
MARP: A Multi-Agent Routing Protocol for
Mobile Wireless Ad Hoc Networks

ROMIT ROY CHOUDHURY croy@uiuc.edu

Dept. of Electrical and Computer Engineering, University of Illinois at Urbana Champaign, USA

KRISHNA PAUL krishna@it.iitb.ac.in

School of Information Technology, Indian Institute of Technology, Bombay

SOMPRAKASH BANDYOPADHYAY somprakash@iimcal.ac.in

Dept. of Management Information Systems, Indian Institute of Management, Calcutta

Abstract. Supporting mobility in a multi hop wireless environment like the MANET still remains a point of

research, especially in the context of time-constrained applications. The incapacity of ad hoc networks to offer

services of the likes of static or infrastructured networks may be attributed to two major reasons. One,

unpredictable mobility of hosts cause location-transparent-packet-delivery to be implemented only at the expense

of large control overhead. Two, the lack of central control causes connection management and scalability to be

major problems in the multi hop environment. In this paper we propose an efficient agent based routing

mechanism that not only incurs minimal overhead, but also lays the foundation for additional functionalities as

network management and real time applications. In other words, we show that the agent framework makes the

MANET robust and survivable under stringent system constraints.

Keywords: mobile agents, ad hoc networks, topology awareness.

1. Introduction

Ad hoc networks [3–5] are envisioned as infrastructure-less networks where each node is

a mobile router, equipped with a wireless transceiver. A message transfer in an ad hoc

network environment could either take place between two nodes that are within the

transmission range of each other or between nodes that are indirectly connected via

multiple hops through some intermediate nodes. This implies that the nodes, which act as

intermediate nodes in the data transfer process, must be willing to participate in

communication until successful message transfer has been accomplished. The failure of

such an event would amount to messages getting lost or message transfer getting

interrupted. The dynamics of wireless ad hoc networks, as a consequence of mobility

and disconnection of mobile hosts, pose a number of problems in designing proper routing

schemes for effective communication [3, 7–9]. To maintain a session between two nodes

for a long span of time, the caller node needs to be aware of the frequently changing route

status, and subsequently, of newly available routes. This points to a form of topology

awareness[18] that either should be incorporated proactively or on-demand.

In the first part of our work, we have devised an agent-based framework with its

associated protocols and mechanisms. The agents in the framework move from one node

to another, giving and taking relevant information, with the primary objective of making

Autonomous Agents and Multi-Agent Systems, 8, 47–68, 2004
# 2004 Kluwer Academic Publishers. Manufactured in The Netherlands.



all nodes in the system, topology-aware. This topology awareness is used in the context

of establishing and maintaining a communication link between two nodes. Put differently,

a node periodically receives a refreshed view of the network, enabling it to constantly

evaluate network conditions. This periodically-updated network information may be used

as a knowledge-base, based on which intelligent decisions like adaptive route selection,

etc. could be made. The behavior of the knowledge-base (past and present) could be

analysed and extrapolated to predict network behavior in the near future. For example, a

successful prediction may result in forseeing route errors. Doing the needful in such

scenarios could improve network performance significantly. More importantly, since the

knowledge-base is maintained in the local cache of each node, decision-making could be

autonomous and distributed. Thus it seems that a foundation could be laid for the network

to offer services of the likes of static networks. In the second part of our work we study

the survivability issues of the Ad Hoc network under severe constraints and the advan-

tages of incorporating the agent system against conventional non-agent systems. In our

results we see that, although proactive agent navigation incurs network overhead, the

amortized cost of supporting agents proves to be beneficial when considering its numerous

advantages.

2. Related work

In this paper we propose to introduce an agent-based system into the network architecture.

Although there has been substantial work on mobile software agents, its applicability

in wireless ad hoc environments has received limited research attention. Protocols in ad

hoc networks have mostly comprised of non-agent systems. In this section we discuss

some of the earlier works in both agent and non agent systems in ad hoc environments.

The conventional proactive routing protocols that require to know the topology of the

entire network is not suitable in such a highly dynamic environment [9], since topology

updates need to be broadcast frequently throughout the network. These update-packets

consume a large portion of the network bandwidth, even when network traffic is low.

Using the Multi-Agent Routing Protocol (MARP), we show how the overhead associated

with routing is minimal, and the possibility of adaptively controlling this overhead

according to traffic conditions.

In contrast to a proactive mechanism, a demand-based, reactive route discovery

procedure generates a large volume of bursty control traffic. The actual data transmission

is also delayed until the route is determined [6]. In addition, route rediscovery (in the event

of route errors) consume a considerable amount of time; resulting in violation of ‘‘delay

constraints’’ in packet delivery. MARP in comparison, exhibits a much stable behavior,

with negligible latency in reacting to route failures. In summary, the proactive and reactive

routing mechanisms perform well only under certain traffic conditions. For example,

the DSR routing protocol might perform route rediscovery too often during a real time

communication – consuming useful data bandwidth to transmit route requests, route

replies and route errors. MARP, as we show later, do not suffer similar problems and may

thus be suitable over a larger operating region.

In [6], a preemptive route discovery has been proposed in order to discover best routes

dynamically and then adaptively use them for continuing communication. However,

ROY CHOUDHURY, PAUL AND BANDYOPADHYAY48



the route-discovery mechanism recurringly floods control packets when a route is stable.

This causes unproductive traffic in the environment and may thus increase end-to-end

delay for communication. Also, loss of control packets would mean the unavailability of

stable routes and may interrupt the ongoing process of communication. In [10], a reactive

route discovery has been performed in which the caller node broadcasts a control packet at

the event of a communication request. In a large system the congestion increases

exponentially during this procedure and may prove to be detrimental in a high-traffic

network. Re-broadcasting control packets in the event of losses, aggravates the situation

further. In our proposed routing protocol, the network enjoys the ability to perform a form

of preemptive routing while maintaining low control overhead.

There are proposals to reduce control traffic generated in reactive protocols. For

example, the Location-Aided Routing (LAR) Protocol [11] suggest approaches to decrease

overhead of route discovery by utilizing location information for mobile hosts. But these

proposals assume the support of Global Positioning Systems (GPS) for information on the

geographical location of mobile hosts. Additionally, the LAR protocol assumes that the

correct location information about the intended destination node is available to the caller

node before it determines the expected zone. In contrast, our agent-based system functions

without the support of GPS.

