
Using Iterative Repair to Increase the Responsiveness of Planning and

Scheduling for Autonomous Spacecraft

Steve Chien, Russell Knight, Andre Stechert, Rob Sherwood, and Gregg Rabideau

Jet Propulsion Laboratory
California Institute of Technology

4800 Oak Grove Drive
Pasadena, CA 91109

{firstname.lastname}@jpl.nasa.gov

Abstract
An autonomous spacecraft must balance long-term and
short-term considerations. It must perform purposeful
activities that ensure long-term science and engineering
goals are achieved and ensure that it maintains positive
resource margins. This requires planning in advance to
avoid a series of shortsighted decisions that can lead to
failure. However, it must also respond in a timely fashion
to a somewhat dynamic and unpredictable environment.
Thus, spacecraft plans must often be modified due to
fortuitous events such as early completion of observations
and setbacks such as failure to acquire a guidestar for a
science observation. This paper describes the use of
iterative repair to support continuous modification and
updating of a current working plan in light of changing
operating context.

Introduction

In recent years Galileo, Clementine, Mars Pathfinder, Lunar
Prospector, and Cassini have all demonstrated a new range
of robotic missions to explore our solar system. However,
complex missions still require large teams of highly
knowledgeable personnel working around the clock to
generate and validate spacecraft command sequences.
Increasing knowledge of our Earth, our planetary system,
and our universe challenges NASA to fly large numbers of
ambitious missions, while fiscal realities require doing so
with budgets far smaller than in the past. In this climate, the
automation of spacecraft commanding becomes an endeavor
of crucial importance.

This paper describes an advance in automated planning
and scheduling technology to spacecraft mission operations.
This technology is applicable to a large spectrum of
missions, from those that have very limited on-board
computational capabilities (such as Lunar Prospector) to
those that fly highly sophisticated software (such as
Cassini). In all cases the goal is for the project science team
to be able to command the spacecraft directly with no
mission operations specialists involved in routine activities.
In the most sophisticated missions the spacecraft operates
autonomously, interacting with the ground systems and

personnel only when it needs to schedule a downlink
activity to transmit science data back to Earth. Autonomous
spacecraft are made possible by equipping the spacecraft
with sophisticated on-board software that provides
knowledge and reasoning procedures to determine
appropriate actions that achieve mission goals, to monitor
spacecraft health during execution, and to recover
autonomously from possible faults [9]. An on-board
planner/scheduler is a key component of such a highly
autonomous system. More generally, routine use of
automated planning/scheduling systems for spacecraft
operations, both in ground operations and on-board in an
autonomous spacecraft, will have great impact on mission
operations. Specifically, automated planning and
scheduling provides the following benefits:

The extremely costly sequencing elements of the mission
operations team would almost be eliminated, dramatically
reducing cost. One estimate [10] indicated that automation
of the commanding process could reduce mission operations
costs by as much as 60% (excluding data analysis). Recent
experiences support these projections. For example, use of
the DATA-CHASER automated planning and scheduling
system (DCAPS) to command the DATA-CHASER shuttle
payload reduced commanding-related mission operations
effort by 80% [3] as compared to manual generation of
sequences.

Using planning and scheduling technology, a goal-based
spacecraft could perform opportunistic science. When an
unexpected opportunity occurs (such as a supernova or solar
phenomena), the spacecraft could immediately respond by
performing appropriate measurements rather than waiting
until ground-based detection of the event and subsequent
uplink of commands to the spacecraft.

A goal-based autonomous spacecraft could also enable
interactive science, when appropriate. A self-commanding
spacecraft could perform high-level science requests such as
“Perform an interferometry sweep with priority 5.” A direct
connection between the scientist and spacecraft with faster
feedback allows a new paradigm for scientific discovery in
space.

Automated planning and scheduling technology offers the
potential to increase science return by producing operations
plans that better optimize use of scarce science resources.

For example, the DCAPS planner/scheduler increased
science return by 40% over manually generated sequences
[3]. This increase was mostly due to the short turn-around
times (approximately 6 hours) imposed by operations
constraints. This limited time did not allow for lengthy,
manual optimization.

Finally, planning and scheduling technology simplifies
the self-monitoring, onboard fault-management, and
spacecraft health tasks. Because the spacecraft would be
able to respond in a more goal-oriented fashion without the
time lags introduced by ground communication, it is
possible to cover a greater range of faults.

