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Abstract: In this report, we propose new concurrent data structures and load balancing
strategies for Branch-and-Bound (B&B)/A* algorithms in two models of parallel program-
ming : shared and distributed memory.

For the shared memory model (SMM), we present a general methodology which al-
lows concurrent manipulations for most tree data structures, and show its usefulness for
implementation on multiprocessors with global shared memory.

Some priority queues which are suited for basic operations performed by B&B algo-
rithms are described : the Skew-heaps, the funnels and the Splay-trees. We also detail a
specific data structure, called treap and designed for A* algorithm. These data structures
are implemented on a parallel machine with shared memory: KSR1.

For the distributed memory model (DMM), we show that the use of partial cost in
the B&B algorithms is not enough to balance nodes between the local queues. Thus,
we introduce another notion of priority, called potentiality, between nodes that takes into
account not only their partial cost but also their capacity to generate other nodes. We
have developed three load balancing strategies using this potentiality.

The B&B implementation was carried out in a network of heterogeneous Unix work-
stations used as a single parallel computer through the Parallel Virtual Machine (PVM)
software system.

In order to test the efficiencies of concurrent data structures and load balancing strate-
gies for B&B and A* algorithms, we implemented them for solving Combinatorial Opti-
mization Problems (COPs) as Quadratic Assignment Problem (QAP), Vertex Cover Prob-
lem (VCP) and puzzle game.
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Algorithmes Branch-and-Bound/A*
Paralléles et Distribués?

Résumé : Nous proposons, dans ce rapport, des nouvelles structures de données concur-
rentes et stratégies d’équilibrage de charges dédiées aux algorithmes Branch-and-Bound?
(B&B)/A* dans deux modeles de programmation parallele: mémoire partagée et dis-
tribuée.

Pour le modele avec mémoire partagée (SMM), nous presentons une méthodologie
générale permettant les manipulations concurrent sur la plupart des structures de données
arborescentes, et nous montrons son efficacité dans les implantations sur les multipro-
cesseurs avec mémoire partagée globale.

Certaines files de priorité répondant aux exigences des opérations de base des algo-
rithmes B&B sont décrites: les “Skew-heaps”, les “funnels” et les “Splay-trees”. Nous
détaillerons également une structure de données spécifique, appelée “treap” et concue
pour Dalgorithme A*. Toutes ces structures de données sont implantées sur une machine
parallele avec mémoire partagée: la KSRI1.

Pour le modele avec mémoire distribuée (DMM), nous montrons que 'usage du coiit
partiel (borne inférieure) dans les algorithmes B&B n’est pas suffisant pour répartir
équitablement les sommets entre les files locales. Ainsi, nous introduisons une artre notion
de priorité entre les sommets, nommée “potentialité”, qui prendre en compte non seule-
ment leurs coits partiels mais aussi leurs capacités a engendrer d’autres sommets. Nous
avons développé trois stratégies d’équilibrage de charges utilisant cette potentialité.

L’implantation de ’algorithme B&B est faite sur un réseau hétérogenes de stations
d’UNIX. Ce réseau est utilisé comme une seule machine paralléle a ’aide de ’environnement
“Parallel Virtual Machine” (PVM).

Afin de tester les efficacités des structures de données concurrentes et les stratégies
d’équilibrage de charges pour les algorithmes B&B et A*, nous les avons appliqués a
la résolution des problemes d’optimisation combinatoire (COPs) tels que I’Affectation
Quadratique (QAP), la Couverture Minimale (VCP), et le jeu du Taquin.

Mots-clé : Structures de données, files de priorité, concurrence, équilibrage de charges,
algorithmique parallele et distribuée, Branch-and-Bound, A*, PVM.

{(Ce travail est partiellement supporté par le projet Stratagéme du CNRS.
§«Evaluation et Séparation” en frangais.
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Parallel and Distributed BEB/A* Algorithms 1

1 Introduction

Processing larger problems in a shorter time has always been one of the main challenges
in computer science.

This point is particularly important for the solution of Combinatorial Optimization
Problems (COPs) which require high processing speed and a lot of memory space. Nu-
merous scientific, military and industrial applications are expressed as COPs (e.g. VLSI
circuit design, production control, resource allocation, command system, robots, etc).

Massively parallel processing, which has been developed to satisfy these needs, is there-
fore a natural choice. The challenge is how to take advantage of the huge processing ca-
pacity provided by a large number of processors in terms of performance (speed-up and/or
scale-up). Parallel algorithm development (design, analysis and implementation) is thus
the price to pay to reach the expected results.

1.1 COPs and Branch-and-Bound/A* formulations

Formally, a COP in its minimization release can be defined as follows: Given a finite
discrete set X, a function F : X — R, and a set S where § C X, find an optimal solution
z* € 5, such that F(2*) = min{F(z)|Vz € S}. The set S is called domain of constraints
and all the elements € 5 are feasible solutions. We assume that S is finite or empty.

For example, in Operational Research (OR), the Quadratic Assignment Problem (QAP)
and the Vertex Cover Problem (VCP) fit the above definition. In Artificial Intelligence
(Al), solving a puzzle game is generally stated as finding a shortest path from an initial
configuration to the final configuration. All these COPs are NP-complete or NP-hard.