Agent based approaches for information management and routing have been evaluated

in [18, 19, 21]. Studies in these papers show that using the agent paradigm in a wireless

network may be significantly beneficial. However, most of the approaches focus on the

distribution and collection of information in static networks. In this paper we investigate

agent application in highly mobile ad hoc networks. In addition, the agent based system

we propose, provides room for generic and adaptive decision-making based on network

conditions. As an example, an agency may reduce its agility when the network traffic is

observed to be low, or when battery power needs to be conserved.

3. Problem formulation

Conventional approaches towards issues related to mobile multi-hop environments have

suffered major drawbacks in the context of supporting data communication:

1. Extensive exchange of control packets (mostly in proactive mechanisms) to contin-

uously track mobile hosts are often unnecessary and add considerably to the load on the

network.

2. Frequent route errors, and equally frequent route re-discoveries (in reactive techniques),

violate delay constraints in real time data communication. Route re-discoveries also

involve network flooding, implying congestion.

3. Different types of control packets, each catering to only the instantaneous needs of

individual hosts have caused sub-optimal consumption of the network bandwidth.

Some new notions of opportunistic routing and piggybacking have attempted to resolve

this problem.

In short, an essential crisis in MANETs lie in the difficulty of supporting distributed

multihop communication (often requiring to be uninterrupted and delay constrained) over

MARP: A MULTI-AGENT ROUTING PROTOCOL 49



a dynamic and unpredictable topology, while keeping the control traffic below reasonable

bounds.

The motivation for this paper is drawn from the above problem statement. We have

addressed the crisis of carrying out a communication, uninterrupted, unto its accomplish-

ment. Of course the agent protocol adaptively ensures low control traffic and almost

eliminates the delay involved in switching between routes in the event of route errors. In

other words, through our agent protocol, a node is always aware of multiple paths in the

spatial domain. In addition, we also suggest extensions to this agent-based protocol to

incorporate features of real time support and load balancing.

Thus on a whole we show that the agent based framework performs better in com-

parison to other protocols when it comes to a question of connectivity, latency, congestion

and network adaptation. In section IV we define some of the terms that we use in this

paper. Section V discusses the agent framework and the agent navigation strategies.

Section VI describes the information exchange and location prediction mechanisms. In

Section VII, we discuss the simulation model and explain the potential advantages of such

a model. Section VIII discusses issues related to data communication using MARP and

Section IX presents a comparative performance analysis of agent and non agent systems.

Section X discusses some of the issues and insights from our simulations. We summarize

the paper in Section XI, with a brief conclusion.

4. Preliminaries and relevant terms

4.1. Affinity and stability

Affinity anm, associated with a link lnm, is a prediction about the life span of a link between

nodes n and m [10]. For simplicity, we assume bidirectional links, implying anm to be equal

to amn. Also, let the transmission range be R. We would later point out how this assumption

could be relaxed without affecting the correctness of our protocol. To find out the affinity

anm, node n sends a periodic beacon and node m samples the strength of signals received

from node n, periodically. Since the received signal strength, S, varies inversely with the

square of the distance, d, between the transmitter and the receiver (in open ground), it may

be possible to conservatively predict d from S. If M is the average velocity of the nodes,

the worst-case affinity anm at time t is (R-d)/M, assuming that at time t, the node m has

started moving away from n with average velocity M. For example, If the transmission

range is 300 meters, the average velocity is 10m/sec and current distance between n and m

is 100 meters, the life-span of connectivity between n and m (worst-case) is 20 seconds,

assuming that the node m is moving away from n in a direction obtained by joining n and m.

It is well known that the lifetime of a path is equal to the lifetime of the weakest link in

that path. Thus, given a path p ¼ (s, i, j, k . . . l, d), the stability of p [10] at a given instant

of time may be defined as the lowest-affinity link contained in that path at that instant of

time. Formally, stability of path p, � p, between two nodes s and d, is as follows:

� p ¼ min ½asi; aij; ajk . . . ald �

However, the notion of stability of a path is dynamic and context-sensitive. As indicated

earlier, stability of a path is the life-span of that path, from a given instant of time.

ROY CHOUDHURY, PAUL AND BANDYOPADHYAY50



However, stability must be viewed in the context of providing a service. A path between

nodes s and d may be considered stable if the lifespan of that path is sufficiently long to

accomplish transfer of a specified volume of data, from s to d. Hence at a particular

instance of time, a path that is stable for a given flow, may be unstable for a different flow

although both flows are between the same sender and destination nodes.

4.2. Recency

One of the aspects that make mobile ad hoc environments significantly different from

static or centralized environments is that topology information gets stale with time, in the

former. This means that any information that a node A receives regarding some other node

B in the mobile network is only partially correct (since there is at least a difference of

propagation delay between the procurement of the information from node B and its

delivery to node A). This implies that any information must thus be recognized with a

degree of correctness, i.e., if node A now has two different information regarding node B,

it must have the capacity to accept only the one which is more correct; to be more precise,

information that is more recent.

In the context of our protocol, let us assume that two agents A1 and A2 arrive at node n,

both of them carrying information about node m which is multi-hop away from node n. In

order to update the topology information at node n about node m, there has to be a

mechanism to find out who carries the most recent information about node m: agent A1 or

agent A2?

To solve this problem, every node in the network maintains a counter that is initialized

to 0 when the network commences. We term this counter as recency token. As we see later,

agents jump form one node to another collecting and distributing network information

to nodes. Now, when an agent has completed its tasks and is about to jump away from a

node, it increments this recency token counter by one and stores the new value against

that node’s ID within its own data structures. Obviously, at any given instance, the

magnitude of the recency token of any node represents the number of times that node was

visited by agents since the commencement of the network. This also implies that if two

agents have a set of data concerning the same node, say node m, then the agent carrying

the higher recency token value of node n has more current information about it. We

discuss the implications of recency tokens in detail, in later sections of this paper.

4.3. Time to migrate (TtM)

An agent visiting a node is not allowed to migrate immediately to another node. An agent

will be forced to stay in a node for a pre-specified period of time, termed as time-to-

migrate (TtM), before migrating to another node. By controlling TtM, the network con-

gestion due to agent traffic can be controlled. For example, if TtM ¼ 100 msec, for a

single-agent system, it implies that the wireless medium will see one agent in every

100 msec. In our simulation, it has been assumed that an agent would take approximately

3 msec. to physically migrate from one node to another. So, in this example, the wireless

medium would be free from agent traffic 97 percent of the time.