The remainder of this paper is organized as follows.
First, we briefly describe the motivation for reducing
planning response time in spacecraft operations. Next, we
describe our technical approach to interleaving planning and
execution to reduce this response time. We then follow with
a description of our implemented architecture. Then we
describe a mission scenario from the New Millennium
Space Technology Four mission which was used to test our
approach. Finally, we describe related work and ongoing
efforts to further extend and validate this technology for
future space missions.

Integrating Planning and Execution

An autonomous spacecraft must respond in a timely fashion
to a (somewhat) dynamic, unpredictable environment. In
terms of high-level, goal-oriented activity, spacecraft plans
must often be modified in the event of fortuitous events
such as observations completing early and setbacks such as
failure to acquire a guidestar for a science observation. We
call this situation dynamic planning, in which a plan must
be continually updated in light of changing operating
context. In such an operations mode, a planner would
accept activity and state updates on a one to ten second time
scale. Making the planner more timely in its responses has
a number of benefits:

• The planner can be more responsive to unexpected
(i.e., unmodelable) changes in the environment that
would manifest themselves as updates on the
execution status of activities as well as monitored
state and resource values.

• The planner can reduce reliance on predictive models
(e.g., inevitable modeling errors), since it will be
updating its plans continually.

• Fault protection and execution layers need to worry
about controlling the spacecraft over a shorter time
horizon (as the planner will replan within a shorter
time span).

• Because of the hierarchical reasoning taking place in
the architecture there is no hard distinction between
planning and execution – rather more deliberative
(planner) functions reside in the longer-term
reasoning horizons and the more reactive (execution)
functions reside in the short-term reasoning horizons.
Thus, there is no planner to executive translation
process.

This introduction of the planner into the short-term planning
horizon can also be motivated by current operations
scenarios taken from the Space Infra-red Telescope Facility
(SIRTF) [9]. In this operations scenario, the observatory is
in a near-earth orbit and has a set of observation targets and
their prioritizations. It is difficul t to project exactly how
future execution of the plan will proceed. For example, if a
spacecraft is able to acquire the target quickly (as compared
to conservative settling times and time to search for the
target), an observation may complete significantly ahead of
schedule. Alternatively, if the spacecraft repeatedly fails to
acquire a guidestar required by an observation, the
observation may be terminated. This also has the effect of
completing the activity ahead of schedule but with a failed
outcome. Within this operations context, a short-term
planner would decide which observations to sequence next.
Such a planner would need to consider all targets currently
on the observation list, their visibility windows, and their
relative positions in the sky (for reasons of slew
minimization and for observation quality issues). The short-
term planner would also need to track other resource
management issues such as data management relating to
engineering and science observations and coordination with
downlink windows.

In a traditional plan-sense-act cycle, planning is considered

a batch process and the system operates on a relatively long-
term planning horizon. For example, operations for a
spacecraft would be planned on the ground on a weekly or
daily basis. In this mode of operations, the spacecraft state
at the start of the planning horizon would be determined
(typically predicted as the construction of the weekly plan
would need to begin significantly before the week of
execution). The science and engineering operations goals
would then be considered, and a plan for achieving the goals
would be generated. This plan or sequence would then be
uplinked to the spacecraft for execution. The plan would
then be executed onboard the spacecraft with little or no
flexibility . If an unexpected event occurred due to
environmental uncertainty or an unforeseen failure occurred,
the spacecraft would be taken into a safe state by fault
protection software. The spacecraft would wait in this state
until the ground operations team could respond and
determine a new plan. Correspondingly, if an unpredictable
fortuitous event occurs, the plan cannot be modified to take
advantage of the situation.

One model for operations is to move such planning and
replanning functionality onboard, but to continue using it as
a batch process. In this case, in the event of a fault,
environmental event, or fortuitous event, the spacecraft can
respond by entering into a stable state and replanning.

Plan for
next horizon

Plan for
next horizon

Figure 1 Traditional Batch Plan then Execute Cycle

However, constructing a plan from scratch can be a
computationally intensive process and onboard
computational resources are typically quite limited, so that it
still may require considerable time to generate a new
operations plan. As a data point, the planner for the Remote
Agent Experiment (RAX) flying on-board the New
Millennium Deep Space One mission [11] is expected to
take approximately 4 hours to produce a 3 day operations
plan. RAX is running on a 25 MHz RAD 6000 flight
processor and uses roughly 25% of the CPU processing
power. While this is a significant improvement over
waiting for ground intervention, making the planning
process even more responsive (e.g., on a time scale of
seconds) to changes in the operations context, would
increase the overall time for which the spacecraft has a
consistent plan. As long as a consistent plan exists, the
spacecraft can keep busy working on the requested goals.

