
Robust and Self-Repairing Formation Control for Swarms of Mobile Agents 

Jimming Cheng 
Harvard University 

jvcheng@post.harvard.edu 

Winston Cheng 
Harvard University 

cheng2@post.harvard.edu 

Radhika Nagpal 
Harvard University 

 rad@eecs.harvard.edu  
 
 

Abstract 
We describe a decentralized algorithm for coordinating a 
swarm of identically-programmed mobile agents to spatially 
self-aggregate into arbitrary shapes using only local 
interactions. Our approach, called SHAPEBUGS, generates a 
consensus coordinate system by agents continually 
performing local trilaterations, and achieves shape 
formation by simultaneously allowing agents to disperse 
within the defined 2D shape using a Contained Gas Model. 
This approach has several novel features (1) agents can 
easily aggregate into arbitrary user-specified shapes, using a 
formation process that is independent of the number of 
agents (2) the system automatically adapts to influx and 
death of agents, as well as accidental displacement. We 
show that the consensus coordinate system is robust and 
provides reasonable accuracy in the face of significant 
sensor and movement error. 

Introduction 
Biology has shown that complex global behaviors can arise 
from simple interactions between large numbers of 
relatively unintelligent agents [1]. Swarm approaches to 
robotics, involving large numbers of simple robots rather 
than a small number of sophisticated robots, has many 
advantages with respect to robustness and efficiency. Such 
systems can typically absorb many types of failures and 
unplanned behavior at the individual agent level, without 
sacrificing task completion. At the same time, one can 
exploit parallelism and spatially distributed sensing and 
action. Emerging technologies are making it possible to 
cheaply manufacture small robots with sensors, actuators 
and computation [2,3]. This makes swarm intelligence an 
attractive solution for many problem domains. 
 In this paper, we focus on the problem of organizing 
mobile agents into arbitrary self-sustaining 2D formations. 
Keeping strategic formations of mobile agents is important 
for many tasks, especially when individual agents have 
limited abilities or the task requires collective action. For 
example, agents may aggregate for coordinated search and 
rescue, collectively moving large objects, exploring and 
mapping unknown terrain, or maintaining formations for 
defense or herding. However, current work on multi-robot 
formations achieves only simple shapes or uses complex 
negotiations unsuitable for large groups of robots [4]. 
 We propose a decentralized approach to multi-agent 
formation, that can not only achieve arbitrary shapes but is 
also robust to varying numbers of agents, agent influx and 
death, and practical hardware limitations like sensor and 
movement error. Our approach, SHAPEBUGS, achieves 
shape formation by generating a consensus coordinate 

system through agents performing local trilaterations, 
while simultaneously allowing agents to disperse 
themselves within the defined 2D shape. Briefly, the 
system works as follows: agents initially start in a 
“wandering” state, with no information about their 
environment (including their own world coordinates), but 
with an internal knowledge of the desired shape to be 
formed. A small number of agents are temporarily seeded 
with initial positions. Agents are equipped with imperfect 
proximity sensors and wireless communication with only 
nearby neighbors. As agents move, they continually 
perform local trilaterations to learn and maintain a 
common coordinate system. At the same time, agents 
influence each other’s movements according to a new 
Contained Gas Model inspired by pheromone robots and 
flocking rules [2,5]; this causes them to disperse within the 
shape and fill it efficiently. 
 This approach has several salient features. Not only can 
agents easily aggregate into arbitrary user-specified 
shapes, but also the shape formed is independent of the 
number of agents. The Contained Gas Model causes agents 
to disperse evenly within the shape, and varying the 
number of agents simply changes the equilibrium density. 
This model is also capable of automatic self-repair; the 
system can quickly recover from most patterns of agent 
death and can receive an influx of new agents at any 
location without blocking problems. We show, through 
simulation experiments, that the consensus coordinate 
system is robust and remains accurate in the face of 
practical limitations such as sensor and movement error. 
 The rest of the paper is as follows: we present related 
work, followed by a description of our agent model. We 
then describe the SHAPEBUGS algorithm in detail. Finally 
we present simulation experiments that investigate time 
efficiency, robustness to agent error, and self-repair. 