On the other hand, reducing the agent traffic (by increasing TtM) reduces the frequency

at which agents may visit network hosts. This may prove to be unsuitable in a highly

MARP: A MULTI-AGENT ROUTING PROTOCOL 51



mobile system where topology changes at a fast pace. The trade off is thus between

congestion and convergence.

4.4. Average connectivity convergence

We have developed a metric, average connectivity convergence, to quantify the deviation

between actual network topology and the network topology perceived by individual nodes

at any instant of time.

Let lanm be the binary link status (0 for disconnectivity and 1 for connectivity) between

nodes n and m as perceived by node a at any instant of time. Let lnm be the actual link

status between node n and m at the same instant. Information about link status lanm is said to

converge at node a, iff lanm ¼ lnm. Thus, connectivity convergence of a link between n and

m at node a, �anm¼ 1, if lanm¼ lnm and 0 otherwise. Connectivity convergence of node a, �a,
for all links in a network of N nodes, is defined as:

�a ¼
P

forallnode�pairs�ijð�aijÞ
N � ðN � 1Þ=2 :

where, N � (N � 1)/2 denotes the total number of node pairs in the network. At a given

time, if �a equals 1.0, it implies that the connectivity information at node a is exactly

the same as the actual network connectivity at that given time. As another example, in

a 10-node network, there are 45 node-pairs and 45 possible link-status. If, at any node

a, 44 link-status’ match (at any instant of time) with the actual link-status’, then

�a ¼ 44/45 ¼ 0.98.

The average connectivity convergence for the network is defined as

�a�g ¼
P

forallnode�kð�kÞ
N

:

4.5. Average link-affinity convergence

Average connectivity convergence quantifies the deviation of actual network topology

with the network topology perceived by individual nodes, in a discrete manner (where link

status is 0 for disconnectivity and 1 for connectivity). However, if we can quantify link

status based on link-affinity, the quantification could be more appropriate in formulating a

metric, which would help us to evaluate the difference between the actual network

topology and the network topology as perceived by individual nodes in a continuous scale.

Let �a
nm be the affinity between node n and m as perceived by node a at any instant of

time and �nm be the actual affinity between node m and n at the same instant. Information

about link status �a
nm is said to converge at node a, iff �a

nm <¼ �nm. As indicated earlier,

affinity is a worst-case prediction about the lifespan of a link. So, if the affinity of a link

between n and m as perceived by a node a is less than actual affinity between n and m,

we accept the perception of node a about the link-affinity between n and m. However, if

�a
nm > �nm, we will deem this as over-estimation of affinity at node a and call the

perception incorrect.

ROY CHOUDHURY, PAUL AND BANDYOPADHYAY52



Thus, link-affinity convergence of link between n and m at node a, �a
nm ¼ 1, if

�a
nm <¼ �nm and 0 otherwise. Link-affinity convergence of node a, �a, for all links in

the network, is thus defined as:

�a ¼
P

forallnode�pairs�ijð�a
ijÞ

N � ðN � 1Þ=2

At some instant of time, if �a ¼ 1.0, it implies that the topology information at node a is

100 percent acceptable, so far as affinity-based prediction mechanism is concerned.

The average link-affinity convergence �a g for the network is thus defined as

�a�g ¼
P

forallnode�kð�kÞ
N

5. Mobile agents

Mobile agents [19, 20] are a novel effective paradigm for distributed applications, and are

particularly attractive in a dynamic network environment involving partially connected

computing elements [1, 2]. The notion of computation mobility against conventional data

mobility governs the underlying philosophy of agencies. Most research examples of the

mobile agent paradigm as reported in the current literature have two general goals:

reduction of network traffic and asynchronous interaction. Some authors have suggested

that agents can be used to implement network management [13, 14] and to deliver network

services [15]. Intensive research on the ‘‘Insect-like Systems’’ has been done over the last

few years. The mobile agent systems have been popularly simulated in close resemblance

to an ant colony [12, 16, 17]. Of particular interest is a technique for indirect inter-agent

communication, called stigmergy, in which agents populate information cache of

nodes, which other agents can use. The technique of overwriting a set of information

with more appropriate information has been popularly called blackboard communication

[16, 22]. Stigmergy serves as a robust mechanism for information sharing. In our

protocol, we have used a multi agent framework that incorporates stigmergy for mutual

interaction. The blackboard form of communication has also been implemented for agent-

node communication.

5.1. Issues in implementing the agent paradigm

Why not have a single agent? The topology traversing could well be performed using a

single agent with a suitably low TtM. However this strategy fails to perform well in

conditions of low transmission range where clusters get formed due to groups of nodes,

moving to some spatially remote region. Quite obviously, since the agent is going to

be in only one of the clusters, the other clusters would have no agents at all in them

although the members belonging to those clusters may be well connected amongst

themselves. The above mentioned issues cause no serious concern in the case of a multi-

agent system. The probability of all the agents being trapped within the same small cluster

is remote.

�

MARP: A MULTI-AGENT ROUTING PROTOCOL 53



The Agent Model

An agent consists of the following three components:

1. The agent identifier id

2. The agent program P

3. The agent briefcase B (containing state variables)

The agent briefcase contains a set of network state variables which act as the memory

of mobile agents. Examples of such state variables may be link affinity, recency value

etc. An agent is capable of sharing the contents of its briefcase with other agents and

nodes. The state variables may be updated if necessary before the agents leave the node.

Further discussions on the agent communication protocols are detailed in subsequent

sections.

The Optimal Agent Population? Intuitively, increase in agent population might seem to

be beneficial to improve convergence. However, quite contrary to our intuition we

observed that convergence does not necessarily improve with increase in the number of

agents. To understand why, we performed a set of simulation experiments in [21]. From

the results we concluded that in increasing the number of agents beyond a certain fraction

of the number of nodes, a greater number of agents tend to rush towards the same set

of nodes. This results in a higher queuing delay for agents and thus the aggregate

performance is no better than relatively fewer agents. It was observed in [21] that the

convergence curve saturates when the number of agents is half the number of nodes in the

network. Figure 1 depicts the variation of average connectivity convergence with increase

in agent population. To ensure this fraction, each host in the network generates a random

integer at the commencement of the network. In our implementation, a host spawns an

agent only if the randomly generated integer is even.

