have been maximised when agent 2 reports ĉ2(.) = 110
and η̂3

2 = 0. However, before the allocation is carried out
and payments are made, agent 2 would not know about the
private types of other agents and may reduce its chance of
deriving a positive utility by reporting ĉ2(.) > c2(.). Fur-
thermore, agent 2 does not report η̂−2

2 < η−2
2 since then

u2(.) = 0 even if it wins the allocation. A similar argu-
ment applies to agent 1. Thus, the mechanism has an ex-
ante Nash Equilibrium of truthful reporting.

6. Experimental Evaluation

Here we empirically evaluate TBM by comparing it with
the fault tolerant mechanism (FTM) of [9] (this is chosen
because it also deals with the POS of agents as discussed in
sections 2 and 5.1) and the standard VCG. We refer to task
performing agents as contractors in what follows. In our
experiments we perform 500 successive allocations, in the
scenario described in section 4, with six agents each given
one task to complete. After each allocation, contractors per-
form tasks and the level of success is measured and reported

to all agents. Each agent can then update its measure of the
contractors’ POSs as well as the contractors’ trustworthi-
ness as discussed in section 4.1. The valuations and POS
of each agent are obtained from a uniform distribution and
the costs are the same for all tasks. We iterate the process
and average the results (here for 200 iterations). Given the
properties of TBM and FTM we postulate the following hy-
potheses and validate them as shown below:

Hypothesis 1. TBM always chooses the efficient allocation
(K∗) in the long run.

This hypothesis reflects the fact that we expect agents
in TBM to take a number of interactions to model the true
POS of their counterparts, using their individual trust mod-
els. After this time, however, the mechanism can choose
those contractors that are most successful at completing a
given task. As can be seen in figure 2, the optimal alloca-
tion chosen by TBM, K∗TBM , reaches the efficient allo-
cation K∗ (given real POSs) after 116 interactions.3 After
116 interactions, the POS of each contractor is accurately
modelled, as is the trust of agents in their contractors. Thus,
the most trusted and utility maximising allocation is found
by the TBM. This result is observed for all cases where the
POSs of contractors are varied.

Hypothesis 2. TBM finds better allocations than FTM
when contractors’ own reported POS are biased.

While FTM only takes into account a contractor’s own
reports, TBM uses the trust model of the various individ-
ual agents (which take into account reports not only from
the contractor) to make an allocation. In the particular trust
model we use in TBM, an agent can give different weights
to reports from different agents (as shown in section 4.3).
We therefore varied the weight w, assigned to a contrac-
tor’s report of its own POS in the trust model of an agent.
Here we exemplify the cases where w = 0.5 (i.e. the con-
tractor’s report is given equal weighting to the agent’s per-
ceived POS), w = 0.25 and w = 0 (i.e. no importance is
given to the contractor’s report).

As can be seen, our hypothesis is validated by the results
given in figure 2 (with normalised expected values). Note
here that K∗V CG is the allocation independent of POSs or
if POSs of agents are all equal. We note as K ∗TBMw the
allocation chosen by TBM with a weight w. In more de-
tail, TBM0 (i.e. TBM) reaches the optimal allocation K ∗

(i.e. equivalent to zero bias from the seller) after 116 iter-
ations, while TBM0.25 and TBM0.5 settle around a sub-
optimal allocation (the expected value of which decreases
with increasing w). Moreover, FTM is seen to settle at
K∗FTM = 0.8 after 82 iterations. In general, it is noted
that FTM always settles at K∗FTM < K∗ (and some-

3 The results were validated using a student’s t-test with two samples
of 100 and 200 iterations assuming equal variances with means µ1 =
0.99999 and µ2 = 1.0 and p-value p = 0.778528. This means that
the difference between the means is not significant.
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Figure 2. Expected value of chosen allocations for
TBM and FTM where K∗ = 1, K∗V CG = 0.909, and
at equilibrium, K∗TBM = 1, 0.97 > K∗TBM0.25 >

0.94, 0.86 > K∗TBM0.5 > 0.84, and K∗FTM = 0.8.

times even K∗FTM < K∗V CG as in figure 2) depend-
ing on the valuations agents have for the tasks. This result
is explained by the fact that the biased reports cause bi-
ased trust values to be obtained by the centre which then
chooses a sub-optimal allocation (i.e. less than K ∗ which
chooses agents according to their ‘real POSs’). TBM0.25

and TBM0.5 are less affected by biased reports since the
weighted trust model reduces the effect of bias on the over-
all trust values (but still affects the mechanism). In most
trust models, however, w ≥ 0.5 is never given to the con-
tractors’ POS report and here it only represents an extreme
case [10]. Moreover, if the bias is removed, then FTM and
the weighted TBMs behave the same as TBM since the
agents then perceive the same POS and all achieve K ∗. It
was also observed that the speed with which TBM and FTM
achieve K∗ also depends on the difference between the op-
timum allocation and other allocations. This is because the
smaller the differences, the harder it becomes to differen-
tiate these allocations given imperfect estimations of POSs
(i.e. the larger the samples, the more accurate the POSs are,
hence the longer the learning rate).

7. Conclusions ansd Future Work

In this paper we have introduced the notion of trust-based
mechanism design (TBMD) which generalises the VCG
mechanism by using the trust model of individual agents in
order to generate efficient allocations. We have developed
a trust-based mechanism (TBM) and proved that it is effi-
cient, individually rational, and incentive compatible. More-
over, we have empirically evaluated TBM and shown that it
always achieves the optimum allocation in the long run and
achieves better allocations than its closest comparison when
contractors provide biased reports of POS.

Future empirical work will develop trust models that

learn the similarity between the different types of agents to
achieve more efficient allocations faster in a context where
agents may be of different types (i.e. where different groups
of agents sense different degrees of success). Theoretical
work will focus on showing that our TBM is the only class
of mechanism that can result in efficient allocations based
on trust reports. Moreover we will remove the assumption
of myopicity of agents and develop a mechanism which
considers how agents might strategise over rounds of allo-
cation. We also aim to show instances where the compara-
tively brittle Nash equilibrium can be strengthened as a re-
sult of ex-post actions (such as checking by the centre [9],
or rewarding for past performance). Finally we will attempt
to make the mechanism group incentive compatible (i.e. be-
ing robust to collusion) by developing a cross-monotonic
payment scheme.
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