To find an exact solution to a COP, the best way consists of using a Branch-and-Bound
(B&B) paradigm including B&B algorithms in OR and A* algorithm in AI [34]. The B&B
paradigm explores - cleverly - the set X. The knowledge acquired along the search path
is used to discard the exploration of the useless parts of X. Synthetically, B&B paradigm
could be summed up as follows :

Building the search tree

e a branching scheme splits X into smaller and smaller subsets,

e a search stralegy selects one node among all pending nodes to be developed.
Pruning branches
e a bounding function f : 2% — R gives a lower bound for the value of the best

solution in each set .S; of S created by branching,

e the exploration interval is revised periodically, as the upper bound is constantly
updated every time a feasible solution is found;

e in certain applications, dominance relationships may be established between
subsets S;, and will thus also lead to discard non-dominant nodes!.

!The A* algorithm uses this kind of relationships for graph search.
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2 PNN team

From an algorithmic point of view, a B&B algorithm carries out a sequence of basic
operations on a set of elements with their priority value:

o DeleteMin selects and deletes the highest priority node,
e Insert adds a new node with precomputed priority,

o DeleteGreater deletes nodes with lower priorities than a given value which is usually
the upper bound.

In practice, priority queues are usually chosen as suitable data structures for implementing
these operations.

1.2 Data structures and programming models

Unlike the Numerical Computation which generally manipulates regular and static data
structures (e.g. arrays), B&B/A* algorithms use irregular and dynamic data structures
(e.g. priority queues, hash tables and linked lists) for the storage of the search tree, as
its size is not known at the outset. It grows exponentially with the size of the problems
and remains often too large to be solved successfully as the program stops for lack of
time or memory space. Parallelism is then used to speed up construction of search trees
and to provide more memory space. The management of the irregular and dynamic data
structures in parallel processing is therefore the key for high performance of computation.

Research during the last decade in the parallelization of B&B/A* algorithms showed
that MIMD architecture is suitable. However, from experimental machines with exotic
architecture to commercial distributed multiprocessors and networks of workstations, there
still are two main high-level programming models: shared memory model (SMM) and
distributed memory model (DMM). Vendors begin to propose parallel machines (KSR1,
CRAY T3D) with programming environment allowing the two models.

In the SMM, data is stored in a global shared memory which can be accessed by
all the processors. This model could be implemented on distributed memory machines
via the Virtual Shared Memory mechanism (e.g. ALLCACHE system on KSR1). On
the other hand, in the DMM, each processor can access only its local memory: data is
exchanged by a message-passing mechanism (e.g. PVM, MPI). The problems involved by
these programming models are completely different.

As data is shared in the SMM (section 2), the main issue is the contention access to
the data. The higher the concurrent access to the data is, the higher is the performance.
Data consistency is provided by a mutual exclusion mechanism, and load balancing is easy
to achieve since data can be accessed by any processor.

On the other hand, load balancing is the key point to tackle in the DMM (section 3).
As each processor can only access its own memory, if all the data have been processed in
a local memory, the corresponding processor becomes idle while the other processors are
still running.
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Parallel and Distributed BEB/A* Algorithms 3

In this paper, we propose new concurrent data structures and load balancing strategies
for respectively the SMM and the DMM. In order to test their efficiency on the COP, we
implemented them for B&B and A* algorithms to solve QAP, VCP and a 15 puzzle game.

2 Concurrent access to data structures

In the SMM, the data structure is stored in the shared memory. FEach asynchronous
processor must be able to access it. The simplest method to allow concurrent access to a
data structure is that each asynchronous process locks the entire data structure whenever
it makes an access or an operation. This exclusive use of the entire data structure to
perform a basic operation serializes the access to the data structure and thus, limits the
speed-up obtained with the parallel algorithm.

The next section presents a better technique which is denoted by Partial Locking.

2.1 Partial locking protocol

An operation is composed by successive elementary operations. At one moment, a pro-
cessor only needs few nodes of the tree. Severity of contention can be reduced if each
processor locks only the part of the data structure that it actually modifies. Hence, the
time delay, during which the access to the structure is blocked, is decreased.

We reiterate the definition of user view serialization of the structure introduced by
Lehman and Yao, 1981 [28], Calhoun and Ford, 1984, [5] in the context of data base
management. In this approach, the processors that access the data structure with a well-
ordering scheme, inspect a part of the structure that the previous processors would never
change further, and leave all parts of the data structure (modified or not) in a consistent
state.

( A SLIDING WINDOWS

BEFORE

Figure 1: Example of applying the partial locking protocol to a tree data structure.
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The figure 1 shows an example of this method applied to a tree data structure. A
sliding window of a processor executing a basic operation on a tree data structure, is
defined as the set of nodes of this data structure on which the processor has an exclusive
access.

To forbid the creation of a cycle of processors waiting for resources (deadlocks), we
have to force each processor to follow a specific locking scheme.

A simple scheme of this top-down method can be described as follows. Fach operating
window will be moved down the path, from the root to a leaf.

Notations: an ancestor of z is defined as a node which belongs to the (unique) path
between z and the root.

Définition 1 Let S a tree data structure in which all basic operations are executed down-
wards. The scheme is defined by the following rules:

Lock : a processor can request a lock on a node x only in the following cases

1 : if the processor has a lock on the father of x,
2 : if the processor has a lock on an ancestor of © and a lock on a descendant of x,

3 : a processor can lock the root v of S iff the processor has no more locks in §.

Unlock : no specific rule.

The full description of the variant schemes and the proofs can be found in [6].

2.2 Partial locking boolean protocol

If the scheme designed above allows concurrent accesses, it implies an overhead due to the
number of locks used : theses have an expensive execution time.

In respect to the locking scheme defined in 1, if a processor P; has a lock on a node A
of data structure S, P; is the only processor which can request a lock on a node B, son of
A (see figure 2).

Hence, expensive mutual exclusion primitives are not needed. Locks could be replaced
by a boolean-like protocol. This is just a flag, which indicates if the node is in used or
free. Since the root node has no father, several processors can try to access it. A lock will
be necessary for this only node.