Agent TtM? An important question could be the optimal value of TtM. To answer this

we evaluate the congestion introduced in the system due to variation in TtM. Let us

assume that agents would take t millisecond to physically migrate from one node to

another. Let us assume that our bounded region of ad hoc operation is A sq.mt., our

transmission range R, the agent population P and the Time to migrate T msec. In an

Figure 1. Average Connectivity Convergence against increasing agent population. Graph shows that greater

number of agents does not imply better convergence.

ROY CHOUDHURY, PAUL AND BANDYOPADHYAY54



average case where the topology is evenly distributed over the region A, the number of

areas in which agents could migrate between nodes simultaneously, without mutual

interference, equals A / (� � R2). Now since the nodes are distributed, the agents would

also be found equally distributed in each of these areas in an average case. Thus in any

area the number of agents would equal Pa where, Pa ¼ P � (p � R2)/A.

As each agent migrates at a time gap of T milliseconds and takes only t millisecond to

do so, the medium will be free from agent traffic [(T � t � Pa) �100 / T ] percent of the

time. For example, if the bounded region of operation is 1500 � 1000 sq. m. and R is

250 m, and P and T are 15 and 100 milliseconds respectively for a 30 node network and

t ¼ 3 msec, then Pa ¼ 5.89 approximately and the medium would be free from agent

traffic during 94 percent of the time.

It would be interesting to point out that the value of TtM could be adaptively regulated

depending on the state of the network. A system, which is highly mobile, can be

dynamically tuned to a low TtM value so that the agents navigate faster meaning that

stale topology information could be refreshed with haste. On the other hand, when data

traffic is low, or network changes are not too frequent, the TtM could be raised to a

suitably high value so that unnecessary power consumption in transmitting control packets

could be reduced.

5.2. Agent navigation: least-visited-neighbor-first algorithm

The primary objective of agents is to deliver each node with information about other

nodes in the system (including their link states). In order to achieve this with least

overhead, we have designed a navigation strategy, which determines the path that agents

must follow. Each agent moves on its own path, updates its briefcase with recent

information gathered from other agents or nodes. Each node has a shared information

cache (called a blackboard), on which agents can overwrite stale network-state values with

more recent values. Hereafter we would use the word blackboard interchangeably with

information cache. Nodes access this blackboard whenever they require knowledge

about the network.

The efficacy of the agent navigation algorithm lies in its ability to make all the

nodes in the network equally aware of the topology. Thus in an ideal scenario, a node

which is located at the periphery of the ad hoc topology should be equally aware

about the state of the network as any other node that might be located in the central

regions of the topology. Our least-visited-neighbor-first algorithm, for controlling the

navigation strategy of the agents, performs well close to the ideal expectations. An

agent applies the least-visited-neighbor-first algorithm on the information cache of its

host node (the host node is the node on which the agent currently resides) to decide

on its next destination. The next destination is always a neighboring node of the host

node.

On reaching a node N, an agent program P, performs the following steps:

1. Updates information cache of node N with any newer information available in its

own briefcase B (we discuss the information exchange protocol in the following

section)

2. Selects from the cache/blackboard, all the nodes that are neighbors of N.

MARP: A MULTI-AGENT ROUTING PROTOCOL 55



3. Determines the node (among these selected neighbors) that has the least recency-token

value. Observe that this is the least visited neighbor, as perceived by the node N at that

instant of time (recall that the recency token value of a node is the number of agent

visits that the node has received).

4. If this neighbor of N has not been visited in the previous 3 visits by other agents from

node N, the agent selects this neighbor as its next destination. This history information

about the last 3 visits are also found on the blackboard. In case the selected node has

been visited in the recent past, the agent selects the second least-visited neighbor, and

so on. This will ensure that multiple agents from the same host node do not choose the

same destination consecutively.

5. After choosing the right destination, the agent updates its next-destination node id state

variable with the chosen destination’s node id and changes the history variables on the

host node’s blackboard with the next-destination node id.

6. Increments the host node’s recency token value and stores this value against the host

node’s id in its own briefcase. The agent then resumes navigation.

Thus, if we consider a host node of an agent and its neighbors to be a sub-graph, then

the agent always migrates to the node, which has had the least number of agent visits

among the members of this sub-graph and has not been visited very recently. Since all the

agents perform the same operation over the entire network, we can envision that agents

attempt to visit all the nodes in the network with the same frequency. This is a typical

characteristic of agent paradigms, where distributed decisions based on local states steer

the system towards achieving a global goal.

Seeking a contradiction to the claim that agents achieve a global goal, let us assume

that there is some node X, which has a very low recency value in comparison to all its

neighbors. Now, every agent that visits the neighbors of this node X, would definitely

choose node X as their next destination. This would continue as long as node X happens

to be lesser in terms of its recency value. Thus soon node X would attain a recency

value, which is greater than the least recency value of its neighbors. This means node X

is no longer the least recency-valued node. It is quite interesting to realize that the

difference in recency values would not be large in the first place because the agents

always tend to visit the node that is falling back on the number of agent visits that it has

received. However one exception to this is when a node gets isolated for sometime and

then rejoins the network. We discuss this event in the following section.

5.3. Handling the event of agent oscillation between nodes

Let us consider a case where a node Z gets isolated from the topology and as a result

does not receive agent visits for a long time. Now let us assume that it gets reconnected

to the network after some time. Obviously, the recency token value of this node would

be much less than the values of the others, which have continuously received agents at

regular intervals. Now this isolated node on getting connected to the network would

obviously have a rush of agents towards it. The agents would get serviced, go to some

next destination, say D, that is a neighbor of Z. Now, since Z is obviously a neighbor of

D, the agent would again come back to Z from D since node Z still happens to be the

least in terms of the recency value. This continues until node Z is no longer the least

ROY CHOUDHURY, PAUL AND BANDYOPADHYAY56



recency-valued-node in the neighborhood of node D. Thus we see that if a node gets

isolated and then rejoins, the agents would oscillate over it and its neighbors, until its

recency value surpasses some other neighbor’s recency value. Oscillation might cause

other nodes in the network to starve of agent visits and is unnecessary since these same

oscillating agents hardly bring in new topology information.

In order to eliminate this oscillation, we have incorporated the following strategy. If a

node finds that it does not receive agent visits for longer than a specific span of time, it

resets its recency token value to zero. An agent that visits a node, finding that the node has

a recency-token value of zero recognizes that the agent performed a reset. The agent

performs the standard node-agent information exchange (blackboard communication) and

then assigns the average of all its recency token values to this node’s recency token. This

prevents the oscillation of the same agent. However other agents may independently come

to this node since they might still have a recency value for this node as the least value.