Related Work 
Algorithms for spatial organization of agents/robots via 
local interactions have steadily increased in sophistication. 
Several approaches have been proposed that only work for 
a small set of simple shapes. Unsal and Bay [4] developed 
a model where some agents become beacons, instructing 
others to remain at or within a certain distance, enabling 
the construction of rings and circles. Mamei et al. [6] have 
a similar approach, but use message hop count instead of a 
proximity sensor and can form crude polygons. 
 Multi-agent algorithms for forming arbitrary shapes 
have been designed for other agent models. For example, 
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Kondacs [7] presents an approach to shape formation on 
biologically-inspired agents that grow (self-replicate) and 
die. They use global-to-local compilation to automatically 
generate an agent program for a given shape; this system 
can be programmed for a large class of shapes and can 
self-repair. Stoy and Nagpal [8] present a related approach 
to 3D self-assembly on a simulated self-reconfigurable 
modular robot, where individual modules are mobile but 
must remain connected. While this system generates a 
wide variety of shapes, it cannot create solid shapes 
because agents may block each other and create internal 
holes that no wandering agents can reach. To avoid this, 
the system focuses on scaffolds and porous shapes only. 
Solid structures also make self-repair difficult because 
agent death deep within the shape is hard to get to. 
 Gordan et al. [9] address arbitrary shape formation with 
mobile agents by setting up a shared coordinate system and 
then distributing agents. However, their procedure moves 
in stages and involves significant centralization, so it is 
hard to adapt to failures during the formation process. 
 Our system also achieves arbitrary shapes by forming a 
decentralized coordinate system. However, instead of 
agents taking fixed positions in the shape, we use an 
adapted form of a dispersion algorithm proposed by 
Payton et al. [2]. We show that local dispersion rules can 
be effectively combined with shape formation, allowing 
the system to self-adjust to agent density, avoid blocking, 
and self-repair by automatically collapsing internal holes. 
Spears et al [10] use similar dispersion rules based on 
natural physics to achieve surveillance and perimeter 
defense, but they do not attempt organized shapes. 

Mobile Agent Model 
We assume a particular agent model that is motivated by 
capabilities of real autonomous robots (Fig. 1). We assume 
that agents move in 2D continuous space, all agents 
execute the same program, and agents interact only with 
other nearby agents by measuring distance and exchanging 
messages. We also assume that agents have a perfect 
compass, but that both distance measurements and 
movement have error. Currently, we simplify the handling 
of agent trajectories in simulations, by assuming that the 
world is finite and an agent that wanders off one side will 
reappear on the other side (wrap around space). For future 
work, agents may infer orientation using multiple 
trilaterations instead of depending on a compass. 

SHAPEBUGS Algorithm 
In the SHAPEBUGS algorithm, each agent has a map of 
the shape to be constructed that is later overlaid on the 
agent’s learned coordinate system. Initially, agents are 
scattered randomly in the world in a lost state, oblivious of 
their own positions. When turned on, each agent begins to 
 

Proximity 
Sensor 

Gives estimated real distance of each neighbor 
within range with uniformly distributed 
measurement error. 

Compass Gives perfect directional orientation 
Wireless 
Connection 

Allows agent to query the perceived coordinates of 
neighbors within range. 

Locomotion Moves agent in discrete predetermined step sizes on 
the real world. Movement has error, so actual 
distance traveled may vary. 

Shape Map Map of the destination shape to overlay on 
perceived coordinate system. 

Program Trilateration and movement processes. 
Figure 1: Agent Model 
 

execute its program using only data from its proximity 
sensor and its wireless link with nearby neighbors. 
 The agent program can be broken down into two 
processes that run continuously and concurrently. In the 
first process, an agent adjusts its perceived coordinate 
system so that it coincides with other agents’ perceived 
coordinate systems. This is achieved by trilateration using 
proximity sensor data. The second process controls agent 
movement. If an agent believes it is inside the shape, then 
it behaves like a gas particle with the shape as an closed 
container. Otherwise, the agent wanders randomly. 

Process 1: Local Trilateration Process 
The trilateration process allows an agent to find its 
perceived position (xp, yp) on the consensus coordinate 
system for the first time and subsequently adjust it. 
Trilateration can only occur if there are at least three 
neighbors that are not themselves lost. An agent uses its 
proximity sensor to estimate distance dPS

i to each neighbor 
NBi, and also queries NBi’s own perceived coordinates (xi, 
yi) with its wireless connection. The best fit for (xp, yp) 
minimizes over all neighbors the difference between dPS

i 
and the calculated distance from (xp, yp) to neighbor’s 
reported coordinates (xi, yi): 
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With this information, the agent can calculate its own 
position using a standard gradient descent algorithm: 
 

1. Start with some initial position (x(i), y(i)), i = 0. 
2. Find gradient ∇  at current position (x(i), y(i)). 
3. Move away from the gradient with a step size β  

    ),(),(),( )()()()()1()1( iiiiii yxyxyx ∇−=++ β  
4. Repeat  2 and 3 until a local minimum is reached. 

