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Abstract

The coalition formation process, in which a number of in-
dependent, autonomous agents come together to act as a
collective, is an important form of interaction in multi-
agent systems. When effective, such coalitions can im-
prove the performance of the individual agents and/or of
the system as a whole. However, one of the main prob-
lems that hinders the wide spread adoption of coalition
formation technologies is the computational complexity
of coalition structure generation. That is, once a group of
agents has been identified, how can it be partitioned in or-
der to maximise the social payoff? This problem has been
shown to be NP-hard and even finding a sub-optimal so-
lution requires searching an exponential number of solu-
tions. Against this background, this paper reports on a
novel anytime algorithm for coalition structure genera-
tion that produces solutions that are within a finite bound
from the optimal. Our algorithm is benchmarked against
Sandholm et al.’s algorithm [8] (the only other known al-
gorithm for this task that can also establish a worst-case
bound from the optimal) and is shown to be up to 10379

times faster (for systems containing 1000 agents) when
small bounds from the optimal are desirable.

1. INTRODUCTION

The coming together of a number of distinct, au-
tonomous agents in order to act as a coherent grouping
is an important form of interaction in multi-agent sys-
tems. It has been advocated in e-commerce (where buy-
ers may pool their requirements in order to obtain big-
ger group discounts [11]), in grid computing (where
multi-institution virtual organisations are viewed as
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being central to coordinated resource sharing and prob-
lem solving [2]), and in e-business (where agile group-
ings of agents need to be formed in order to satisfy par-
ticular market niches [5]). In all of these cases, the for-
mation of coalitions aims to increase the agents’ abili-
ties to satisfy goals and to maximise their personal or
the system’s outcomes.

In this context, the coalition formation process can
be viewed as being composed of three main activities
[8]:

1. Coalition structure generation: forming coalitions
of agents such that those within a coalition coor-
dinate their activities, but those in different coali-
tions do not. This primarily involves partitioning
the set of all agents in the system into exhaus-
tive and disjoint coalitions.1 Such a partition is
called a coalition structure. For example, in
a multi-agent system composed of three agents
{a1, a2, a3}, there exist seven possible coalitions:
{a1}, {a2}, {a3}, {a1, a2}, {a1, a3}, {a2, a3},
{a1, a2, a3}
and five possible coalition structures:
{{a1, a2, a3}}, {{a1}, {a2, a3}}, {{a2}, {a3, a1}},
{{a3}, {a1, a2}}, {{a1}, {a2}, {a3}}.

2. Optimising the value of each coalition: pooling the
resources and tasks of the agents in a given coali-
tion to maximise the coalition value. For example,
given the coalition structure {{a1}, {a2, a3}}, each
of the two coalitions {a1} and {a2, a3} will try to
optimise its value.

3. Payoff distribution: dividing each coalition’s value
among its members. For example, if the coalition
{a2, a3} produces a payoff of X then this value

1 Some research also considers non-disjoint coalitions (see sec-
tion 5 for details).
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needs to be divided between a2 and a3 according
to some scheme (e.g. equality or stability).

Although these activities are distinct and, in a sense,
conceptually sequential, it is also clear that they in-
teract. For example, in a competitive environment,
the coalition that an agent wants to join depends
on the payoff that it is likely to receive (activities 1
and 3). However, in cooperative environments, where
the agents work together to maximise the social wel-
fare, payoff distribution is less important, and coalition
structure generation that maximises the social welfare
is the dominant concern.

To date, most work on coalition formation in game
theory and multi-agent systems has tended to focus
on payoff distribution (see section 5 for more details),
with comparatively little attention paid to the other
two activities. However we believe that coalition struc-
ture generation is perhaps more fundamental because it
provides a means of measuring the global good of the
coalition formation process (by computing the global
good of the coalition structures). Given this fact, the
focus of this paper is on coalition structure generation.

Classically, game theoretic work on coalition for-
mation considers only super-additive environments
(meaning any two disjoint coalitions are better off by
merging together) [6]. In such cases, coalition struc-
ture generation is trivial because all agents are better
off by forming the grand coalition (i.e. the coali-
tion that contains all the agents). Moreover, it
has even been argued that almost all environ-
ments are super-additive because, at worst, the agents
in the composite coalition can use solutions as if they
are in separate coalitions [6]. However, this assump-
tion is not valid for many real-world problems, be-
cause of the cost of forming coalitions and the cost
of coordination between members in the same coali-
tion.