This is desirable in order to expedite the process of information percolation towards a new

node that was cut off from the network for sometime, and has rejoined it. Greater agent

visits (i.e different agents visiting it) would catalyze this quick infiltration of information.

Observe that by addressing the problem of agent-oscillation we implicitly take care of

new nodes joining the network, since in the case of new nodes, the recency token values

would also be zero.

One way of evaluating the performance of the agent navigation protocol would be to

examine the celerity with which a topology change information gets propagated into the

nodes of the system. We have defined a notion of percolation to test this issue. Percolation

(P) has been defined as the rate at which, information regarding the entry of a new node,

gets propagated to the existing nodes of the network. P � T is the percentage of nodes

in the network that is aware of the new node entry after T milliseconds of the entry. We

evaluate percolation in later sections for highly mobile scenarios, and show that our agent

based mechanism performs well under it.

Unidirectional Links: We now discuss the impact of relaxing the assumption of

bidirectional links in our protocol design. When nodes in a network have unequal

transmission ranges, cases are possible where a node A is a neighbor of node B but

node B is not a neighbor of node A. Such a situation may occur when B’s transmission

range is greater than A’s. Clearly an agent visiting node A would not find B in A’s

Neighbor List and thus cannot hop to B. Thus the affinity field of link A-B would

be marked infinity in the agents briefcase. An agent arriving at B, may find A in B’s

Neighbor List, and may choose to hop to A. The affinity of link B-A would not be

infinity, since B can reach A in a single hop. Thus while link A-B and link B-A

would exhibit identical affinity under the assumption of bidirectionality, assuming

unidirectionality the two would be different. Since MARP does not require affinities

of A-B and B-A to be equal, unequal transmission ranges at each node does not affect

MARP.

6. Information exchange protocols in node-agent and agent-agent interaction

Infiltration of partial network information into the nodes is an asynchronous process, as the

agents visit the nodes asynchronously. Thus it becomes acutely necessary to develop

MARP: A MULTI-AGENT ROUTING PROTOCOL 57



strategies for information exchange (i.e. to accept only that information which is more

recent than what the node / agent already possesses). It is a two-step process.

In step 1, the recency-token values of all the nodes stored in the information cache of the

current host node is compared with the corresponding recency-token values of that node,

carried in the briefcase of the agent. If the recency token of any node, say X, in the host

node’s information cache happens to be less than that in the agent’s briefcase, then it is

obvious that the agent is carrying more recent information about node X. In that case, the

entire information about node X, in the host node’s information cache (blackboard) is

overwritten with information carried in the agent’s briefcase. The information about node

X that we refer to may be information regarding several attributes of the node, or even the

network. The information could contain node X’s link states with its neighbors, its

remaining battery lifetime or even it’s queue information. It is interesting to observe that

the agents can now be reactively applied in several applications. For example, in the

context of QoS routing, bandwidth reservation tables can be exchanged among a subset of

nodes and even perhaps by only a subset of agents. However, in this paper we confine

ourselves to distributing link state information only.

Step 1 is performed asynchronously by all agents as they arrive at their host nodes. This

step helps the node to acquire all the recent information that it can gather from the agents.

The agents however have not yet updated the state variables in their briefcases, and waits

till the end of a TtM time duration. During this duration, if more agents arrive at the node,

they perform step 1 immediately. Thus clearly, at any given time, the blackboard at a node

contains more recent information than any individual agent resident at that node.

Step 2. When an agent is ready to migrate (i.e. after a waiting time defined earlier as

TtM), step 2 is performed. In step 2, the agent copies the entire content of the blackboard

into its own briefcase’s state-variables. With the updated briefcase, the agent selects its

destination on the basis of the navigation algorithm described previously. The agent then

enters the agent queue for priority transmission. The blackboard at the host node is shown

in Figure 2. The briefcase contains variables (data structures) that are an exact replica of

the blackboard (except the history information).

6.1. Information aging: a predictive method for topology awareness

The foremost characteristic of a dynamic environment is that information is never

absolute. Information collected by an agent or node regarding the link states of the

network is constantly aging due to the mobility. However, the agents are pro-actively

replenishing the cache of each node with newer or more recent information. Naturally, a

node would be better topology aware, if the agent visit frequency could be increased upon

it. The vice versa is true as well. In other words we could say that each time an agent visits

a node, the node gets a snapshot of the network topology which is not accurate but less

inaccurate than the previous snapshot it possessed. (It must be observed that a new

snapshot might not have new information about all the nodes). Now, between any two

consecutive snapshots, the relation is mobility i.e. if snapshot 2 is taken T seconds after

snapshot 1, then snapshot 2 could be predicted (or derived) from snapshot 1 by displacing

each of the nodes in snapshot 1 by a distance of velocity � T, in the direction of motion of

that node. Clearly, more the number of snapshots a node gets in a unit time, lesser is the

information aging i.e. greater topology awareness. Thus to maintain optimal topology

ROY CHOUDHURY, PAUL AND BANDYOPADHYAY58



awareness in nodes, the prediction mechanism comes handy in between agent visits, when

local node information actually ages.

In our protocol, it is not possible to know the absolute speed or direction of motion of

any node. Each node is only partially aware of the affinity of links in the network. Using a

pessimistic approach, we incorporate a mechanism of reducing the affinity values of each

link with the passage of time. Thus at every interval of t time units, the affinity values of

all the links is reduced by velocity � t time units on the blackboard at each node. This is a

conservative approach that assumes that link affinity is always decreasing. Thus cases are

likely that a network link exists in reality, but a node has eliminated it from its blackboard.

However, the vice versa is extremely unlikely, indicating that a node is never misled to

believe that a link exists although in reality it does not.

7. Simulation set-up

We have used our own simulator (as shown in Figure 3) for evaluating the performance of

MARP. The simulation region is a bounded area of 1500 � 1000 sqm. Nodes are initially

placed randomly over this region. The mobility model assumed is random waypoint - each

node moves linearly towards their chosen destination, on reaching their destinations, each

node optionally waits for a random span of time, chooses a new destination and starts

moving towards this newly chosen destination. To observe the impact of mobility we have,

in certain cases, assigned a predefined uniform velocity to all the nodes. The transmission

range for all communication has been assumed to be constant. We do not use agent loss

due to erroneous transmission. We assume that the agents would be transmitted reliably by

Figure 2. Diagrammatic representation of the blackboard at each node. Agents erase stale entries on the

blackboard and overwrite them with more recent values. Nodes use the information on the blackboard for routing

decisions.