To illustrate this optimization, we test a Skew-heap using the partial locking paradigm
[21] in the context of a simulation of B&B (figure 3) on the machine KSR1 with one
processor. The execution time shows that the locks protocol overhead is really bigger
than the boolean protocol overhead. Further, boolean protocol time is not very different
than the serial time.

2.3 Related works

We can find in the literature two main kinds of techniques which allow ”parallel” operations
on data structures for shared memory machines. They are usually called Parallel data
structures and Concurrent data structures.
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ONLY PROCESS 1 WILL \
EVER REQUEST A LOCK
ON NODES BANDC

/G gk \<— Process 2

Figure 2: Only one processor can ever request a lock on a node.

Serial | Locks | Boolean
22's 57 s 28 s

Figure 3: Times of Skew-heap to perform 200000 operations.

Parallel Data structures offer several synchronous operations performed by several
processors. Processors cooperate to perform their operations [10, 11, 9]. Deo and Prasad
in [11] have proposed an optimal parallel heap. P processors can simultaneously perform
P operations. But these P operations are synchronous. Then, a processor who wants
to access the data structure, has to wait the other processors. We do not want to use
these kinds of parallel data structures, because in our applications the time between two
accesses to the data structure is never the same on two processors. Some solutions use
specialized processors to handle the data structure. We prefer to employ each processor
used to execute the tree search algorithms

Concurrent data structure algorithms allow concurrent access to a data structure by
asynchronous processors. Each processor performs a serial operation which is modified
in order to keep the others processors unblocked. Processors make their operation them-
selves and do not need some other processors to access to the data structure. They do
not cooperate to perform their operations. These methods are very useful, if the delay
between two accesses is unknown. Therefore, mutual exclusion primitives are generally
used to make atomic update operations with respect to the other processors. The partial
locking protocols are such techniques. Initially the idea of partial locking can be found in
articles dealing with data base management. Several solution had been proposed to allow
concurrent access on Search Tree such as AVL-Tree, B-Tree and B+Tree [12, 13, 26]. Af-
terwards, this technique has been used for different priority queue such as D-heap [3, 38],
Skew-heap [21], Fibonacci Queue and priority pool [19] . Sometimes, these concurrent
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6 PNN team

algorithms need specialized processors, to rebuild the data structure. Our contribution
is an optimized version of a partial locking method. We have reduced the overhead due
to the mutual exclusion primitives. For example, Jones’ Skew-heap in [21] have log(n)
mutual exclusion primitives calls for one operation. Qur solution uses only one mutual
exclusion primitive and log(n) boolean like protocol calls. Figure 3 shows the importance
of this optimization.

In the next two sections, we show the efficiency of our partial locking boolean protocol
applying it to data structures used in a parallel best-first B&B and in a parallel A*
algorithm.

2.4 Priority queues for best-first B&B

Using the best-first strategy in B&B algorithms seems to be the most efficient, because
the number of evaluated node is optimal. The data structure used in the best-first B&B
is a priority queue (PQ). The basic operations are given in section 1.1.

In serial, PQ are usually represented by heap. There exist several algorithms which
manage a heap : D-heap [22], leftist-heap [22], Skew-heap [47], Binomial queue [4], Pairing
heap [15, 45]. The most popular one is the D-heap? as used in the heapsort ([49]). This is
the oldest PQ implementation with O(log(n)) performance. In a heap, the priority struc-
ture is represented as a binary tree that obeys the heap invariant, which holds that each
item always has a higher priority than its children. In a D-heap, the tree is embedded in an
array, using the rule that location 1 is the root of the tree, and that locations 2i and 2i41
are the children of location i. In a B&B, each item contains an external pointer to store
the subproblem information. Bistwas and Browne [3], Rao and Kumar [38] have proposed
a concurrent version of the D-heap. Both have used a partial locking protocol. Our partial
locking boolean protocol can not be used with the D-heap, because the operations of the
algorithm need a direct access to the tree.

Serial experimental results [20, 6] show that the D-heap is not an efficient PQ imple-
mentation. Tarjan and Sleator proposed in [47] a better heap algorithm, the Skew-heap.
Their algorithm is the self-adjusting version of the Leftist-heap. The basic operation which
is used to implement Delete Min and Insert operation is called the merge operation. Its
amortized complezity is O(log(n)). It seems that the Skew-heap is one of the most efficient
serial algorithms for heap implementation ([20, 6]). Jones [21] have proposed a concur-
rent Skew-heap using a partial locking protocol with only mutual exclusion primitives.
Applying our locking boolean protocol to the Skew-heap offers better performances (see
figure 3).

The complexity of the heap DeleteGreater operation is O(n), because the tree must
be entirely explored. An other problem is that heaps are not stable. In [31], Mans and
Roucairol demonstrate that the PQ must be stable. The order of the nodes with the same
priority must be fixed (LIFO or FIFO). This property avoids some anomalies of speed-up.
Then, several PQ which are not a heap structure have been proposed. We can cite the

2Jones in [20] called it Implicit-heap.
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Parallel and Distributed BEB/A* Algorithms 7

funnels [30, 6] (table and tree) and the different Splay-trees [47, 20]