In non-super-additive environments, coalition struc-
ture generation is a major concern (because of the ex-
ponential size of the set of all possible coalition struc-
tures). In such cases, the desirable goal is usually
to maximise the social welfare. However, it has been
shown that this problem is NP-hard and, moreover,
even finding a sub-optimal solution requires searching
an exponential number of solutions [8]. To tackle this
problem, several researchers have proposed algorithms
for coalition structure generation (see section 5 for de-
tails). However, most of the existing algorithms cannot
establish a worst-case bound from the optimal. This is
clearly undesirable because it means the solutions they
generate can be arbitrarily bad. To overcome this draw-
back, Sandholm et al. [8] developed an anytime algo-
rithm that can establish a worst-case bound (until our

algorithm it was the only one that could do this). How-
ever, as their algorithm’s computational complexity is
exponential, it is desirable to see if its complexity can
be reduced in order to make it useable in practical ap-
plications.

Against this background, this paper advances the
state-of-the-art in the following ways. First, we develop
a new coalition structure generation algorithm which is
anytime and with which we can establish a worst-case
bound from the optimal. Second, while its running time
is necessarily exponential, we show that our algorithm
is significantly faster than Sandholm et al.’s. Specifi-
cally, when computing small bounds from the optimal,
our algorithm is shown to be up to 107 times faster for
small systems (50 agents), 1023 times faster for medium
systems (100 agents) and 10379 times faster for large
systems (1000 agents). With larger bounds from the
optimal, we show that there is no significant difference
in performance between our algorithm and Sandholm
et al.’s.

The remainder of the paper is organised as follows.
Section 2 formalises the problem of coalition structure
generation. Section 3 presents our algorithm. We then
evaluate the performance of our algorithm in section 4.
Section 5 discuss related work, and, finally, section 6
concludes the paper and presents future work.

2. COALITION STRUCTURE GEN-
ERATION IN CHARACTERISTIC
FUNCTION GAMES

This section formalises the problem of coalition struc-
ture generation. Let A be the set of agents, and n be
the number of agents in A (i.e., |A| = n). As is com-
mon practice in the literature (e.g. [3] [6] [8] [9]), we
consider coalition formation in characteristic function
games (CFGs). In such settings, there is a value v(S)
for each and every subset S of A, known as the value of
coalition S, which is the utility that members of S can
jointly attain. Fundamentally, this means each coali-
tion’s value is independent of the actions of agents that
are not members of the coalition. Although, in general,
the value of a coalition may depend on non-members’
actions, CFGs can be applied in many real-world multi-
agent problems [8].

As in [8], we assume that every coalition’s value is
non-negative:

v(S) ≥ 0, ∀S ⊆ A (1)

This assumption is not very restrictive, because if there
exist some negative coalitional values, and if all coali-
tional values are bound from below (i.e., they are not
infinitely negative), they can always be normalised by
subtracting from each of them a value minS⊆A v(S).
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The algorithm proceeds as follows:

• Step 1: Search through the sets L1, L2, Ln

• From step 2 onward, search, consequently, through the sets SL(n, �n(q − 1)/q�) with q running from �n+1
4 �

down to 2.

That is, search SL(n, �n(�n/4� − 1)/�n/4�� at step 2, search SL(n, �n(�n/4�)− 2)/(�n/4�� − 1) at
step 3 and so on.
Moreover, from step 3 onward, as SL(n, �nq/(q + 1)�) ⊆ SL(n, �n(q − 1)/q�) (it is easy to see that
SL(n, �n(a − 1)/a�) ⊆ SL(n, �n(b − 1)/b�) for every a > b) we only have to search through the set
SL(n, �n(q − 1)/q�) \ SL(n, �nq/(q + 1)�) in order to search through the set SL(n, �n(q − 1)/q�).

• At each step return the coalition structure with the biggest value (i.e. best social welfare) so far.

Figure 1. The coalition structure generation algorithm.

A coalition structure CS is a partition of A into dis-
joint, exhaustive coalitions. That is, each agent belongs
to exactly one coalition. The value of a coalition struc-
ture, V (CS), is expressed in terms of its social welfare.
That is:

V (CS) =
∑

S∈CS

v(S) (2)

Also, we define the size of a coalition structure as the
number of coalitions that it contains and L as the set
of all coalition structures.

Given the above terms, the problem of coalition
structure generation is then to find a coalition struc-
ture CS∗ that maximises the social welfare. That is:

CS∗ = argmaxcs∈LV (CS) (3)

However, the problem of coalition structure genera-
tion is computationally complex. Sandholm [8] showed
that the number of coalition structures (i.e. |L|) is ex-
ponential, specifically, O(nn) and ω(nn/2), and that the
problem is NP-hard. Moreover, he showed that for any
algorithm to establish any bound from the optimal, it
must search at least 2n−1 coalition structures.