 

The success of the gradient descent algorithm depends 
largely on the initial starting position. If an agent has 
calculated its position recently, (xp, yp) is used as the 
starting point. If the agent is lost, then (xp, yp) is undefined 
and a good starting candidate can be found using the 
following procedure. First, pick three random neighbors 
NBp, NBq and NBr, and draw circles P, Q and R of radius 
dp, dq and dr around their centers. Each pair of circles will 
most likely intersect at two points—one close to the correct 
position and the other extraneous. The approximately 
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correct circle intersection points among all neighbors are 
clustered tightly while extraneous points are scattered. Any 
of the clustered points would be a good starting candidate. 
Let PQA and PQB be the two intersection points between 
circles P and Q. To decide which one is in the cluster (non-
extraneous), we draw line L1 through PQA and PQB  and L2 
through PRA and PRB. Because one of the points on L1 is 
clustered with one of the points on L2, the intersection of 
L1 and L2 will be closer to either PQA or PQB, whichever is 
the better approximation. This serves as the starting point. 
Sources of Error: Positioning is approximate and may 
have error for several reasons. First, even with perfect 
sensors, the gradient descent algorithm may settle at local 
minima. Second, distances measured by proximity sensors 
may have error. Third, coordinates reported by neighbors 
may be inaccurate. Thus, it is important to take the mean of 
several trilaterations instead of relying on a single 
trilateration for each coordinate adjustment decision. In 
addition, imperfect control can limit an agent’s ability to 
track its actual movement; an agent that thinks it moved 
distance d in some direction may actually move d±∆. As a 
result, perceived coordinates accumulate error over time 
even if no further trilaterations are performed. Thus, it is 
important to readjust coordinates at regular intervals. 
Sensor and movement tracking error are common in real 
hardware, so it is important to account for their effects. 
 We address these issues by implementing averaged and 
repeated trilateration as follows. Each agent calculates new 
trilaterated coordinates at every time step. A window of the 
last w trilaterations is always kept in memory. Every r 
steps, the agent updates its perceived coordinates by 
averaging over the last w trilaterations. The effects of 
averaged and repeated trilaterations can be studied by 
varying w (number of previous trilaterations considered) 
and r (interval between coordinate adjustments). 
 
Process 2: Movement Rules 
Agents follow different movement patterns depending on 
whether they think they are inside or outside the shape. If 
an agent is lost, it assumes it is outside the shape. Agents 
that think they are outside the shape hope to find their way 
into the shape. Our agents simply walk continuously in a 
random semi-straight path. In our finite, wrapping world, 
this allows agents to find the shape with high probability1. 
 Agents who think they are inside the shape have a more 
complex objective, since they are part of the intelligent 
swarm that comprises it. First, these agents should not take 
any steps that will put them outside of the shape. This 
helps keep the shape intact once formed. Second, the 
swarm should be capable of executing desired tasks such 
as self-repair and graceful absorption of new agents. 
 The SHAPEBUGS algorithm achieves these goals by 
modeling agents in the shape as gas particles in a closed 
container. Agents react to different densities of neighbors 
around them, moving away from areas of high density  

                                                 
1 In the future, a new class of recruiting agents can scout for lost agents, 
and non-lost agents can be programmed to navigate towards the shape. 