The funnel data structures have been developed by Mans and Roucairol in 1990 [30] for
a best-first B&B implementation. However, they can be used in a lot of other applications.
The B&B algorithms only need a small bounded interval of priority. The size of the interval
is denoted by 5. Initially S is equal to ub—1b (ub is the cost of the best known solution and
Ib is the evaluation of the problem). During the execution of the algorithm, /b increases
and wub decreases, then S decreases until it reaches 0. Then, there is a very simple way
to achieve an efficient representation for the PQ. The idea is to use an array of FIFO of
size S, where each FIFQ j of the array is associated to a possible priority®. The serial
experimental results show that the funnel table is the most efficient priority queue. Our
partial locking boolean protocol can not be used to make concurrent the access to the
funnel table, because it is not a tree data structure. All details about the funnel table can
be found in [30, 6]. The funnel tree uses a complementary binary tree with S external
nodes, where S is the smallest power of 2 which is greater than ub—[b. Each internal node
of the tree has a counter which represents the number of subproblems being contained
in the FIFOs below it. This tree is used to drive the Delete M tn operation to the FIFO
containing the best nodes. The complexity of operation is O(log(5)). The funnel tree
operations are made concurrent using our partial locking boolean protocol.

The Splay-trees initially are self-adjusting binary search tree. Jones in [20] shows that
Splay-trees could be used as efficient priority queues. There exist several versions of serial
Splay-tree data structures depending on the Splay operation : Splay, Semi-Splay, Simple-
Semi-Splay. Fach of them has a Top-Down and a Bottom-Up version. These different
versions of Splay-trees support search operation on any priority. Then, we create new
versions of Splay-trees (called Single) where each tree node is associated with a fixed
priority value. We apply our partial locking boolean protocol to the Top-Down versions
of the Semi-Splay, the Simple-Semi-Splay, Single-Semi-Splay and the Single-Simple-Semi-
Splay.

The funnels and Splay-trees support efficient DeleteGreater operations and have the
stability property.

The figure 4 recapitulates the complexity and the properties of each priority queues.

PQ Insert DeleteMin | DeleteGreater | Perf | Stab
Funnel-Table O(1) O(1) O(1) 1 Y
Splay O(log n) | O(log n) O(log n) 2 Y
Single-Splay || O(log S) | O(log S) O(log S) 2 Y
Funnel-Tree || O(log S) | O(log S) O(log S) 3 N
Skew-heap O(log n) | O(log n) O(n) 3 N
D-heap O(log n) | O(log n) O(n) 4 N

Figure 4: Summarizing of all priority queues.

?We make the assumption that priority value are integer.
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2.4.1 Experimental results

We have tested these data structures on a best-first B&B algorithm solving the Quadratic
Assignment Problem. The Quadratic Assignment Problem (QAP) is a combinatorial opti-
mization problem introduced by Koopmans and Beckman, in 1957, [23]. It has numerous
and various applications, such as location problems, VLSI design [36], architecture design
[14],...

The objective of QAP is to assign n units to n sites in order to minimize the quadratic
cost of this assignment, which depends both on the distances between the sites and on
the flows between the units. We use the algorithm of Mautor and Roucairol [32]. Their
algorithm uses the depth-first strategy, we modified it to use the best-first strategy.

500 | | | | | | |
Skew Heap <>—
450 - Single-Semi-Splay —+—
Semi-Splay 85—
400 - Simple-Semi-Splay x<— _|
Single-Simple-Semi-Splay &—
350 L Funnel-Tree -*— _|
Funnel-Table —=—
300 - -
Time250 |- _
200 -
150 -
100 -
50 | .
0 ! ! ! ! ! ! !
0 2 4 6 8 10 12 14 16

Number of processors
Figure 5: Time results on KSR1 machine solving the nugent 15 problem

Figure 5 shows the results obtained on a KSR1 machine with virtual shared memory.
The programs solve the nugent15 problem which was obtained from QAP Library. We
can see that the Splay-trees and the funnels PQ are most efficient than the Skew-heap
until 6 processors. That confirms the theoretical complexity, and that the heap is not a
good PQ representation for the best-first B&B. The single Splay-trees seem to be more
efficient than the non single. The speed-up obtained is also very good until this limits.
With more than 6 processors, the time does not decrease any more and the time of the
different PQ) are quite the same. This phenomenon is due to the problem size (96000
nodes are evaluated with the nugent15). If the size of the problem is small, the number of
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Parallel and Distributed BEB/A* Algorithms 9

nodes in the data structure is small, then the depth of the priority queue is small. Now,
the number of simultaneous accesses depends on the depth of PQ. Thus, the speed-up is
limited by the size of the problem. We began to test our program with bigger problem
(nugent 16) to verify this conclusion. However, the time obtained with 6 processors is very
good according to the machine and the problem.

2.5 Concurrent Treap for parallel A*

In this section, we present an application of the partial locking protocol (cf. section2.1) on
a double criteria data structure called treap. This data structure is particularly suitable for
the implementation of parallel A* algorithm because there is no cross-referencing between
two data structures as we will see later. Therefore, in the data structure management we
save memory space and avoid deadlock problems.

2.5.1 The A* algorithm

The space of potential solutions of a problem is generally defined in Artificial Intelligence
in terms of state space. A state space is defined by :

1. an initial description of the problem called initial state,
2. a set of operators that transform one state into another,

3. a termination criterion which is defined by the properties that the solutions or the
set of goal states must satisfy.

Generally, the state space is represented by a graph G = (F, V), where F is a set of edges
labelled by the operators and the costs of transformation, and V' a set of nodes/states. To
find an optimal solution of a problem is equivalent to exhibit a least cost path from the
initial state to a goal state in the associated graph. The A* algorithm [35, 37] is generally
used to find out such an optimal path.