To this end, the next section presents our algorithm
for coalition structure generation. In this paper, we aim
to establish a bound from the optimal and so, neces-
sarily, our algorithm is not polynomial.

3. THE ALGORITHM

In this section, we present our algorithm for coalition
structure generation and prove that the solution it gen-
erates is within a finite bound from the optimal.

To this end, let Lk be the set of all coalition struc-
tures with size k. Thus we have:

L =
n⋃

k=1

Lk

The number of coalition structures in Lk is S(n, k),
widely known in Mathematics as the Stirling number of
the Second Kind [7]. The value of S(n, k) can be com-
puted by the following formula [7]:

S(n, k) =
1
k!

k−1∑
i=0

(−1)i

(
k
i

)
(k − i)n

Definition 1 Let SL(n, k, c) be the set of all coalition
structures that have exactly k coalitions and at least one
coalition whose cardinality is not less than c.

Definition 2 Let SL(n, c) be the set of all coalition
structures whose cardinality is between 3 and n − 1 that
have at least one coalition whose cardinality is not less
than c. That is:2

SL(n, c) =
n−1⋃
k=3

SL(n, k, c)

With these definitions in place, we can now express
our algorithm for solving the problem (see Figure 1).
Basically, at first it searches all the coalition structures
that have one, two or n coalitions (i.e. all the coalition
structures in the sets: L1, L2 and Ln) (as Sandholm et
al.’s algorithm does). But after that, instead of search-
ing through the sets Lk (for 3 ≤ k ≤ n− 1) one by one
(as Sandholm et al. do), our algorithm only searches
some specific subsets of Lk (see Figure 2 for a diagra-
matic representation). In particular, it searches the set
of all coalition structures that have k coalitions and at
least one coalition whose cardinality is not less than
�n(q − 1)/q� (with q running from �n+1

4 � down to 2 as
in Figure 1). Note that we start from q = �n+1

4 � be-
cause Sandholm et al. showed that, after searching L1,
L2, Ln, the algorithm can establish a bound b = �n/2�

2 In fact, as SL(n, k, c) = ∅ for all n − c + 1 < k ≤ n − 1, this

formula can be rewritten as: SL(n, c) =
⋃n−c+1

k=3 SL(n, k, c)

Permission to make digital or hard copies of all or part of  
this work for personal or classroom use is granted without fee  
provided that copies are not made or distributed for profit or  
commercial advantage and that copies bear this notice and the  
full citation on the first page. To copy otherwise, to republish,  
to post on servers or to redistribute to lists, requires prior  
specific permission and/or a fee.  
           AAMAS'04, July 19-23, 2004, New York, New York, USA.  
           Copyright 2004 ACM 1-58113-864-4/04/0007...$5.00 



... ...

2

4

5

n

1

3

4

L2

L3

Ln-1

Ln

L1

Ln-2

65

Searching steps in Sandholm et al.’s algorithm 

Searching steps in our algorithm i

i

3

2

1

Figure 2. Comparison of the searching paths between our algorithm and Sandholm et al.’s.

and, later in the paper, we will show that after search-
ing SL(n, �n(q − 1)/q�), our algorithm can establish a
bound b = 2q − 1. Thus, we start from the biggest q
such that 2q − 1 < �n/2� or q = �n+1

4 �.
The next step is to show that the solution gener-

ated by the algorithm is within a bound from the op-
timal and that the bound is reduced further after each
round. Thus ours is an anytime algorithm: it can be
interrupted at any time and the bound keeps improv-
ing with an increase in execution time.3

Theorem 1 Immediately after finishing searching
SL(n, �n(q − 1)/q�), the solution generated by our algo-
rithm is within a finite bound b = 2q − 1 from the opti-
mal.

Proof. Let CSa be the coalition structure that
our algorithm generates. Let CS∗ be an optimal coali-
tion structure. Assume CS∗ contains t coalitions
C1, C2, ..., Ct. We have to prove:

V (CS∗)
V (CSa)

≤ 2q − 1 (4)

For the cases where t equals 1, 2 or n, the proof is triv-
ial, as CSa will also be an optimal coalition structure.
Thus V (CSa) = V (CS∗), so V (CS∗)

V (CSa) = 1 ≤ 2q − 1.