 
Figure 2: Pheromone  

robot’s influence zones 

 

Figure 3: SHAPEBUG’s  
influence zones 

 

towards low density. Over time, they settle into an 
equilibrium of constant pressure throughout the shape.  
 When agents die, surrounding agents quickly flood the 
resulting area of low pressure until equilibrium is restored. 
Thus, the swarm can respond to any loss as long as there 
are enough agents left to generate a sensible equilibrium 
pressure. If new agents are injected into the swarm at any 
point, the resulting area of high pressure will quickly 
dissipate. Therefore, many agents entering the swarm at a 
single location will not be a barrier to subsequent agents. 
 This behavior is inspired by Payton et al.’s Gas 
Expansion Model [2], but is also similar in nature to the 
flocking rules proposed by Reynolds [5]. While the Payton 
model (Fig. 2) strives for maximal dispersal to an optimum 
agent density, our movement model has two goals: 1) 
Equalize pressure at any agent density. 2) Superimpose the 
notion of a container. 
 The first goal is achieved by giving each agent a varying 
repulsive force that has a maximum value adjacent to the 
agent and decays at a constant rate until it reaches a neutral 
zone (Fig. 3).. The agent’s movement vector, calculated at 
every time step, is the sum of the vectors away from 
repulsing neighbors, weighted inversely by distance. This 
allows agents to disperse evenly at any density. Let R be 
the repulsive radius and dPS

i be the distance measured by 
the proximity sensor. Given the agent’s own perceived 
position vr = (xp, yp), and the perceived position ivr  of each 
neighbor i, the movement vector mr  is given by: 
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=
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 The second goal is achieved by superimposing a 
container on the agents’ coordinate systems. Agent 
movement is restricted to only steps that keep them inside 
the container. If the calculated movement vector would 
take an agent outside the shape, it is discarded in exchange 
for a either staying still or making a random movement 
within the shape with some small probability.  This keeps 
agents on borders from getting stuck. 

Evaluation and Results 
We show through simulation that SHAPEBUGS can form 
arbitrary shapes while automatically compensating for 
various sources of error and agent influx and death. We 
implemented SHAPEBUGS in Java, using the Swarm 
Development Group’s multi-agent simulator to run tests 
[11]. Shape Maps are represented as 1-bit bitmap images. 
When a Shape Map is overlaid on the 2D continuous  
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a) “X”, 300 agents b) Barbell, 180 agents c) Barbell, 450 agents 

Figure 4: a) Formation of the letter X by 300 agents. b) and c) 
demonstrate shape formation under varying agent densities. 
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Figure 5: Rate of shape formation for different agent densities. 
 

agent world, each pixel corresponds to a unit square area. 
In all cases, exactly 12 agents clustered in a common 5x5 
area are seeded with compatible initial positions to trigger 
the initial round of trilaterations. Proximity sensors have a 
range of 5.0 units. Agents move in discrete steps of 2.0 
units, but error can cause actual step size to vary. 
 Figure 4 shows several examples of formations by 
mobile agents, and also shows that the same shape can be 
maintained at different densities with no modification of 
agent behavior. The Contained Gas rules cause agents to 
always disperse evenly at any density. 
 The stabilized shapes took about 300 time steps to 
complete, depending on agent density. Figure 5 shows the 
percentage over time of agents who have coordinates and 
are in the shape while forming a 50x50 square in a 80x80 
world. Rate of shape formation increases as the number of 
agents increases from 100-300. With higher agent density, 
there are more interactions, so coordinate systems 
propagate faster and time to stabilization is reduced. 

Coordinate System Accuracy and Robustness 
We measure quantitatively the overall level of agreement 
among all agents on a similar coordinate system. To do 
this, we calculate the variance of the consensus coordinate 
system, by first computing the mean global coordinate 
system over all agents (i.e. average location of the origin) 
and then computing the variance of the distance between 
each agent’s local coordinate system and the mean 
coordinate system. Lower variance signals more agreement 
between different agents’ coordinate systems. 
 In addition, we test how the distributed model is affected 
by practical hardware limitations, in particular proximity 
sensor errors and movement error. Proximity  
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Figure 6: Coordinate variances degrade gracefully with 
increasing proximity sensor errors (note: log y axis). 
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Figure 7: Effect of increasing movement error (log y axis). 
 