On the theoretical level, the A* algorithm is a special case of the B&B paradigm. Like
the B&B algorithm with the best-first strategy [34], an evaluation function f = g+ h
is defined to give a priority between nodes. Thus, useless parts of the graph could be
discarded and the combinatorial explosion reduced. The g function gives the cost of the
path from the initial state to the current state and the h heuristic function estimates the
cost of the path from the current state to a goal state.

When the A* algorithm is used to do a tree search on the state graph, it is similar to a
best-first B&B algorithm. However, the A* algorithm is more difficult to deal with when
it makes a graph search. In a graph search, a state could be reached by several paths with
different costs. Therefore, a comparison mechanism must be added to find out whether a
state is already explored or not and thus avoiding redundant work. Afterwards, we study
a suitable data structure for the A* algorithm in graph search.

From an algorithmic point of view, the A* algorithm manages two lists, named OPEN
and CLOSED. The OPEN list contains the states to be explored in the increasing order of
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their priorities (f-values), while the CLOSED keeps the states already explored without
priority order. The basic operations to access the OPEN list O are:

o Search(O, state) finds the node z in O such that z.state = state;

o Insert(O,z) adds the node z in O but z.state must be unique in O;
let y be a node already in O such that y.state = z.state,

— if y.priorily < x.priority, x is inserted, y is removed,

— if z.priority < y.priority, x is not inserted;
o DeleteMin(O) selects and removes the node z in O with the highest priority;
o Delete(O, state) removes the node 2 from O such that z.state = state.
For the CLOSED list C, only three operations are necessary :
o Search(C,state) finds the node z in C' such that z.state = state;
o Insert(C,z) adds the node z in C;

o Delete(C, state) removes the node = from C' such that z.state = state.

2.5.2 Towards a double criteria data structure

A simplest way to parallelize the A* algorithm, in the shared memory model, is to let all
available processors work on one of the current best state in the OPEN list, following an
asynchronous concurrent scheme. Each processor gets work from the global OPEN list.
This scheme has the advantage that it provides small search overheads, because global
information is available for all processors [25] via the OPEN list. This scheme is also
named centralized scheme. The main difficulty in this scheme is the management of the
OPEN list in a concurrent environment.

Several parallelizations of the A* algorithm have been proposed for tree search, just
like the best-first B&B algorithm (see [18] for a large survey). But at our best knowledge,
there are only a few specific parallel implementations of the A* algorithm [25, 8]. The
reason is that the A* algorithm seems to be difficult to parallelize [39]. The only work to
do in parallel in A* is the management of OPEN and CLOSED global lists. Furthermore,
no suitable concurrent data structures for the OPEN and CLOSED lists have been pro-
posed for parallel formulations in the literature.

Priority queues [1, 44] are generally used until now and may be suitable for the
DeleteMin operation according to the priority criterion (cf. section 2.4). But, they are
completely inefficient for the Search operation with the state criterion. Other data struc-
tures such as hash tables, AVL-trees [1], Splay-trees [13, 47], etc, are efficient for the
Search operation but not for DeleteMin. There were no data structures with both opera-
tions working on each criterion. This is the reason why the data structure used for OPEN
is usually a combination of a priority queue (heap) and a hash table, and the one for
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CLOSED is a hash table. The hash table is relatively easy to implement and the access
can be concurrent without any problem. In contrast, concurrent access to a priority queue
is not simple to achieve as we have seen in section 2.1.

Furthermore, the parallelism increases some specific problems as synchronization over-
heads, because operations have to be done in an exclusive manner. The combination of
two data structures for the OPEN list also implies cross-references and thus deadlock
problems and memory space overhead.

Thus, we propose a new data structure called concurrent treap which combines the
two criteria (the priority for DeleteMin and the state for Search) into one structure. This
suppresses cross-references and limits synchronization overheads.

In the following sections we discuss more precisely this data structure and how imple-
ment concurrent access to it.

2.5.3 Treap data structure

Serial reap was introduced by Aragon and Seidel [2]. The authors use it to implement a
new form of binary search trees : Randomized Search Trees. McCreight [33] uses it also
to implement a multi-dimensional searching. He calls it Priority Search Trees®.

Let O be a set of n nodes, a key and a priority are associated to each node. The keys
are drawn from some totally ordered universe, and so are the priorities. The two ordered
universes need not to be the same.

A treap for O is a rooted binary tree with a node set O that is arranged in In-order
with respect to the keys and in Heap-order with respect to the priorities.

In-order means that for any node x in the tree y.key < z.key for all y in the left
subtree of z and z.key < y.key for all y in the right subtree of z. Heap-order means that
for any node z with parent z the relation z.priority < z.priority holds.

It is easy to see that for any set X such a treap exists. The node with the largest
priority is in the root node.

The A* algorithm uses an OPEN list where a key (a state of the problem) and a
priority (f-value of this state) are associated to each node. Thus, we can use a treap to
implement the OPEN list of the A* algorithm.

Let T be the treap storing the node set O. The operations presented in the literature
that could be applied on T are Search, Insert and Delete. We add one more operation
DeleteMin and modify the Insert operation to conform to the basic operations of A* (cf.
section 2.5.1).

Given the key of z, a node z € O can be easily accessed in T by using the usual search
tree algorithm.

*Vuillemin introduced the same data structure in 1980 and called it Cartesian Tree. The term treap
was first used for a different data structure by McCreight, who later abandoned it in favor of the more
commonly used priority search tree [33].
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As several binary search trees [43, 47, 13, 26, 6], the update operations use a basic
operation called rotation (figure 6).

Figure 6: Rotation used to reorganized the treap.

In the literature, the I'nsert operation works as follows. First, using the key of z, it
attaches x to T in the appropriate leaf position. At this point, the keys of all the nodes of
the modified tree are in In-order. To re-establish Heap-order, it simply rotates z as long
as its parent has a smaller priority.