3 If thedomainhappens tobe super-additive, thealgorithmfinds
the optimal coalition structure (grand coalition) immediately.

Now we only have to prove for the case where
3 ≤ t ≤ n − 1. Without loss of generality, we can as-
sume the cardinalities of the sets C1, C2, ..., Ct are in
decreasing order. That is:

|C1| ≥ |C2| ≥ ... ≥ |Ct| (5)

For the convenience of presentation, we assume Ci =
∅ and v(Ci) = 0 for every i > t.

First, we will show that for every coalition C ⊆ A:

v(C) ≤ V (CSa)

Considering the coalition structure CS0 = {C, A \ C}.
As CS0 ∈ L2, we have:

V (CS0) ≤ V (CSa)
⇒ v(C) + v(A \ C) ≤ V (CSa)
⇒ v(C) ≤ V (CSa) (because of assumption (1))

Thus we have:

v(Ci) ≤ V (CSa) ,∀1 ≤ i ≤ q − 1

⇒
q−1∑
i=1

v(Ci) ≤ (q − 1) · V (CSa) (6)

Now let us consider the other coalitions of CS∗, namely,
Cq, Cq+1, ..., Ct.

Considering the following coalition structure:

CS1 = {Cq, C2q, ..., C� t
q �q , D}
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That is:
D = A \ ∪� t

q �
i=1Ciq (7)

Let us analyse the cardinality of coalition D. We
have for all 1 ≤ i ≤ � t

q �:

|C(i−1)q+1| ≥ |C(i−1)q+2| ≥ ... ≥ |Ciq |
(because of (5))

⇒ q|Ciq| ≤
q∑

j=1

|C(i−1)q+j |

⇒ q

� t
q �∑

i=1

|Ciq | ≤
� t

q �∑
i=1

q∑
j=1

|C(i−1)q+j |

⇒ q

� t
q �∑

i=1

|Ciq | ≤ |C1| + |C2| + ... + |C� t
q �q |

⇒ q

� t
q �∑

i=1

|Ciq | ≤ |C1| + |C2| + ... + |Ct| = n

⇒
� t

q �∑
i=1

|Ciq| ≤ n/q

As |D| = n − ∑� t
q �

i=1 |Ciq | (from (7)), we then have:

|D| ≥ n − n/q

⇒ |D| ≥ n(q − 1)/q

⇒ |D| ≥ �n(q − 1)/q�
⇒ CS1 ∈ SL(n, �n(q − 1)/q�)
⇒ V (CS1) ≤ V (CSa)
⇒ v(Cq) + v(C2q) + ... + v(C� t

q �q) + v(D)
≤ V (CSa)

⇒ v(Cq) + v(C2q) + ... + v(C� t
q �q) ≤ V (CSa)

(as v(D) ≥ 0, by assumption (1))

For all 1 ≤ j ≤ q − 1, by proving similarly to the
above, we have:

v(Cq+j) + v(C2q+j) + ... + v(C� t
q �q+j) ≤ V (CSa)

Thus for all 0 ≤ j ≤ q − 1, we have:

� t
q �∑

i=1

v(Ciq+j) ≤ V (CSa)

⇒
q−1∑
j=0

� t
q �∑

i=1

v(Ciq+j) ≤ q · V (CSa)

⇒
� t

q �q+q−1∑
i=q

v(Ci) ≤ q · V (CSa) (8)

Also:

� t

q
�q + q − 1 > (

t

q
− 1)q + q − 1

⇒ � t

q
�q + q − 1 > t − 1

⇒ � t

q
�q + q − 1 ≥ t (9)

Thus, from (8) and (9), we have:
t∑

i=q

v(Ci) ≤ q · V (CSa) (10)

From (6) and (10) we have:
t∑

i=1

v(Ci) ≤ (2q − 1) · V (CSa) (11)

�
From theorem 1, we can also see that the bound de-

creases after each round, because 2q − 1 decreases as q
decreases. Thus our algorithm is an anytime one.

Having presented our algorithm for coalition struc-
ture generation, the next section compares it with
Sandholm et al.’s.

4. PERFORMANCE EVALUATION

To evaluate the effectiveness of our algorithm we com-
pare it against Sandholm et al.’s [8] since this is the
only other known algorithm with worst-case bounds.
In more detail, Sandholm et al.’s algorithm operates as
described in Figure 3. Basically, it first searches all the
coalition structures that have 1 or 2 coalitions, then
it continues to search all the coalition structures that
have n, n−1, ..., 3 coalitions (in that order). Sandholm
et al. then prove that after having completed search-
ing Lk, the solution the algorithm generates is within
a bound b′, where b′ = �n

h � if n ≡ h − 1(mod h) and
n ≡ k(mod 2), or b′ = �n

h � otherwise (h = �n−k
2 � + 2).