To achieve a higher level of responsiveness in a dynamic
planning situation, we utilize a continuous planning
approach and have implemented a system called CASPER
(for Continuous Activity Scheduling Planning Execution
and Replanning). Rather than considering planning a batch
process in which a planner is presented with goals and an
initial state, the planner has a current goal set, a plan, a
current state, and a model of the expected future state. At
any time an incremental update to the goals or current state
may update the current state of the plan and thereby invoke
the planner process. This update may be an unexpected
event or simply time progressing forward. The planner is
then responsible for maintaining a consistent, satisficing
plan with the most current information. This current plan
and projection is the planner’s estimation as to what it
expects to happen in the world if things go as expected.

However, since things rarely go exactly as expected, the
planner stands ready to continually modify the plan.
Current iterative repair planning techniques enable
incremental changes to the goals and the initial state or plan
and then iteratively resolve any conflicts in the plan. After
each update, its effects will be propagated through the
current projections, conflicts identified, and the plan
updated (e.g., plan repair algorithms invoked).

An Architecture for Integrated Planning and
Execution

The overall architecture for the continuous planning
approach is shown in Figure 2. The basic algorithm is as
follows:

Initialize P to the null plan
Initialize G to the null goal set
Initialize S to the current state

Given a current plan P and a current goal set G

1. Update G to reflect new goals or goals that are
no longer needed

2. Update S to the revised current state
3. Compute conflicts on (P,G,S)
4. Apply conflict resolution planning methods to

P (within resource bounds)
5. release relevant near-term activities in P to

RTS for execution
6. Goto 1

Simulator

Generic
Simulator
Connector

Real
Time
System

Elaborators

Activity
Database

Timeline
Manager

Simulator
commands

activity updates,
timeline updates
time updates

Temporal extent to manage
computational slices

activities

State and
resource updates
activity updates

Activity information
conflict status
Primitive ADB modifications
(add, modify, delete)

Activity commits, rescinds

sensor
values Activity

permission
updates

Figure 2 Overall Architecture for Continuous Planning

In this approach, the real-time software produces updates
that require responses by near and long-term activities for
the spacecraft. The spacecraft state is modeled by a set of
timelines, which represents the current and expected
evolution of the spacecraft over time. This model includes
the current state (S) and the projection of how the state will
evolve in light of actions expected to take place in the
future. These actions are the current plan (P) that is also
reflected in the timelines as actions at future points in time.

At each iteration through the loop shown above, as the
world changes, the actual state of the spacecraft drifts from
the state expected by the timelines. The real-time software
updates the timeline models (S) with notifications of actual
state values, actual resource values, actual start times, and
completion times for activities. Each of these updates,
when synchronized with the current plan may introduce
conflicts (Step 3 above). A conflict occurs when an action
in the plan is inappropriate – because its required state
and/or resource values violate the system constraints.

Whenever such a conflict exists the planner notes the
conflict and performs plan modifications to make the plan
consistent with the current state and future projections.
Because this process is continuous, the plan rarely has the
opportunity to get significantly inconsistent. As a result the
high-level actions of the system are more responsive to the
actual spacecraft state. Also, planner activities at the lowest
level directly correspond to commands to the simulator.
The Generic Simulator Connector (Figure 2) handles the
mapping from activities to simulator commands.

In conjunction with this incremental, continuous planner
approach, we are also advocating a hierarchical approach to
planning. In this approach, the long-term planning horizon
is planned only at a very abstract level. Shorter and shorter
planning horizons are planned in greater detail, until finally
at the most specific level the planner plans only a short time
in advance (just in time planning). This paradigm is shown
in Figure 3.