To keep the properties of the Insert operation as defined above, the Insert algorithm
can not be used in this form. We design a new algorithm which inserts a node z in 7.

Using the key of z, we search the position, with respect to the In-order and to the
Heap-order. That is, we use the Search algorithm but it stops when :

e a node y is found such that y.priority < z.priority (cases (1) and (2) of Figure 7),
e a node z is found such that z.key = z.key (case (3) of Figure 7).

If such a node z is found, the algorithm ends because it is guaranteed that z.prorily <
z.priority. Thus & must not be inserted in 7. On the other hand, if such a node y is
found, the node z is inserted at this position (between y and the father of y).

Let S BT, be the subtree of T' rooted in z. At this point, the priorities of all the nodes
of the modified tree (SBT;) are in Heap-order. To re-establish the In-order we use the
splay operation [43, 47]. SBT, is split in a Left subtree and a Right subtree. The left
subtree (resp: right) contains all the nodes of SBT, with the key smaller (resp: larger)
than the key associated with z. Finally, the left subtree and the right subtree are attached
to z. Then, SBT, and T are in In-order and in Heap-order.

If we find a node y such that y.key = z.key, during the splay operation, the node y, is
deleted (the y priority will be smaller then the z priority).

The DeleteMin and Delete operations are not very different. The DeleteMin opera-
tion removes the root of T, and the Delete operation removes the root x of a subtree of
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Figure 7: Insertion algorithm.

T such that z.key = key. Thus, first we search for such a node z and then we apply a
Delete Min on the subtree rooted in z.

The DeleteMin operation is achieved as follows. Let 2 be the root of the treap T. We
rotate z down until it becomes a leaf (where the decision to rotate left or right is dictated
by the relative order of the priorities of the children of z), and finally clip away the leaf.

Each node contains a key and a priority. Thus, the set occupies O(n) words of storage.
The time complexity of each operation is proportional to the depth of the treap T. If
the key and the priority associated with a node are in the same order, the structure is a
linear list. However, if the priorities are independent and identically distributed continuous
random variables, the depth of the treap is O(log(n)) (the treap is a balanced binary tree).
Thus, the expected time to perform one of these operations, is still O(log(n)) (n number
of nodes in 77) [33].

To get a balanced binary treap in an implementation for the A* algorithm, the problem
is reversed. The priority order can not be modified. However, we can find an arbitrary
bijective function to encode the ordered set of keys into a new set of randomized ordered
keys. The priority order and the key order are then different.

To allow concurrent access to the treap, we use partial locking boolean protocol des-
cribed in section 2.2.
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2.5.4 Experimental results
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Figure 8: Results on KSR1 with some 15 puzzle games.

The implementation of this algorithm has been done on the shared memory architecture
KSR1 [7].

Applied on some relatively small instances of the 15 puzzle problem proposed by
Korf [24], we have compared these results (figure 2.5.4) with those obtained under the
same experimental conditions, but with a combination of two data structures (a Skew-
heap with a Splay-tree) for the OPEN list. The release with the combination of two data
structures gives no speed-up. We have also compared with the results obtained by Rao,
Kumar and Ramesh [39]. On the 15 puzzle game, their speedup reached a limit with
less processors. Moreover, their implementation was done on a Sequent Balance 21000
which had a physical shared memory, the communication speed over computation speed
ratio is greater on their machine than on the KSR1. Our data structures would then be
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more efficient on the Sequent than on the KSR1. Therefore, we could already claim that
the concurrent treap surpasses all the other data structures proposed for the centralized
parallelization of A*,

Another on-going study is to apply this algorithm on other discrete optimization prob-
lems such as allocating processes on processors in order to dwindle communication cost.

3 Load balancing strategies

Load balancing is an important factor in parallel processing to dwindle processor idleness
and optimize performance, especially in the DMM. With B&B algorithms, nodes are
classified in function of their priorities into several queues, and solutions may be reached
more efficiently if priorities given to nodes by queues are taken into consideration during
the parallel execution of the algorithm.

Existing load balancing schemes use partial cost to balance nodes generated by best-
first B&B distributed algorithms.

In this section, we show that using partial cost might lead to a big accumulation of
high priority tasks on a few processors, while the other processors continue to work with
low priority nodes. In such a situation, an other notion of priority is needed. It must take
into account not only the partial cost of nodes but also their capacity to generate other
nodes. Qur aim is to develop an efficient load strategy that uses priority of tasks.

We have developed three load balancing strategies with this new notion of priority :
an one-by-one and two versions of partial distribution strategies.

Our new notion of priority is applicable to various applications among which those
using best-first B&B algorithms and those from the area of Operational Research. We
have chosen to evaluate the strategy with a B&B solution of the Vertex Cover Problem
(VCP).

The implementation of the B&B algorithm was carried out in a network of hetero-
geneous Unix workstations used as a single parallel computer through a Parallel Virtual
Machine (PVM) software system. All experiments in this section have been done with 3

SUN workstations (1 SPARCstation ELC and 2 SPARCstations IPC).

3.1 The PVM environment

PVM [16] is a software system that permits a network of heterogeneous Unix computers
(workstations in our case) to be used as a single large parallel computer (named the virtual
machine). Thus, larger computational problems may be solved by using the aggregate
power of many computers.

PVM supplies functions to automatically start up tasks on the virtual machine and
allows tasks to communicate and synchronize with each other. PVM may start up more
than one process on any processor in the PVM virtual machine. This affectation is done
by calling the routine pvm_spawn(). A task is for us a Unix process.