To evaluate the performance of our algorithm, we
compare it with Sandholm et al.’s on a worst-case ba-
sis. That is, we compare the size of the search space of
the two algorithms (i.e. the number of coalition struc-
tures each algorithm has to search) in order to estab-
lish the same bound from the optimal.

To calculate the number of coalition structures that
our algorithm needs to search, we present the following
formula.

Lemma 1 For all n > k ≥ 3 and c ≥ �n/2�, the cardi-
nality of SL(n, k, c) can be calculated as follows:

|SL(n, k, c)| =
n−k+1∑

i=c

S(n − i, k − 1) · n!
i!(n − i)!

(12)
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• Search the bottom two levels of the coalition struc-
ture graph (Note that level k of the coalition struc-
ture graph in Sandholm et al.’s algorithm corre-
sponds exactly to the set Lk in ours).

• Continue with a breadth-first search from the top
of the graph as long as there is time left, or un-
til the entire graph has been searched (this occurs
when this breadth-first search completes level 3 of
the graph, i.e., depth n − 3)

• Return the coalition structure that has the high-
est welfare among those seen so far.

Figure 3. Sandholm et al.’s algorithm.

Proof. For each i such that c ≤ i ≤ n − k + 1, let
T (n, k, i) ⊆ SL(n, k, c) be the set of all coalition struc-
tures that have exactly k coalitions and at least one
coalition whose cardinality equals i. As for every coali-
tion structure CS in SL(n, k, c), any coalition in CS
has at most n−k+1 agents (because (k−1) other coali-
tions in CS must contain at least (k − 1) agents), we
have:

SL(n, k, c) =
n−k+1⋃

i=c

T (n, k, i)

Now we will show that T (n, k, i1)
⋂

T (n, k, i2) = ∅
for every i1 �= i2, i1 ≥ c and i2 ≥ c. This can be
proved by contradiction. Suppose there exist i′1 and
i′2 such that T (n, k, i′1)

⋂
T (n, k, i′2) �= ∅. This means

there exists a coalition structure CS′ such that: CS′ ∈
T (n, k, i′1)

⋂
T (n, k, i′2). Now CS′ ∈ T (n, k, i′1) means

it has at least one coalition whose cardinality equals
i′1, and, similarly, CS′ ∈ T (n, k, i′2) means it has at
least one coalition whose cardinality equals i′2. More-
over, CS′ has at least 3 coalitions (as k ≥ 3), so the
number of agents in CS′ will be greater or equal than
i′1 + i′2 + 1. Thus:

n ≥ i′1 + i′2 + 1
⇒ n ≥ c + c + 1 = 2c + 1
⇒ n ≥ 2�n/2�+ 1
⇒ n ≥ 2n/2 + 1
⇒ n ≥ n + 1

As we reach contradiction, we must have:

T (n, k, i1)
⋂

T (n, k, i2) = ∅
for every i1 �= i2, i1 ≥ c and i2 ≥ c. Thus we have:

⇒ |SL(n, k, c)| =
n−k+1∑

i=c

|T (n, k, i)| (13)
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Figure 4. The case n = 50.

Now let us consider a coalition structure CS′ ∈
T (n, k, i). As one of the coalitions in CS′ has exactly
i agents, k − 1 other coalitions in CS′ must have ex-
actly n− i agents. Also, the number of ways to choose
an i-agent set from n agents is n!

i!(n−i)! . Thus the num-
ber of coalition structures in T (n, k, i) equals the num-
ber of coalition structures that have exactly k−1 coali-
tions in a multi-agent system with n − i agents multi-
plied with n!

i!(n−i)! :

|T (n, k, i)| = S(n − i, k − 1) · n!
i!(n − i)!

(14)

From (13) and (14) we have:

|SL(n, k, c)| =
n−k+1∑

i=c

S(n − i, k − 1) · n!
i!(n − i)!

�
With this in place, we test the algorithms with the

number of agents n = 50, 100, 500, and 1000.4 The re-
sult of the tests are presented in the following graphs.5

As we are calculating the number of coalition struc-
tures each algorithm has to search in order to estab-
lish a bound from the optimal, the smaller the number
of coalition structures the better.