sensors are inherently imperfect, and external effects such 
as atmospheric disturbances further impair their accuracy. 
We simulate sensor error by adding to each sensed 
distance dPS a uniformly distributed random error ePS. With 
movement error, each step an agent takes may put it 
slightly farther or nearer than it thinks. Thus, an agent may 
drift from its perceived coordinates over time. We simulate 
movement error by adding a uniform random error eMV to 
the true distance moved dMV. 
 Figures 6 and 7 show coordinate system variances for 
different levels of sensor and movement errors. In these 
experiments, agents formed a 50x50 square centered in a 
80x80 world. For each agent, r = w = 10. In general, 
setting  r = w was a sensible choice. Trials showed that 
setting r > w performed worse. If the window size does not 
at least span the entire interval between readjustments, 
then updates will not be utilizing all available information. 
In particular, r – w out of every r trilaterations will be 
wasted. Setting r < w gave empirically similar results to r = 
w. Proximity sensor error is expressed as a percentage of 
the sensor range. Since the sensor range is 5 units, a sensor 
error of ±40% implies that ePS is a random variable on the 
interval [-2,2]. Similarly, movement error is a percentage 
of the step size. 
 For sensor and movement error, coordinate system 
variance settles to a stable value after about 400 time steps. 
Agents achieved variances under 0.39 units2 for  
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Figure 8: Variance after the swarm has stabilized. Isolated 
sensor error of ±40% vs. isolated movement error of ±10%. 
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Figure 9: Large update intervals degrade performance on trials 
with movement error but do not affect trials with sensor error. 

 

proximity errors up to ±20%, and under 0.57 units2 for 
movement errors of ±10%. Performance degrades 
gracefully as the magnitude of error increases for both 
sensor and movement error. However, it is also clear that 
SHAPEBUGS is more tolerant of sensor error than 
movement error. For example, experiments with a sensor 
error of ±80% can still reach a variance of less than 0.65 
units2, but a movement error of only ±20% results in a 
variance of 1.30 units2. 
 This suggests a fundamental difference between the way 
sensor error and movement error affect coordinate system 
agreement. Indeed, figure 8 shows that increasing w and r 
causes the stabilized variance to continually decrease when 
there is only sensor error. However, with movement error, 
stabilized variance reaches a minimum at w = r = 15 and 
then increases again. To understand why this pattern 
occurs, we note the following: First, both sensor and 
movement error are sources of random noise with expected 
values of zero at each time step. Thus, increasing w and 
averaging across more time steps has the effect of filtering 
out this noise. This explains the downward trend for sensor 
error and the initial downward trend for movement error. 
However, movement error has the added characteristic that 
it is cumulative. While sensor error is independent across 
time steps, movement error can add up and cause 
coordinate drift over time. Thus, as the interval r between 
updates increases, the drift worsens, as there are more 

steps for it to accumulate. Figure 9 demonstrates this by 
holding constant w = 5 and varying r. Movement error 
worsens with increasing r while sensor error is unaffected. 
This may explain the delayed upward trend in variance for 
the movement error experiments. With movement error, 
the goal is to set w and r to strike a balance between 
minimizing noise and minimizing drift. 

Adaptation and Self-Repair 
We have shown that SHAPEBUGS can form various 
shapes and adapt to sensor/movement error. Here we 
describe experiments aimed at testing the ability to recover 
from large scale errors such as 1) accidental misplacement 
of large numbers of agents and 2) regional death or influx 
of agents. We show that the coordinate system can 
restabilize and that agents adjust to influx and death 
without any explicit detection or monitoring for failures. 
 A challenge at the macro level is for an entire group of 
misinformed agents to stabilize in relation to the aggregate 
entity. For example, if the terrain under an entire group of 
agents shifts, those agents will be fragmented from the 
aggregate entity but will agree on a common faulty 
coordinate system. The aggregate entity should be able to 
overcome these regional failures. 
 To test this case, we first allowed agents to stabilize into 
the aggregate shape. Then, we selected a large region of 
agents and uniformly displaced their coordinate systems. 
Figure 10 shows experiments on a swarm that has formed 
into a grid pattern. Agents in the lower right corner had 
their perceived coordinates shifted 15 units down and to 
the right, and the swarm was allowed to reconverge. In 
figure 10b the displaced agents start to form another grid at 
the shifted coordinates, but as they interact with their 
neighbors from the original grid, they correct the error, and 
revert to the original shape (Fig. 10c). 
 Figure 11 illustrates a more extreme example where the 
shifted agents become completely detached from the 
original shape. Here, agents in the right half of a 90x15 
rectangular bar experience a 50 unit downward (y-axis) 
shift in their perceived coordinates. This causes the 
variance of the agents’ perceptions of their coordinate 
system to rise sharply as the displaced agents start forming 
a new complete shape above the original (t=530). 
However, as agents randomly break free from one shape 
and run across to mingle with the other, the two distinct 
coordinate systems slowly drift towards each other. 
Variance decreases slowly at first, but drops quickly 
around step 1750 when the two shapes finally meet. Here, 
the agents are able to interact much more freely, so 
reconvergence accelerates during these final steps. 
 Figure 12 demonstrates the repair feature. Spaces 
opened up by agent death are quickly filled by neighboring 
agents. We removed the agents outlined in the square in 
figure 12a, and the gap was quickly repaired. The 
efficiency of repair varies with the type of shape.  For 
instance, repair is slow if the shape has a bottleneck. When 
the right half of the barbell in Figure 12 dies, repair  
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a) t=600 b) t=620 c) t=750 