Applications, such as B&B algorithms, can be parallelized by using message-passing
constructs common to the most distributed-memory computers. By sending and receiving
messages, multiple tasks of an application can cooperate to solve a problem in parallel.
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Like that, PVM provides the flexibility to develop parallel applications using its com-
munication facilities. The interested user can refer to [16, 46] for more details about

PVM.

3.2 Distributed best-first B&B
We use our distributed version of best-fist B&B to solve the VCP.

3.2.1 B&B for VCP

For an undirected graph G = (V, E) a subset U C V of nodes is called a vertex cover if
every edge is covered by a node from U, i.e. {u,v} € E implies u € U or v € U. This
problem aims to find the vertex cover with minimal cardinality.

All nodes are coded as tuples (SC, pc) where SC' is a sub-cover (a set of nodes that
cover some edges of the graph () and pe is the number of nodes in SC'; from now on, we
call the partial cost of the treated node (lower bound on the sub-cover cardinality).

Our B&B algorithm generates two new nodes (5C1, pey), (SC2, pez) from a given node
(5C,pc). The generation of SCy and SCy by the branch procedure is done by searching
for a node v with maximal degree in the rest-graph (part of the original graph that has

not yet been covered). SC; = SCU{v}, SCy; = SCU{w € E} (for more details, see [29]).

3.2.2 Implementation

We have implemented the distributed B&B scheme of [29] with different strategies of
load balancing as we will see later. Qur aim is to develop an efficient load balancing
strategy that uses priority of nodes. Therefore, the chosen algorithm is sufficient for our
purpose (for more information about B&B algorithms and their parallelizations, refer
to [40, 27, 17, 48, 50]).

The chosen B&B algorithm uses a distributed queue organization to temporarily stock
the generated nodes. We chose to execute only one process per processor in the PVM
machine. Each processor has a local queue in its local memory and executes the sequential
B&B algorithm using this queue.

In the best-first search strategy, nodes are classified in many queues in decreasing order
of their priority. The evaluation of a node is given by its partial cost.

With the distributed B&B scheme, the communication plays an essential role in deter-
mining the performance especially when we use multi-user machines (like workstations).
To improve performance, we must try to reduce the number of exchanged messages during
the execution, as we will show in subsequent sections.

3.3 Motivations and justifications of our approach

We have developed three load balancing strategies, an one-by-one and two versions of par-
tial distribution, to understand load distribution between the different slaves. We started
by testing all of these strategies with the generated nodes of each processor classified into
a local queue according to their associated partial cost.
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In the one-by-one load balancing strategy, each slave needing work receives only one
node from the beginning of the queue of another loaded processor (figure 9 shows an
execution for a graph of 75 vertices with average degree of 50%).

Number of subproblems

1000 -
900 |-
800 [
700
600
500
400
300
200
100 -

[o]

2
Number of slave

40 50
Time (in sec.) 60 70

80 1

Figure 9: The load distribution by “on_by_one” load balancing strategy.

In the partial distribution strategies, the number of tasks received by a processor
requiring work is variable. The number of nodes sent from the maximum loaded slave to
the one requiring work is equal to the minimum of the average load and the local load
minus the average load.

Slave O Slave 1 Slave 2 Slave 3 Slave 4

Local load 10 (0] 8 17 19
Average load = 54/5 # 10 tasks per slave.
Deviation (6] -10 -2 5 9

min. deviation max. deviation

\/

Send min(Average load, (local load - average load))

Figure 10: An example of application of partial distribution load balancing strategy, where
slave_1 asks the other slaves for work.

The first version of partial distribution load balancing strategy performs load balancing
by sending nodes from the beginning of the local queue whereas the second one sends nodes
from the end of the queue.
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3.4 Results with classical priority notion

We have noticed that we get a very bad distribution of load in the case of the one-by-one
strategy; at the beginning all slaves have the same quantity of work but after that one of
them (the second slave) becomes strongly loaded although this slave is not the one where
the root node in the B&B tree has been assigned.

We can explain this situation by the fact that some nodes potentially generate more
work than the others in the search space.

We have noticed also that with version 2 of the partial distribution load balancing
strategy, the loads of different slaves are globally more equally distributed comparing to
the version 1, and that with version 2 load balancing operations occur less frequently than
with version 1. This proves that the partial cost used as a criterion to classify nodes
within the queues is not the only parameter to apply to get a good load balancing strategy.

The above results indicate that it is important to take into consideration the potential
work that nodes can generate.

Any efficient load balancing strategy should ensure, as much as possible, that the
processing of nodes occurs in the global order of their partial cost and should take into
consideration their associated potential work. Consequently, we need to define a priority
notion between different nodes which takes into consideration these two parameters.

3.5 A new notion of priority: potentiality

A node generated during the execution of B&B algorithm has two associated values: its
cost and an indicator representing the potential work it can generate successively to reach
an optimal solution (see figure 11). These two values depend on the treated problem. In
the VCP for example, the first one is equal to the partial cost, and the other value will be
taken equal to the number of edges in the rest-graph.

Each generated node is characterized by its position into the indicated region in figure
7. The execution of B&B algorithm starts from Start point (where we have the root of
B&B tree) and terminates at End point (the searched optimal solution).

The potentiality of a node sp is defined as follows :

Définition 2
Potentiality(sp) = (dist(sp, End), potential work, ancestors_nb).
Where :
sp s the considered node,
dist(sp, End), the distance between the position of sp and the End point,
potential _work, the value of the associated potential work of sp,

ancestors_nb, the number of the ancestors of sp.
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In this definition of priority, we introduced a third parameter, the number of ancestors,
to select between nodes that have the same distance from the End point and the same
quantity of potential work. We chose to privilege those having the less number of ancestors.