4 Weobserve similar patternswith other values of nvarying from
50 to 1000.

5 The big bounds are not shown in the graphs (that is, bounds
greater than 30 in the case n = 100, greater than 40 in the case
n = 500 and greater than 50 in the case n = 1000), because
the results for the two algorithms are nearly the same for these
bounds.
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Figure 5. The case n = 100.
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As we can see from the graphs, for large bounds
from the optimal, there is no significant difference be-
tween the performance of our algorithm and Sandholm
et al.’s: the number of coalition structures that each
has to search are similar. However, for small bounds
from the optimal, our algorithm is much faster (up to
10379 times faster in the graphs shown here). In these
cases, the number of coalition structures that our al-
gorithm has to search is much smaller because of our
greater selectivity in searching through the subsets of
Lk.

Moreover, for small bounds, our algorithm scales
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Figure 7. The case n = 1000.

very well as n increases. Thus the bigger n is, the more
our algorithm outperforms Sandholm et al.’s. For ex-
ample, with bound 3, our algorithm is more than 107

times faster for n = 50, more than 1023 times faster
for n = 100, more than 10171 times faster for n = 500,
and more than 10379 times faster for n = 1000. Note
that these numbers would continue to increase the big-
ger we made n.

5. RELATED WORK

As mentioned in section 1, most of the existing work in
coalition formation in game theory [6] has focused on
payoff distribution (activity 3 in the coalition formation
process) where it is usually assumed that a coalition
structure has been formed, and the question is then
how to divide the payoff so that the coalition struc-
ture is stable. In this context, many solutions have been
proposed based on different stability concepts (e.g. the
core, the Shapley value, the kernel, the stable set, and
the bargaining set). Transfer schemes have also been
developed to transfer non-stable payoff distributions to
stable ones (while keeping the coalition structure un-
changed).6

Recently, however, researchers in multi-agent sys-
tems have paid more attention to the problem of coali-
tion structure generation. As mentioned before, Sand-
holm et al. [8] developed an anytime algorithm that
guarantees to produce solutions within a finite bound
from the optimal. However, as we have demonstrated,

6 For a comprehensive review on stability concepts and transfer
schemes in game theory, see [6].
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this algorithm is significantly slower than ours. On the
other hand, Shehory and Kraus [10] consider a some-
what broader environment, where the coalitions can
be overlapped. In this work, however, they reduce the
complexity of the problem by limiting the size of the
coalitions. They then develop a greedy algorithm that
guarantees to produce a solution that is within a bound
from the best solution possible given the limit on the
number of agents. However, this best solution can be
arbitrarily far from the actual optimal solution (with-
out the limit on the size of the coalitions).

Some other researchers address both coalition struc-
ture generation and payoff distribution in competi-
tive environments. Specifically, Ketchpel [3] presents a
coalition formation method with cubic running time in
the number of agents, but his method can neither guar-
antee a bound from the optimal nor stability. Shehory
and Kraus’s protocol [9] guarantees that if the agents
follow it, a certain stability (kernel-stability) is met. In
the same paper, they also present an alternative proto-
col that offers a weaker form of stability with polyno-
mial running time. However, in both cases, no bound
from the optimal is guaranteed.

More recent research in coalition formation area has
also begun to pay attention to dynamic environments,
where agents may enter or leave the coalition forma-
tion process and many uncertainties are present (e.g.
the coalition value is not fixed, but it is context-based
[4]). However, to date, no algorithm with bound guar-
antees has been developed for this environment.

6. CONCLUSIONS AND FUTURE
WORK

In this paper, we developed an anytime algorithm for
coalition structure generation that can produce solu-
tions within a finite bound from the optimal. We then
benchmarked our algorithm against [8] which is the
only other known algorithm for this task that can also
establish a worst-case bound from the optimal. This
comparison showed our algorithm to be significantly
faster; for example, being up to 10379 times faster for
systems containing 1000 agents for small bounds.

Future work will concentrate on undertaking a more
detailed comparison of our algorithm with Sandholm et
al.’s theoretically. That is, we will compare the number
of coalition structures that each algorithm has to search
(in order to establish a specific bound) mathematically.
We then aim to apply the algorithm in a virtual organ-
isation setting [5], where it will be used to increase the
efficiency of the coordination between the constituent
members of the virtual organisation. Specifically, once
the virtual organisation has been formed (using our

previous work on clearing in combinatorial auctions
[1]), the coalition structure generation algorithm can
be used to partition it into several sub-groups, each
of which works on different activities in order to max-
imise the payoff of the whole virtual organisation.
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