The idea behind this hierarchical approach is that only
very abstract projections can be made over the long-term
and that detailed projections can only be made in the short-
term because prediction is difficult due to limited
computational resources and timely response requirements.
Hence there is little utility in constructing a detailed plan far
into the future – chances are it will end up being re-planned
anyway. At one extreme the short-term plan may not be
“planned” at all and may be a set of reactions to the current
state in the context of the near-term plan. This approach is
implemented in the control loop described above by making
high-level goals active regardless of their temporal

placement, but medium and low-level goals are only active
if they occur in the near future. Likewise, conflicts are only
regarded as important if they are high-level conflicts or if
they occur in the near future. As the time of a conflict or
goal approaches, it will eventually become active and the
elaboration/planning process will then be applied to resolve
the problem.

ST4 Spacecraft and Landed Operations
Description

Deep Space 4 / Champollion (ST4) will be the fourth
interplanetary spacecraft in NASA’s New Millennium
Program to identify, test, and fly advanced technologies
onboard interplanetary spacecraft and Earth-orbiting
satellites. In late 2005, following a two-and-a-half-year
journey, ST4 will match orbits, or rendezvous, with Comet
Tempel 1, as the comet is moving away from the Sun. The
spacecraft will spend several months orbiting the comet
nucleus, making highly accurate maps of its surface and
making some preliminary compositional measurements of
the gas in the coma. The data returned from ST4 will be
used to determine the mass, shape, and density of the
comet’s nucleus and to make some early estimates about its
composition.

After studying the nucleus from orbit, the spacecraft will
send a small vehicle (a lander) to the surface. The
touchdown itself will be quite tricky because scientists do
not know whether the surface of the comet nucleus is hard,
rocky, and rough, or soft and fluffy. Therefore, the
challenge engineers face in designing the technology and
instruments for this spacecraft is to be prepared for the
unexpected. One of the ways ST4 engineers are preparing
for all possible scenarios is by developing technologies to
anchor the lander into the comet’s surface no matter what its
composition. Because the gravity of the comet nucleus is so
weak, the lander must be anchored to the surface to permit
drilling and sampling.

Once firmly in place, the lander will use a one-meter long
drill to collect samples and then feed them to a gas
chromatograph/mass spectrometer onboard the lander. This
instrument will analyze the composition of the nucleus

collected from various depths below the surface. The lander

Figure 4 Artist depiction of ST4 lander landing on
Comet

Long Term Mission Plan

Medium Term Plan

Short Term Plan

Increased
Detail

Figure 3 Hierarchical Planning Horizons

will also carry cameras to photograph the comet surface.
Additional instruments planned onboard the lander to
determine the chemical makeup of the cometary ices and
dust will include an infrared/spectrometer microscope and a
gamma-ray spectrometer. After several days on the surface,
the lander will bring a sample back to the orbiter for return
to Earth.

Continuous Planner ST4 Scenario

In order to test our integrated planning and execution
approach, we have constructed a number of test cases within
the ST4 landed operations scenario. We have also
constructed a ST4 simulation, which accepts relatively high-
level commands such as: MOVE-DRILL, START-DRILL,
STOP-DRILL, TAKE-PICTURE, TURN-ON <device>, etc.
The simulator also accepts scenario-time-control commands
such as STEP, FFWD, and WARP. The simulation covers
operations of hardware devices. In this test scenario the
planner has models of 11 state and resource timelines,
including drill location, battery power, data buffer, and
camera state. The model also includes 19 activities such as
uplink data, move drill, compress data, take picture, and
perform oven experiment.

The continuous planner scenario has focused on the
comet lander portion of the ST4 mission. It comprises a
period of approximately 80 hours of lander operations on
the comet surface. It is intended to represent a class of test
cases against which to evaluate the performance of various
command and control strategies for this portion of the
mission.

The nominal mission scenario consists of three major
classes of activities: drilling and material transport,
instrument activity including imaging and in-situ materials
experiments, and data uplink. Of these, drilling is the most
complex and unpredictable.

The mission plan calls for three separate drilling
activities. Each drilling activity drill s a separate hole and
acquires samples at three different depths during the
process: a surface sample, a 20 cm. deep sample, and a one-
meter deep sample. Acquiring a sample involves five
separate “mining” operations after the hole has been drilled
to the desired depth. Each mining operation removes 1 cm.
of material. Drilling rate and power are unknown a priori,
but there are reasonable worst-case estimates available.
Drilling can fail altogether for a variety of reasons.