MARP: A MULTI-AGENT ROUTING PROTOCOL 59



the MAC layer. However, if the MAC layer fails to transmit the agent, it must notify the

upper layers before dropping the agent. The upper layer may spawn a new agent later, to

maintain optimal agent population.

The multi-agent framework is operational over this infrastructural backbone of mobile

nodes. During commencement, each node generates a random number locally. If the

generated number happens to be even, the node spawns an agent, otherwise it does not.

Figure 3. The simulator environment snapshot with N ¼ 15 and M ¼ 30m/sec: the nodes move about with agents

migrating between nodes. The inset window pops up if a mouse is clicked on any of the nodes. The window

shows the blackboard at node 14 (history values have not been shown). The affinity values are in hundreds of

milliseconds. The row shown below this affinity matrix displays the recency token values of all the nodes in the

network. A good navigation strategy ensures that these recency token values exhibit small standard deviation,

implying that the topology is explored homogeneously. The other parameters for the simulation are shown below

in the text boxes. The standard deviation of the recency values calculated is ¼ 1.52606, mean ¼ 78.266.

ROY CHOUDHURY, PAUL AND BANDYOPADHYAY60



This indicates that the number of agents that appear within the network infrastructure is

approximately half the number of nodes in the network. The agents then jump asynchro-

nously from one node to another at an interval of TtM milliseconds, carrying information

that it gathers from its host. Now, although the agent-jump is a unicast, it has to be

broadcast in the wireless environment. Thus all one-hop neighbors of the host node can

now hear the agent. On hearing the agent, they know the existence of the host node as its

neighbor (please note that the agent carries the ID of both its present host node and its

destination node). The destination node accepts the agent and the others discard the

agent packet after extracting the neighbor information from it. An advantage of using

this protocol is that explicit neighbor discovery at the MAC layer can now be done away

with. The agents while on their topology traversal, implicitly perform neighbor

discovery. On reaching the next node, the agents exchange information with their new

host, wait for TtM milliseconds and then again jump to a newly selected node. Thus

nodes that were totally unaware of the network topology at the point of commencement,

begin to gather network information through the agents. Since the multi-agent framework

is a pro-active scheme, the nodes in the network are always kept updated with partial

(or approximate) topology information. A modified link state algorithm executed locally

over this partial information yields the most stable route through which data commu-

nication is initiated.

8. Supporting data communication

We are now in a position in which each of the nodes has a local view of the network

topology i.e., each node is topology aware. Also, the mobile multi-agent framework is

proactively replenishing the information cache of each node with fresh topology updates.

This leads to a scenario where conventional route discovery is no longer necessary. More

explicitly, nodes can now determine the best route locally and initiate the sending of data

packets through it. After a point of time, if the caller node finds that the chosen route has

attained a low stability (indicating that a route error is imminent), the node computes a

new, better stable route from the local blackboard and redirects data packets through the

later. This adaptive route selection facilitates continuous communication through multiple

paths in the temporal domain. Thus we can envision that as long as two nodes remain

connected, they will always be able to get at least one route through which communication

can continue. In the case of multi-route availability, the best route can always be selected.

Quite perceivably, the adaptive selection of best routes guarantees an uninterrupted com-

munication session between two nodes irrespective of node mobility. Besides, packet drops

due to route breakage, and latency due to re-routing, has been completely eliminated.

Due to our conservative approach in link state prediction, we find that the probability of

route errors almost becomes negligible. In other words, a situation can hardly occur when

a route error takes place without the sender not anticipating it. Note that even if nodes

move non-linearly (in curves and turns), our protocol performance remains unaffected.

This is because we conservatively assume in our prediction mechanism, that two nodes are

always moving away from each other with relative velocity M. However, due to this

conservative prediction, a sender node may not initiate communication because it might

believe that a link does not exist while in reality it does. Our simulation experiments have

MARP: A MULTI-AGENT ROUTING PROTOCOL 61



yielded expected results. In the worst case however, if a route error occurs, the caller node

need not initiate a route discovery all over again but just needs to locally determine the

second best route available, and resume data transfer through it. This obviously reduces

control packet generation to a nil and minimizes end-to-end delay substantially.

9. Agent vs non agent systems: a comparative study

We discussed that one of the major problems in distributed mobile systems (as MANETs),

is the tracking of mobile hosts while keeping congestion overheads low. Route discovery

or path maintenance incurs huge overhead due to control packet flooding in reactive

mechanisms. This problem becomes acute when the network is considerably loaded. More

precisely, the total number of control and data packets in the output queues of all the nodes

in the network at any instant of time, is a measure of the load on the network. During

a route discovery and subsequent data transmission from a source to a destination,

this number increases rapidly with time and gradually decays down. The increase in the

number of control packets in the host queues is exponential with the increase in the

number of neighbors. This in turn causes greater queuing delay for the subsequent data

packets. Over and above, appearance of control packets in the network also depends on the

number of communications started by caller nodes over a span of time (indicating that the

network gets flooded with route requests as many times). As an outcome of so many

dependencies, end to end delays or available bandwidth of the system almost become

unpredictable. This might in turn affect the survivability of the system if the network does

not get time to absorb the packets accumulated in the output queues.

Proactive protocols in literature have generated unnecessary control packets even while

the traffic and / or mobility is low. This has been shown to have dire effects in the sense

that battery power of nodes gets consumed unnecessarily.

In contrast our agent-based protocol exploits the merits of both reactive and proactive

protocols. Agents are not flooded in the network indicating that the congestion does not

increase with the number of hops. In fact, as discussed in previous sections, the agent

traffic always remains constant for a particular value of TtM. This enables a better

estimation of the end to end delay of the system. On the other hand, when agents jump

from one node to its neighbor, the other nodes in the same one hop neighborhood listen to

the agents to extract neighborhood information. This minimizes the overhead of

performing neighbor discovery separately. In addition, to reduce unnecessary agent traffic

during low load and / or low mobility conditions, the agent TtM could be adaptively

regulated to conserve power at individual nodes. Together, it seems that the agent system,

besides being more survivable even under stringent conditions of high traffic and high

mobility, is adaptable to the requirements of the network.