Figure 10: Recovery from distorting a region of the shape. 
 

  
t=500, v=1150 t=530, v=594 t=750, v=437 

  
t=1550, v=229 t=1750, v=75 t=2100, v=0.97 

 

Figure 11: Reconvergence of a horizontal bar (v = variance) 
 

  
a) t=400 b) t=410 c) t=440 

Figure 12: Repairing a region after agent deaths 
 

  
neighborhood=5 neighborhood=8 

Figure 13: Lattice formation for different neighborhood sizes 
 

takes about 250 steps. By contrast, repair only takes 80 
steps for similar death in a square shape with the same 
area. Also, formation and repair will not finish if agent 
density is so low that agents can space themselves evenly 
to the limit of their communication range. In this range, the 
Contained Gas laws no longer push the agents. The agents 
settle into a static, lattice-like formation (Fig. 13). 

Conclusion 
This work shows an effective strategy for construction and 
preservation of a complex aggregate entity using large 
numbers of simple decentralized agents. By composing 
two processes, 1) trilateration and 2) Contained Gas 
movement, agents can self-organize into arbitrary user-

specified shapes. The resulting structure can self-repair 
and restabilize in cases of agent death and displacement, 
and can overcome large degrees of sensor and movement 
error. In addition, the ability to operate in spite of common 
hardware limitations make SHAPEBUGS a model that 
could be feasibly implemented with real robots. 
 SHAPEBUGS can be further improved by addressing 
certain aspects such as imperfect orientation control and 
active recruiting of agents instead of random wandering. In 
addition, our goal is to extend SHAPEBUGS to allow the 
swarm to move in formation. We believe that the 
Contained Gas Model will allow us to achieve goal-
directed movement in a way that allows the system to 
move around obstacles yet retain (repair) swarm shape. 

References 
[1] S. Camazine, J. Deneubourg, N. Franks, J. Sneyd, G. 

Theraulaz, E. Bonabeau. Self-organization in 
Biological Systems, Princeton University Press, 2002. 

[2] D. Payton, M. Daily, R. Estkowski, M. Howard, C. 
Lee. Pheromone Robots. Autonomous Robots, 11, 3: 
319-324, 2001. 

[3] F. Mondada, A. Guignard, M. Bonani, D. Floreano, 
M. Lauria, SWARM-BOT: From Concept to 
Implementation, IEEE/RSJ International Conference 
on Intelligent Robots and Systems (IROS), 2003. 

[4] C. Unsal, J. Bay. Spatial Self-organization in Large 
Populations of Mobile Robots. International 
Symposium on Intelligent Control, August, 1994. 

[5] C. Reynolds. Flocks, Herds, and Schools: A 
Distributed Behavioral Model, SIGGRAPH, 1987. 

[6] M. Mamei, M. Vasirani, F. Zambonelli. Experiments 
in Morphogenesis in Swarms of Simple Mobile 
Robots. Applied Artificial Intelligence, 18, 9-10: 903-
919, 2004. 

[7] A. Kondacs. Biologically-inspired Self-assembly of 
2D Shapes, Using Global-to-local Compilation. 
International Joint Conference on Artificial 
Intelligence, 2003. 

[8] K. Stoy, R. Nagpal. Self-reconfiguration Using 
Directed Growth. International Symposium on 
Distributed Autonomous Robot Systems, June, 2004. 

[9] N. Gordon, I. Wagner, A. Brucks. Discrete Bee Dance 
Algorithms for Pattern Formation on a Grid. 
International Conference on Intelligent Agent 
Technology, 545, 2003. 

[10] W. Spears, D. Spears, J. Hamann, R. Heil. Distributed, 
Physics-Based Control of Swarms of Vehicles. 
Autonomous Robots 17, 137-162, 2004 

[11] Swarm Development Group: http://www.swarm.org 

AAAI-05 / 64