One of the three drilling operations is used to acquire
material for sample-return. The other two are used to supply
material to in-situ science experiments onboard the lander.
These experiments involve depositing the samples in an
oven, and taking data while the sample is heated. Between
baking operations the oven must cool, but there are two
ovens, allowing experiments to be interleaved unless one of
the ovens fails.

We apply CASPER to this scenario to demonstrate three
capabilities: 1) the ability to replan due to exogenous state
conflicts (such as equipment failures), 2) the ability to
replan due to exogenous resource conflicts (such as over-
subscription of memory buffers), 3) and the ability to replan
due to activity updates (such as drilling finishing late.)

One of the continuous planner capability to replan to
perform a resource substitution after a component failure
(Objective 1). The three planned sample activities each use
oven 1 for baking the comet samples. During the simulation
run, a failure was injected on oven 1. This changed the
oven 1 state to “failed” for the remainder of the simulation.
Because the second and third sample activities (as planned)
use oven 1, these sample activities are in conflict because
the sample activities require an operational oven (but are
planned to use a “failed” oven). The planning system
recognizes this conflict as a state required by an activity
being different from the actual (or projected) state. The
planner then attempts several fixes, including finding an
activity to change the incorrect state. Unfortunately, there
are no such activities to “fix” the oven. However, the
sample activities require an oven resource, and there are two
ovens on the ST4 lander. Hence the planner is able to find a
repaired plan in which the second and third samples use
oven 2 (see Figure 5.) The planning system could also have
deleted the activity in conflict. However, the prioritization
with the repair algorithm always considers moving or
adding other activities to solve the conflict before deleting
the conflicting activity.

Another continuous planner capability is to replan when a
aggregate resource is over-subscribed or under-utilized
(Objective 2). The data collected during the sample
activities is compressed and then stored in the data buffer of
the lander. This data is uplinked to the orbiting spacecraft at
a later time. The planner uses estimates of the amount of
data compression to plan when uplink activities are
necessary. Because the compression algorithms are content
dependent, these estimates may significantly deviate from
actual achieved compression.

In this scenario, the actual data generated by the second

o ff-co o l
o v e n 1
s ta te

A c tiv itie s

oven 1
on

oven 1
off

oven
experiment A

oven 1
on

c o n f lict

oven 1
off

c o n f lict

oven
experiment B

o ff-co o l o n

A c tiv itie s

o ff-co o lo ff-wa rm o ff-co o lo n o ff-wa rm

A c tiv itie s

oven 1
on

oven 1
off

oven
experiment A

oven 1
on

oven 1
off

oven
experiment B

o ff-co o l o n o ff-wa rm

oven 1
on

oven 1
off

oven
experiment A

oven 2
on

oven 2
off

oven
experiment B

o n o ff-wa rm faile do ff-co o l

o v e n 1
s ta te

o ff-co o l o ff-co o lo n o ff-wa rm
o v e n 2
s ta te

faile do ff-co o l

o ff-co o l
o v e n 2
s ta te

A fte r Rep lann ing

A fte r O ven 1 Fa ilu re

o ff-co o l
o v e n 2
s ta te

Initia l P lan

o v e n 1
s ta te

o v e n 1
fails

Figure 5 Oven State Example

A c tiv it ie s
oven experime nt A

minin g

In it ia l P lan

A c tiv it ie s
vio late d temporal
constraint conflict

oven experime nt A

minin g

A fte r E nd -tim e U pdate

A c tiv it ie s
oven experime nt A

minin g

A fte r R ep lann ing

Figure 7 Activity Update
Example

sample activity is greater than expected because the
compression achieved is less than originally estimated. The
planner realizes that it will not have sufficient buffer
memory to perform the third sample activity. This results in
an over-subscription of the data buffer depletable resource.
The planner knows that such a conflict can be repaired by:
1) removing activities that contribute to resource usage or 2)
adding an activity which renews the resource. In this case
these two options correspond to deleting the third sample
activity or adding an uplink activity. (The uplink activity
renews the buffer resource by uplinking data to the orbiter.)
The planner resolves this conflict by adding an uplink
activity after the second sample activity, freeing memory for
the third sample activity (see Figure 6.)

Antoher demonstrated CASPER capability is to replan
based on activity parameter updates (Objective 3). In the
scenario, the mining operation using the drill takes longer
than expected. This delays the oven experiment because no
sample is yet prepared. The actual conflict is a violation of
the temporal relationship between the mining activity and
the oven experiment activity. (Mining must be completed
before we continue to the oven experiment; see Figure 7.)
In this example, the planner moves the oven experiment
activity in order to repair this conflict.