The multi-agent system we discuss in this paper could be implemented using a message

passing model. One way of doing this may be to replicate the agent program (P) at all the

nodes, and propagate the agent’s briefcase B as a message/packet. Although correct, such a

strategy may lack modularity of implementation. Also, using agents, the system could be

much more flexible, allowing agent subsets to perform different set of tasks, autonomous-

ly. For example, if a few nodes are high priority nodes in a network, a set of agents may be

programmed such that they visit these nodes more often.

ROY CHOUDHURY, PAUL AND BANDYOPADHYAY62



9.1. Protocol performance

We have presented the performance analysis of our simulation in this section. We initially

present the performance of the agent based system without the predictive mechanism. We

then present the simulation results as observed after incorporating the predictivemechanism.

Figure 4 shows the average connectivity convergence of an ad hoc network for 30

nodes, with 15 agents exploring the network. The agents are allowed to migrate from a

node at intervals of 100 milliseconds, i.e., TtM ¼ 100 msec. The transmission range has

been assigned as 400 m. This transmission range has been found to give us a more or less

connected network. In these cases we see that mobility plays an important role. At higher

mobility the rate at which link information get stale is proportionally high. This makes it

more challenging for the agent framework since the system now demands that they deliver

link make-break information across the topology at a faster rate.

As per expectations, we observe that performance degrades at very high mobility. To

compensate for increase in mobility, the solution would be to decrease agent TtM. It is

evident from the graph in Figure 5 that for mobility 30 m/s the performance is significantly

different for high and low TtM. Thus the agents could be adaptive to the average mobility

of the nodes and tune its TtM accordingly. Quite obviously, by decreasing agent TtM, we

can achieve better convergence. However, a low TtM would imply that nodes get more

agents per unit time and thus the network congestion due to agent traffic would also

Figure 4. Variation of connectivity convergence with time for different mobility with TtM ¼ 100 msec.

Figure 5. Variation of connectivity convergence with time for different mobility with TtM ¼ 50 msec.

MARP: A MULTI-AGENT ROUTING PROTOCOL 63



increase. A predictive mechanism on network topology, discussed in Section VII A, can

achieve better result without lowering TtM.

We have analyzed the performance of our prediction mechanism and the results are

presented in Figure 6 and 7. This mechanism ensures that the node is never misled to

believe that a path exists for successful message transfer when the path might actually fail

before data transmission is complete. The Link-Affinity convergence graphs show

satisfying results as the curve always remains above 98 percent once the topology

information has stabilized. Put differently, the probability that link-affinity information

of a path is acceptable, is greater than 0.98 on an average. As a result, if a node believes

that a path exists in the network, the probability that it does not, is only 0.02. These figures

hold good for agent TtM ¼ 100 msec.

Figure 8 shows the sensitivity of Link-affinity convergence to mobility. The results

shown are for MARP, when used with the predictive mechanism. Clearly, MARP performs

well when the velocity of nodes is below 45 m/s. At greater velocities, the performance

with TtM ¼ 100 msec degrades. The performance with TtM ¼ 50 msec remains above

0.92 even at 45 m/s. With TtM ¼ 50 msec, convergence deteriorates at velocities above

60 m/s. Since many ad hoc applications are limited to much lower node velocities, MARP

may be considered suitable for mobile ad hoc networks.

Figure 6. Variation of Average Link Affinity Convergence with time for different mobility with TtM ¼ 100 msec.

Figure 7. Variation of Average Link Affinity Convergence with time for different mobility with TtM ¼ 50 msec.

ROY CHOUDHURY, PAUL AND BANDYOPADHYAY64



The performance of MARP has been evaluated for mobile topologies with a large

diameter. Observe that a graph with a larger diameter would require agents to traverse

greater number of hops (on average) to maintain comparable topology awareness. To

observe the performance of MARP in large-diameter networks, we reduced the transmis-

sion range to 200 meters and increased the number of nodes in the bounded region to

60. This maintains connectivity for a network that is confined to a bounded region of

1500 � 1000 sq. meter. Figure 9 shows the results for the simulation. The TtM used was

100 msec. As evident from the graph, average Link-Affinity convergence is only

marginally worse in comparison to previous scenarios, although the diameter of the graph

is now higher. With a lower TtM, MARP would exhibit better performance than shown in

the Figure 9. This suggests that MARP is intrinsically scalable to network size and

mobility. Also, with increase in number of nodes, the number of agents in the system

increases. Increase in agent population increases the celerity of topology information

distribution, almost exponentially. Thus even when the node density is high, performance

of MARP exhibits stability.

Figure 8. Variation of Average Link-Affinity convergence with node mobility.

Figure 9. Average Link convergence for network with large diameter.

MARP: A MULTI-AGENT ROUTING PROTOCOL 65



Convergence is a metric that reflects the efficiency of the agent framework on the basis

of its ability to homogeneously spread topology information. We had also defined

percolation as another metric that captures the rate at which information propagates in

the network. To capture this metric we have thrown in new nodes in the network topology

while the simulation is running and we have examined the rate at which the other nodes in

the system learn about this new entry. A point that requires mention is that, contrary to

intuitive belief that a node thrown in the center of the topology would have its information

propagated much faster, than if the same is thrown towards the periphery, we find that our

agent system carries the new information to other nodes with almost equal celerity. Thus

the curve in the Figure 10 accentuates on the efficiency of the agent navigation protocol.

From this graph we find that the new node entry gets propagated to all the other nodes

within a span of approximately 3 seconds and the difference between peripheral

appearance and central appearance is small.

10. Discussion

The performance evaluation of the agent-based mechanism is encouraging, even in highly

mobile multi-hop environments. In addition, the capability of the agent framework to

adapt its TtM to the load and/or low mobility scenarios further regulates on the control

overhead generated due to agent traffic. Percolation is a pointer to how the agent system

accommodates new nodes into the system quite seamlessly. The scalability issues get

implicitly handled as new nodes spawn agents with one half probability (indicating that the

agent-node ratio is maintained). And of course, most importantly, the impact of topology

awareness obviating route discovery (and rediscovery on route error) is perhaps the most

significant gain in terms of the survivability of the system.

Moreover, we believe that the capacity of the agent-based protocol is just not confined to

the listed set of available features. We suggest that the agent system can be extended to

carry/fetch specific information on demand. For example, queue, reservation table infor-

mation, battery power levels, error information etc. may be transferred through wondering

agents; or even through only a specific subset of agents to reduce on the bandwidth

consumption. As a whole the notion is to optimally utilize a traveling entity in the network

to carry out multi-purpose information transfer. The agent seems to be a suitable idea.