In practice, the value of the optimal solution is not known before the end of the
execution, but usually we start execution with an upper bound that maximizes this value.

In the VCP, for example, we can use the number of nodes of a given graph as an End
point and we compute distances relatively to it.

Generated nodes are classified into the different queues during the execution of B&B
distributed algorithm as a function of their priorities. A node sp; has more priority than
another node spy, if it verifies one of the following rules:

dist(spr, End) < dist(spa, E'nd) (1)

(dist(sp1, End) == dist(spy, End))&&
(sp1.potential work > spy.potential work) (2)

(dist(spr, End) == dist(spz, End))&&
(sp1.potential work == spy.potential_work)&&

(sp1.ancestors_nb < spy.ancestors_nb) (3)

Execution Region of B& B algorithm
Start \{
= |/ < \\\\
S ~ 1
= N S Sp_
= N . :
S e N
B < S e
k= ~.____"7 sp 2. S
w© The ancestors of sp_2 RN
SCer
1y
associated cost End

Optimal Solution

Figure 11: Definition of priority of two nodes sp; and sps.

3.6 Load balancing strategies with potentiality

This notion has lead to improvements such as a better load distribution among the different
processors in the PVM machine, and a reduction of the number of exchanged messages

during the execution.
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3.6.1 Influence on load distribution

For the one-by-one load balancing strategy, we remark that at the beginning of the ex-
ecution, the assigned nodes have more priority than the others so that the number of
load balancing operations is lower than its number without using our priority notion. At
the end, we have a lot of load balancing operations when the priority of nodes begins to
decrease (figure 12 with the same graph as figure 9).

150 -
Number of subproblems

100 -

50

1
20 Number of slave

Time (in sec.) 40 50

Figure 12: The load distribution by “one_by_one” strategy using the notion of potentiality.

The load is equally distributed with partial distribution load balancing strategies (ver-
sion 1 and 2).

We can see also that the load of the most loaded slave does not exceed the 110 nodes
while it was around 450 nodes (with version 1) and 600 nodes (with version 2), without
using our potentiality notion.

3.6.2 Influence on communication costs

To show the importance of the communication factor, we have chosen to study the ex-
changed messages between the master and all of its slaves.

For the one-by-one strategy, we have remarked that there is a clear difference in the
number of sent and received messages with and without using the potentiality notion.
This number is lesser in the first case (figure 13).

For the two versions of partial distribution load balancing strategy, we have remarked
that the number of sent and received messages takes an asymptotic value. In version 1,
the number of exchanged messages remains approximately the same, while in version 2
the utilization of our priority notion lightly increases the number of exchanged messages.
In fact, with this version, when an unloaded slave takes nodes from the end of the queue
of a loaded slave, this unloaded slave executes the work and rapidly becomes unloaded.
This light augmentation of the number of load balancing operations shows that nodes are
really classified in queues as a function of their priority of execution.
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Figure 13: The sent and received messages using “one_by_one” strategy with and without
the notion of potentiality.

4 Concluding remarks & perspectives

For the SMM, we have proposed a set of concurrent data structures suitable for Tree/Graph
search algorithms such as best-first B&B and A* algorithms. Parallel best-first B&B needs
efficient concurrent PQ. Theoritically, the Funnel and the Splay-tree priority queues are
more efficient than the classical Heap or Skew-Heap. The experimental results, obtained
on the KSR1 machine with a parallel B&B solving the Quadratic Assignement Problem,
seem to confirm this fact. The problem of the partial locking method is that the number
of simultaneous access is limited by the depth of the tree. But as much as we know, if we
want to keep the strict best first strategy and to allow asynchronous access, it seems that
the partial locking method is the only solution.

Our contribution is an optimized version of the partial locking protocol in the case of
tree structures called the partial locking boolean protocol. We have reduced the number
of mutual exclusion primitive calls. Thus, the overhead is reduced. We plan to test our
concurrent priority queues to solve bigger instances of the QAP and other problems such
as TSP, Graph coloring.

In this model, we have also presented a double criteria data structure: the concurrent
treap, with the operations Delete Min and Search. This data structure allows us to store
a set of items containing a pair of key and priority. We can apply on the same data
structure the basic operations of binary search trees and those of priority queues. We
have implemented concurrent access for these operations with the technique of partial
locking.

To have basic operations of binary search trees and priority queues applied to the same
data structure is essential to implement efficiently the A* algorithm. This data structure
could be also used in other applications in which the management of two criteria is needed.

Results obtained on the KSR1 and applied to some 15 puzzle games show that the
concurrent treap is efficient for a group of ten processors. The speedups presented are
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better than those in [39] with the same parallel scheme.

For the DMM, we analyzed the behavior of three load balancing strategies and proved
the necessity to have a new priority order between the different executed nodes in a B&B
application.

We introduced the notion of potentiality based upon an estimation of the capacity of
a node to generate work, and on an evaluation of the distance between the node and the
optimal solution. We believe that this kind of potentiality can be applied to any B&B
application where nodes are characterized by the previous parameters.

Furthermore, we studied the impact of this notion on the behavior of load balancing
strategies for distributed best-first B&B applications. These strategies show that after
taking into consideration the potentiality of nodes, their selection to participate to an op-
eration of load balancing is not the same at the beginning and at the end of the execution.

All these load balancing strategies are developed in a centralized manner (there is one
master processor that controls the other ones in the PVM machine). Future works will
consist of investigating the effect of the use of our potentiality notion when several masters
instead of only one (like the strategies in [42, 41]) are used.
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