Figure 8 contains a screen snapshot of the continuous
planner prototype. The display is time oriented; later times
are shown to the right on the horizontal axis. The upper

portion of the screen shows the current activities in the
mission plan, with each line beginning at the activity’s start
time and ending at its end time. The timelines toward the
bottom of the display show the state and resource evolution
as modeled and tracked by the planner.

Discussion

While the current prototype has been tested on a range of
cases in which state updates require replanning, all of the
cases thus far have been ones in which the updates cause
conflicts in the plan. In the case of the failed oven, buffer
over-use, and activity completion time problem, the state
update (when propagated through the plan) causes a
conflict. There are other cases in which a state update
enables a plan improvement. For example,

• battery power usage might be lower than expected
enabling insertion of an additional sample activity
content-dependent compression might perform better
than expected allowing storage of additional
experiment data; or

• drilling might be faster than expected again allowing
for additional science activities.

In each of these cases, the planner needs to be aware of the
potential for improvement in the current plan and be
triggered to attempt to take advantage of the fortuitous
situation. Our current prototype does not take advantage of
these opportunities and we are slating this as future work.

In the current prototype, the planner can only respond to
unexpected changes on activity boundaries. This can be
limited in the context of activities with extremely long
durations. This is because the planner does not have a
model detailed enough to predict the resultant state if
activities are interrupted in mid-execution. It would be
useful i f the planner could incorporate a model that could
represent interruptible activities and act appropriately.

While we have tested our prototype on a range of
scenarios, the test set has been quite small. We are currently
working on enlarging the test suite and enhancing the
simulation to address issues of noise in the simulation and
commanding as
well as
approximate state
estimation. These
additional issues
will further stress
the architecture
and are expected to
lead to further
insights and work.

A ctiv itie s

store
results

oven
experiment A

A fte r Replann ing

Afte r Experim ent B

5 M Bd a ta
b u ffe r

In it ia l P lan

store
results

oven
experiment B

store
results

oven
experiment C

1 0 M B 1 5 M B

A ctiv itie s

store
results

oven
experiment A

5 M B
d a ta

b u ffe r

store
results

oven
experiment B

store
results

oven
experiment C

1 5 M B
2 5 M B

2 0 M B

3 0 M B
co n flict

A ctiv itie s

store
results

oven
experiment A

5 M B
d a ta

b u ffe r

store
results

oven
experiment B

store
results

oven
experiment C

1 5 M B
2 5 M B

5 M B 1 0 M B

data uplink

Figure 6 Over-subscribed Data Buffer Example

Figure 8 Screen Snapshot Showing Oven Failed State before Replanning

This work builds on considerable previous work in
iterative repair problem solving. The high-speed local
search techniques used in our continuous planner prototype
are an evolution of those developed for the DCAPS system
[3] that has proven robust in actual applications. In terms
of related work, iterative algorithms have been applied to a
wide range of computer science problems such as traveling
salesman [9] as well as Artificial Intelligence Planning [2,
6, 14, 16]. Iterative repair algorithms have also been used
for a number of scheduling systems. The GERRY/GPSS
system [17, 4] uses iterative repair with a global evaluation
function and simulated annealing to schedule space shuttle
ground processing activities. The Operations Mission
Planner (OMP) [1] system used iterative repair in
combination with a historical model of the scheduler
actions (called chronologies) to avoid cycling and getting
caught in local minima. Work by Johnston and Minton [7]
shows how the min-conflicts heuristic can be used not only
for scheduling but also for a wide range of constraint
satisfaction problems. The OPIS system [15] can also be
viewed as performing iterative repair. However, OPIS is
more informed in the application of its repair methods in
that it applies a set of analysis measures to classify the
bottleneck before selecting a repair method. With iterative
repair and local search techniques, we are exploring
approaches complementary to backtracking refinement
search approach used in the New Millennium Deep Space
One Remote Agent Experiment Planner [11].