Figure 10. Percolation of node information of time.

ROY CHOUDHURY, PAUL AND BANDYOPADHYAY66



11. Conclusion

This paper proposes a multi-agent framework capable of making nodes in a mobile ad hoc

network, topology-aware. Topology awareness in this paper, implies the ability of a node

to maintain the link states of a network, with sufficient accuracy. Although confined to link

states, our multi-agent framework may be viewed as a overlaid backbone, capable of

propagating other relevant information, that different layers may expect from the network.

Once aware of the network links, nodes are capable of streaming packets through routes,

calculated locally from gathered information. We show how the agent system keeps

control overhead low and maintains link-state convergence, even at high mobility. We

have not considered agent loss in this paper. We have assumed that MAC level unicasts are

reliable. Situations are also possible in which agents may need to be destroyed in order to

maintain the optimal node-agent ratio. We have not addressed such problems of regulating

agent population, since they are independent problems by themselves. However, under the

adopted set of assumptions, simulation results are encouraging, indicating that a proactive

agent based routing protocol like MARP is efficient and effective across a large cross

section of scenarios.

References

1. V. A. Pham and A. Karmouch, ‘‘Mobile Software Agents: An Overview,’’ IEEE Communication Magazine,

July 1998.

2. R. Gray, D. Kotz, S. Nog, and G. Cybenko, ‘‘Mobile agents for mobile computing,’’ Technical Report

PCS-TR96-285, Department of Computer Science, Dartmouth College, Hanover, NH 03755, May 1996.

3. D. B. Johnson and D. Maltz, ‘‘Dynamic source routing in ad hoc wireless networks,’’ in T. Imielinski and

H. Korth, (eds.), Mobile Computing, Kluwer Academic Publ., 1996.

4. Z. J. Haas, Milcom’97 Panel on Ad-hoc Networks, http://www.ee.cornell.edu/haas/milcom-panel.html

5. S. Corson, J. Macker, and S. Batsell, ‘‘Architectural considerations for mobile mesh networking,’’ Internet

Draft RFC Version 2, May 1996.

6. S. Das, Somprakash Bandyopadhyay, and K. Paul, ‘‘An adaptive framework for QoS routing via multiple

paths in ad hoc wireless networks,’’ Proc. of GLOBECOM, 1999.

7. C.-K. Toh, ‘‘A novel distributed routing protocol to support ad-hoc mobile computing,’’ IEEE International

Phoenix Conference on Computer and Communications (IPCCC’96).

8. E. M. Royer and C. K.Toh, ‘‘A review of current routing protocols for Ad-Hoc Mobile Wireless Networks,’’

IEEE Personal Communications, April 1999.

9. C. Perkins and E. Royer, ‘‘Ad hoc on-demand distance vector routing,’’ Proceedings of the 2nd IEEE Work-

shop on Mobile Computing Systems and Applications, New Orleans, LA, February 1999, pp. 90–100. Online.

Available. http://beta.ece.ucsb.edu/eroyer/aodv.html

10. K. Paul, S. Bandyopadhyay, D. Saha, and A. Mukherjee, ‘‘Communication-Aware Mobile Hosts in Ad-hoc

Wireless Network,’’ Proc. of the IEEE International Conference on Personal Wireless Communication,

Jaipur, India, Feb. 1999.

11. Y.-B. Ko and N. Vaidya, ‘‘Location-Aided Routing (LAR) in Mobile Ad Hoc Networks,’’ Proceedings

MOBICOM 1998, Dallas, Tx.

12. S. Appeleby and S. Steward, ‘‘Mobile software agents for control in Telecommunications networks,’’ BT

Technology Journal, vol. 12, no. 2, pp. 104–113, April 1994.

13. A. Bieszczad, B. Pagurek, and T. White, ‘‘Mobile Agents for Network Management,’’ IEEE Communications

Survey, July 1998.

14. T. Magedanz, K. Rothermel, and S. Krause, ‘‘Intelligent agents: An emerging technology for next generation

telecommunications?’’ Proc. INFOCOM’96, San Francisco, CA, 1996.

15. M. Baldi, S. Gai, and G. P. Picco, ‘‘Exploiting code mobility in decentralized and flexible network

MARP: A MULTI-AGENT ROUTING PROTOCOL 67



management,’’ in K. Rothermel and R. Popescu-Zeletin, (eds.), Mobile Agents, Lecture Notes in Comp.

Sci. Series, vol. 1219, pp. 13–26, Springer, 1997.

16. S. Krause and T. Magedanz, ‘‘Mobile service agents enabling intelligence on demand in telecommunica-

tions,’’ Proc. IEEE GLOBCOM ’96, 1996.

17. R. Schoonderwoerd et al. ‘‘Ant-based load balancing in telecommunications networks,’’ Adaptive Behavior,

vol. 5, no. 2, p. 169207, 1997.

18. G. Di Caro and M. Dorigo, ‘‘Mobile agents for adaptive routing,’’ in Proceedings of the 31st Hawaii

International Conference on Systems, January 1988.

19. N. Minar, K.H. Kramer, and P. Maes, ‘‘Cooperating mobile agents for dynamic network routing,’’ in Alex

Hayzeldon, (ed.), Software Agents for Future Comunications Systems, chapter 12, Springer-Verlag, 1999.

20. S. Bandyopadhyay and K. Paul, ‘‘Evaluating the performance of mobile agent based message communication

among mobile hosts in Large Ad-Hoc Wireless Networks,’’ The Second ACM International Workshop on

Modeling and Simulation of Wireless and Mobile Systems, in Conjunction with MOBICOM 99, Washington,

USA, August 15–19, 1999

21. J. Dale, ‘‘A Mobile Agent Architecture for Distributed Information Management,’’ Thesis submitted for the

degree of Doctor of Philosophy. University of Southampton, Department of Electronics and Computer

Science, September 1997.

22. R.R. Choudhury, S. Bandyopadhyay, and K. Paul, ‘‘A distributed mechanism for topology discovery in ad

hoc wireless networks using mobile agents,’’ Proc. of the First International Workshop on Ad Hoc Networks,

ACM/IEEE MobiHoc 2000, in Conjunction with MobiCom 2000, Boston, USA.

ROY CHOUDHURY, PAUL AND BANDYOPADHYAY68