This paper has described an approach to integrating
planning and execution for spacecraft control and
operations. This approach has the benefit of reducing the
amount of time required for an onboard planning process
to respond to changes in the environment or goals. In our
approach, environmental changes or inaccurate models
cause updates to the current state model and future
projections. Additionally, the planner’s current goal set
may change. In either case, if these changes matter (e.g.,
the current plan no longer applies) they will cause conflicts
in the current plan. These conflicts are attacked using fast,
local search and iterative repair methods

Acknowledgements

This work was performed by the Jet Propulsion
Laboratory, California Institute of Technology, under
contract with the National Aeronautics and Space
Administration. Portions of this work were supported by
the Autonomy Technology Program, managed by Dr.
Richard Doyle and with Melvin Montemerlo as the
headquarters program executive, NASA Code SM and by
the Mission Data Systems Project, managed by Allan
Sacks, NASA Code S. Comments and feedback from Bob
Rasmussen, Kim Gostelow, Dan Dvorak, Erann Gat, Glenn
Reeves, and Ed Gamble were very helpful in formulating
and refining the ideas presented in this paper.

REFERENCES

[1] E. Biefeld and L. Cooper, “Bottleneck Identification
Using Process Chronologies,” Proceedings of the 1991
International Joint Conference on Artificial Intelligence,
Sydney, Australia, 1991.

[2] S. Chien and G. DeJong, “Constructing Simplified
Plans via Truth Criteria Approximation,” Proceedings of
the Second International Conference on Artificial
Intelligence Planning Systems, Chicago, IL, June 1994, pp.
19-24.

[3] S. Chien, G. Rabideau, J. Willis, and T. Mann,
“Automating Planning and Scheduling of Shuttle Payload
Operations,” Artificial Intelligence Journal Special Issue
on Applications, 1998.

[4] M. Deale, M. Yvanovich, D. Schnitzius, D. Kautz,
M. Carpenter, M. Zweben, G. Davis, and B. Daun, “The
Space Shuttle Ground Processing System,” in Intelligent
Scheduling, Morgan Kaufman, San Francisco, 1994.

[5] A. Fukunaga, G. Rabideau, S. Chien, D. Yan,
“Towards an Application Framework for Automated
Planning and Scheduling,” Proceedings of the 1997
International Symposium on Artificial Intelligence,
Robotics and Automation for Space, Tokyo, Japan, July
1997.

[6] K. Hammond, “Case-based Planning: Viewing
Planning as a Memory Task,” Academic Press, San Diego,
1989.

[7] M. Johnston and S. Minton, “Analyzing a Heuristic
Strategy for Constraint Satisfaction and Scheduling,” in
Intelligent Scheduling, Morgan Kaufman, San Francisco,
1994.

[8] H. Kautz, B. Selman, “Pushing the Envelope:
Planning, Propositional Logic, and Stochastic Search,”
Proceedings AAAI96.

[9] S. Lin and B. Kernighan, “An Effective Heuristic for
the Traveling Salesman Problem,” Operations Research
Vol. 21, 1973.

[10] D. Mittman (mission operations and planning lead
for Space Infra-red Telescope (SIRTF) Mission, personal
communications, April 1997.

[11] N. Muscettola, B. Smith, S. Chien , C. Fry , K.
Rajan, S. Mohan, G. Rabideau , D. Yan, “On-board
Planning for the New Millennium Deep Space One
Spacecraft,” Proceedings of the 1997 IEEE Aerospace
Conference, Aspen, CO, February, 1997, v. 1, pp. 303-318.

[12] B. Pell, D. Bernard, S. Chien, E. Gat, N.
Muscettola, P. Nayak, M. Wagner, and B. Williams, “ An
Autonomous Spacecraft Agent Prototype,” Autonomous
Robots, March 1998.

[13] R. Ridenoure, New Millennium Mission Operations
Study (and Personal Communication to Guy Man), June
1995.

[14] R. Simmons, “Combining Associational and Causal
Reasoning to Solve Interpretation and Planning Problems,”
Technical Report, MIT Artificial Intelligence Laboratory,
1988.

[15] S. Smith, “OPIS: An Architecture and Methodology
for Reactive Scheduling,” in Intelligent Scheduling,
Morgan Kaufman.

[16] G. Sussman, “A Computational Model of Skill
Acquisition,” Technical Report, MIT Artificial Intelligence
Laboratory, 1973.

[17] M. Zweben, B. Daun, E. Davis, and M. Deale,
“Scheduling and Rescheduling with Iterative Repair,” in
Intelligent Scheduling, Morgan Kaufman, San Francisco,
1994.

